1
|
Liu C, Goel P, Kaeser PS. Spatial and temporal scales of dopamine transmission. Nat Rev Neurosci 2021; 22:345-358. [PMID: 33837376 PMCID: PMC8220193 DOI: 10.1038/s41583-021-00455-7] [Citation(s) in RCA: 106] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/04/2021] [Indexed: 02/02/2023]
Abstract
Dopamine is a prototypical neuromodulator that controls circuit function through G protein-coupled receptor signalling. Neuromodulators are volume transmitters, with release followed by diffusion for widespread receptor activation on many target cells. Yet, we are only beginning to understand the specific organization of dopamine transmission in space and time. Although some roles of dopamine are mediated by slow and diffuse signalling, recent studies suggest that certain dopamine functions necessitate spatiotemporal precision. Here, we review the literature describing dopamine signalling in the striatum, including its release mechanisms and receptor organization. We then propose the domain-overlap model, in which release and receptors are arranged relative to one another in micrometre-scale structures. This architecture is different from both point-to-point synaptic transmission and the widespread organization that is often proposed for neuromodulation. It enables the activation of receptor subsets that are within micrometre-scale domains of release sites during baseline activity and broader receptor activation with domain overlap when firing is synchronized across dopamine neuron populations. This signalling structure, together with the properties of dopamine release, may explain how switches in firing modes support broad and dynamic roles for dopamine and may lead to distinct pathway modulation.
Collapse
Affiliation(s)
- Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pragya Goel
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
2
|
Li H, McConnell GC. Intraoperative Microelectrode Recordings in Substantia Nigra Pars Reticulata in Anesthetized Rats. Front Neurosci 2020; 14:367. [PMID: 32410946 PMCID: PMC7201294 DOI: 10.3389/fnins.2020.00367] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 03/25/2020] [Indexed: 11/27/2022] Open
Abstract
The Substantia Nigra pars reticulata (SNr) is a promising target for deep brain stimulation (DBS) to treat the gait and postural disturbances in Parkinson’s disease (PD). Positioning the DBS electrode within the SNr is critical for the development of preclinical models of SNr DBS to investigate underlying mechanisms. However, a complete characterization of intraoperative microelectrode recordings in the SNr to guide DBS electrode placement is lacking. In this study, we recorded extracellular single-unit activity in anesthetized rats at multiple locations in the medial SNr (mSNr), lateral SNr (lSNr), and the Ventral Tegmental Area (VTA). Immunohistochemistry and fluorescently dyed electrodes were used to map neural recordings to neuroanatomy. Neural recordings were analyzed in the time domain (i.e., firing rate, interspike interval (ISI) correlation, ISI variance, regularity, spike amplitude, signal-to-noise ratio, half-width, asymmetry, and latency) and the frequency domain (i.e., spectral power in frequency bands of interest). Spike amplitude decreased and ISI correlation increased in the mSNr versus the lSNr. Spike amplitude, signal-to-noise ratio, and ISI correlation increased in the VTA versus the mSNr. ISI correlation increased in the VTA versus the lSNr. Spectral power in the VTA increased versus: (1) the mSNr in the 20–30 Hz band and (2) the lSNr in the 20–40 Hz band. No significant differences were observed between structures for any other feature analyzed. Our results shed light on the heterogeneity of the SNr and suggest electrophysiological features to promote precise targeting of SNr subregions during stereotaxic surgery.
Collapse
Affiliation(s)
- Hanyan Li
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| | - George C McConnell
- Department of Biomedical Engineering, Stevens Institute of Technology, Hoboken, NJ, United States
| |
Collapse
|
3
|
Perez SM, Donegan JJ, Boley AM, Aguilar DD, Giuffrida A, Lodge DJ. Ventral hippocampal overexpression of Cannabinoid Receptor Interacting Protein 1 (CNRIP1) produces a schizophrenia-like phenotype in the rat. Schizophr Res 2019; 206:263-270. [PMID: 30522798 PMCID: PMC6525642 DOI: 10.1016/j.schres.2018.11.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Revised: 11/01/2018] [Accepted: 11/04/2018] [Indexed: 12/18/2022]
Abstract
Adolescent cannabis use has been implicated as a risk factor for schizophrenia; however, it is neither necessary nor sufficient. Previous studies examining this association have focused primarily on the role of the cannabinoid receptor 1 (CB1R) with relatively little known about a key regulatory protein, the cannabinoid receptor interacting protein 1 (CNRIP1). CNRIP1 is an intracellular protein that interacts with the C-terminal tail of CB1R and regulates its intrinsic activity. Previous studies have demonstrated aberrant CNRIP1 DNA promoter methylation in post-mortem in human patients with schizophrenia, and we have recently reported decreased methylation of the CNRIP1 DNA promoter in the ventral hippocampus (vHipp) of a rodent model of schizophrenia susceptibility. To examine whether augmented CNRIP1 expression could contribute to the pathology of schizophrenia, we performed viral-mediated overexpression of CNRIP1 in the vHipp of Sprague Dawley rats. We then tested these rats for behavioral correlates of schizophrenia symptoms, followed by electrophysiology to determine the effects on the dopamine system, known to underlie psychosis. Here, we report that overexpression of vHipp CNRIP1 induces impairments in latent inhibition and social interaction, similar to those observed in individuals with schizophrenia and in rodent models of the disease. Furthermore, rats overexpressing vHipp CNRIP1 displayed a significant increase in ventral tegmental area (VTA) dopamine neuron population activity, a putative correlate of psychosis. These data provide evidence that alterations in CNRIP1 may contribute to the pathophysiology of schizophrenia, as overexpression is sufficient to produce neurophysiological and behavioral correlates consistently observed in rodent models of the disease.
Collapse
Affiliation(s)
- Stephanie M Perez
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA.
| | - Jennifer J Donegan
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| | - Angela M Boley
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| | - David D Aguilar
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA; VA Boston Healthcare System and Harvard Medical School Department of Psychiatry, 1400 VFW Parkway, West Roxbury, MA 02132, USA
| | - Andrea Giuffrida
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| | - Daniel J Lodge
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Drive, MC 7764, San Antonio, TX 78229, USA
| |
Collapse
|
4
|
Newborn dopaminergic neurons are associated with the migration and differentiation of SVZ-derived neural progenitors in a 6-hydroxydopamin-injected mouse model. Neuroscience 2017; 352:64-78. [DOI: 10.1016/j.neuroscience.2017.03.045] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2016] [Revised: 02/27/2017] [Accepted: 03/26/2017] [Indexed: 12/15/2022]
|
5
|
Paladini C, Tepper J. Neurophysiology of Substantia Nigra Dopamine Neurons: Modulation by GABA and Glutamate. HANDBOOK OF BEHAVIORAL NEUROSCIENCE 2016. [DOI: 10.1016/b978-0-12-802206-1.00017-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
|
6
|
Rooney KE, Wallace LJ. Computational modeling of extracellular dopamine kinetics suggests low probability of neurotransmitter release. Synapse 2015; 69:515-25. [PMID: 26248886 DOI: 10.1002/syn.21845] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 06/25/2015] [Accepted: 07/11/2015] [Indexed: 02/03/2023]
Abstract
Dopamine in the striatum signals the saliency of current environmental input and is involved in learned formation of appropriate responses. The regular baseline-firing rate of dopaminergic neurons suggests that baseline dopamine is essential for proper brain function. The first goal of the study was to estimate the likelihood of full exocytotic dopamine release associated with each firing event under baseline conditions. A computer model of extracellular space associated with a single varicosity was developed using the program MCell to estimate kinetics of extracellular dopamine. Because the literature provides multiple kinetic values for dopamine uptake depending on the system tested, simulations were run using different kinetic parameters. With all sets of kinetic parameters evaluated, at most, 25% of a single vesicle per varicosity would need to be released per firing event to maintain a 5-10 nM extracellular dopamine concentration, the level reported by multiple microdialysis experiments. The second goal was to estimate the fraction of total amount of stored dopamine released during a highly stimulated condition. This was done using the same model system to simulate published measurements of extracellular dopamine following electrical stimulation of striatal slices in vitro. The results suggest the amount of dopamine release induced by a single electrical stimulation may be as large as the contents of two vesicles per varicosity. We conclude that dopamine release probability at any particular varicosity is low. This suggests that factors capable of increasing release probability could have a powerful effect on sculpting dopamine signals.
Collapse
Affiliation(s)
- Katherine E Rooney
- Division of Pharmacology, College of Pharmacy, the Ohio State University, 500 W. 12th Avenue Columbus, Ohio, 43210
| | - Lane J Wallace
- Division of Pharmacology, College of Pharmacy, the Ohio State University, 500 W. 12th Avenue Columbus, Ohio, 43210.,500 West 12th Avenue Columbus, Ohio, 43210
| |
Collapse
|
7
|
Marinelli M, McCutcheon JE. Heterogeneity of dopamine neuron activity across traits and states. Neuroscience 2014; 282:176-97. [PMID: 25084048 DOI: 10.1016/j.neuroscience.2014.07.034] [Citation(s) in RCA: 97] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 07/21/2014] [Accepted: 07/22/2014] [Indexed: 12/29/2022]
Abstract
Midbrain dopamine neurons fire irregularly, with interspersed clusters of high-frequency spikes, commonly called 'bursts'. In this review we examine such heterogeneity in activity, and provide insight into how it can participate in psychiatric conditions such as drug addiction. We first describe several techniques used to evaluate dopamine neuron activity, and comment on the different measures that each provides. We next describe the activity of dopamine neurons in 'basal' conditions. Specifically, we discuss how the use of anesthesia and reduced preparations may alter aspects of dopamine cell activity, and how there is heterogeneity across species and regions. We also describe how dopamine cell firing changes throughout the peri-adolescent period and how dopamine neuron activity differs across the population. In the final section, we discuss how dopamine neuron activity changes in response to life events. First, we focus attention on drugs of abuse. Drugs themselves change firing activity through a variety of mechanisms, with effects on firing while drug is present differing from those seen after drug discontinuation. We then review how stimuli that are rewarding, aversive, or salient can evoke changes in firing rate and discharge pattern of dopamine neurons, and provide behavioral relevance of dopamine signaling. Finally, we discuss how stress can modulate dopamine neuron firing and how this may contribute to the role that stressful experiences play in psychiatric disorders such as addiction and depression.
Collapse
Affiliation(s)
- M Marinelli
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, 107 W. Dean Keeton, C0875, BME 6.114A, Austin, TX 78756, USA.
| | - J E McCutcheon
- Department of Cell Physiology and Pharmacology, College of Medicine, Biological Sciences and Psychology, University of Leicester, Maurice Shock Medical Sciences Building, University Road, P.O. Box 138, Leicester LE1 9HN, UK.
| |
Collapse
|
8
|
Locomotor response to novelty correlates with the number of midbrain tyrosine hydroxylase positive cells in rats. Brain Res Bull 2012; 87:94-102. [DOI: 10.1016/j.brainresbull.2011.10.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Revised: 10/20/2011] [Accepted: 10/21/2011] [Indexed: 11/19/2022]
|
9
|
An imperfect dopaminergic error signal can drive temporal-difference learning. PLoS Comput Biol 2011; 7:e1001133. [PMID: 21589888 PMCID: PMC3093351 DOI: 10.1371/journal.pcbi.1001133] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2010] [Accepted: 04/06/2011] [Indexed: 12/03/2022] Open
Abstract
An open problem in the field of computational neuroscience is how to link synaptic plasticity to system-level learning. A promising framework in this context is temporal-difference (TD) learning. Experimental evidence that supports the hypothesis that the mammalian brain performs temporal-difference learning includes the resemblance of the phasic activity of the midbrain dopaminergic neurons to the TD error and the discovery that cortico-striatal synaptic plasticity is modulated by dopamine. However, as the phasic dopaminergic signal does not reproduce all the properties of the theoretical TD error, it is unclear whether it is capable of driving behavior adaptation in complex tasks. Here, we present a spiking temporal-difference learning model based on the actor-critic architecture. The model dynamically generates a dopaminergic signal with realistic firing rates and exploits this signal to modulate the plasticity of synapses as a third factor. The predictions of our proposed plasticity dynamics are in good agreement with experimental results with respect to dopamine, pre- and post-synaptic activity. An analytical mapping from the parameters of our proposed plasticity dynamics to those of the classical discrete-time TD algorithm reveals that the biological constraints of the dopaminergic signal entail a modified TD algorithm with self-adapting learning parameters and an adapting offset. We show that the neuronal network is able to learn a task with sparse positive rewards as fast as the corresponding classical discrete-time TD algorithm. However, the performance of the neuronal network is impaired with respect to the traditional algorithm on a task with both positive and negative rewards and breaks down entirely on a task with purely negative rewards. Our model demonstrates that the asymmetry of a realistic dopaminergic signal enables TD learning when learning is driven by positive rewards but not when driven by negative rewards. What are the physiological changes that take place in the brain when we solve a problem or learn a new skill? It is commonly assumed that behavior adaptations are realized on the microscopic level by changes in synaptic efficacies. However, this is hard to verify experimentally due to the difficulties of identifying the relevant synapses and monitoring them over long periods during a behavioral task. To address this question computationally, we develop a spiking neuronal network model of actor-critic temporal-difference learning, a variant of reinforcement learning for which neural correlates have already been partially established. The network learns a complex task by means of an internally generated reward signal constrained by recent findings on the dopaminergic system. Our model combines top-down and bottom-up modelling approaches to bridge the gap between synaptic plasticity and system-level learning. It paves the way for further investigations of the dopaminergic system in reward learning in the healthy brain and in pathological conditions such as Parkinson's disease, and can be used as a module in functional models based on brain-scale circuitry.
Collapse
|
10
|
In-vivo deep brain recordings of intranigral grafted cells in a mouse model of Parkinson's disease. Neuroreport 2010; 21:485-9. [PMID: 20405544 DOI: 10.1097/wnr.0b013e328337f4ca] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
We recently showed that intranigral transplantation of embryonic neurons in a mouse model of Parkinson's disease led to anatomical and functional recovery of the nigrostriatal pathway. Here we report, in-vivo electrophysiological characteristics of these grafted neurons 2 months after transplantation. Extracellular activity was mapped within the transplant using microarray electrodes and exploration was done with antidromic and orthodromic striatal stimulation. Grafted neurons expressed spontaneous electrophysiological activity with dopaminergic-like characteristics, and antidromic and orthodromic responses suggest a functional recovery of the nigrostriatal loop.
Collapse
|
11
|
Lobb CJ, Wilson CJ, Paladini CA. A dynamic role for GABA receptors on the firing pattern of midbrain dopaminergic neurons. J Neurophysiol 2010; 104:403-13. [PMID: 20445035 DOI: 10.1152/jn.00204.2010] [Citation(s) in RCA: 94] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Dopaminergic neurons are subject to a significant background GABAergic input in vivo. The presence of this GABAergic background might be expected to inhibit dopaminergic neuron firing. However, dopaminergic neurons are not all silent but instead fire in single-spiking and burst firing modes. Here we present evidence that phasic changes in the tonic activity of GABAergic afferents are a potential extrinsic mechanism that triggers bursts and pauses in dopaminergic neurons. We find that spontaneous single-spiking is more sensitive to activation of GABA receptors than phasic N-methyl-D-aspartate (NMDA)-mediated burst firing in rat slices (P15-P31). Because tonic activation of GABA(A) receptors has previously been shown to suppress burst firing in vivo, our results suggest that the activity patterns seen in vivo are the result of a balance between excitatory and inhibitory conductances that interact with the intrinsic pacemaking currents observed in slices. Using the dynamic clamp technique, we applied balanced, constant NMDA and GABA(A) receptor conductances into dopaminergic neurons in slices. Bursts could be produced by disinhibition (phasic removal of the GABA(A) receptor conductance), and these bursts had a higher frequency than bursts produced by the same NMDA receptor conductance alone. Phasic increases in the GABA(A) receptor conductance evoked pauses in firing. In contrast to NMDA receptor, application of constant AMPA and GABA(A) receptor conductances caused the cell to go into depolarization block. These results support a bidirectional mechanism by which GABAergic inputs, in balance with NMDA receptor-mediated excitatory inputs, control the firing pattern of dopaminergic neurons.
Collapse
Affiliation(s)
- Collin J Lobb
- Neurosciences Institute, University of Texas at San Antonio, San Antonio, Texas 78249, USA
| | | | | |
Collapse
|
12
|
Ethanol action on dopaminergic neurons in the ventral tegmental area: interaction with intrinsic ion channels and neurotransmitter inputs. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2010; 91:235-88. [PMID: 20813245 DOI: 10.1016/s0074-7742(10)91008-8] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
The dopaminergic system originating in the midbrain ventral tegmental area (VTA) has been extensively studied over the past decades as a critical neural substrate involved in the development of alcoholism and addiction to other drugs of abuse. Accumulating evidence indicates that ethanol modulates the functional output of this system by directly affecting the firing activity of VTA dopamine neurons, whereas withdrawal from chronic ethanol exposure leads to a reduction in the functional output of these neurons. This chapter will provide an update on the mechanistic investigations of the acute ethanol action on dopamine neuron activity and the neuroadaptations/plasticities in the VTA produced by previous ethanol experience.
Collapse
|
13
|
Abstract
Attention-deficit hyperactivity disorder (ADHD) is a prevalent and debilitating disorder diagnosed on the basis of persistent and developmentally-inappropriate levels of overactivity, inattention and impulsivity. The etiology and pathophysiology of ADHD is incompletely understood. There is evidence of a genetic basis for ADHD but it is likely to involve many genes of small individual effect. Differences in the dimensions of the frontal lobes, caudate nucleus, and cerebellar vermis have been demonstrated. Neuropsychological testing has revealed a number of well documented differences between children with and without ADHD. These occur in two main domains: executive function and motivation although neither of these is specific to ADHD. In view of the recent advances in the neurobiology of reinforcement, we concentrate in this review on altered reinforcement mechanisms. Among the motivational differences, many pieces of evidence indicate that an altered response to reinforcement may play a central role in the symptoms of ADHD. In particular, sensitivity to delay of reinforcement appears to be a reliable finding. We review neurobiological mechanisms of reinforcement and discuss how these may be altered in ADHD, with particular focus on the neurotransmitter dopamine and its actions at the cellular and systems level. We describe how dopamine cell firing activity is normally associated with reinforcing events, and transfers to earlier time-points in the behavioural sequence as reinforcement becomes more predictable. We discuss how a failure of this transfer may give rise to many symptoms of ADHD, and propose that methylphenidate might act to compensate for the proposed dopamine transfer deficit.
Collapse
|
14
|
Putzier I, Kullmann PHM, Horn JP, Levitan ES. Dopamine neuron responses depend exponentially on pacemaker interval. J Neurophysiol 2008; 101:926-33. [PMID: 19073798 DOI: 10.1152/jn.91144.2008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Midbrain dopamine neuron activity results from the integration of the responses to metabo- and ionotropic receptors with the postsynaptic excitability of these intrinsic pacemakers. Interestingly, intrinsic pacemaker rate varies greatly between individual dopamine neurons and is subject to short- and long-term regulation. Here responses of substantia nigra dopamine neurons to defined dynamic-clamp stimuli were measured to quantify the impact of cell-to-cell variation in intrinsic pacemaker rate. Then this approach was repeated in single dopamine neurons in which pacemaker rate was altered by activation of muscarinic receptors or current injection. These experiments revealed a dramatic exponential dependence on pacemaker interval for the responses to voltage-gated A-type K+ channels, voltage-independent cation channels and ionotropic synapses. Likewise, responses to native metabotropic (GABAb and mGluR1) inhibitory synapses depended steeply on pacemaker interval. These results show that observed variations in dopamine neuron pacemaker rate are functionally significant because they produce a >10-fold difference in responses to diverse stimuli. Both the magnitude and the mathematical form of the relationship between pacemaker interval and responses were not previously anticipated.
Collapse
Affiliation(s)
- Ilva Putzier
- Department of Pharmacology, University of Pittsburgh, Pittsburgh, PA, USA
| | | | | | | |
Collapse
|
15
|
GABAergic afferents activate both GABAA and GABAB receptors in mouse substantia nigra dopaminergic neurons in vivo. J Neurosci 2008; 28:10386-98. [PMID: 18842898 DOI: 10.1523/jneurosci.2387-08.2008] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Most in vivo electrophysiological studies of substantia nigra have used rats. With the recent proliferation of the use of mice for in vitro neurophysiological studies because of the availability of various genetically modified strains to identify the roles of various channels and proteins in neuronal function, it is crucial to obtain data on in vivo responses in mice to verify that the in vitro results reflect functioning of systems comparable with those that have been well studied in rat. Inhibitory responses of rat nigral dopaminergic neurons by stimulation of afferents from striatum, globus pallidus, or pars reticulata have been shown to be mediated predominantly or exclusively by GABA(A) receptors. This is puzzling given the substantial expression of GABA(B) receptors and the ubiquitous appearance of GABA(B) synaptic responses in rat dopaminergic neurons in vitro. In the present study, we studied electrically evoked GABAergic inhibition in nigral dopaminergic neurons in C57BL/6J mice. Stimulation of the three major GABAergic inputs elicited stronger and longer-lasting inhibitory responses than those seen in rats. The early inhibition was GABA(A) mediated, whereas the later component, absent in rats, was GABA(B) mediated and selectively enhanced by GABA uptake inhibition. Striatal-evoked inhibition exhibited a slower onset and a weaker initial component compared with inhibition from globus pallidus or substantia nigra pars reticulata. These results are discussed with respect to differences in the size and neuronal density of the rat and mouse brain and the different sites of synaptic contact of the synapses from the three GABAergic afferents.
Collapse
|
16
|
Cholinergic modulation of midbrain dopaminergic systems. ACTA ACUST UNITED AC 2008; 58:265-71. [DOI: 10.1016/j.brainresrev.2008.02.003] [Citation(s) in RCA: 101] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2007] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
|
17
|
Rodriguez M, Gonzalez S, Morales I, Sabate M, Gonzalez-Hernandez T, Gonzalez-Mora JL. Nigrostriatal cell firing action on the dopamine transporter. Eur J Neurosci 2007; 25:2755-65. [PMID: 17561841 DOI: 10.1111/j.1460-9568.2007.05510.x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The influence of nigrostriatal cell firing on the dopamine transporter (DAT) activity of the rat striatum was studied in vivo with amperometric methods. Data were obtained after preventing dopamine (DA) release with alpha-methyl-L-tyrosine and replenishing extracellular DA with local injections. The DA cell stimulation, which under basal conditions increased extracellular DA, decreased DA after this pre-treatment, suggesting that firing activity facilitates the DA cell uptake of DA under these circumstances (drain response). Cocaine and GBR13069 markedly decreased the drain response, suggesting that it is dependent on DAT activation. Data obtained after haloperidol and apomorphine administration showed that the drain response was facilitated by pre-synaptic DA receptor stimulation but that receptors are not a necessary requirement. Two components in the drain response were observed, one with a short latency and duration that needed high-frequency stimuli, and the other with a long latency and duration that was even induced by low-frequency stimuli. This is the first evidence showing that DAT can be activated by the firing activity in nigrostriatal cells in a direct way and without the participation of pre-synaptic DA receptors.
Collapse
Affiliation(s)
- Manuel Rodriguez
- Laboratory of Neurobiology and Experimental Neurology, Department of Physiology, Faculty of Medicine, University of La Laguna, La Laguna, 38320 Tenerife, Spain.
| | | | | | | | | | | |
Collapse
|
18
|
Arbuthnott GW, Wickens J. Space, time and dopamine. Trends Neurosci 2007; 30:62-9. [PMID: 17173981 DOI: 10.1016/j.tins.2006.12.003] [Citation(s) in RCA: 189] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2006] [Revised: 11/01/2006] [Accepted: 12/05/2006] [Indexed: 10/23/2022]
Abstract
In recent years, dopamine has emerged as a key neurotransmitter that is crucially involved in incentive motivation and reinforcement learning. Dopamine release is evoked by rewards. The extensive divergence of outputs from a small number of dopaminergic neurons suggests a spatially nonselective action of dopamine, but it reinforces the specific actions that led to reward. How is this achieved? We propose that the selectivity of dopamine effects is achieved by the timing of dopamine release in relation to the activity of glutamatergic synapses, rather than by spatial localization of the dopamine signal to specific synaptic contacts. The synaptic mechanisms of these actions are unknown but reduced levels of dopamine, for example in Parkinson's disease, leads to a paucity of behavioural output, whereas its excess production has been associated with psychiatric problems. Clearly, there are therapeutic imperatives that require a better understanding of how dopamine functions at a synaptic level.
Collapse
Affiliation(s)
- Gordon W Arbuthnott
- The University of Edinburgh, School of Biomedical and Clinical Laboratory Sciences, Division of Neuroscience, 1 George Square, Edinburgh EH8 9JZ, UK.
| | | |
Collapse
|
19
|
Tepper JM, Lee CR. GABAergic control of substantia nigra dopaminergic neurons. PROGRESS IN BRAIN RESEARCH 2007; 160:189-208. [PMID: 17499115 DOI: 10.1016/s0079-6123(06)60011-3] [Citation(s) in RCA: 164] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
At least 70% of the afferents to substantia nigra dopaminergic neurons are GABAergic. The vast majority of these arise from the neostriatum, the external globus pallidus and the substantia nigra pars reticulata. Nigral dopaminergic neurons express both GABA(A) and GABA(B) receptors, and are inhibited by local application of GABA(A) or GABA(B) agonists in vivo and in vitro. However, in vivo, synaptic responses elicited by stimulation of neostriatal or pallidal afferents, or antidromic activation of nigral pars reticulata GABAergic projection neurons are mediated predominantly or exclusively by GABA(A) receptors. The clearest and most consistent role for the nigral GABA(B) receptor in vivo is as an inhibitory autoreceptor that presynaptically modulates GABA(A) synaptic responses that originate from all three principal GABAergic inputs. The firing pattern of dopaminergic neurons is also effectively modulated by GABAergic inputs in vivo. Local blockade of nigral GABA(A) receptors causes dopaminergic neurons to shift to a burst firing pattern regardless of the original firing pattern. This is accompanied by a modest increase in spontaneous firing rate. The GABAergic inputs from the axon collaterals of the pars reticulata projection neurons seem to be a particularly important source of a GABA(A) tone to the dopaminergic neurons, inhibition of which leads to burst firing. The globus pallidus exerts powerful control over the pars reticulata input, and through the latter, disynaptically over the dopaminergic neurons. Inhibition of pallidal output leads to a slight decrease in firing of the dopaminergic neurons due to disinhibition of the pars reticulata neurons whereas increased firing of pallidal neurons leads to burst firing in dopaminergic neurons that is associated with a modest increase in spontaneous firing rate and a significant increase in extracellular levels of dopamine in the neostriatum. The pallidal disynaptic disinhibitory control of the dopaminergic neurons dominates the monosynaptic inhibitory influence because of a differential sensitivity to GABA of the two nigral neuron types. Nigral GABAergic neurons are more sensitive to GABA(A)-mediated inhibition than dopaminergic neurons, in part due to a more hyperpolarized GABA(A) reversal potential. The more depolarized GABA(A) reversal potential in the dopaminergic neurons is due to the absence of KCC2, the chloride transporter responsible for setting up a hyperpolarizing Cl(-) gradient in most mature CNS neurons. The data reviewed in this chapter have made it increasingly clear that in addition to the effects that nigral GABAergic output neurons have on their target nuclei outside of the basal ganglia, local interactions between GABAergic projection neurons and dopaminergic neurons are crucially important to the functioning of the nigral dopaminergic neurons.
Collapse
Affiliation(s)
- James M Tepper
- Center for Molecular and Behavioral Neuroscience, Rutgers University, 197 University Avenue, Newark, NJ 07102, USA.
| | | |
Collapse
|
20
|
Shen RY, Choong KC. Different adaptations in ventral tegmental area dopamine neurons in control and ethanol exposed rats after methylphenidate treatment. Biol Psychiatry 2006; 59:635-42. [PMID: 16199009 DOI: 10.1016/j.biopsych.2005.08.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2005] [Revised: 07/26/2005] [Accepted: 08/05/2005] [Indexed: 11/28/2022]
Abstract
BACKGROUND Methylphenidate (MPH) is a psychostimulant effective in treating attention-deficit/hyperactivity disorder (ADHD). Repeated MPH treatment may increase substance abuse risk because of adaptations in dopaminergic (DA) function associated with sensitization to subsequent stimulant exposure. However, this possibility is based on observations in normal animals and may not apply to animals with attention problems linked to compromised DA function such as prenatal ethanol exposed (PE) animals. METHODS The electrical activity of ventral tegmental area (VTA) DA neurons was studied after the cessation of repeated MPH treatment at a threshold dose (1 mg/kg/day for 3 weeks) in PE and control rats. RESULTS In control rats, there was a continuous increase in VTA DA neuron excitability post-MPH treatment, characterized by a transient increase in population activity (1 day posttreatment) followed by decreased population activity (30-60 days posttreatment) in most of the animals due to depolarization inactivation. In PE rats, MPH treatment decreased the excessive excitability of VTA DA neurons and resulted in prolonged normalization in the population activity (1-60 days posttreatment). These changes were not mediated by altered sensitivity of somatodendritic DA autoreceptors. CONCLUSIONS Repeated MPH treatment produced distinctly different effects on VTA DA neuron activity in control and PE animals. These results suggest that repeated MPH treatment for ADHD may not lead to increased substance abuse risk in special populations such as individuals with fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- Roh-Yu Shen
- Research Institute on Addictions, State University of New York at Buffalo, Buffalo, New York 14203, USA.
| | | |
Collapse
|
21
|
Svarnik OE, Alexandrov YI, Gavrilov VV, Grinchenko YV, Anokhin KV. Fos expression and task-related neuronal activity in rat cerebral cortex after instrumental learning. Neuroscience 2005; 136:33-42. [PMID: 16182454 DOI: 10.1016/j.neuroscience.2005.07.038] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2005] [Revised: 07/18/2005] [Accepted: 07/20/2005] [Indexed: 11/27/2022]
Abstract
Learning has been shown to induce changes in neuronal gene expression and to produce development of task-specific neuronal activity. The connection between these two features of neuronal plasticity remains of a great interest. To address this issue we compared distribution of c-Fos expressing and task-related neurons in the rat cerebral cortex following instrumental learning of appetitive lever-press task. The number of Fos-positive neurons was determined immunohistochemically in the retrosplenial and the motor cortex of naive ("control" group), newly trained ("acquisition" group) and overtrained ("performance" group) animals. A significant activation of c-Fos expression was observed in the neurons of the retrosplenial but not motor cortex in the "acquisition" group rats, as compared with the "control" and "performance" groups. In accordance with this c-Fos expression difference, the retrosplenial cortex of the trained animals contained significantly more neurons with lever-press-related activity than the motor cortex. Therefore, the two examined cortical areas showed a parallel between experience-dependent induction of c-Fos and development of task-related neuronal activity. These data support a notion that learning-induced activation of c-Fos is associated with long-term neurophysiological changes produced by training.
Collapse
Affiliation(s)
- O E Svarnik
- V. B. Shvyrkov Laboratory of Neuronal Bases of Mind, Institute of Psychology, Russian Academy of Sciences, Yaroslavskaya St., 13, 129366 Moscow, Russia.
| | | | | | | | | |
Collapse
|
22
|
Lee CR, Abercrombie ED, Tepper JM. Pallidal control of substantia nigra dopaminergic neuron firing pattern and its relation to extracellular neostriatal dopamine levels. Neuroscience 2005; 129:481-9. [PMID: 15501605 DOI: 10.1016/j.neuroscience.2004.07.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2004] [Indexed: 11/26/2022]
Abstract
The firing patterns of dopaminergic neurons in vivo are strongly modulated by afferent input. The principal GABAergic inputs to the dopaminergic neurons of the substantia nigra originate from neurons of the neostriatum, globus pallidus and substantia nigra pars reticulata. It has previously been shown that the firing pattern of nigral dopaminergic neurons can be manipulated by pharmacologically induced excitation or inhibition of the globus pallidus with relatively little effect on firing rate. We used this technique to explore the relation between the firing pattern of dopaminergic neurons and extracellular dopamine levels in the neostriatum in vivo. Specifically, we tested whether an increase in burst firing in dopaminergic neurons produced by increased pallidal activity led to increased extracellular dopamine levels in the neostriatum. Single unit extracellular recording combined with simultaneous microdialysis was used to measure the firing rates and patterns of dopaminergic neurons and extracellular striatal dopamine levels, respectively, during bicuculline-induced excitation of the globus pallidus. Pallidal excitation resulted in a marked increase in burst firing in dopaminergic neurons along with only a slight increase in firing rate, but produced a significant elevation (approximately 45%) in neostriatal dopamine levels. These data suggest that afferent-induced burst firing in dopaminergic neurons leads to an increase in extracellular dopamine levels in the neostriatum when compared with less bursty patterns with similar overall firing rates.
Collapse
Affiliation(s)
- C R Lee
- Center for Molecular and Behavioral Neuroscience, Rutgers, The State University of New Jersey, 197 University Avenue, Newark, NJ 07102, USA
| | | | | |
Collapse
|
23
|
Wickens J, Arbuthnott G. Chapter IV Structural and functional interactions in the striatum at the receptor level. HANDBOOK OF CHEMICAL NEUROANATOMY 2005. [DOI: 10.1016/s0924-8196(05)80008-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
|
24
|
Komendantov AO, Komendantova OG, Johnson SW, Canavier CC. A Modeling Study Suggests Complementary Roles for GABAA and NMDA Receptors and the SK Channel in Regulating the Firing Pattern in Midbrain Dopamine Neurons. J Neurophysiol 2004; 91:346-57. [PMID: 13679411 DOI: 10.1152/jn.00062.2003] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Midbrain dopaminergic (DA) neurons in vivo exhibit two major firing patterns: single-spike firing and burst firing. The firing pattern expressed is dependent on both the intrinsic properties of the neurons and their excitatory and inhibitory synaptic inputs. Experimental data suggest that the activation of N-methyl-d-aspartate (NMDA) and GABAA receptors is a crucial contributor to the initiation and suppression of burst firing, respectively, and that blocking Ca2+-activated potassium SK channels can facilitate burst firing. A multi-compartmental model of a DA neuron with a branching structure was developed and calibrated based on in vitro experimental data to explore the effects of different levels of activation of NMDA and GABAA receptors as well as the modulation of the SK current on the firing activity. The simulated tonic activation of GABAA receptors was calibrated by taking into account the difference in the electrotonic properties in vivo versus in vitro. Although NMDA-evoked currents are required for burst generation in the model, currents evoked by GABAA-receptor activation can also regulate the firing pattern. For example, the model predicts that increasing the level of NMDA receptor activation can produce excessive depolarization that prevents burst firing, but a concurrent increase in the activation of GABAA receptors can restore burst firing. Another prediction of the model is that blocking the SK channel current in vivo will facilitate bursting, but not as robustly as blocking the GABAA receptors.
Collapse
|
25
|
Choong K, Shen R. Prenatal ethanol exposure alters the postnatal development of the spontaneous electrical activity of dopamine neurons in the ventral tegmental area. Neuroscience 2004; 126:1083-91. [PMID: 15207341 DOI: 10.1016/j.neuroscience.2004.04.041] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2004] [Indexed: 10/26/2022]
Abstract
Prenatal ethanol exposure causes a persistent reduction in the spontaneous electrical activity of dopamine (DA) neurons in the ventral tegmental area (VTA) in adult animals. Because DA neuron activity matures into adult pattern during postnatal development, it is possible that reduced activity in VTA DA neurons after prenatal ethanol exposure is caused by impaired postnatal development. This possibility was investigated in the present study using the in vivo extracellular single-unit recording and brain stimulation techniques. The results show an age-dependent decrease in the number of spontaneously active VTA DA neurons from 2 to 4 weeks of age in both the control and prenatal ethanol-exposed animals. In ethanol-exposed animals, the age-dependent decrease was more prominent after 3 weeks of age, resulting in lower numbers of spontaneously active VTA DA neurons in 4-week-old and adult animals. In both the control and ethanol-exposed animals, there were age-dependent increases in the firing rates and burst firing activity of VTA DA neurons after 2 weeks of age. Ethanol exposure led to slightly lower firing rates in 4-week-old and adult animals and did not impact the burst firing pattern in any age groups. There were no changes in axon conduction velocity and antidromic spike characteristics of VTA DA neurons. These results indicate that reduced activity of VTA DA neurons during adulthood after prenatal ethanol exposure does not begin prenatally. Instead, it is a result of impaired postnatal development manifested only when animals reach 4 weeks of age. These results suggest that early intervention may be an effective treatment strategy for attention deficit/hyperactivity disorder, a behavioral dysfunction related to the abnormalities of DA systems and often observed in children with fetal alcohol spectrum disorder.
Collapse
Affiliation(s)
- K Choong
- Research Institute on Addictions, State University of New York at Buffalo, 1021 Main Street, Buffalo, NY 14203, USA
| | | |
Collapse
|
26
|
Venton BJ, Zhang H, Garris PA, Phillips PEM, Sulzer D, Wightman RM. Real-time decoding of dopamine concentration changes in the caudate-putamen during tonic and phasic firing. J Neurochem 2003; 87:1284-95. [PMID: 14622108 DOI: 10.1046/j.1471-4159.2003.02109.x] [Citation(s) in RCA: 197] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The fundamental process that underlies volume transmission in the brain is the extracellular diffusion of neurotransmitters from release sites to distal target cells. Dopaminergic neurons display a range of activity states, from low-frequency tonic firing to bursts of high-frequency action potentials (phasic firing). However, it is not clear how this activity affects volume transmission on a subsecond time scale. To evaluate this, we developed a finite-difference model that predicts the lifetime and diffusion of dopamine in brain tissue. We first used this model to decode in vivo amperometric measurements of electrically evoked dopamine, and obtained rate constants for release and uptake as well as the extent of diffusion. Accurate predictions were made under a variety of conditions including different regions, different stimulation parameters and with uptake inhibited. Second, we used the decoded rate constants to predict how heterogeneity of dopamine release and uptake sites would affect dopamine concentration fluctuations during different activity states in the absence of an electrode. These simulations show that synchronous phasic firing can produce spatially and temporally heterogeneous concentration profiles whereas asynchronous tonic firing elicits uniform, steady-state dopamine concentrations.
Collapse
Affiliation(s)
- B Jill Venton
- Department of Chemistry and Neuroscience Center, University of North Carolina, Chapel Hill, NC 27599-3290, USA
| | | | | | | | | | | |
Collapse
|
27
|
Spiga S, Serra GP, Puddu MC, Foddai M, Diana M. Morphine withdrawal-induced abnormalities in the VTA: confocal laser scanning microscopy. Eur J Neurosci 2003; 17:605-12. [PMID: 12581178 DOI: 10.1046/j.1460-9568.2003.02435.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Morphine withdrawal is characterized by functional alterations at the level of the ventrotegmental area. We investigated the effects of chronic morphine administration and withdrawal on the morphological properties of immuno-labelled tyrosine hydroxylase-positive neurons of the rat ventrotegmental area with a confocal laser scanning microscope. Morphological evaluation revealed a reduction in the area and perimeter of tyrosine hydroxylase-positive somata in morphine-withdrawn rats. Conversely, the number of cells per field was found to have increased in the naloxone group. Collectively, the present results indicate that withdrawal from a chronic morphine treatment, and not chronic morphine per se, modifies cellular morphology of tyrosine hydroxylase-positive, presumably dopamine-containing, neurons of the rat VTA. This is consistent with the idea that withdrawal from morphine alters functioning of the mesolimbic dopamine system and provides a direct morphological correlate for the functional abnormalities typical of morphine withdrawal.
Collapse
Affiliation(s)
- Saturnino Spiga
- Department of Animal Biology and Ecology, University of Cagliari, Italy
| | | | | | | | | |
Collapse
|
28
|
Garris PA, Rebec GV. Modeling fast dopamine neurotransmission in the nucleus accumbens during behavior. Behav Brain Res 2002; 137:47-63. [PMID: 12445715 DOI: 10.1016/s0166-4328(02)00284-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Recent advances in electrophysiology and voltammetry permit monitoring of dopamine (DA) neuronal activity in real time in the brain of awake animals. Studies using these approaches demonstrate that behaviorally relevant events elicit characteristic patterns of electrical activity in midbrain DA neurons as well as large, transient changes in extracellular DA in the nucleus accumbens (NAc). In addition to providing insight into the role of the DA system in the processing of motor, motivational, and sensory information, the new findings also shed light on fast DA neurotransmission in a behavioral context. This report, (1). summarizes the information obtained by electrophysiological and real-time voltammetric approaches and (2). describes a general model of phasic DA signaling in the NAc that links the observed changes in DA electrical activity and extracellular dynamics. The analysis demonstrates that the behaviorally evoked DA transients are governed by similar mechanisms as those produced by short trains of electrical stimulation. Thus, action potential-dependent release and presynaptic uptake are primary determinants of functional DA levels in the brain during behavior. Interestingly, the model predicts that the same burst of electrical activity generated at DA cell bodies produces markedly different DA dynamics in forebrain projection fields. The distinct changes result from heterogeneous release and uptake rates and may underlie region-specific effects of DA. Auto- and heteroreceptors, as well as other sites of presynaptic control, could further modulate the DA transients.
Collapse
Affiliation(s)
- Paul A Garris
- Department of Biological Sciences, Illinois State University, 244 SLB, Normal, IL 61790-4120, USA.
| | | |
Collapse
|
29
|
Walters JR, Ruskin DN, Allers KA, Bergstrom DA. Pre- and postsynaptic aspects of dopamine-mediated transmission. Trends Neurosci 2000; 23:S41-7. [PMID: 11052219 DOI: 10.1016/s1471-1931(00)00024-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Dopamine agonist administration induces changes in firing rate and pattern in basal ganglia nuclei that provide an insight into the role of dopamine in basal ganglia function. These changes support a more complex, integrated basal ganglia network than envisioned in early models. Functionally important effects on basal ganglia output involve alterations in burstiness, synchronization and oscillatory activity,as well as rate. Multisecond oscillations in basal ganglia firing rates are markedly affected by systemic administration of dopamine-receptor agonists. This suggests that coordinated changes in neuronal activity at time scales longer than commonly investigated play a role in the cognitive and motor processes that are modulated by dopamine.
Collapse
Affiliation(s)
- J R Walters
- Experimental Therapeutics Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-1406, USA
| | | | | | | |
Collapse
|
30
|
Heidenreich BA, Rebec GV. Effects of crus cerebri lesions and repeated amphetamine treatment on the activity of nigral dopaminergic neurons. Synapse 2000; 38:80-6. [PMID: 10941143 DOI: 10.1002/1098-2396(200010)38:1<80::aid-syn9>3.0.co;2-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Previous research suggests that the firing rate of dopamine (DA) neurons in the substantia nigra pars compacta (SNC) may be altered by repeated DA agonist treatment. Because changes in the frequency of DA activity could reflect the firing patterns (e.g., bursting) of the neurons sampled, this study examined both the firing rate and pattern of SNC DA neurons after long-term amphetamine (AMPH) treatment (5 mg/kg d-AMPH s.c. twice daily for 6 days). To assess the contribution of postsynaptic feedback from the forebrain, unilateral electrolytic lesions were made to the crus cerebri (CC), containing the striatonigral pathway, prior to AMPH treatment. Single-unit activity of presumed SNC DA neurons was recorded in adult male rats under urethane anesthesia. Spontaneous firing rate was reduced by AMPH treatment, relative to saline vehicle, but was unaffected by CC or sham lesions. Neurons categorized as bursting had faster rates of activity than nonbursting cells. AMPH treatment reduced the number of bursts seen in intact rats but increased bursting in lesioned rats. These results suggest that changes in DA firing rate previously found after chronic AMPH may reflect altered patterns of activity. In addition, the effects of long-term AMPH on the firing patterns of DA neurons appear to be mediated by fibers in the CC.
Collapse
Affiliation(s)
- B A Heidenreich
- Department of Psychology and Program in Neural Science, Indiana University, Bloomington, Indiana, USA.
| | | |
Collapse
|
31
|
West AR, Grace AA. Striatal nitric oxide signaling regulates the neuronal activity of midbrain dopamine neurons in vivo. J Neurophysiol 2000; 83:1796-808. [PMID: 10758092 DOI: 10.1152/jn.2000.83.4.1796] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
A major component of the cortical regulation of the nigrostriatal dopamine (DA) system is known to occur via activation of striatal efferent systems projecting to the substantia nigra. The potential intermediary role of striatal nitric oxide synthase (NOS)-containing interneurons in modulating the efferent regulation of DA neuron activity was examined using single-unit recordings of DA neurons performed concurrently with striatal microdialysis in anesthetized rats. The response of DA neurons recorded in the substantia nigra to intrastriatal artificial cerebrospinal fluid (ACSF) or drug infusion was examined in terms of mean firing rate, percent of spikes fired in bursts, cells/track, and response to electrical stimulation of the orbital prefrontal cortex (oPFC) and striatum. Intrastriatal infusion of NOS substrate concurrently with intermittent periods of striatal and cortical stimulation increased the mean DA cell population firing rate as compared with ACSF controls. This effect was reproduced via intrastriatal infusion of a NO generator. Infusion of either a NOS inhibitor or NO chelator via reverse microdialysis did not affect basal firing rate but increased the percentage of DA neurons responding to striatal stimulation with an initial inhibition followed by a rebound excitation (IE response) from 40 to 74%. NO scavenger infusion also markedly decreased the stimulation intensity required to elicit an IE response to electrical stimulation of the striatum. In single neurons in which the effects of electrical stimulation were observed before and after drug delivery, NO antagonist infusion was observed to decrease the onset latency and extend the duration of the initial inhibitory phase induced by either oPFC or striatal stimulation. This is the first report showing that striatal NO tone regulates the basal activity and responsiveness of DA neurons to cortical and striatal inputs. These studies also indicate that striatal NO signaling may play an important role in the integration of information transmitted to basal ganglia output centers via corticostriatal and striatal efferent pathways.
Collapse
Affiliation(s)
- A R West
- Departments of Neuroscience and Psychiatry, Center for Neuroscience, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, USA
| | | |
Collapse
|
32
|
Striatal neuronal activity and responsiveness to dopamine and glutamate after selective blockade of D1 and D2 dopamine receptors in freely moving rats. J Neurosci 1999. [PMID: 10212318 DOI: 10.1523/jneurosci.19-09-03594.1999] [Citation(s) in RCA: 74] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although striatal neurons receive continuous dopamine (DA) input, little information is available on the role of such input in regulating normal striatal functions. To clarify this issue, we assessed how systemic administration of selective D1 and D2 receptor blockers or their combination alters striatal neuronal processing in freely moving rats. Single-unit recording was combined with iontophoresis to monitor basal impulse activity of dorsal and ventral striatal neurons and their responses to glutamate (GLU), a major source of excitatory striatal drive, and DA. SCH-23390 (0.2 mg/kg), a D1 antagonist, strongly elevated basal activity and attenuated neuronal responses to DA compared with control conditions, but GLU-induced excitations were enhanced relative to control as indicated by a reduction in response threshold, an increase in response magnitude, and a more frequent appearance of apparent depolarization inactivation. In contrast, the D2 antagonist eticlopride (0.2 mg/kg) had a weak depressing effect on basal activity and was completely ineffective in blocking the neuronal response to DA. Although eticlopride reduced the magnitude of the GLU response, the response threshold was lower, and depolarization inactivation occurred more often relative to control. The combined administration of these drugs resembled the effects of SCH-23390, but whereas the change in basal activity and the GLU response was weaker, the DA blocking effect was stronger than SCH-23390 alone. Our data support evidence for DA as a modulator of striatal function and suggest that under behaviorally relevant conditions tonically released DA acts mainly via D1 receptors to provide a continuous inhibiting or restraining effect on both basal activity and responsiveness of striatal neurons to GLU-mediated excitatory input.
Collapse
|