1
|
Yang H, Narayan S, Schmidt MV. From Ligands to Behavioral Outcomes: Understanding the Role of Mineralocorticoid Receptors in Brain Function. Stress 2023; 26:2204366. [PMID: 37067948 DOI: 10.1080/10253890.2023.2204366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/18/2023] Open
Abstract
Stress is a normal response to situational pressures or demands. Exposure to stress activates the hypothalamic-pituitary-adrenal (HPA) axis and leads to the release of corticosteroids, which act in the brain via two distinct receptors: mineralocorticoid receptors (MR) and glucocorticoid receptors (GR). Persistent HPA axis overactivation or dysregulation can disrupt an individual's homeostasis, thereby contributing to an increased risk for mental illness. On the other hand, successful coping with stressful events involves adaptive and cognitive processes in the brain that render individuals more resilient to similar stressors in the future. Here we review the role of the MR in these processes, starting with an overview of the physiological structure, ligand binding, and expression of MR, and further summarizing its role in the brain, its relevance to psychiatric disorders, and related rodent studies. Given the central role of MR in cognitive and emotional functioning, and its importance as a target for promoting resilience, future research should investigate how MR modulation can be used to alleviate disturbances in emotion and behavior, as well as cognitive impairment, in patients with stress-related psychiatric disorders.
Collapse
Affiliation(s)
- Huanqing Yang
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| | - Sowmya Narayan
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- Department Translational Research in Psychiatry, Max Planck Institute of Psychiatry, 80804 Munich, Germany
- International Max Planck Research School for Translational Psychiatry (IMPRS-TP), 80804 Munich, Germany
| | - Mathias V Schmidt
- Research Group Neurobiology of Stress Resilience, Max Planck Institute of Psychiatry, 80804 Munich, Germany
| |
Collapse
|
2
|
Alper J, Feng R, Verma G, Rutter S, Huang KH, Xie L, Yushkevich P, Jacob Y, Brown S, Kautz M, Schneider M, Lin HM, Fleysher L, Delman BN, Hof PR, Murrough JW, Balchandani P. Stress-related reduction of hippocampal subfield volumes in major depressive disorder: A 7-Tesla study. Front Psychiatry 2023; 14:1060770. [PMID: 36816419 PMCID: PMC9932898 DOI: 10.3389/fpsyt.2023.1060770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Major depressive disorder (MDD) is a prevalent health problem with complex pathophysiology that is not clearly understood. Prior work has implicated the hippocampus in MDD, but how hippocampal subfields influence or are affected by MDD requires further characterization with high-resolution data. This will help ascertain the accuracy and reproducibility of previous subfield findings in depression as well as correlate subfield volumes with MDD symptom scores. The objective of this study was to assess volumetric differences in hippocampal subfields between MDD patients globally and healthy controls (HC) as well as between a subset of treatment-resistant depression (TRD) patients and HC using automatic segmentation of hippocampal subfields (ASHS) software and ultra-high field MRI. METHODS Thirty-five MDD patients and 28 HC underwent imaging using 7-Tesla MRI. ASHS software was applied to the imaging data to perform automated hippocampal segmentation and provide volumetrics for analysis. An exploratory analysis was also performed on associations between symptom scores for diagnostic testing and hippocampal subfield volumes. RESULTS Compared to HC, MDD and TRD patients showed reduced right-hemisphere CA2/3 subfield volume (p = 0.01, η 2 = 0.31 and p = 0.3, η 2 = 0.44, respectively). Additionally, negative associations were found between subfield volumes and life-stressor checklist scores, including left CA1 (p = 0.041, f 2 = 0.419), left CA4/DG (p = 0.010, f 2 = 0.584), right subiculum total (p = 0.038, f 2 = 0.354), left hippocampus total (p = 0.015, f 2 = 0.134), and right hippocampus total (p = 0.034, f 2 = 0.110). Caution should be exercised in interpreting these results due to the small sample size and low power. CONCLUSION Determining biomarkers for MDD and TRD pathophysiology through segmentation on high-resolution MRI data and understanding the effects of stress on these regions can enable better assessment of biological response to treatment selection and may elucidate the underlying mechanisms of depression.
Collapse
Affiliation(s)
- Judy Alper
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Department of Biomedical Engineering, City College of New York, New York, NY, United States
| | - Rui Feng
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Gaurav Verma
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sarah Rutter
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Kuang-Han Huang
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Long Xie
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Paul Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Yael Jacob
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Stephanie Brown
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Marin Kautz
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Molly Schneider
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Hung-Mo Lin
- Population Health Science and Policy Department, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Lazar Fleysher
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Bradley N Delman
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Patrick R Hof
- Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - James W Murrough
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States.,Nash Family Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Priti Balchandani
- Department of Diagnostic, Molecular, and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
3
|
Zagrean AM, Georgescu IA, Iesanu MI, Ionescu RB, Haret RM, Panaitescu AM, Zagrean L. Oxytocin and vasopressin in the hippocampus. VITAMINS AND HORMONES 2022; 118:83-127. [PMID: 35180939 DOI: 10.1016/bs.vh.2021.11.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Oxytocin (OXT) and vasopressin (AVP) are related neuropeptides that exert a wide range of effects on general health, homeostasis, development, reproduction, adaptability, cognition, social and nonsocial behaviors. The two peptides are mainly of hypothalamic origin and execute their peripheral and central physiological roles via OXT and AVP receptors, which are members of the G protein-coupled receptor family. These receptors, largely distributed in the body, are abundantly expressed in the hippocampus, a brain region particularly vulnerable to stress exposure and various lesions. OXT and AVP have important roles in the hippocampus, by modulating important processes like neuronal excitability, network oscillatory activity, synaptic plasticity, and social recognition memory. This chapter includes an overview regarding OXT and AVP structure, synthesis, receptor distribution, and functions, focusing on their relationship with the hippocampus and mechanisms by which they influence hippocampal activity. Brief information regarding hippocampal structure and susceptibility to lesions is also provided. The roles of OXT and AVP in neurodevelopment and adult central nervous system function and disorders are highlighted, discussing their potential use as targeted therapeutic tools in neuropsychiatric diseases.
Collapse
Affiliation(s)
- Ana-Maria Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania.
| | - Ioana-Antoaneta Georgescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Mara Ioana Iesanu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Rosana-Bristena Ionescu
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania; Department of Clinical Neurosciences and National Institute for Health Research (NIHR), Biomedical Research Centre, University of Cambridge, Cambridge, United Kingdom
| | - Robert Mihai Haret
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Anca Maria Panaitescu
- Filantropia Clinical Hospital Bucharest, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| | - Leon Zagrean
- Division of Physiology and Neuroscience, Carol Davila University of Medicine and Pharmacy, Bucharest, Romania
| |
Collapse
|
4
|
Bongartz H, Seiß EA, Bock J, Schaper F. Glucocorticoids attenuate interleukin-6-induced c-Fos and Egr1 expression and impair neuritogenesis in PC12 cells. J Neurochem 2021; 157:532-549. [PMID: 33454999 DOI: 10.1111/jnc.15305] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/15/2023]
Abstract
Interleukin-6 (IL-6) is a cytokine primarily known for immune regulation. There is also growing evidence that IL-6 triggers neurogenesis and impacts neural development, both life-long occurring processes that can be impaired by early-life and adult stress. Stress induces the release of glucocorticoids by activation of the hypothalamic-pituitary-adrenal (HPA) axis. On the cellular level, glucocorticoids act via the ubiquitously expressed glucocorticoid receptor. Thus, we aimed to elucidate whether glucocorticoids affect IL-6-induced neural development. Here, we show that IL-6 signalling induces neurite outgrowth in adrenal pheochromocytoma PC12 cells in a mitogen-activated protein kinase (MAPK) pathway-dependent manner, since neurite outgrowth was diminished upon Mek-inhibitor treatment. Using quantitative biochemical approaches, such as qRT-PCR analysis of Hyper-IL-6 treated PC12 cells, we show that neurite outgrowth induced by IL-6 signalling is accompanied by early and transient MAPK-dependent mRNA expression of immediate early genes coding for proteins such as early growth response protein 1 (Egr1) and c-Fos. This correlates with reduced proliferation and prolonged G0/G1 cell cycle arrest as determined by monitoring the cellular DNA content using flow cytometry. These results indicate for IL-6 signalling-induced neural differentiation. Interestingly, the glucocorticoid Dexamethasone impairs early IL-6 signalling-induced mRNA expression of c-Fos and Egr1 and restrains neurite outgrowth. Impaired Egr1 and c-Fos expression in neural development is implicated in the aetiology of neuropathologies. Thus, it appears likely that stress-induced release of glucocorticoids, as well as therapeutically administered glucocorticoids, contribute to the development of neuropathologies by reducing the expression of Egr1 and c-Fos, and by restraining IL-6-dependent neural differentiation.
Collapse
Affiliation(s)
- Hannes Bongartz
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Elena Anne Seiß
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany
| | - Jörg Bock
- Institute of Biology, PG "Epigenetics and Structural Plasticity", Otto-von-Guericke University, Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Otto-von-Guericke University, Magdeburg, Germany
| | - Fred Schaper
- Institute of Biology, Department of Systems Biology, Otto-von-Guericke University, Magdeburg, Germany.,Center for Dynamic Systems: Systems Engineering (CDS), Otto-von-Guericke University, Magdeburg, Germany.,Magdeburg Center for Systems Biology (MACS), Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
5
|
Comprehensive Estimates of Potential Synaptic Connections in Local Circuits of the Rodent Hippocampal Formation by Axonal-Dendritic Overlap. J Neurosci 2020; 41:1665-1683. [PMID: 33361464 DOI: 10.1523/jneurosci.1193-20.2020] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/19/2020] [Accepted: 12/13/2020] [Indexed: 12/12/2022] Open
Abstract
A quantitative description of the hippocampal formation synaptic architecture is essential for understanding the neural mechanisms of episodic memory. Yet the existing knowledge of connectivity statistics between different neuron types in the rodent hippocampus only captures a mere 5% of this circuitry. We present a systematic pipeline to produce first-approximation estimates for most of the missing information. Leveraging the www.Hippocampome.org knowledge base, we derive local connection parameters between distinct pairs of morphologically identified neuron types based on their axonal-dendritic overlap within every layer and subregion of the hippocampal formation. Specifically, we adapt modern image analysis technology to determine the parcel-specific neurite lengths of every neuron type from representative morphologic reconstructions obtained from either sex. We then compute the average number of synapses per neuron pair using relevant anatomic volumes from the mouse brain atlas and ultrastructurally established interaction distances. Hence, we estimate connection probabilities and number of contacts for >1900 neuron type pairs, increasing the available quantitative assessments more than 11-fold. Connectivity statistics thus remain unknown for only a minority of potential synapses in the hippocampal formation, including those involving long-range (23%) or perisomatic (6%) connections and neuron types without morphologic tracings (7%). The described approach also yields approximate measurements of synaptic distances from the soma along the dendritic and axonal paths, which may affect signal attenuation and delay. Overall, this dataset fills a substantial gap in quantitatively describing hippocampal circuits and provides useful model specifications for biologically realistic neural network simulations, until further direct experimental data become available.SIGNIFICANCE STATEMENT The hippocampal formation is a crucial functional substrate for episodic memory and spatial representation. Characterizing the complex neuron type circuit of this brain region is thus important to understand the cellular mechanisms of learning and navigation. Here we present the first numerical estimates of connection probabilities, numbers of contacts per connected pair, and synaptic distances from the soma along the axonal and dendritic paths, for more than 1900 distinct neuron type pairs throughout the dentate gyrus, CA3, CA2, CA1, subiculum, and entorhinal cortex. This comprehensive dataset, publicly released online at www.Hippocampome.org, constitutes an unprecedented quantification of the majority of the local synaptic circuit for a prominent mammalian neural system and provides an essential foundation for data-driven, anatomically realistic neural network models.
Collapse
|
6
|
Palomero-Gallagher N, Kedo O, Mohlberg H, Zilles K, Amunts K. Multimodal mapping and analysis of the cyto- and receptorarchitecture of the human hippocampus. Brain Struct Funct 2020; 225:881-907. [PMID: 31955294 PMCID: PMC7166210 DOI: 10.1007/s00429-019-02022-4] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 12/26/2019] [Indexed: 12/29/2022]
Abstract
The human hippocampal formation is relevant for various aspects of memory and learning, and the different hippocampal regions are differentially affected by neuropsychiatric disorders. Therefore, the hippocampal formation has been subject of numerous cytoarchitectonic and other mapping studies, which resulted in divergent parcellation schemes. To understand the principles of hippocampal architecture, it is necessary to integrate different levels of hippocampal organisation, going beyond one modality. We here applied a multimodal mapping approach combining cyto- and multi-receptorarchitectonic analyses, and generated probabilistic maps in stereotaxic space of the identified regions. Cytoarchitecture in combination with the regional and laminar distribution of 15 neurotransmitter receptors visualized by in vitro receptor autoradiography were analysed in seven hemispheres from 6 unfixed shock frozen and serially sectioned brains. Cytoarchitectonic delineations for generation of probabilistic maps were carried out on histological sections from ten fixed, paraffin embedded and serially sectioned brains. Nine cyto- and receptorarchitectonically distinct regions were identified within the hippocampal formation (i.e., fascia dentata, cornu Ammonis (CA) regions 1-4, prosubiculum, subiculum proper, presubiculum and parasubiculum), as well as the hippocampal-amygdaloid transition area and the periallocortical transsubiculum. Subsequently generated probabilistic maps quantify intersubject variability in the size and extent of these cyto- and receptorarchitectonically distinct regions. The regions did not differ in their volume between the hemispheres and gender. Receptor mapping revealed additional subdivisions which could not be detected by cytoarchitectonic analysis alone. They correspond to parcellations previously found in immunohistochemical and connectivity studies. The multimodal approach enabled the definition of regions not consistently reported, e.g., CA4 region or prosubiculum. The ensuing detailed probabilistic maps of the hippocampal formation constitute the basis for future architectonically informed analyses of in vivo neuroimaging studies.
Collapse
Affiliation(s)
- Nicola Palomero-Gallagher
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany.
- Department of Psychiatry, Psychotherapy and Psychosomatics, Medical Faculty, RWTH Aachen University, Aachen, Germany.
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany.
| | - Olga Kedo
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Hartmut Mohlberg
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
| | - Karl Zilles
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- JARA-BRAIN, Jülich-Aachen Research Alliance, Jülich, Germany
| | - Katrin Amunts
- Institute of Neuroscience and Medicine (INM-1), Research Centre Jülich, 52425, Jülich, Germany
- C. & O. Vogt Institute for Brain Research, Heinrich-Heine-University, 40225, Düsseldorf, Germany
| |
Collapse
|
7
|
Ohmoto M, Shibuya Y, Taniguchi S, Nakade T, Nomura M, Ikeda-Matsuo Y, Daikoku T. Protective effects of butein on corticosterone-induced cytotoxicity in Neuro2A cells. IBRO Rep 2020; 8:82-90. [PMID: 32181410 PMCID: PMC7066037 DOI: 10.1016/j.ibror.2020.02.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 02/26/2020] [Indexed: 12/28/2022] Open
Abstract
Butein protected Neuro2A cells from CORT-induced apoptosis via mitochondrial dysfunction, caspase-3 activation, and DNA damage. CORT suppressed retinoic acid-induced neurite outgrowth in Neuro2A cells. Butein inhibited CORT-suppressed neurite outgrowth in Neuro2A cells. High doses of butein induced cytotoxicity in Neuro2A cells.
A functional understanding of the relationship between glucocorticoids and neuronal apoptosis induced by the production of reactive oxygen species (ROS) may lead to a novel strategy for the treatment or prevention of depression. Previous reports suggest that butein, a type of flavonoids, may be a potent candidate against depression-related neuronal cell apoptosis caused by oxidative stress; however, the protective effects of butein on damaged corticosterone (CORT)-treated neuronal cells has not been elucidated. In the present study, we examined the protective effect of butein on CORT-induced cytotoxicity and neurite growth during cell differentiation of mouse neuroblastoma Neuro2A (N2A) cells. Moreover, the effect on cultured cells by high concentrations of butein was confirmed. Our results demonstrate that CORT treatment significantly decreases cell viability and induces cell death. CORT was suggested to induce apoptosis via mitochondrial dysfunction and caspase-3 activation; this apoptosis may be attributed to DNA damage by ROS generation, found in this study to be significantly inhibited by pretreatment with butein. We found that CORT produced significant growth suppression of retinoic acid-induced neurite outgrowth in N2A cells; however, butein significantly increased neurite length and induced dose-dependent apoptotic cytotoxicity in N2A cells. This study suggests that low concentration of butein can prevent CORT-induced cytotoxicity in N2A cells, and provides preliminary results supporting some of the beneficial roles of butein in neuroprotection.
Collapse
Affiliation(s)
- Masanori Ohmoto
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Yukina Shibuya
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Shihori Taniguchi
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Tomoki Nakade
- Department of Pharmacy Practice and Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Masaaki Nomura
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Yuri Ikeda-Matsuo
- Department of Clinical Pharmacy, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| | - Tohru Daikoku
- Department of Pharmaceutical Life Sciences, Faculty of Pharmaceutical Sciences, Hokuriku University, Japan
| |
Collapse
|
8
|
de Flores R, Berron D, Ding SL, Ittyerah R, Pluta JB, Xie L, Adler DH, Robinson JL, Schuck T, Trojanowski JQ, Grossman M, Liu W, Pickup S, Das SR, Wolk DA, Yushkevich PA, Wisse LEM. Characterization of hippocampal subfields using ex vivo MRI and histology data: Lessons for in vivo segmentation. Hippocampus 2019; 30:545-564. [PMID: 31675165 DOI: 10.1002/hipo.23172] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/30/2019] [Accepted: 10/05/2019] [Indexed: 11/07/2022]
Abstract
Hippocampal subfield segmentation on in vivo MRI is of great interest for cognition, aging, and disease research. Extant subfield segmentation protocols have been based on neuroanatomical references, but these references often give limited information on anatomical variability. Moreover, there is generally a mismatch between the orientation of the histological sections and the often anisotropic coronal sections on in vivo MRI. To address these issues, we provide a detailed description of hippocampal anatomy using a postmortem dataset containing nine specimens of subjects with and without dementia, which underwent a 9.4 T MRI and histological processing. Postmortem MRI matched the typical orientation of in vivo images and segmentations were generated in MRI space, based on the registered annotated histological sections. We focus on the following topics: the order of appearance of subfields, the location of subfields relative to macroanatomical features, the location of subfields in the uncus and tail and the composition of the dark band, a hypointense layer visible in T2-weighted MRI. Our main findings are that: (a) there is a consistent order of appearance of subfields in the hippocampal head, (b) the composition of subfields is not consistent in the anterior uncus, but more consistent in the posterior uncus, (c) the dark band consists only of the CA-stratum lacunosum moleculare, not the strata moleculare of the dentate gyrus, (d) the subiculum/CA1 border is located at the middle of the width of the hippocampus in the body in coronal plane, but moves in a medial direction from anterior to posterior, and (e) the variable location and composition of subfields in the hippocampal tail can be brought back to a body-like appearance when reslicing the MRI scan following the curvature of the tail. Our findings and this publicly available dataset will hopefully improve anatomical accuracy of future hippocampal subfield segmentation protocols.
Collapse
Affiliation(s)
- Robin de Flores
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David Berron
- Clinical Sciences Malmö, Clinical Memory Research Unit, Lund University, Lund, Sweden
| | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, Washington.,Institute of Neuroscience, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Ranjit Ittyerah
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John B Pluta
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Long Xie
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Daniel H Adler
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John L Robinson
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Theresa Schuck
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - John Q Trojanowski
- Center for Neurodegenerative Disease Research, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Murray Grossman
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Weixia Liu
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Stephen Pickup
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sandhitsu R Das
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David A Wolk
- Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Paul A Yushkevich
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Laura E M Wisse
- Department of Radiology, University of Pennsylvania, Philadelphia, Pennsylvania.,Department of Neurology, University of Pennsylvania, Philadelphia, Pennsylvania.,Penn Memory Center, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
9
|
Abnormal Hippocampal Melatoninergic System: A Potential Link between Absence Epilepsy and Depression-Like Behavior in WAG/Rij Rats? Int J Mol Sci 2018; 19:ijms19071973. [PMID: 29986414 PMCID: PMC6073874 DOI: 10.3390/ijms19071973] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2018] [Revised: 07/04/2018] [Accepted: 07/05/2018] [Indexed: 12/31/2022] Open
Abstract
Absence epilepsy and depression are comorbid disorders, but the molecular link between the two disorders is unknown. Here, we examined the role of the melatoninergic system in the pathophysiology of spike and wave discharges (SWDs) and depression-like behaviour in the Wistar Albino Glaxo from Rijswijk (WAG/Rij) rat model of absence epilepsy. In WAG/Rij rats, SWD incidence was higher during the dark period of the light-dark cycle, in agreement with previous findings. However, neither pinealectomy nor melatonin administration had any effect on SWD incidence, suggesting that the melatoninergic system was not involved in the pathophysiology of absence-like seizures. Endogenous melatonin levels were lower in the hippocampus of WAG/Rij rats as compared to non-epileptic control rats, and this was associated with higher levels of melatonin receptors in the hippocampus, but not in the thalamus. In line with the reduced melatonin levels, cell density was lower in the hippocampus of WAG/Rij rats and was further reduced by pinealectomy. As expected, WAG/Rij rats showed an increased depression-like behaviour in the sucrose preference and forced swim tests, as compared to non-epileptic controls. Pinealectomy abolished the difference between the two strains of rats by enhancing depression-like behaviour in non-epileptic controls. Melatonin replacement displayed a significant antidepressant-like effect in both WAG/Rij and control rats. These findings suggest that a defect of hippocampal melatoninergic system may be one of the mechanisms underlying the depression-like phenotype in WAG/Rij rats and that activation of melatonin receptors might represent a valuable strategy in the treatment of depression associated with absence epilepsy.
Collapse
|
10
|
Waldner DM, Bech-Hansen NT, Stell WK. Channeling Vision: Ca V1.4-A Critical Link in Retinal Signal Transmission. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7272630. [PMID: 29854783 PMCID: PMC5966690 DOI: 10.1155/2018/7272630] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 02/15/2018] [Indexed: 01/09/2023]
Abstract
Voltage-gated calcium channels (VGCC) are key to many biological functions. Entry of Ca2+ into cells is essential for initiating or modulating important processes such as secretion, cell motility, and gene transcription. In the retina and other neural tissues, one of the major roles of Ca2+-entry is to stimulate or regulate exocytosis of synaptic vesicles, without which synaptic transmission is impaired. This review will address the special properties of one L-type VGCC, CaV1.4, with particular emphasis on its role in transmission of visual signals from rod and cone photoreceptors (hereafter called "photoreceptors," to the exclusion of intrinsically photoreceptive retinal ganglion cells) to the second-order retinal neurons, and the pathological effects of mutations in the CACNA1F gene which codes for the pore-forming α1F subunit of CaV1.4.
Collapse
Affiliation(s)
- D. M. Waldner
- Department of Neuroscience, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - N. T. Bech-Hansen
- Department of Medical Genetics and Department of Surgery, Alberta Children's Hospital Research Institute, and Hotchkiss Brain Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - W. K. Stell
- Department of Cell Biology and Anatomy and Department of Surgery, Hotchkiss Brain Institute, and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
11
|
Latt HM, Matsushita H, Morino M, Koga Y, Michiue H, Nishiki T, Tomizawa K, Matsui H. Oxytocin Inhibits Corticosterone-induced Apoptosis in Primary Hippocampal Neurons. Neuroscience 2018; 379:383-389. [DOI: 10.1016/j.neuroscience.2018.03.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Revised: 02/20/2018] [Accepted: 03/16/2018] [Indexed: 12/17/2022]
|
12
|
Pinheiro H, Gaspar R, Baptista FI, Fontes-Ribeiro CA, Ambrósio AF, Gomes CA. Adenosine A 2A Receptor Blockade Modulates Glucocorticoid-Induced Morphological Alterations in Axons, But Not in Dendrites, of Hippocampal Neurons. Front Pharmacol 2018; 9:219. [PMID: 29615903 PMCID: PMC5868516 DOI: 10.3389/fphar.2018.00219] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
The exposure to supra-physiological levels of glucocorticoids in prenatal life can lead to a long-term impact in brain cytoarchitecture, increasing the susceptibility to neuropsychiatric disorders. Dexamethasone, an exogenous glucocorticoid widely used in pregnant women in risk of preterm delivery, is associated with higher rates of neuropsychiatric conditions throughout life of the descendants. In animal models, prenatal dexamethasone exposure leads to anxious-like behavior and increased susceptibility to depressive-like behavior in adulthood, concomitant with alterations in neuronal morphology in brain regions implicated in the control of emotions and mood. The pharmacologic blockade of the purinergic adenosine A2A receptor, which was previously described as anxiolytic, is also able to modulate neuronal morphology, namely in the hippocampus. Additionally, recent observations point to an interaction between glucocorticoid receptors (GRs) and adenosine A2A receptors. In this work, we explored the impact of dexamethasone on neuronal morphology, and the putative implication of adenosine A2A receptor in the mediation of dexamethasone effects. We report that in vitro hippocampal neurons exposed to dexamethasone (250 nM), in the early phases of development, exhibit a polarized morphology alteration: dendritic atrophy and axonal hypertrophy. While the effect of dexamethasone in the axon is dependent on the activation of adenosine A2A receptor, the effect in the dendrites relies on the activation of GRs, regardless of the activation of adenosine A2A receptor. These results support the hypothesis of the interaction between GRs and adenosine A2A receptors and the potential therapeutic value of modulating adenosine A2A receptors activation in order to prevent glucocorticoid-induced alterations in developing neurons.
Collapse
Affiliation(s)
- Helena Pinheiro
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Rita Gaspar
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Filipa I Baptista
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal
| | - Carlos A Fontes-Ribeiro
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - António F Ambrósio
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| | - Catarina A Gomes
- Coimbra Institute for Clinical and Biomedical Research, Faculty of Medicine, University of Coimbra, Coimbra, Portugal.,Center for Innovation in Biomedicine and Biotechnology, University of Coimbra, Coimbra, Portugal.,Faculty of Medicine, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
13
|
Tesic V, Perovic M, Zaletel I, Jovanovic M, Puskas N, Ruzdijic S, Kanazir S. A single high dose of dexamethasone increases GAP-43 and synaptophysin in the hippocampus of aged rats. Exp Gerontol 2017; 98:62-69. [DOI: 10.1016/j.exger.2017.08.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2017] [Revised: 07/06/2017] [Accepted: 08/08/2017] [Indexed: 01/14/2023]
|
14
|
Bhakta A, Gavini K, Yang E, Lyman-Henley L, Parameshwaran K. Chronic traumatic stress impairs memory in mice: Potential roles of acetylcholine, neuroinflammation and corticotropin releasing factor expression in the hippocampus. Behav Brain Res 2017; 335:32-40. [DOI: 10.1016/j.bbr.2017.08.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 07/24/2017] [Accepted: 08/05/2017] [Indexed: 12/15/2022]
|
15
|
Park G, Lee SH, Oh DS, Kim YU. Melatonin inhibits neuronal dysfunction-associated with neuroinflammation by atopic psychological stress in NC/Nga atopic-like mouse models. J Pineal Res 2017; 63. [PMID: 28500766 DOI: 10.1111/jpi.12420] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2017] [Accepted: 05/05/2017] [Indexed: 01/03/2023]
Abstract
Atopic dermatitis (AD), also known as atopic eczema, is chronic pruritic skin disease. AD can increase psychological stress as well, increasing glucocorticoid release and exacerbating the associated symptoms. Chronic glucocorticoid elevation disturbs neuroendocrine signaling and can induce neuroinflammation, neurotoxicity, and cognitive impairment; however, it is unclear whether AD-related psychological stress elevates glucocorticoids enough to cause neuronal damage. Therefore, we assessed the effects of AD-induced stress in a mouse AD model. AD-related psychological stress increased astroglial and microglial activation, neuroinflammatory cytokine expression, and markers of neuronal loss. Notably, melatonin administration inhibited the development of skin lesions, scratching behavior, and serum IgE levels in the model mice, and additionally caused a significant reduction in corticotropin-releasing hormone responsiveness, and a significant reduction in neuronal damage. Finally, we produced similar results in a corticosterone-induced AD-like skin model. This is the first study to demonstrate that AD-related psychological stress increases neuroendocrine dysfunction, exacerbates neuroinflammation, and potentially accelerates other neurodegenerative disease states.
Collapse
Affiliation(s)
- Gunhyuk Park
- The K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Seung Hoon Lee
- The K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Dal-Seok Oh
- The K-herb Research Center, Korea Institute of Oriental Medicine, Daejeon, Korea
| | - Yong-Ung Kim
- Department of Pharmaceutical Engineering, College of Biomedical Science, Daegu Haany University, Gyeongsan, Korea
| |
Collapse
|
16
|
Conrad CD, Ortiz JB, Judd JM. Chronic stress and hippocampal dendritic complexity: Methodological and functional considerations. Physiol Behav 2016; 178:66-81. [PMID: 27887995 DOI: 10.1016/j.physbeh.2016.11.017] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2016] [Revised: 11/16/2016] [Accepted: 11/18/2016] [Indexed: 12/30/2022]
Abstract
The current understanding of how chronic stress impacts hippocampal dendritic arbor complexity and the subsequent relationship to hippocampal-dependent spatial memory is reviewed. A surge in reports investigating hippocampal dendritic morphology is occurring, but with wide variations in methodological detail being reported. Consequently, this review systematically outlines the basic neuroanatomy of relevant hippocampal features to help clarify how chronic stress or glucocorticoids impact hippocampal dendritic complexity and how these changes occur in parallel with spatial cognition. Chronic stress often leads to hippocampal CA3 apical dendritic retraction first with other hippocampal regions (CA3 basal dendrites, CA1, dentate gyrus, DG) showing dendritic retraction when chronic stress is sufficiently robust or long lasting. The stress-induced reduction in hippocampal CA3 apical dendritic arbor complexity often coincides with impaired hippocampal function, such as spatial learning and memory. Yet, when chronic stress ends and a post-stress recovery period ensues, the atrophied dendritic arbors and poor spatial abilities often improve. However, this process differs from a simple reversal of chronic stress-induced deficits. Recent reports suggest that this return to baseline-like functioning is uniquely different from non-stressed controls, emphasizing the need for further studies to enhance our understanding of how a history of stress subsequently alters an organism's spatial abilities. To provide a consistent framework for future studies, this review concludes with an outline for a quick and easy reference on points to consider when planning chronic stress studies with the goal of measuring hippocampal dendritic complexity and spatial ability.
Collapse
Affiliation(s)
- Cheryl D Conrad
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States.
| | - J Bryce Ortiz
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States
| | - Jessica M Judd
- Department of Psychology, Arizona State University, Box 1104, Tempe, AZ 85287-1104, United States
| |
Collapse
|
17
|
McEwen BS, Nasca C, Gray JD. Stress Effects on Neuronal Structure: Hippocampus, Amygdala, and Prefrontal Cortex. Neuropsychopharmacology 2016; 41:3-23. [PMID: 26076834 PMCID: PMC4677120 DOI: 10.1038/npp.2015.171] [Citation(s) in RCA: 869] [Impact Index Per Article: 108.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Revised: 06/05/2015] [Accepted: 06/08/2015] [Indexed: 12/18/2022]
Abstract
The hippocampus provided the gateway into much of what we have learned about stress and brain structural and functional plasticity, and this initial focus has expanded to other interconnected brain regions, such as the amygdala and prefrontal cortex. Starting with the discovery of adrenal steroid, and later, estrogen receptors in the hippocampal formation, and subsequent discovery of dendritic and spine synapse remodeling and neurogenesis in the dentate gyrus, mechanistic studies have revealed both genomic and rapid non-genomic actions of circulating steroid hormones in the brain. Many of these actions occur epigenetically and result in ever-changing patterns of gene expression, in which there are important sex differences that need further exploration. Moreover, glucocorticoid and estrogen actions occur synergistically with an increasing number of cellular mediators that help determine the qualitative nature of the response. The hippocampus has also been a gateway to understanding lasting epigenetic effects of early-life experiences. These findings in animal models have resulted in translation to the human brain and have helped change thinking about the nature of brain malfunction in psychiatric disorders and during aging, as well as the mechanisms of the effects of early-life adversity on the brain and the body.
Collapse
Affiliation(s)
- Bruce S McEwen
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA,Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, 1230 York Avenue, New York, NY 10065, USA. Tel: +1 212 327 8624, Fax: +1 212 327 8634, E-mail: or http://www.rockefeller.edu/labheads/mcewen/mcewen-lab.php
| | - Carla Nasca
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA
| | - Jason D Gray
- Harold and Margaret Milliken Hatch Laboratory of Neuroendocrinology, Rockefeller University, New York, NY, USA
| |
Collapse
|
18
|
Astroglial Plasticity Is Implicated in Hippocampal Remodelling in Adult Rats Exposed to Antenatal Dexamethasone. Neural Plast 2015; 2015:694347. [PMID: 26345609 PMCID: PMC4539493 DOI: 10.1155/2015/694347] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2014] [Accepted: 02/04/2015] [Indexed: 11/24/2022] Open
Abstract
The long-term effects of antenatal dexamethasone treatment on brain remodelling in 3-month-old male Sprague Dawley rats whose mothers had been treated with dexamethasone were investigated in the present study. Dorsal hippocampus, basolateral amygdala and nucleus accumbens volume, cell numbers, and GFAP-immunoreactive astroglial cell morphology were analysed using stereology. Total brain volume as assessed by micro-CT was not affected by the treatment. The relative volume of the dorsal hippocampus (% of total brain volume) showed a moderate, by 8%, but significant reduction in dexamethasone-treated versus control animals. Dexamethasone had no effect on the total and GFAP-positive cell numbers in the hippocampal subregions, basolateral amygdala, and nucleus accumbens. Morphological analysis indicated that numbers of astroglial primary processes were not affected in any of the hippocampal subregions analysed but significant reductions in the total primary process length were observed in CA1 by 32%, CA3 by 50%, and DG by 25%. Mean primary process length values were also significantly decreased in CA1 by 25%, CA3 by 45%, and DG by 25%. No significant astroglial morphological changes were found in basolateral amygdala and nucleus accumbens. We propose that the dexamethasone-dependent impoverishment of hippocampal astroglial morphology is the case of maladaptive glial plasticity induced prenatally.
Collapse
|
19
|
Wisse LEM, Biessels GJ, Stegenga BT, Kooistra M, van der Veen PH, Zwanenburg JJM, van der Graaf Y, Geerlings MI. Major depressive episodes over the course of 7 years and hippocampal subfield volumes at 7 tesla MRI: the PREDICT-MR study. J Affect Disord 2015; 175:1-7. [PMID: 25589378 DOI: 10.1016/j.jad.2014.12.052] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2014] [Revised: 12/18/2014] [Accepted: 12/20/2014] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Smaller hippocampal volumes have been associated with major depressive disorder (MDD). The hippocampus consists of several subfields that may be differentially related to MDD. We investigated the association of occurrence of major depressive episodes (MDEs), assessed five times over seven years, with hippocampal subfield and entorhinal cortex volumes at 7 tesla MRI. METHODS In this prospective study of randomly selected general practice attendees, MDEs according to DSM-IV-R criteria were assessed at baseline and after 6, 12, 39 and 84 months follow-up. At the last follow-up, a T2 (0.7 mm(3)) 7 tesla MRI scan was obtained in 47 participants (60±10 years). The subiculum, cornu ammonis (CA) 1 to 3, dentate gyrus&CA4 and entorhinal cortex volumes were manually segmented according a published protocol. RESULTS Of the 47 participants, 13 had one MDE and 5 had multiple MDEs. ANCOVAs, adjusted for age, sex, education and intracranial volume, revealed no significant differences in hippocampal subfield or entorhinal cortex volumes between participants with and without an MDE in the preceding 84 months. Multiple episodes were associated with smaller subiculum volumes (B=-0.03 mL/episode; 95% CI -0.06; -0.003), but not with the other hippocampal subfield volumes, entorhinal cortex, or total hippocampal volume. LIMITATIONS A limitation of this study is the small sample size which makes replication necessary. CONCLUSIONS In this exploratory study, we found that an increasing number of major depressive episodes was associated with smaller subiculum volumes in middle-aged and older persons, but not with smaller volumes in other hippocampal subfields or the entorhinal cortex.
Collapse
Affiliation(s)
- L E M Wisse
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands; Department of Neurology, Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands
| | - G J Biessels
- Department of Neurology, Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands
| | - B T Stegenga
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | - M Kooistra
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands; Department of Neurology, Brain Center Rudolf Magnus, UMC Utrecht, Utrecht, The Netherlands
| | - P H van der Veen
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands; Department of Radiology, UMC Utrecht, Utrecht, The Netherlands
| | | | - Y van der Graaf
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | - M I Geerlings
- Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands.
| |
Collapse
|
20
|
Du X, Pang TY. Is Dysregulation of the HPA-Axis a Core Pathophysiology Mediating Co-Morbid Depression in Neurodegenerative Diseases? Front Psychiatry 2015; 6:32. [PMID: 25806005 PMCID: PMC4353372 DOI: 10.3389/fpsyt.2015.00032] [Citation(s) in RCA: 112] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 02/16/2015] [Indexed: 01/19/2023] Open
Abstract
There is increasing evidence of prodromal manifestation of neuropsychiatric symptoms in a variety of neurodegenerative diseases such as Parkinson's disease (PD) and Huntington's disease (HD). These affective symptoms may be observed many years before the core diagnostic symptoms of the neurological condition. It is becoming more apparent that depression is a significant modifying factor of the trajectory of disease progression and even treatment outcomes. It is therefore crucial that we understand the potential pathophysiologies related to the primary condition, which could contribute to the development of depression. The hypothalamic-pituitary-adrenal (HPA)-axis is a key neuroendocrine signaling system involved in physiological homeostasis and stress response. Disturbances of this system lead to severe hormonal imbalances, and the majority of such patients also present with behavioral deficits and/or mood disorders. Dysregulation of the HPA-axis is also strongly implicated in the pathology of major depressive disorder. Consistent with this, antidepressant drugs, such as the selective serotonin reuptake inhibitors have been shown to alter HPA-axis activity. In this review, we will summarize the current state of knowledge regarding HPA-axis pathology in Alzheimer's, PD and HD, differentiating between prodromal and later stages of disease progression when evidence is available. Both clinical and preclinical evidence will be examined, but we highlight animal model studies as being particularly useful for uncovering novel mechanisms of pathology related to co-morbid mood disorders. Finally, we purpose utilizing the preclinical evidence to better inform prospective, intervention studies.
Collapse
Affiliation(s)
- Xin Du
- Mental Health Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| | - Terence Y Pang
- Behavioural Neurosciences Division, Florey Institute of Neuroscience and Mental Health, University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
21
|
The effects of black garlic ethanol extract on the spatial memory and estimated total number of pyramidal cells of the hippocampus of monosodium glutamate-exposed adolescent male Wistar rats. Anat Sci Int 2014; 90:275-86. [DOI: 10.1007/s12565-014-0262-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 11/06/2014] [Indexed: 10/24/2022]
|
22
|
Behavioral and neural trade-offs between song complexity and stress reaction in a wild and a domesticated finch strain. Neurosci Biobehav Rev 2014; 46 Pt 4:547-56. [DOI: 10.1016/j.neubiorev.2014.07.011] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 06/23/2014] [Accepted: 07/10/2014] [Indexed: 11/18/2022]
|
23
|
Fuchs E, Flügge G. Adult neuroplasticity: more than 40 years of research. Neural Plast 2014; 2014:541870. [PMID: 24883212 PMCID: PMC4026979 DOI: 10.1155/2014/541870] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/09/2014] [Indexed: 01/04/2023] Open
Abstract
Within the last four decades, our view of the mature vertebrate brain has changed significantly. Today it is generally accepted that the adult brain is far from being fixed. A number of factors such as stress, adrenal and gonadal hormones, neurotransmitters, growth factors, certain drugs, environmental stimulation, learning, and aging change neuronal structures and functions. The processes that these factors may induce are morphological alterations in brain areas, changes in neuron morphology, network alterations including changes in neuronal connectivity, the generation of new neurons (neurogenesis), and neurobiochemical changes. Here we review several aspects of neuroplasticity and discuss the functional implications of the neuroplastic capacities of the adult and differentiated brain with reference to the history of their discovery.
Collapse
Affiliation(s)
- Eberhard Fuchs
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
- Department of Neurology, Medical School, University of Göttingen, 37075 Göttingen, Germany
| | - Gabriele Flügge
- German Primate Center, Leibniz Institute for Primate Research, Kellnerweg 4, 37077 Göttingen, Germany
| |
Collapse
|
24
|
Lucassen PJ, Pruessner J, Sousa N, Almeida OFX, Van Dam AM, Rajkowska G, Swaab DF, Czéh B. Neuropathology of stress. Acta Neuropathol 2014; 127:109-35. [PMID: 24318124 PMCID: PMC3889685 DOI: 10.1007/s00401-013-1223-5] [Citation(s) in RCA: 287] [Impact Index Per Article: 28.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Accepted: 11/26/2013] [Indexed: 02/06/2023]
Abstract
Environmental challenges are part of daily life for any individual. In fact, stress appears to be increasingly present in our modern, and demanding, industrialized society. Virtually every aspect of our body and brain can be influenced by stress and although its effects are partly mediated by powerful corticosteroid hormones that target the nervous system, relatively little is known about when, and how, the effects of stress shift from being beneficial and protective to becoming deleterious. Decades of stress research have provided valuable insights into whether stress can directly induce dysfunction and/or pathological alterations, which elements of stress exposure are responsible, and which structural substrates are involved. Using a broad definition of pathology, we here review the "neuropathology of stress" and focus on structural consequences of stress exposure for different regions of the rodent, primate and human brain. We discuss cytoarchitectural, neuropathological and structural plasticity measures as well as more recent neuroimaging techniques that allow direct monitoring of the spatiotemporal effects of stress and the role of different CNS structures in the regulation of the hypothalamic-pituitary-adrenal axis in human brain. We focus on the hypothalamus, hippocampus, amygdala, nucleus accumbens, prefrontal and orbitofrontal cortex, key brain regions that not only modulate emotions and cognition but also the response to stress itself, and discuss disorders like depression, post-traumatic stress disorder, Cushing syndrome and dementia.
Collapse
Affiliation(s)
- Paul J. Lucassen
- SILS-Center for Neuroscience, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - Jens Pruessner
- Department of Psychiatry, Douglas Institute, McGill University, Montreal, QC Canada
| | - Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, 4710-057 Braga, Portugal
- ICVS/3B’s-PT Government Associate Laboratory, Braga, Guimarães, Portugal
| | | | - Anne Marie Van Dam
- Department of Anatomy and Neurosciences, VU University Medical Center, Neuroscience Campus Amsterdam, Amsterdam, The Netherlands
| | - Grazyna Rajkowska
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, Jackson, MS USA
| | - Dick F. Swaab
- Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - Boldizsár Czéh
- Department of Laboratory Medicine, Faculty of Medicine, University of Pécs, Pécs, Hungary
- Szentágothai János Research Center, Neuroendocrinology Research Group, University of Pécs, Pécs, Hungary
| |
Collapse
|
25
|
Melatonin attenuates dexamethasone-induced spatial memory impairment and dexamethasone-induced reduction of synaptic protein expressions in the mouse brain. Neurochem Int 2013; 63:482-91. [DOI: 10.1016/j.neuint.2013.08.011] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Revised: 07/31/2013] [Accepted: 08/08/2013] [Indexed: 11/19/2022]
|
26
|
Saenz del Burgo L, Cortés R, Mengod G, Montaña M, García del Caño G, Sallés J. Chronic effects of corticosterone on GIRK1-3 subunits and 5-HT1A receptor expression in rat brain and their reversal by concurrent fluoxetine treatment. Eur Neuropsychopharmacol 2013; 23:229-39. [PMID: 22591911 DOI: 10.1016/j.euroneuro.2012.04.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 03/09/2012] [Accepted: 04/14/2012] [Indexed: 11/17/2022]
Abstract
Dysregulation of the serotonergic system and abnormalities of the hypothalamic-pituitary-adrenal axis have been demonstrated in major depression. Animal studies indicate that 5-HT1A receptor expression may be reduced by long-term administration of corticosterone. However, similar studies on the regulation of GIRK channels, one of the most important effectors of the neuronal 5-HT1A receptor, are limited. In order to address these issues, slow-release corticosterone pellets were implanted subcutaneously to adrenal intact male rats (200mg pellets, 35 days release). Starting on day 15, animals were treated for 21 days with fluoxetine (5mg/kg/day, i.p.), or vehicle. Using in situ hybridization histochemistry and receptor autoradiography, we found that chronic corticosterone treatment was accompanied by a significant decrease on the mRNAs coding for mineralocorticoid receptors in hippocampal areas. Under these conditions, 5-HT1A receptor mRNA expression decreased in dorsal raphe nucleus and dentate gyrus. However, 5-HT1A receptor levels, as measured by [(3)H]-8-OH-DPAT binding, diminished significantly only in dentate gyrus. It is noteworthy that chronic treatment with fluoxetine reversed the alterations on 5-HT1A receptor mRNA levels only in dorsal raphe. Finally, chronic corticosterone treatment produced an increase on the mRNA coding for the GIRK2 subunit in several hypothalamic and thalamic areas, which was reversed by fluoxetine. Measurements of cell density and volume of the granular layer of the dentate gyrus did not reveal significant changes after corticosterone or corticosterone plus fluoxetine treatments. These data are relevant for a better understanding of the differential regulation of pre- and postsynaptic 5-HT1A receptors by corticosterone flattened rhythm.
Collapse
MESH Headings
- Animals
- Autoradiography
- Corticosterone/pharmacology
- Dentate Gyrus/drug effects
- Dentate Gyrus/metabolism
- Depressive Disorder, Major/metabolism
- Fluoxetine/pharmacology
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/drug effects
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/genetics
- G Protein-Coupled Inwardly-Rectifying Potassium Channels/metabolism
- Gene Expression/drug effects
- Gene Expression Profiling
- Hippocampus/drug effects
- Hippocampus/metabolism
- Hypothalamo-Hypophyseal System/metabolism
- Male
- Pituitary-Adrenal System/metabolism
- Raphe Nuclei/drug effects
- Raphe Nuclei/metabolism
- Rats
- Rats, Sprague-Dawley
- Receptor, Serotonin, 5-HT1A/drug effects
- Receptor, Serotonin, 5-HT1A/genetics
- Receptor, Serotonin, 5-HT1A/metabolism
- Receptors, Glucocorticoid/drug effects
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/drug effects
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Selective Serotonin Reuptake Inhibitors/pharmacology
- Thalamus/drug effects
- Thalamus/metabolism
Collapse
Affiliation(s)
- Laura Saenz del Burgo
- Department of Pharmacology, Faculty of Pharmacy, University of the Basque Country UPV/EHU, Vitoria-Gasteiz, Spain
| | | | | | | | | | | |
Collapse
|
27
|
Lai S, Piras F, Spiga S, Perra MT, Minerba L, Piga M, Mura E, Murtas D, Demurtas P, Corrias M, Maxia C, Ferreli C, Sirigu P. Nestin and vimentin colocalization affects the subcellular location of glucocorticoid receptor in cutaneous melanoma. Histopathology 2012; 62:487-98. [PMID: 23072594 DOI: 10.1111/his.12018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIMS Nestin (a neuronal stem cell/progenitor cell marker of central nervous system development), vimentin (which is ubiquitously expressed in mesenchymal cells), and the glucocorticoid receptor (GR, which is involved in the immune response, cell proliferation, and apoptosis) have been shown to interact in embryonic and undifferentiated tissues in modulating cell proliferation. The aim of this study was to analyse nestin, vimentin and GR expression in tumour tissue (melanoma), and their association with clinicopathological variables, to evaluate any effect on tumour progression. METHODS AND RESULTS Immunohistochemistry, double-label immunofluorescence and confocal laser scanning microscopy were performed on biopsy specimens of cutaneous melanoma from 81 patients. Fisher's and Pearson's tests showed a correlation between nestin, vimentin and subcellular GR location (P = 0.008). Their concomitant expression also correlated with Clark level and thickness (P = 0.02 and P = 0.029, respectively). Kaplan-Meier analysis revealed a poorer outcome for stage III and IV patients with associated expression of nestin, vimentin and cytoplasmic GR in tumour tissue (P = 0.02). CONCLUSIONS These results suggest the presence in melanoma of growth mechanisms involving nestin, vimentin, and GR, similarly to that occurring in embryonic and undifferentiated cells, and may help in understanding tumour biology to provide a molecular basis for clinical therapies.
Collapse
Affiliation(s)
- Simone Lai
- Department of Biomedical Sciences, University of Cagliari, Cagliari, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Jafari M, Seese RR, Babayan AH, Gall CM, Lauterborn JC. Glucocorticoid receptors are localized to dendritic spines and influence local actin signaling. Mol Neurobiol 2012; 46:304-15. [PMID: 22717988 PMCID: PMC3973133 DOI: 10.1007/s12035-012-8288-3] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Accepted: 06/05/2012] [Indexed: 11/29/2022]
Abstract
Glucocorticoids affect learning and memory but the cellular mechanisms involved are poorly understood. The present studies tested if the stress-responsive glucocorticoid receptor (GR) is present and regulated within dendritic spines, and influences local signaling to the actin cytoskeleton. In hippocampal field CA1, 13 % of synapses contained GR-immunoreactivity. Three-dimensional reconstructions of CA1 dendrites showed that GR aggregates are present in both spine heads and necks. Consonant with evidence that GRα mRNA associates with the translation regulator Fragile X Mental Retardation Protein (FMRP), spine GR levels were rapidly increased by group 1 mGluR activation and reduced in mice lacking FMRP. Treatment of cultured hippocampal slices with the GR agonist dexamethasone rapidly (15-30 min) increased total levels of phosphorylated (p) Cofilin and extracellular signal-regulated kinase (ERK) 1/2, proteins that regulate actin polymerization and stability. Dexamethasone treatment of adult hippocampal slices also increased numbers of PSD95+ spines containing pERK1/2, but reduced numbers of pCofilin-immunoreactive spines. Dexamethasone-induced increases in synaptic pERK1/2 were blocked by the GR antagonist RU-486. These results demonstrate that GRs are present in hippocampal spines where they mediate acute glucocorticoid effects on local spine signaling. Through effects on these actin regulatory pathways, GRs are positioned to exert acute effects on synaptic plasticity.
Collapse
Affiliation(s)
- Matiar Jafari
- Department of Anatomy and Neurobiology, 3226 Gillespie Neuroscience Research Facility, University of California at Irvine, Irvine, CA 92697-1275, USA
| | | | | | | | | |
Collapse
|
29
|
Abstract
Stress is a potent risk factor for depression, yet the underlying mechanism is not clearly understood. In the present study, we explored the mechanism of development and maintenance of depression in a stress-induced animal model. Mice restrained for 2 h daily for 14 d showed distinct depressive behavior, and the altered behavior persisted for >3 months in the absence of intervention. Acute restraint induced a surge of oxidative stress in the brain, and stress-induced oxidative stress progressively increased with repetition of stress. In vitro, the stress hormone glucocorticoid generated superoxide via upregulation of NADPH oxidase. Consistently, repeated restraints increased the expression of the key subunits of NADPH oxidase, p47phox and p67phox, in the brain. Moreover, stressed brains markedly upregulated the expression of p47phox to weak restress evoked in the poststress period, and this molecular response was reminiscent of amplified ROS surge to restress. Pharmacological inhibition of NADPH oxidase by the NADPH oxidase inhibitor apocynin during the stress or poststress period completely blocked depressive behavior. Consistently, heterozygous p47phox knock-out mice (p47phox(+/-)) or molecular inhibition of p47phox with Lenti shRNA-p47phox in the hippocampus suppressed depressive behavior. These results suggest that repeated stress promotes depressive behavior through the upregulation of NADPH oxidase and the resultant metabolic oxidative stress, and that the inhibition of NADPH oxidase provides beneficial antidepression effects.
Collapse
|
30
|
Suzuki K, Yamada H, Kobayashi T, Okanoya K. Decreased Fecal Corticosterone Levels Due to Domestication: A Comparison Between the White-Backed Munia (Lonchura striata) and Its Domesticated Strain, the Bengalese Finch (Lonchura striatavar.domestica) With a Suggestion for Complex Song Evolution. ACTA ACUST UNITED AC 2012; 317:561-70. [DOI: 10.1002/jez.1748] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2012] [Revised: 06/21/2012] [Accepted: 07/01/2012] [Indexed: 11/10/2022]
Affiliation(s)
| | | | - Tetsuya Kobayashi
- Division of Life Science; Graduate School of Science and Engineering, Saitama University; Sakura-ku; Saitama; Japan
| | | |
Collapse
|
31
|
Wisse LEM, Gerritsen L, Zwanenburg JJM, Kuijf HJ, Luijten PR, Biessels GJ, Geerlings MI. Subfields of the hippocampal formation at 7T MRI: In vivo volumetric assessment. Neuroimage 2012; 61:1043-9. [PMID: 22440643 DOI: 10.1016/j.neuroimage.2012.03.023] [Citation(s) in RCA: 146] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 02/17/2012] [Accepted: 03/01/2012] [Indexed: 11/29/2022] Open
Affiliation(s)
- L E M Wisse
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht, The Netherlands
| | | | | | | | | | | | | |
Collapse
|
32
|
Xiaoyaosan decoction, a traditional chinese medicine, inhibits oxidative-stress-induced hippocampus neuron apoptosis in vitro. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2012; 2012:489254. [PMID: 22319545 PMCID: PMC3273328 DOI: 10.1155/2012/489254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 10/19/2011] [Indexed: 11/17/2022]
Abstract
Xiaoyaosan (XYS) decoction is a famous prescription for the treatment of mental disorders in China. In this experiment, we explored the way in which XYS decoction-reverse hippocampus neuron apoptosis in vitro. We used XYS decoction-containing serum to treat oxidative-stress-induced hippocampus neuron apoptosis and used immunofluorescence to determine the concentration of free calcium, mitochondrial membrane potential, and apoptotic rate of neuron. Results showed that 3-hour oxidative stress decrease mitochondrial membrane potential, increase the concentration of free calcium and apoptotic rate of neuron via triggering pathological changes of nucleus such as karyorrhexis, karyopyknosis. Low, medium, high dose of XYS-decoction-containing serum could reverse these phenomenon, and the effect of low-dose XYS-decoction-containing serum was significant in improving mitochondrial membrane potential and apoptotic rate of neuron. These findings suggest that XYS decoction may be helpful in reducing oxidative-stress-induced hippocampus neuron apoptosis.
Collapse
|
33
|
Matsunaga E, Suzuki K, Kobayashi T, Okanoya K. Comparative analysis of mineralocorticoid receptor expression among vocal learners (Bengalese finch and budgerigar) and non-vocal learners (quail and ring dove) has implications for the evolution of avian vocal learning. Dev Growth Differ 2011; 53:961-70. [PMID: 22010640 DOI: 10.1111/j.1440-169x.2011.01302.x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Mineralocorticoid receptor is the receptor for corticosteroids such as corticosterone or aldosterone. Previously, we found that mineralocorticoid receptor was highly expressed in song nuclei of a songbird, Bengalese finch (Lonchura striata var. domestica). Here, to examine the relationship between mineralocorticoid receptor expression and avian vocal learning, we analyzed mineralocorticoid receptor expression in the developing brain of another vocal learner, budgerigar (Melopsittacus undulatus) and non-vocal learners, quail (Coturnix japonica) and ring dove (Streptopelia capicola). Mineralocorticoid receptor showed vocal control area-related expressions in budgerigars as Bengalese finches, whereas no such mineralocorticoid receptor expressions were seen in the telencephalon of non-vocal learners. Thus, these results suggest the possibility that mineralocorticoid receptor plays a role in vocal development of parrots as songbirds and that the acquisition of mineralocorticoid receptor expression is involved in the evolution of avian vocal learning.
Collapse
Affiliation(s)
- Eiji Matsunaga
- Laboratory for Symbolic Cognitive Development, RIKEN Brain Science Institute, Wako 351-0198 Japan.
| | | | | | | |
Collapse
|
34
|
Expression patterns of mineralocorticoid and glucocorticoid receptors in Bengalese finch (Lonchura striata var. domestica) brain suggest a relationship between stress hormones and song-system development. Neuroscience 2011; 194:72-83. [PMID: 21851851 DOI: 10.1016/j.neuroscience.2011.07.073] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2011] [Revised: 07/28/2011] [Accepted: 07/29/2011] [Indexed: 12/21/2022]
Abstract
Much evidence suggests that song traits function as an honest signal of male quality during mate choice in songbirds. Because songbirds learn vocalizations during the juvenile stage, development of the song system and song traits is affected by stressful conditions. However, it remains unknown how stressful conditions affect later song traits during development. To explore the relationship between glucocorticoids and song-system development, we performed in situ hybridization analysis of the glucocorticoid and mineralocorticoid receptors in juvenile and adult brains. The glucocorticoid receptor showed weak expression in song nuclei and strong expression in the hypothalamus, whereas the mineralocorticoid receptor showed strong song-nuclei-related expression. Thus, it appears that glucocorticoids are involved in song development directly by binding to receptors in song nuclei or indirectly by regulating sex hormones through hypothalamic hormones.
Collapse
|
35
|
Xi G, Zhang X, Zhang L, Sui Y, Hui J, Liu S, Wang Y, Li L, Zhang Z. Fluoxetine attenuates the inhibitory effect of glucocorticoid hormones on neurogenesis in vitro via a two-pore domain potassium channel, TREK-1. Psychopharmacology (Berl) 2011; 214:747-59. [PMID: 21069514 DOI: 10.1007/s00213-010-2077-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2010] [Accepted: 10/27/2010] [Indexed: 01/17/2023]
Abstract
RATIONALE Sustained stress and elevated glucocorticoid reduces neurogenesis, whereas chronic treatment with antidepressants increases neurogenesis and blocks the effects of stress. Recently, TREK-1, a two-pore domain (K(2)p) potassium channel, has been shown to be involved in the mechanisms of major depression. OBJECTIVES This study aimed to investigate whether TREK-1 is involved in the alteration of neurogenesis according to glucocorticoids and antidepressants. RESULTS The present study addressed the expression of TREK-1 in neural stem cells (NSCs) and found TREK-1 was only associated with NSC proliferation. Bupivacaine and curcumin, two strong TREK-1 channel inhibitors, significantly increased embryonic NSC viability and proliferation while transfection of hTREK-1 decreased cell proliferation in embryonic NSCs. Dexamethasone, a glucocorticoid hormone receptor agonist, upregulated both protein and mRNA levels of TREK-1 leading to decreased NSC proliferation which could be reversed by bupivacaine. Fluoxetine, a serotonin reuptake inhibitor antidepressant that has been previously found to inhibit TREK-1 channels, robustly, could attenuate the upregulation of TREK-1 expression and the inhibition of NSC proliferation induced by dexamethasone. CONCLUSIONS Taken together, these data suggest that TREK-1 is associated with NSC proliferation and probably is a modulator of the effect that fluoxetine attenuates the inhibitory neurogenesis induced by glucocorticoid hormones.
Collapse
Affiliation(s)
- Guangjun Xi
- The Department of Neurology, Affiliated Zhongda Hospital of Southeast University, Nanjing, 210009, China
| | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Sun X, Wu Y, Chen B, Zhang Z, Zhou W, Tong Y, Yuan J, Xia K, Gronemeyer H, Flavell RA, Song W. Regulator of calcineurin 1 (RCAN1) facilitates neuronal apoptosis through caspase-3 activation. J Biol Chem 2011; 286:9049-62. [PMID: 21216952 DOI: 10.1074/jbc.m110.177519] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Individuals with Down syndrome (DS) will inevitably develop Alzheimer disease (AD) neuropathology sometime after middle age, which may be attributable to genes triplicated in individuals with DS. The characteristics of AD neuropathology include neuritic plaques, neurofibrillary tangles, and neuronal loss in various brain regions. The mechanism underlying neurodegeneration in AD and DS remains elusive. Regulator of calcineurin 1 (RCAN1) has been implicated in the pathogenesis of DS. Our data show that RCAN1 expression is elevated in the cortex of DS and AD patients. RCAN1 expression can be activated by the stress hormone dexamethasone. A functional glucocorticoid response element was identified in the RCAN1 isoform 1 (RCAN1-1) promoter region, which is able to mediate the up-regulation of RCAN1 expression. Here we show that overexpression of RCAN1-1 in primary neurons activates caspase-9 and caspase-3 and subsequently induces neuronal apoptosis. Furthermore, we found that the neurotoxicity of RCAN1-1 is inhibited by knock-out of caspase-3 in caspase-3(-/-) neurons. Our study provides a novel mechanism by which RCAN1 functions as a mediator of stress- and Aβ-induced neuronal death, and overexpression of RCAN1 due to an extra copy of the RCAN1 gene on chromosome 21 contributes to AD pathogenesis in DS.
Collapse
Affiliation(s)
- Xiulian Sun
- Townsend Family Laboratories, Department of Psychiatry, Brain Research Center, Graduate Program in Neuroscience, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Leret ML, Rua C, Garcia-Montojo M, Lecumberri M, González JC. Influence of metyrapone treatment during pregnancy on the development and maturation of brain monoaminergic systems in the rat. Acta Physiol (Oxf) 2009; 197:333-40. [PMID: 19656124 DOI: 10.1111/j.1748-1716.2009.02027.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
AIM This study examines the effect of reducing the corticosterone levels of gestating rat dams on the postnatal development and maturation of monoaminergic systems in their offspring's brains. METHODS Metyrapone, an inhibitor of CORT synthesis, was administered to pregnant rats from E0 to E17 of gestation. Monoamine concentrations were determined in male and female offspring at postnatal days (PN) 23 and 90 in the hippocampus, hypothalamus and striatum. RESULTS Reducing maternal corticosterone (mCORT) during gestation led to alterations in dopamine and serotonin levels in all three brain areas studied at PN 23. Alterations persisted until at least PN 90 in the serotonergic systems; the dopamine content of the hippocampus also remained modified. Reduced mCORT during gestation also led to alterations in the development and maturation of the hypothalamic noradrenergic systems. Sexually dimorphic responses were observed in all these monoaminergic systems at different times. CONCLUSION These results suggest that while they are still developing, brain monoaminergic systems are particularly sensitive to epigenetic influences. An adequate foetal level of CORT is required for the normal ontogeny of brain monoaminergic systems. The present data also provide that during the critical period of brain development, maternal CORT plays an important role in the sexual differentiation of monoaminergic systems, with particular influence on brain serotonergic neurones.
Collapse
Affiliation(s)
- M L Leret
- Department of Animal Physiology, Complutense University of Madrid, Spain.
| | | | | | | | | |
Collapse
|
38
|
Tata DA, Anderson BJ. The effects of chronic glucocorticoid exposure on dendritic length, synapse numbers and glial volume in animal models: implications for hippocampal volume reductions in depression. Physiol Behav 2009; 99:186-93. [PMID: 19786041 DOI: 10.1016/j.physbeh.2009.09.008] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2009] [Revised: 09/11/2009] [Accepted: 09/17/2009] [Indexed: 02/07/2023]
Abstract
Glucocorticoids (GCs) are hormones secreted by the adrenal glands as an endocrine response to stress. Although the main purpose of GCs is to restore homeostasis when acutely elevated, animal studies indicate that chronic exposure to these hormones can cause damage to the hippocampus. This is indicated by reductions in hippocampal volume, and changes in neuronal morphology (i.e., decreases in dendritic length and number of dendritic branch points) and ultrastructure (e.g., smaller synapse number). Smaller hippocampal volume has been also reported in humans diagnosed with major depressive disorder or Cushing's disorder, conditions in which GCs are endogenously and chronically elevated. Although a number of studies considered neuron loss as the major factor contributing to the volume reduction, recent findings indicated that this is not the case. Instead, alterations in dendritic, synaptic and glial processes have been reported. The focus of this paper is to review the GC effects on the cell number, dendritic morphology and synapses in an effort to better understand how these changes may contribute to reductions in hippocampal volume. Taken together, the data from animal models suggest that hippocampal volumetric reductions represent volume loss in the neuropil, which, in turn, under-represent much larger losses of dendrites and synapses.
Collapse
Affiliation(s)
- Despina A Tata
- Department of Psychology, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | | |
Collapse
|
39
|
Nestin modulates glucocorticoid receptor function by cytoplasmic anchoring. PLoS One 2009; 4:e6084. [PMID: 19562035 PMCID: PMC2698154 DOI: 10.1371/journal.pone.0006084] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2008] [Accepted: 05/27/2009] [Indexed: 12/21/2022] Open
Abstract
Nestin is the characteristic intermediate filament (IF) protein of rapidly proliferating progenitor cells and regenerating tissue. Nestin copolymerizes with class III IF-proteins, mostly vimentin, into heteromeric filaments. Its expression is downregulated with differentiation. Here we show that a strong nestin expression in mouse embryo tissue coincides with a strong accumulation of the glucocorticoid receptor (GR), a key regulator of growth and differentiation in embryonic development. Microscopic studies on cultured cells show an association of GR with IFs composed of vimentin and nestin. Cells lacking nestin, but expressing vimentin, or cells expressing vimentin, but lacking nestin accumulate GR in the nucleus. Completing these networks with an exogenous nestin, respectively an exogenous vimentin restores cytoplasmic anchoring of GR to the IF system. Thus, heteromeric filaments provide the basis for anchoring of GR. The reaction pattern with phospho-GR specific antibodies and the presence of the chaperone HSC70 suggest that specifically the unliganded receptor is anchored to the IF system. Ligand addition releases GR from IFs and shifts the receptor into the nucleus. Suppression of nestin by specific shRNA abolishes anchoring of GR, induces its accumulation in the nucleus and provokes an irreversible G1/S cell cycle arrest. Suppression of GR prior to that of nestin prevents entry into the arrest. The data give evidence that nestin/vimentin specific anchoring modulates growth suppression by GR. We hypothesize that expression of nestin is a major determinant in suppression of anti-proliferative activity of GR in undifferentiated tissue and facilitates activation of this growth control in a precise tissue and differentiation dependent manner.
Collapse
|
40
|
Duksal F, Kilic I, Tufan A, Akdogan I. Effects of different corticosteroids on the brain weight and hippocampal neuronal loss in rats. Brain Res 2009; 1250:75-80. [DOI: 10.1016/j.brainres.2008.10.051] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2008] [Revised: 10/11/2008] [Accepted: 10/16/2008] [Indexed: 11/24/2022]
|
41
|
Catania C, Sotiropoulos I, Silva R, Onofri C, Breen KC, Sousa N, Almeida OFX. The amyloidogenic potential and behavioral correlates of stress. Mol Psychiatry 2009; 14:95-105. [PMID: 17912249 DOI: 10.1038/sj.mp.4002101] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Observations of elevated basal cortisol levels in Alzheimer's disease (AD) patients prompted the hypothesis that stress and glucocorticoids (GC) may contribute to the development and/or maintenance of AD. Consistent with that hypothesis, we show that stress and GC provoke misprocessing of amyloid precursor peptide in the rat hippocampus and prefrontal cortex, resulting in increased levels of the peptide C-terminal fragment 99 (C99), whose further proteolytic cleavage results in the generation of amyloid-beta (Abeta). We also show that exogenous Abeta can reproduce the effects of stress and GC on C99 production and that a history of stress strikingly potentiates the C99-inducing effects of Abeta and GC. Previous work has indicated a role for Abeta in disruption of synaptic function and cognitive behaviors, and AD patients reportedly show signs of heightened anxiety. Here, behavioral analysis revealed that like stress and GC, Abeta administration causes spatial memory deficits that are exacerbated by stress and GC; additionally, Abeta, stress and GC induced a state of hyperanxiety. Given that the intrinsic properties of C99 and Abeta include neuroendangerment and behavioral impairment, our findings suggest a causal role for stress and GC in the etiopathogenesis of AD, and demonstrate that stressful life events and GC therapy can have a cumulative impact on the course of AD development and progression.
Collapse
Affiliation(s)
- C Catania
- Max Planck Institute of Psychiatry, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
42
|
Schubert MI, Kalisch R, Sotiropoulos I, Catania C, Sousa N, Almeida OFX, Auer DP. Effects of altered corticosteroid milieu on rat hippocampal neurochemistry and structure--an in vivo magnetic resonance spectroscopy and imaging study. J Psychiatr Res 2008; 42:902-12. [PMID: 18177670 DOI: 10.1016/j.jpsychires.2007.10.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2007] [Revised: 10/02/2007] [Accepted: 10/08/2007] [Indexed: 11/18/2022]
Abstract
Altered corticosteroid milieu induces changes in hippocampal volume, neuronal structure, neurochemistry and cognitive function in humans and rodents. This in vivo magnetic resonance spectroscopy (1H MRS) and imaging (MRI) study investigated whether long-term alterations of the corticosteroid milieu cause: (i) metabolic and/or (ii) structural changes of the rat hippocampus. Therefore, hypocortisolism was induced by adrenalectomy (ADX), normocortisolism by ADX with low-dose corticosterone replacement, and hypercortisolism by ADX and high-dose dexamethasone treatment (for 11 weeks, respectively). All groups including a control group (n=23) were studied by in vivo 1H MRS and MR volumetry. Effects of treatment on normalized hippocampal metabolites and volumes were tested for significance using one-factorial multivariate analysis of variance (MANOVA). Hypercortisolemic rats revealed significantly elevated glutamate. Hypocortisolemic rats showed significantly decreased myo-inositol ratio levels, and were associated with significantly reduced normalized hippocampal volumes. Our findings suggest chronic hypercortisolism to be associated with glutamate-mediated excitotoxicity in the absence of volumetric abnormalities. In contrast, hypocortisolism appears to be associated with neurodegenerative processes, altered astrocytic metabolism but preserved neuronal density.
Collapse
Affiliation(s)
- Mirjam I Schubert
- NMR Research Group, Max Planck Institute of Psychiatry, Munich, Germany.
| | | | | | | | | | | | | |
Collapse
|
43
|
Sousa N, Cerqueira JJ, Almeida OFX. Corticosteroid receptors and neuroplasticity. ACTA ACUST UNITED AC 2008; 57:561-70. [PMID: 17692926 DOI: 10.1016/j.brainresrev.2007.06.007] [Citation(s) in RCA: 105] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2007] [Revised: 05/21/2007] [Accepted: 05/22/2007] [Indexed: 11/19/2022]
Abstract
The balance in actions mediated by mineralocorticoid (MR) and glucocorticoid (GR) receptors in certain regions of the brain, predominantly in the limbic system, appears critical for neuronal activity, stress responsiveness, and behavioral programming and adaptation. Alterations in the MR/GR balance appear to make nervous tissue vulnerable to damage; such damage can have adverse effects on the regulation of the stress response and may increase the risk for psychopathology. Besides the hippocampal formation, other subpopulations of neurons in extra-hippocampal brain areas have been also shown recently to be sensitive to changes in the corticosteroid milieu. From a critical analysis of the available data, the picture that emerges is that the balance (or imbalance) between MR/GR activation influences not only cell birth and death, but also other forms of neuroplasticity. MR occupation appears to promote pro-survival actions, while exclusive GR activation favors neurodegeneration. Interestingly, the sustained co-activation of both receptors, for example in chronic stress conditions, usually results in less drastic effects, restricted to dendritic atrophy and impaired synaptic plasticity. As our knowledge of the plastic changes underpinning the wide spectrum of behavior effects triggered by corticosteroids/stress growths, researchers should be able to better define new targets for therapeutic intervention in stress-related disorders.
Collapse
Affiliation(s)
- Nuno Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal.
| | | | | |
Collapse
|
44
|
Abstract
Stress, acting through glucocorticoids (GC), has profound effects on brain physiology and pathology and is causally implicated in depressive illness. Here, we consider the information derived from genetic models generated to probe the role of the hypothalamo-pituitary-adrenal axis in depression. This essay also briefly reviews the status of knowledge regarding GC actions on neuronal birth, survival and death from the perspective of the importance of these phenomena in depression.
Collapse
Affiliation(s)
- Shuang Yu
- Max Planck Institute of Psychiatry, Kraepelinstrasse 2-10, 80804 Munich, Germany
| | | | | |
Collapse
|
45
|
Yao YY, Liu DM, Xu DF, Li WP. Memory and learning impairment induced by dexamethasone in senescent but not young mice. Eur J Pharmacol 2007; 574:20-8. [PMID: 17884039 DOI: 10.1016/j.ejphar.2007.07.021] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2006] [Revised: 07/04/2007] [Accepted: 07/04/2007] [Indexed: 11/30/2022]
Abstract
In this study, the memory and learning impairment induced by dexamethasone in young mice and senescent mice were evaluated by step-down inhibitory avoidance task and passive avoidance test. Colorimetric MTT(tetrazole 3-(4,5-dimethylthiazol-2-yl-)-2,5-diphenyltetrazolium bromide) assay and TUNEL staining were used to investigate the influence of dexamethasone on hippocampal neuronal cell death with amyloid beta-protein. It was determined the effect of dexamethasone on intracellular calcium ([Ca(2+)](i)) with amyloid beta-protein 25-35 by fluorescence imaging with a confocal laser microscope using fluo-3 acetoxymethylester (AM) as a fluorescent dye. The effect of dexamethasone on amyloid beta-protein 25-35-induced nuclear factor kappaB (NF-kappaB) was analyzed by western blot. The results showed that twenty one days dexamethasone exposure resulted in an impairment of memory and learning in senescent but not young mice. Pretreatment of isolated hippocampal neurons with dexamethasone increased the vulnerability of the hippocampal neurons to amyloid beta-protein 25-35, enhanced [Ca(2+)](i) and down-regulated the increased level of nuclear NF-kappaB p65 proteins induced by amyloid beta-protein 25-35. These results demonstrated that glucocorticoids could potentiate the neurotoxic action of amyloid beta-protein by further increasing the level of [Ca(2+)](i) and down-regulating the level of nuclear NF-kappaB protein. Since amyloid beta-protein increases in the brain with aging, glucocorticoids potentiation of the neurotoxic action of amyloid beta-protein maybe one of the mechanisms responsible for glucocorticoids-induced memory and learning impairment in senescent but not young mice, which maybe relevance to the etiology of Alzheimer's disease.
Collapse
Affiliation(s)
- Yu-You Yao
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, People's Republic of China
| | | | | | | |
Collapse
|
46
|
Cereseto M, Reinés A, Ferrero A, Sifonios L, Rubio M, Wikinski S. Chronic treatment with high doses of corticosterone decreases cytoskeletal proteins in the rat hippocampus. Eur J Neurosci 2007; 24:3354-64. [PMID: 17229084 DOI: 10.1111/j.1460-9568.2006.05232.x] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Hypercortisolism is a common trait of Cushing's disease and depression. These two disorders also share hippocampal volume decrease and cognitive deficits. However, experimentally induced hypercortisolism induces neuronal atrophy, which has been proposed to be the phenomenon underlying the hippocampal shrinkage. We hypothesized that the above-mentioned atrophy is due to a deleterious effect of high concentrations of glucocorticoids on cytoskeletal proteins. One or two pellets (100 mg each) of corticosterone were subcutaneously implanted in adult rats. Twenty-one days later, light, medium and heavy subunits of intermediate neurofilaments (NFL, NFM and NFH) and the microtubule-associated protein 2 (MAP2) were quantified by immunohistochemistry in Ammon's horn and dentate gyrus. We also evaluated the in vitro glutamate release in hippocampal slices. Both doses of corticosterone induced a decrement of NFL, NFM and NFH in both hippocampal areas but only 200 mg decreased MAP2. This dose also diminished the potassium-stimulated glutamate release. All of these changes seemed not to be due to neuron loss, as no decrement in neuron-specific nuclear protein-positive cells was found. With the exception of NFL, the above-mentioned diminution was not observed in the globus pallidus, one of the brain regions with the lowest glucocorticoid receptor density. These results provide a subcellular insight into the trophic changes found in experimental models of hypercortisolism. The coincidence between decrements in MAP2 and glutamate release suggests possible links between high glucocorticoid levels, dendritic atrophy and the cognitive impairment reported in patients suffering from Cushing's disease and depression.
Collapse
Affiliation(s)
- Marina Cereseto
- Instituto de Investigaciones Farmacológicas (ININFA, UBA-CONICET), Junín 956 5to. piso (1113), Buenos Aires, Argentina.
| | | | | | | | | | | |
Collapse
|
47
|
Cerqueira JJ, Taipa R, Uylings HBM, Almeida OFX, Sousa N. Specific configuration of dendritic degeneration in pyramidal neurons of the medial prefrontal cortex induced by differing corticosteroid regimens. ACTA ACUST UNITED AC 2006; 17:1998-2006. [PMID: 17082516 DOI: 10.1093/cercor/bhl108] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
We previously demonstrated that hypercorticalism induces pronounced volumetric reductions in the rat medial prefrontal cortex (mPFC) and that these structural changes correlate with deficits in executive function. By applying 3-dimensional analysis of Golgi-Cox-stained material, we now demonstrate that corticosteroids can exert differential effects on dendritic arborizations of pyramidal neurons in lamina II/III of the mPFC. Treatment with the glucocorticoid receptor-selective agonist dexamethasone and with the natural adrenosteroid, corticosterone (CORT), results in significant reductions in the total length of apical dendrites in the pyramidal neurons in lamina II/III of the anterior cingulate/prelimbic and infralimbic cortices. Interestingly, although these treatments do not affect the number of dendritic branches, they are associated with impoverished arborizations in their distal portions and, in CORT-treated animals, with increased branching in the middle portions of the apical dendritic tree. Deprivation of corticosteroids by adrenalectomy leads to decreases in total apical dendritic length and spine number, but in this case, dendritic impoverishment was restricted to the middle/proximal segments of the dendritic trees. None of the treatments influenced the architecture of the basal dendrites. These results add to our knowledge of the morphological substrates through which corticosteroids may disrupt mPFC-dependent behaviors.
Collapse
Affiliation(s)
- João J Cerqueira
- Life and Health Sciences Research Institute (Instituto de Investigação em ciências da vida e da saúde), School of Health Sciences, University of Minho, Campus de Gualtar, 4710-057 Braga, Portugal
| | | | | | | | | |
Collapse
|
48
|
Silva R, Lu J, Wu Y, Martins L, Almeida OFX, Sousa N. Mapping cellular gains and losses in the postnatal dentate gyrus: Implications for psychiatric disorders. Exp Neurol 2006; 200:321-31. [PMID: 16624303 DOI: 10.1016/j.expneurol.2006.02.119] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2005] [Revised: 01/13/2006] [Accepted: 02/20/2006] [Indexed: 10/24/2022]
Abstract
Neurogenesis and apoptosis occur contemporaneously in the postnatal hippocampal dentate gyrus and have been implicated in mood and cognitive disorders. Particularly, neurogenesis correlates with the manifestation of antidepressant effects, but its quantitative and topographical relationship with concomitant cell death has not been investigated. Accordingly, we applied stereological measurements to obtain synchronized topographical maps of these two events in rats aged 1 and 3 months under basal conditions; the two ages were chosen to represent neuro-developmental windows during which cell proliferation and death are occurring at peak and relatively steady levels, respectively. Our analysis shows that apoptotic cells are evenly distributed throughout the dentate gyrus, although the incidence of apoptosis decreased gradient-wise from the tip of the suprapyramidal layer and was highest in the external third of the granule cell layer. Interestingly, apoptosis was higher in the left hippocampus. In addition, we confirm previous less stringent studies demonstrating that neurogenesis occurs differentially in the dorsal-ventral axis of the hippocampus and in suprapyramidal-infrapyramidal blades of the dentate gyrus. These results raise intriguing new questions regarding the coordinated regulation of hippocampal neurogenesis and apoptosis since the two processes apparently share common regulatory factors. In addition, these findings open questions with respect to the functional significance of topographical gradients in neurogenesis and apoptosis in the context of the etiopathogenesis of neuropsychiatric diseases and the reported dependence on the efficacy of therapeutic agents on the generation of new hippocampal neurons.
Collapse
Affiliation(s)
- Rui Silva
- Neuroscience Group, Life and Health Sciences Research Institute, ICVS, University of Minho, 4710-057 Braga, Portugal
| | | | | | | | | | | |
Collapse
|
49
|
Abrahám IM, Meerlo P, Luiten PGM. Concentration dependent actions of glucocorticoids on neuronal viability and survival. Dose Response 2006; 4:38-54. [PMID: 18648635 DOI: 10.2203/dose-response.004.01.004.abraham] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
A growing body of evidence based on experimental data demonstrates that glucocorticoids (GCs) can play a potent role in the survival and death of neurons. However, these observations reflect paradoxical features of GCs, since these adrenal stress hormones are heavily involved in both neurodegenerative and neuroprotective processes. The actual level of GCs appears to have an essential impact in this bimodal action. In the present short review we aim to show the importance of concentration dependent action of GCs on neuronal cell viability and cell survival in the brain. Additionally, we will summarize the possible GC-induced cellular mechanisms at different GC concentrations providing a background for their effect on the fate of nerve cells in conditions that are a challenge to their survival.
Collapse
Affiliation(s)
- István M Abrahám
- Neurobiology Research Group, Hungarian Academy of Sciences at Eötvös Loránd University, Budapest, Hungary
| | | | | |
Collapse
|
50
|
Zhu MY, Wang WP, Bissette G. Neuroprotective effects of agmatine against cell damage caused by glucocorticoids in cultured rat hippocampal neurons. Neuroscience 2006; 141:2019-27. [PMID: 16777341 PMCID: PMC2921983 DOI: 10.1016/j.neuroscience.2006.05.011] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2005] [Revised: 04/12/2006] [Accepted: 05/01/2006] [Indexed: 11/26/2022]
Abstract
In the present study the neuroprotective effects of agmatine against neuronal damage caused by glucocorticoids were examined in cultured rat hippocampal neurons. Spectrophotometric measurements of lactate dehydrogenase activities, beta-tubulin III immunocytochemical staining, terminal deoxynucleotidyl transferase-mediated deoxyuridine triphosphate (dUTP) nick-end-labeling assay (TUNEL) labeling and caspase-3 assays were carried out to detect cell damage or possible involved mechanisms. Our results show that dexamethasone and corticosterone produced a concentration-dependent increase of lactate dehydrogenase release in 12-day hippocampal cultures. Addition of 100 microM agmatine into media prevented the glucocorticoid-induced increase of lactate dehydrogenase release, an effect also shared with the specific N-methyl-D-aspartate receptor antagonist MK801 and glucocorticoid receptor antagonists mifepristone and spironolactone. Arcaine, an analog of agmatine with similar structure as agmatine, also blocked glucocorticoid-induced increase of lactate dehydrogenase release. Spermine and putrescine, the endogenous polyamine and metabolic products of agmatine without the guanidino moiety of agmatine, have no appreciable effect on glucocorticoid-induced injuries, indicating a structural relevance for this neuroprotection. Immunocytochemical staining with beta-tubulin III confirmed the substantial neuronal injuries caused by glucocorticoids and the neuroprotective effects of agmatine against these neuronal injuries. TUNEL labeling demonstrated that agmatine significantly reduced TUNEL-positive cell numbers induced by exposure of cultured neurons to dexamethasone. Moreover, exposure of hippocampal neurons to dexamethasone significantly increased caspase-3 activity, which was inhibited by co-treatment with agmatine. Taken together, these results demonstrate that agmatine can protect cultured hippocampal neurons from glucocorticoid-induced neurotoxicity, through a possible blockade of the N-methyl-D-aspartate receptor channels or a potential anti-apoptotic property.
Collapse
Affiliation(s)
- M-Y Zhu
- Department of Psychiatry and Human Behavior, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA.
| | | | | |
Collapse
|