1
|
Chino K, Izuo N, Noike H, Uno K, Kuboyama T, Tohda C, Muramatsu SI, Nitta A. Shati/Nat8l Overexpression Improves Cognitive Decline by Upregulating Neuronal Trophic Factor in Alzheimer's Disease Model Mice. Neurochem Res 2022; 47:2805-2814. [PMID: 35759136 DOI: 10.1007/s11064-022-03649-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 05/11/2022] [Accepted: 06/01/2022] [Indexed: 11/25/2022]
Abstract
Alzheimer's disease (AD) is a type of dementia characterized by the deposition of amyloid β, a causative protein of AD, in the brain. Shati/Nat8l, identified as a psychiatric disease related molecule, is a responsive enzyme of N-acetylaspartate (NAA) synthesis. In the hippocampi of AD patients and model mice, the NAA content and Shati/Nat8l expression were reported to be reduced. Having recently clarified the involvement of Shati/Nat8l in cognitive function, we examined the recovery effect of the hippocampal overexpression of Shati/Nat8l in AD model mice (5XFAD). Shati/Nat8l overexpression suppressed cognitive dysfunction without affecting the Aβ burden or number of NeuN-positive neurons. In addition, brain-derived neurotrophic factor mRNA was upregulated by Shati/Nat8l overexpression in 5XFAD mice. These results suggest that Shati/Nat8l overexpression prevents cognitive dysfunction in 5XFAD mice, indicating that Shati/Nat8l could be a therapeutic target for AD.
Collapse
Affiliation(s)
- Kakeru Chino
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Naotaka Izuo
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Hiroshi Noike
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Kyosuke Uno
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
- Laboratory of Molecular Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, Hirakata-shi, Osaka, Japan
| | - Tomoharu Kuboyama
- Laboratory of Pharmacognosy, Daiichi University of Pharmacy, 22-1 Tamagawa-cho, Minami-ku, Fukuoka, 815-8511, Japan
| | - Chihiro Tohda
- Section of Neuromedical Science, Institute of Natural Medicine, University of Toyama, Sugitani 2630, Toyama, 930-0194, Japan
| | - Shin-Ichi Muramatsu
- Division of Neurological Gene Therapy, Open Innovation Center, Jichi Medical University, Shimotsuke, 329-0498, Japan
- Center for Gene and Cell Therapy, The Institute of Medical Science, The University of Tokyo, Tokyo, 108-8639, Japan
| | - Atsumi Nitta
- Department of Pharmaceutical Therapy and Neuropharmacology, School of Pharmaceutical Sciences, Graduate School of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
2
|
Takei N, Yokomaku D, Yamada T, Nagano T, Kakita A, Namba H, Ushiki T, Takahashi H, Nawa H. EGF Downregulates Presynaptic Maturation and Suppresses Synapse Formation In Vitro and In Vivo. Neurochem Res 2022; 47:2632-2644. [PMID: 34984589 DOI: 10.1007/s11064-021-03524-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 11/27/2022]
Abstract
Neuronal differentiation, maturation, and synapse formation are regulated by various growth factors. Here we show that epidermal growth factor (EGF) negatively regulates presynaptic maturation and synapse formation. In cortical neurons, EGF maintained axon elongation and reduced the sizes of growth cones in culture. Furthermore, EGF decreased the levels of presynaptic molecules and number of presynaptic puncta, suggesting that EGF inhibits neuronal maturation. The reduction of synaptic sites is confirmed by the decreased frequencies of miniature EPSCs. In vivo analysis revealed that while peripherally administrated EGF decreased the levels of presynaptic molecules and numbers of synaptophysin-positive puncta in the prefrontal cortices of neonatal rats, EGF receptor inhibitors upregulated these indexes, suggesting that endogenous EGF receptor ligands suppress presynaptic maturation. Electron microscopy further revealed that EGF decreased the numbers, but not the sizes, of synaptic structures in vivo. These findings suggest that endogenous EGF and/or other EGF receptor ligands negatively modulates presynaptic maturation and synapse formation.
Collapse
Affiliation(s)
- Nobuyuki Takei
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan.
- Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata, Japan.
| | - Daisaku Yokomaku
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Takaho Yamada
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
- Department of Hematology, Endocrinology and Metabolism, Niigata University Faculty of Medicine, Niigata, Japan
| | - Tadasato Nagano
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Health and Nutrition, Faculty of Human Life Studies, University of Niigata Prefecture, Niigata, Japan
| | - Akiyoshi Kakita
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hisaaki Namba
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Physiological Science, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| | - Tatsuo Ushiki
- Division of Microscopic Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata, Japan
| | - Hitoshi Takahashi
- Department of Pathology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
- Department of Physiological Science, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan
| |
Collapse
|
3
|
Gordillo-Salas M, Pilar-Cuéllar F, Auberson YP, Adell A. Signaling pathways responsible for the rapid antidepressant-like effects of a GluN2A-preferring NMDA receptor antagonist. Transl Psychiatry 2018; 8:84. [PMID: 29666360 PMCID: PMC5904130 DOI: 10.1038/s41398-018-0131-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 02/06/2018] [Accepted: 02/18/2018] [Indexed: 12/21/2022] Open
Abstract
In a previous study we found that the preferring GluN2A receptor antagonist, NVP-AAM077, elicited rapid antidepressant-like effects in the forced swim test that was related to the release of glutamate and serotonin in the medial prefrontal cortex. In the present work we sought to examine the duration of this behavioral effect as well as the molecular readouts involved. Our results showed that NVP-AAM077 reduced the immobility in the forced swim test 30 min and 24 h after its administration. However, this effect waned 7 days later. The rapid antidepressant-like response seems to be associated with increases in the GluA1 subunit of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptors, mammalian target of rapamycin (mTOR) signaling, glia markers such as glial fibrillary acidic protein (GFAP) and excitatory amino acid transporter 1 (EAAT1), and a rapid mobilization of intracellular stores of brain-derived neurotrophic factor (BDNF) in the medial prefrontal cortex.
Collapse
Affiliation(s)
- Marta Gordillo-Salas
- 0000 0004 1770 272Xgrid.7821.cInstituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain
| | - Fuencisla Pilar-Cuéllar
- 0000 0004 1770 272Xgrid.7821.cInstituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain ,0000 0000 9314 1427grid.413448.eCentro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain ,0000 0004 1770 272Xgrid.7821.cDepartamento de Fisiología y Farmacología, Facultad de Medicina, Universidad de Cantabria, Santander, Spain
| | - Yves P. Auberson
- 0000 0001 1515 9979grid.419481.1Novartis Institutes for Biomedical Research, Basel, Switzerland
| | - Albert Adell
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (CSIC, Universidad de Cantabria), Santander, Spain. .,Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
4
|
LTP or LTD? Modeling the Influence of Stress on Synaptic Plasticity. eNeuro 2018; 5:eN-TNC-0242-17. [PMID: 29662939 PMCID: PMC5898787 DOI: 10.1523/eneuro.0242-17.2018] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 01/15/2018] [Accepted: 01/21/2018] [Indexed: 01/03/2023] Open
Abstract
In cognitive memory, long-term potentiation (LTP) has been shown to occur when presynaptic and postsynaptic activities are highly correlated and glucocorticoid concentrations are in an optimal (i.e., low normal) range. In all other conditions, LTP is attenuated or even long-term depression (LTD) occurs. In this paper, we focus on NMDA receptor (NMDA-R)-dependent LTP and LTD, two processes involving various molecular mechanisms. To understand which of these mechanisms are indispensable for explaining the experimental evidence reported in the literature, we here propose a parsimonious model of NMDA-R-dependent synaptic plasticity. Central to this model are two processes. First, AMPA receptor-subunit trafficking; and second, glucocorticoid-dependent modifications of the brain-derived neurotrophic factor (BDNF)-receptor system. In 2008, we have published a core model, which contained the first process, while in the current paper we present an extended model, which also includes the second process. Using the extended model, we could show that stress attenuates LTP, while it enhances LTD. These simulation results are in agreement with experimental findings from other labs. In 2013, surprising experimental evidence showed that the GluA1 C-tail is unnecessary for LTP. When using our core model in its original form, our simulations already predicted that there would be no requirement for the GluA1 C-tail for LTP, allowing to eliminate a redundant mechanism from our model. In summary, we present a mathematical model that displays reduced complexity and is useful for explaining when and how LTP or LTD occurs at synapses during cognitive memory formation.
Collapse
|
5
|
Maltese M, Stanic J, Tassone A, Sciamanna G, Ponterio G, Vanni V, Martella G, Imbriani P, Bonsi P, Mercuri NB, Gardoni F, Pisani A. Early structural and functional plasticity alterations in a susceptibility period of DYT1 dystonia mouse striatum. eLife 2018; 7:33331. [PMID: 29504938 PMCID: PMC5849413 DOI: 10.7554/elife.33331] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 03/02/2018] [Indexed: 12/30/2022] Open
Abstract
The onset of abnormal movements in DYT1 dystonia is between childhood and adolescence, although it is unclear why clinical manifestations appear during this developmental period. Plasticity at corticostriatal synapses is critically involved in motor memory. In the Tor1a+/Δgag DYT1 dystonia mouse model, long-term potentiation (LTP) appeared prematurely in a critical developmental window in striatal spiny neurons (SPNs), while long-term depression (LTD) was never recorded. Analysis of dendritic spines showed an increase of both spine width and mature mushroom spines in Tor1a+/Δgag neurons, paralleled by an enhanced AMPA receptor (AMPAR) accumulation. BDNF regulates AMPAR expression during development. Accordingly, both proBDNF and BDNF levels were significantly higher in Tor1a+/Δgag mice. Consistently, antagonism of BDNF rescued synaptic plasticity deficits and AMPA currents. Our findings demonstrate that early loss of functional and structural synaptic homeostasis represents a unique endophenotypic trait during striatal maturation, promoting the appearance of clinical manifestations in mutation carriers.
Collapse
Affiliation(s)
- Marta Maltese
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Jennifer Stanic
- Department of Pharmacology, University of Milan, Milan, Italy
| | - Annalisa Tassone
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppe Sciamanna
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giulia Ponterio
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Valentina Vanni
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Giuseppina Martella
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | - Paola Imbriani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Nicola Biagio Mercuri
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| | | | - Antonio Pisani
- Department of Systems Medicine, University of Rome Tor Vergata, Rome, Italy.,IRCCS Fondazione Santa Lucia, Rome, Italy
| |
Collapse
|
6
|
Iamjan SA, Thanoi S, Watiktinkorn P, Reynolds GP, Nudmamud-Thanoi S. Genetic variation of GRIA3 gene is associated with vulnerability to methamphetamine dependence and its associated psychosis. J Psychopharmacol 2018; 32:309-315. [PMID: 29338492 DOI: 10.1177/0269881117750153] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Methamphetamine (METH) is an addictive psychostimulant drug commonly leading to schizophrenia-like psychotic symptoms. Disturbances in glutamatergic neurotransmission have been proposed as neurobiological mechanisms and the α-amino-3 hydroxy-5 methyl-4 isoxazole propionic acid (AMPA) glutamate receptor has been implicated in these processes. Moreover, genetic variants in GRIAs, genes encoding AMPA receptor subunits, have been observed in association with both drug dependence and psychosis. We hypothesized that variation of GRIA genes may be associated with METH dependence and METH-induced psychosis. Genotyping of GRIA1 rs1428920, GRIA2 rs3813296, GRIA3 rs3761554, rs502434 and rs989638 was performed in 102 male Thai controls and 100 METH-dependent subjects (53 with METH-dependent psychosis). We observed no evidence of association with METH dependence and METH-dependent psychosis in the GRIA1 and GRIA2 polymorphisms, nor with single polymorphisms rs3761554 and rs989638 in GRIA3. An association of GRIA3 rs502434 was identified with both METH dependence and METH-dependent psychosis, although this did not withstand correction for multiple testing. Combining the analysis of this site with the previously-demonstrated association with BDNF rs6265 resulted in a highly significant effect. These preliminary findings indicate that genetic variability in GRIA3 may interact with a functional BDNF polymorphism to provide a strong risk factor for the development of METH dependence in the Thai population.
Collapse
Affiliation(s)
- Sri-Arun Iamjan
- 1 Faculty of Medical Science, Department of Anatomy, Naresuan University, Phitsanulok, Thailand.,2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | - Samur Thanoi
- 1 Faculty of Medical Science, Department of Anatomy, Naresuan University, Phitsanulok, Thailand.,2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| | | | - Gavin P Reynolds
- 2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand.,4 Biomolecular Sciences Research Centre, Sheffield Hallam University, UK
| | - Sutisa Nudmamud-Thanoi
- 1 Faculty of Medical Science, Department of Anatomy, Naresuan University, Phitsanulok, Thailand.,2 Faculty of Medical Science, Centre of Excellence in Medical Biotechnology, Naresuan University, Phitsanulok, Thailand
| |
Collapse
|
7
|
Jing D, Lee FS, Ninan I. The BDNF Val66Met polymorphism enhances glutamatergic transmission but diminishes activity-dependent synaptic plasticity in the dorsolateral striatum. Neuropharmacology 2016; 112:84-93. [PMID: 27378336 DOI: 10.1016/j.neuropharm.2016.06.030] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/28/2016] [Indexed: 12/22/2022]
Abstract
The Val66Met polymorphism in the brain-derived neurotrophic factor (BDNF) gene disrupts the activity-dependent release of BDNF, which might underlie its involvement in several neuropsychiatric disorders. Consistent with the potential role of regulated release of BDNF in synaptic functions, earlier studies have demonstrated that the BDNF Val66Met polymorphism impairs NMDA receptor-mediated synaptic transmission and plasticity in the hippocampus, the medial prefrontal cortex and the central amygdala. However, it is unknown whether the BDNF Val66Met polymorphism affects synapses in the dorsal striatum, which depends on cortical afferents for BDNF. Electrophysiological experiments revealed an enhanced glutamatergic transmission in the dorsolateral striatum (DLS) of knock-in mice containing the variant polymorphism (BDNFMet/Met) compared to the wild-type (BDNFVal/Val) mice. This increase in glutamatergic transmission is mediated by a potentiation in glutamate release and NMDA receptor transmission in the medium spiny neurons without any alterations in non-NMDA receptor-mediated transmission. We also observed an impairment of synaptic plasticity, both long-term potentiation and depression in the DLS neurons, in BDNFMet/Met mice. Thus, the BDNF Val66Met polymorphism exerts an increase in glutamatergic transmission but impairs synaptic plasticity in the dorsal striatum, which might play a role in its effect on neuropsychiatric symptoms. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.
Collapse
Affiliation(s)
- Deqiang Jing
- Department of Psychiatry, Weill Medical College of Cornell University, New York, USA
| | - Francis S Lee
- Department of Psychiatry, Weill Medical College of Cornell University, New York, USA
| | - Ipe Ninan
- Department of Psychiatry, NYU School of Medicine, New York, USA.
| |
Collapse
|
8
|
Zhong L, Luo F, Zhao W, Feng Y, Wu L, Lin J, Liu T, Wang S, You X, Zhang W. Propofol exposure during late stages of pregnancy impairs learning and memory in rat offspring via the BDNF-TrkB signalling pathway. J Cell Mol Med 2016; 20:1920-31. [PMID: 27297627 PMCID: PMC5020635 DOI: 10.1111/jcmm.12884] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Accepted: 04/09/2016] [Indexed: 12/20/2022] Open
Abstract
The brain‐derived neurotrophic factor (BDNF)‐tyrosine kinase B (TrkB) (BDNF‐TrkB) signalling pathway plays a crucial role in regulating learning and memory. Synaptophysin provides the structural basis for synaptic plasticity and depends on BDNF processing and subsequent TrkB signalling. Our previous studies demonstrated that maternal exposure to propofol during late stages of pregnancy impaired learning and memory in rat offspring. The purpose of this study is to investigate whether the BDNF‐TrkB signalling pathway is involved in propofol‐induced learning and memory impairments. Propofol was intravenously infused into pregnant rats for 4 hrs on gestational day 18 (E18). Thirty days after birth, learning and memory of offspring was assessed by the Morris water maze (MWM) test. After the MWM test, BDNF and TrkB transcript and protein levels were measured in rat offspring hippocampus tissues using real‐time PCR (RT‐PCR) and immunohistochemistry (IHC), respectively. The levels of phosphorylated‐TrkB (phospho‐TrkB) and synaptophysin were measured by western blot. It was discovered that maternal exposure to propofol on day E18 impaired spatial learning and memory of rat offspring, decreased mRNA and protein levels of BDNF and TrkB, and decreased the levels of both phospho‐TrkB and synaptophysin in the hippocampus. Furthermore, the TrkB agonist 7,8‐dihydroxyflavone (7,8‐DHF) reversed all of the observed changes. Treatment with 7,8‐DHF had no significant effects on the offspring that were not exposed to propofol. The results herein indicate that maternal exposure to propofol during the late stages of pregnancy impairs spatial learning and memory of offspring by disturbing the BDNF‐TrkB signalling pathway. The TrkB agonist 7,8‐DHF might be a potential therapy for learning and memory impairments induced by maternal propofol exposure.
Collapse
Affiliation(s)
- Liang Zhong
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Foquan Luo
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China.
| | - Weilu Zhao
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Yunlin Feng
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Liuqin Wu
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Jiamei Lin
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Tianyin Liu
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Shengqiang Wang
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Xuexue You
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| | - Wei Zhang
- Department of Anesthesiology, The First Affiliated Hospital, Nanchang University, Nancahang, China
| |
Collapse
|
9
|
Neuroplasticity and Repair in Rodent Neurotoxic Models of Spinal Motoneuron Disease. Neural Plast 2016; 2016:2769735. [PMID: 26862439 PMCID: PMC4735933 DOI: 10.1155/2016/2769735] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2015] [Revised: 07/12/2015] [Accepted: 08/19/2015] [Indexed: 12/14/2022] Open
Abstract
Retrogradely transported toxins are widely used to set up protocols for selective lesioning of the nervous system. These methods could be collectively named "molecular neurosurgery" because they are able to destroy specific types of neurons by using targeted neurotoxins. Lectins such as ricin, volkensin, or modeccin and neuropeptide- or antibody-conjugated saporin represent the most effective toxins used for neuronal lesioning. Some of these specific neurotoxins could be used to induce selective depletion of spinal motoneurons. In this review, we extensively describe two rodent models of motoneuron degeneration induced by volkensin or cholera toxin-B saporin. In particular, we focus on the possible experimental use of these models to mimic neurodegenerative diseases, to dissect the molecular mechanisms of neuroplastic changes underlying the spontaneous functional recovery after motoneuron death, and finally to test different strategies of neural repair. The potential clinical applications of these approaches are also discussed.
Collapse
|
10
|
Gao L, Tian M, Zhao HY, Xu QQ, Huang YM, Si QC, Tian Q, Wu QM, Hu XM, Sun LB, McClintock SM, Zeng Y. TrkB activation by 7, 8-dihydroxyflavone increases synapse AMPA subunits and ameliorates spatial memory deficits in a mouse model of Alzheimer's disease. J Neurochem 2015; 136:620-36. [DOI: 10.1111/jnc.13432] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 09/20/2015] [Accepted: 11/06/2015] [Indexed: 01/11/2023]
Affiliation(s)
- Lei Gao
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Mi Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Hong-Yun Zhao
- The Fifth Ward of Neurology Rehabilitation Center; Hangzhou Armed Police Hospital; Hangzhou China
| | - Qian-Qian Xu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Yu-Ming Huang
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qun-Cao Si
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing Tian
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Qing-Ming Wu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Xia-Min Hu
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Li-Bo Sun
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| | - Shawn M. McClintock
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
- Division of Brain Stimulation and Neurophysiology; Department of Psychiatry and Behavioral Sciences; Duke University School of Medicine; Durham North Carolina USA
- Department of Psychiatry; UT Southwestern Medical Center; Dallas Texas USA
| | - Yan Zeng
- Brain and Cognitive Dysfunction Research Center; School of Medicine; Wuhan University of Science and Technology; Wuhan China
| |
Collapse
|
11
|
Li P, Wang PJ, Zhang W. Prenatal exposure to ultrasound affects learning and memory in young rats. ULTRASOUND IN MEDICINE & BIOLOGY 2015; 41:644-653. [PMID: 25638314 DOI: 10.1016/j.ultrasmedbio.2014.09.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 08/23/2014] [Accepted: 09/02/2014] [Indexed: 06/04/2023]
Abstract
Prenatal exposure to ultrasound may cause cognitive impairments in experimental animals; however, the exact mechanisms remain unknown. In this study, we exposed pregnant rats (or sham-exposed controls) to different intensities of ultrasound repeatedly on days 6, 12 and 18 of pregnancy for 4 min (3.5 MHz, spatial peak time average intensity = 7.6 mW/cm(2), mechanical index = 0.1, thermal index bone = 0.1: 4-min group) or 20 min (3.5 MHz, spatial peak time average intensity = 106 mW/cm(2), mechanical index = 1.4, thermal index bone = 1.0: 20-min group). The Morris water maze was used to assess learning and memory function in pups at 2 mo of age. Noticeable deficits in behavior occurred in the group exposed to ultrasound for 20 min. Using real-time polymerase chain reaction and Western blot, we also determined that both the mRNA and protein expression levels of hippocampal N-methyl-D-aspartate (NMDA) receptor units 1 (NR1) and 2B (NR2B) and brain-derived neurotrophic factor (BDNF) were significantly lower in pups exposed to ultrasound for 20 min than in controls. Furthermore, the morphology of the synapses in the hippocampus was partially damaged. Compared with the control group, the 4-min group had better spatial learning and memory abilities, as well as higher mRNA and protein levels of NR1, NR2B and BDNF. Our study suggests that high-intensity ultrasound irradiation can decrease learning and memory abilities by reducing the expression of NR1, NR2B and BDNF in the hippocampal regions and damaging the structure of synapses. In contrast, low-intensity ultrasound irradiation can enhance the learning and memory abilities of the offspring rats by increasing the expression of NR1, NR2B and BDNF receptor in the hippocampal regions.
Collapse
Affiliation(s)
- Ping Li
- Department of Ultrasound, Tongji Hospital, Medical School of Tongji University, Putuo District, Shanghai, China
| | - Pei-Jun Wang
- Department of Ultrasound, Tongji Hospital, Medical School of Tongji University, Putuo District, Shanghai, China.
| | - Wei Zhang
- Department of Ultrasound, Tongji Hospital, Medical School of Tongji University, Putuo District, Shanghai, China
| |
Collapse
|
12
|
Tian M, Zeng Y, Hu Y, Yuan X, Liu S, Li J, Lu P, Sun Y, Gao L, Fu D, Li Y, Wang S, McClintock SM. 7, 8-Dihydroxyflavone induces synapse expression of AMPA GluA1 and ameliorates cognitive and spine abnormalities in a mouse model of fragile X syndrome. Neuropharmacology 2015; 89:43-53. [DOI: 10.1016/j.neuropharm.2014.09.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/28/2014] [Accepted: 09/04/2014] [Indexed: 01/20/2023]
|
13
|
Park YH, Mueller BH, McGrady NR, Ma HY, Yorio T. AMPA receptor desensitization is the determinant of AMPA receptor mediated excitotoxicity in purified retinal ganglion cells. Exp Eye Res 2015; 132:136-50. [PMID: 25643624 DOI: 10.1016/j.exer.2015.01.026] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 12/08/2014] [Accepted: 01/29/2015] [Indexed: 01/15/2023]
Abstract
The ionotropic glutamate receptors (iGLuR) have been hypothesized to play a role in neuronal pathogenesis by mediating excitotoxic death. Previous studies on iGluR in the retina have focused on two broad classes of receptors: NMDA and non-NMDA receptors including the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic receptor (AMPAR) and kainate receptor. In this study, we examined the role of receptor desensitization on the specific excitotoxic effects of AMPAR activation on primary retinal ganglion cells (RGCs). Purified rat RGCs were isolated from postnatal day 4-7 Sprague-Dawley rats. Calcium imaging was used to identify the functionality of the AMPARs and selectivity of the s-AMPA agonist. Phosphorylated CREB and ERK1/2 expression were performed following s-AMPA treatment. s-AMPA excitotoxicity was determined by JC-1 mitochondrial membrane depolarization assay, caspase 3/7 luciferase activity assay, immunoblot analysis for α-fodrin, and Live (calcein AM)/Dead (ethidium homodimer-1) assay. RGC cultures of 98% purity, lacking Iba1 and GFAP expression were used for the present studies. Isolated prenatal RGCs expressed calcium permeable AMPAR and s-AMPA (100 μM) treatment of cultured RGCs significantly increased phosphorylation of CREB but not that of ERK1/2. A prolonged (6 h) AMPAR activation in purified RGCs using s-AMPA (100 μM) did not depolarize the RGC mitochondrial membrane potential. In addition, treatment of cultured RGCs with s-AMPA, both in the presence and absence of trophic factors (BDNF and CNTF), did not increase caspase 3/7 activities or the cleavage of α-fodrin (neuronal apoptosis marker), as compared to untreated controls. Lastly, a significant increase in cell survival of RGCs was observed after s-AMPA treatment as compared to control untreated RGCs. However, preventing the desensitization of AMPAR with the treatment with either kainic acid (100 μM) or the combination of s-AMPA and cyclothiazide (50 μM) significantly reduced cell survivability. Activation of the AMPAR in RGCs does not appear to activate a signaling cascade to apoptosis, suggesting that RGCs in vitro are not susceptible to AMPA excitotoxicity as previously hypothesized. Conversely, preventing AMPAR desensitization through differential agonist activation caused AMPAR mediated excitotoxicity. Activation of the AMPAR in increasing CREB phosphorylation was dependent on the presence of calcium, which may help explain this action in increasing RGC survival.
Collapse
Affiliation(s)
- Yong H Park
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| | - Brett H Mueller
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Nolan R McGrady
- Department of Cell Biology and Immunology, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Hai-Ying Ma
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Thomas Yorio
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA; North Texas Eye Research Institute, University of North Texas Health Science Center, Fort Worth, TX, USA.
| |
Collapse
|
14
|
Reimers JM, Loweth JA, Wolf ME. BDNF contributes to both rapid and homeostatic alterations in AMPA receptor surface expression in nucleus accumbens medium spiny neurons. Eur J Neurosci 2014; 39:1159-69. [PMID: 24712995 DOI: 10.1111/ejn.12422] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2013] [Revised: 09/30/2013] [Accepted: 10/12/2013] [Indexed: 12/15/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) plays a critical role in plasticity at glutamate synapses and in the effects of repeated cocaine exposure. We recently showed that intracranial injection of BDNF into the rat nucleus accumbens (NAc), a key region for cocaine addiction, rapidly increases α-amino-3-hyroxy-5-methyl-4-isoxazole-propionic acid receptor (AMPAR) surface expression. To further characterize BDNF's role in both rapid AMPAR trafficking and slower, homeostatic changes in AMPAR surface expression, we investigated the effects of acute (30 min) and long-term (24 h) treatment with BDNF on AMPAR distribution in NAc medium spiny neurons from postnatal rats co-cultured with mouse prefrontal cortex neurons to restore excitatory inputs. Immunocytochemical studies showed that acute BDNF treatment increased cell surface GluA1 and GluA2 levels, as well as their co-localization, on NAc neurons. This effect of BDNF, confirmed using a protein crosslinking assay, was dependent on ERK but not AKT signaling. In contrast, long-term BDNF treatment decreased AMPAR surface expression on NAc neurons. Based on this latter result, we tested the hypothesis that BDNF plays a role in AMPAR 'scaling down' in response to a prolonged increase in neuronal activity produced by bicuculline (24 h). Supporting this hypothesis, decreasing BDNF signaling with the extracellular BDNF scavenger TrkB-Fc prevented the scaling down of GluA1 and GluA2 surface levels in NAc neurons normally produced by bicuculline. In conclusion, BDNF exerts bidirectional effects on NAc AMPAR surface expression, depending on duration of exposure. Furthermore, BDNF's involvement in synaptic scaling in the NAc differs from its previously described role in the visual cortex.
Collapse
Affiliation(s)
- Jeremy M Reimers
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, 3333 Green Bay Road, North Chicago, IL, 60064-3095, USA
| | | | | |
Collapse
|
15
|
Li X, Wolf ME. Multiple faces of BDNF in cocaine addiction. Behav Brain Res 2014; 279:240-54. [PMID: 25449839 DOI: 10.1016/j.bbr.2014.11.018] [Citation(s) in RCA: 134] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2014] [Revised: 11/04/2014] [Accepted: 11/08/2014] [Indexed: 01/04/2023]
Abstract
Brain-derived neurotrophic factor (BDNF) has been found to play roles in many types of plasticity including drug addiction. Here, we focus on rodent studies over the past two decades that have demonstrated diverse roles of BDNF in models of cocaine addiction. First, we will provide an overview of studies showing that cocaine exposure alters (and generally increases) BDNF levels in reward-related regions including the ventral tegmental area, nucleus accumbens, prefrontal cortex, and amygdala. Then we will review evidence that BDNF contributes to behavioral changes in animal models of cocaine addiction, focusing on conditioned place preference, behavioral sensitization, maintenance and reinstatement of self-administration, and incubation of cocaine craving. Last, we will review the role of BDNF in synaptic plasticity, particularly as it relates to plasticity of AMPA receptor transmission after cocaine exposure. We conclude that BDNF regulates cocaine-induced behaviors in a highly complex manner that varies depending on the brain region (and even among different cell types within the same brain region), the nature of cocaine exposure, and the "addiction phase" examined (e.g., acquisition vs maintenance; early vs late withdrawal). These complexities make BDNF a daunting therapeutic target for treating cocaine addiction. However, recent clinical evidence suggests that the serum BDNF level may serve as a biomarker in cocaine addicts to predict future relapse, providing an alternative direction for exploring BDNF's potential relevance to treating cocaine addiction.
Collapse
Affiliation(s)
- Xuan Li
- Behavioral Neuroscience Research Branch, Intramural Research Program, NIDA/NIH/DHHS, Baltimore, MD, USA.
| | - Marina E Wolf
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL, USA
| |
Collapse
|
16
|
Ding X, Cai J, Li S, Liu XD, Wan Y, Xing GG. BDNF contributes to the development of neuropathic pain by induction of spinal long-term potentiation via SHP2 associated GluN2B-containing NMDA receptors activation in rats with spinal nerve ligation. Neurobiol Dis 2014; 73:428-51. [PMID: 25447233 DOI: 10.1016/j.nbd.2014.10.025] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 10/16/2014] [Accepted: 10/31/2014] [Indexed: 12/30/2022] Open
Abstract
The pathogenic mechanisms underlying neuropathic pain still remain largely unknown. In this study, we investigated whether spinal BDNF contributes to dorsal horn LTP induction and neuropathic pain development by activation of GluN2B-NMDA receptors via Src homology-2 domain-containing protein tyrosine phosphatase-2 (SHP2) phosphorylation in rats following spinal nerve ligation (SNL). We first demonstrated that spinal BDNF participates in the development of long-lasting hyperexcitability of dorsal horn WDR neurons (i.e. central sensitization) as well as pain allodynia in both intact and SNL rats. Second, we revealed that BDNF induces spinal LTP at C-fiber synapses via functional up-regulation of GluN2B-NMDA receptors in the spinal dorsal horn, and this BDNF-mediated LTP-like state is responsible for the occlusion of spinal LTP elicited by subsequent high-frequency electrical stimulation (HFS) of the sciatic nerve in SNL rats. Finally, we validated that BDNF-evoked SHP2 phosphorylation is required for subsequent GluN2B-NMDA receptors up-regulation and spinal LTP induction, and also for pain allodynia development. Blockade of SHP2 phosphorylation in the spinal dorsal horn using a potent SHP2 protein tyrosine phosphatase inhibitor NSC-87877, or knockdown of spinal SHP2 by intrathecal delivery of SHP2 siRNA, not only prevents BDNF-mediated GluN2B-NMDA receptors activation as well as spinal LTP induction and pain allodynia elicitation in intact rats, but also reduces the SNL-evoked GluN2B-NMDA receptors up-regulation and spinal LTP occlusion, and ultimately alleviates pain allodynia in neuropathic rats. Taken together, these results suggest that the BDNF/SHP2/GluN2B-NMDA signaling cascade plays a vital role in the development of central sensitization and neuropathic pain after peripheral nerve injury.
Collapse
Affiliation(s)
- Xu Ding
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Jie Cai
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Song Li
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Xiao-Dan Liu
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - You Wan
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China.
| | - Guo-Gang Xing
- Neuroscience Research Institute, Peking University, Beijing 100191, P.R. China; Department of Neurobiology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing 100191, P.R. China; Key Laboratory for Neuroscience, Ministry of Education and Ministry of Health, Beijing 100191, P.R. China.
| |
Collapse
|
17
|
Tao W, Chen Q, Zhou W, Wang Y, Wang L, Zhang Z. Persistent inflammation-induced up-regulation of brain-derived neurotrophic factor (BDNF) promotes synaptic delivery of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor GluA1 subunits in descending pain modulatory circuits. J Biol Chem 2014; 289:22196-204. [PMID: 24966334 PMCID: PMC4139232 DOI: 10.1074/jbc.m114.580381] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2014] [Revised: 06/16/2014] [Indexed: 11/06/2022] Open
Abstract
The enhanced AMPA receptor phosphorylation at GluA1 serine 831 sites in the central pain-modulating system plays a pivotal role in descending pain facilitation after inflammation, but the underlying mechanisms remain unclear. We show here that, in the rat brain stem, in the nucleus raphe magnus, which is a critical relay in the descending pain-modulating system of the brain, persistent inflammatory pain induced by complete Freund adjuvant (CFA) can enhance AMPA receptor-mediated excitatory postsynaptic currents and the GluA2-lacking AMPA receptor-mediated rectification index. Western blot analysis showed an increase in GluA1 phosphorylation at Ser-831 but not at Ser-845. This was accompanied by an increase in distribution of the synaptic GluA1 subunit. In parallel, the level of histone H3 acetylation at bdnf gene promoter regions was reduced significantly 3 days after CFA injection, as indicated by ChIP assays. This was correlated with an increase in BDNF mRNA levels and BDNF protein levels. Sequestering endogenous extracellular BDNF with TrkB-IgG in the nucleus raphe magnus decreased AMPA receptor-mediated synaptic transmission and GluA1 phosphorylation at Ser-831 3 days after CFA injection. Under the same conditions, blockade of TrkB receptor functions, phospholipase C, or PKC impaired GluA1 phosphorylation at Ser-831 and decreased excitatory postsynaptic currents mediated by GluA2-lacking AMPA receptors. Taken together, these results suggest that epigenetic up-regulation of BDNF by peripheral inflammation induces GluR1 phosphorylation at Ser-831 sites through activation of the phospholipase C-PKC signaling cascade, leading to the trafficking of GluA1 to pain-modulating neuronal synapses.
Collapse
Affiliation(s)
- Wenjuan Tao
- From the Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China and the Department of Pharmacy, Anhui College of Traditional Chinese Medicine, Wuhu, Anhui 241000, China
| | - Quan Chen
- From the Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Wenjie Zhou
- From the Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Yunping Wang
- From the Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Lu Wang
- From the Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China and
| | - Zhi Zhang
- From the Key Laboratory of Brain Functions and Diseases, School of Life Science, University of Science and Technology of China, Hefei, Anhui 230027, China and
| |
Collapse
|
18
|
Zilkha N, Feigin E, Barnea-Ygael N, Zangen A. Induction of depressive-like effects by subchronic exposure to cocaine or heroin in laboratory rats. J Neurochem 2014; 130:575-82. [PMID: 24798661 DOI: 10.1111/jnc.12753] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Revised: 04/01/2014] [Accepted: 04/28/2014] [Indexed: 02/01/2023]
Abstract
The effect of psychoactive drugs on depression has usually been studied in cases of prolonged drug addiction and/or withdrawal, without much emphasis on the effects of subchronic or recreational drug use. To address this issue, we exposed laboratory rats to subchronic regimens of heroin or cocaine and tested long-term effects on (i) depressive-like behaviors, (ii) brain-derived neurotrophic factor (BDNF) levels in reward-related brain regions, and (iii) depressive-like behavior following an additional chronic mild stress procedure. The long-term effect of subchronic cocaine exposure was a general reduction in locomotor activity whereas heroin exposure induced a more specific increase in immobility during the forced swim test. Both cocaine and heroin exposure induced alterations in BDNF levels that are similar to those observed in several animal models of depression. Finally, both cocaine and heroin exposure significantly enhanced the anhedonic effect of chronic mild stress. These results suggest that subchronic drug exposure induces depressive-like behavior which is accompanied by modifications in BDNF expression and increases the vulnerability to develop depressive-like behavior following chronic stress. Implications for recreational and small-scale drug users are discussed. In the present study, we examined the long-term effects of limited subchronic drug exposure on depressive-like symptoms. Our results demonstrate that short-term, subchronic administration of either cocaine or heroin promotes some depressive-like behaviors, while inducing alterations in BDNF protein levels similar to alterations observed in several animal models of depression. In addition, subchronic cocaine or heroin enhanced the anhedonic effect of chronic stress.
Collapse
Affiliation(s)
- Noga Zilkha
- Department of Neurobiology, Weizmann institute of Science, Rehovot, Israel; Department of Life Sciences, Ben-Gurion University, Beer-Sheva, Israel
| | | | | | | |
Collapse
|
19
|
Gao XP, Liu Q, Nair B, Wong-Riley MTT. Reduced levels of brain-derived neurotrophic factor contribute to synaptic imbalance during the critical period of respiratory development in rats. Eur J Neurosci 2014; 40:2183-95. [PMID: 24666389 DOI: 10.1111/ejn.12568] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2013] [Revised: 02/15/2014] [Accepted: 02/18/2014] [Indexed: 02/06/2023]
Abstract
Previously, our electrophysiological studies revealed a transient imbalance between suppressed excitation and enhanced inhibition in hypoglossal motoneurons of rats on postnatal days (P) 12-13, a critical period when abrupt neurochemical, metabolic, ventilatory and physiological changes occur in the respiratory system. The mechanism underlying the imbalance is poorly understood. We hypothesised that the imbalance was contributed by a reduced expression of brain-derived neurotrophic factor (BDNF), which normally enhances excitation and suppresses inhibition. We also hypothesised that exogenous BDNF would partially reverse this synaptic imbalance. Immunohistochemistry/single-neuron optical densitometry, real-time quantitative PCR (RT-qPCR) and whole-cell patch-clamp recordings were done on hypoglossal motoneurons in brainstem slices of rats during the first three postnatal weeks. Our results indicated that: (1) the levels of BDNF and its high-affinity tyrosine receptor kinase B (TrkB) receptor mRNAs and proteins were relatively high during the first 1-1.5 postnatal weeks, but dropped precipitously at P12-13 before rising again afterwards; (2) exogenous BDNF significantly increased the normally lowered frequency of spontaneous excitatory postsynaptic currents but decreased the normally heightened amplitude and frequency of spontaneous inhibitory postsynaptic currents (sIPSCs) during the critical period; (3) exogenous BDNF also decreased the normally heightened frequency of miniature IPSCs at P12-13; and (4) the effect of exogenous BDNF was partially blocked by K252a, a TrkB receptor antagonist. Thus, our results are consistent with our hypothesis that BDNF and TrkB play an important role in the synaptic imbalance during the critical period. This may have significant implications for the mechanism underlying sudden infant death syndrome.
Collapse
Affiliation(s)
- Xiu-Ping Gao
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA
| | | | | | | |
Collapse
|
20
|
Adaptations in AMPA receptor transmission in the nucleus accumbens contributing to incubation of cocaine craving. Neuropharmacology 2013; 76 Pt B:287-300. [PMID: 23727437 DOI: 10.1016/j.neuropharm.2013.04.061] [Citation(s) in RCA: 101] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2013] [Revised: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 12/23/2022]
Abstract
Cue-induced cocaine craving in rodents intensifies or "incubates" during the first months of withdrawal from long access cocaine self-administration. This incubation phenomenon is relevant to human users who achieve abstinence but exhibit persistent vulnerability to cue-induced relapse. It is well established that incubation of cocaine craving involves complex neuronal circuits. Here we will focus on neuroadaptations in the nucleus accumbens (NAc), a region of convergence for pathways that control cocaine seeking. A key adaptation is a delayed (~3-4 weeks) accumulation of Ca(2+)-permeable AMPAR receptors (CP-AMPARs) in synapses on medium spiny neurons (MSN) of the NAc. These CP-AMPARs mediate the expression of incubation after prolonged withdrawal, although different mechanisms must be responsible during the first weeks of withdrawal, prior to CP-AMPAR accumulation. The cascade of events leading to CP-AMPAR accumulation is still unclear. However, several candidate mechanisms have been identified. First, mGluR1 has been shown to negatively regulate CP-AMPAR levels in NAc synapses, and it is possible that a withdrawal-dependent decrease in this effect may help explain CP-AMPAR accumulation during incubation. Second, an increase in phosphorylation of GluA1 subunits (at the protein kinase A site) within extrasynaptic homomeric GluA1 receptors (CP-AMPARs) may promote their synaptic insertion and oppose their removal. Finally, elevation of brain-derived neurotrophic factor (BDNF) levels in the NAc may contribute to maintenance of incubation after months of withdrawal, although incubation-related increases in BDNF accumulation do not account for CP-AMPAR accumulation. Receptors and pathways that negatively regulate incubation, such as mGluR1, are promising targets for the development of therapeutic strategies to help recovering addicts maintain abstinence. This article is part of a Special Issue entitled 'NIDA 40th Anniversary Issue'.
Collapse
|
21
|
Tsai YW, Yang YR, Sun SH, Liang KC, Wang RY. Post ischemia intermittent hypoxia induces hippocampal neurogenesis and synaptic alterations and alleviates long-term memory impairment. J Cereb Blood Flow Metab 2013; 33:764-73. [PMID: 23443175 PMCID: PMC3652689 DOI: 10.1038/jcbfm.2013.15] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Adult hippocampal neurogenesis is important for learning and memory, especially after a brain injury such as ischemia. Newborn hippocampal neurons contribute to memory performance by establishing functional synapses with target cells. This study demonstrated that the maturation of hippocampal neurons is enhanced by postischemia intermittent hypoxia (IH) intervention. The effects of IH intervention in cultured neurons were mediated by increased synaptogenesis, which was primarily regulated by brain-derived neurotrophic factor (BDNF)/PI3K/AKT. Hippocampal neo-neurons expressed BDNF and exhibited enhanced presynaptic function as indicated by increases in the pSynapsin expression, synaptophysin intensity, and postsynapse density following IH intervention after ischemia. Postischemia IH-induced hippocampal neo-neurons were affected by presynaptic activity, which reflected the dynamic plasticity of the glutamatergic receptors. These alterations were also associated with the alleviation of ischemia-induced long-term memory impairment. Our results suggest that postischemia IH intervention rescued ischemia-induced spatial learning and memory impairment by inducing hippocampal neurogenesis and functional synaptogenesis via BDNF expression.
Collapse
Affiliation(s)
- Yi-Wei Tsai
- Department and Institute of Physical Therapy and Assistive Technology, National Yang-Ming University, Taipei, Taiwan
| | | | | | | | | |
Collapse
|
22
|
Leal G, Comprido D, Duarte CB. BDNF-induced local protein synthesis and synaptic plasticity. Neuropharmacology 2013; 76 Pt C:639-56. [PMID: 23602987 DOI: 10.1016/j.neuropharm.2013.04.005] [Citation(s) in RCA: 453] [Impact Index Per Article: 41.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2013] [Revised: 03/25/2013] [Accepted: 04/03/2013] [Indexed: 12/16/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an important regulator of synaptic transmission and long-term potentiation (LTP) in the hippocampus and in other brain regions, playing a role in the formation of certain forms of memory. The effects of BDNF in LTP are mediated by TrkB (tropomyosin-related kinase B) receptors, which are known to be coupled to the activation of the Ras/ERK, phosphatidylinositol 3-kinase/Akt and phospholipase C-γ (PLC-γ) pathways. The role of BDNF in LTP is best studied in the hippocampus, where the neurotrophin acts at pre- and post-synaptic levels. Recent studies have shown that BDNF regulates the transport of mRNAs along dendrites and their translation at the synapse, by modulating the initiation and elongation phases of protein synthesis, and by acting on specific miRNAs. Furthermore, the effect of BDNF on transcription regulation may further contribute to long-term changes in the synaptic proteome. In this review we discuss the recent progress in understanding the mechanisms contributing to the short- and long-term regulation of the synaptic proteome by BDNF, and the role in synaptic plasticity, which is likely to influence learning and memory formation. This article is part of the Special Issue entitled 'BDNF Regulation of Synaptic Structure, Function, and Plasticity'.
Collapse
Affiliation(s)
- Graciano Leal
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, 3004-517 Coimbra, Portugal; Department of Life Sciences, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | |
Collapse
|
23
|
Liu Q, Wong-Riley MTT. Postnatal development of brain-derived neurotrophic factor (BDNF) and tyrosine protein kinase B (TrkB) receptor immunoreactivity in multiple brain stem respiratory-related nuclei of the rat. J Comp Neurol 2013; 521:109-29. [PMID: 22678720 DOI: 10.1002/cne.23164] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2012] [Revised: 04/23/2012] [Accepted: 06/01/2012] [Indexed: 11/11/2022]
Abstract
Previously, we found a transient imbalance between suppressed excitation and enhanced inhibition in the respiratory network of the rat around postnatal days (P) 12-13, a critical period when the hypoxic ventilatory response is at its weakest. The mechanism underlying the imbalance is poorly understood. Brain-derived neurotrophic factor (BDNF) and its tyrosine protein kinase B (TrkB) receptors are known to potentiate glutamatergic and attenuate gamma-aminobutyric acid (GABA)ergic neurotransmission, and BDNF is essential for respiratory development. We hypothesized that the excitation-inhibition imbalance during the critical period stemmed from a reduced expression of BDNF and TrkB at that time within respiratory-related nuclei of the brain stem. An in-depth, semiquantitative immunohistochemical study was undertaken in seven respiratory-related brain stem nuclei and one nonrespiratory nucleus in P0-21 rats. The results indicate that the expressions of BDNF and TrkB: 1) in the pre-Bötzinger complex, nucleus ambiguus, commissural and ventrolateral subnuclei of solitary tract nucleus, and retrotrapezoid nucleus/parafacial respiratory group were significantly reduced at P12, but returned to P11 levels by P14; 2) in the lateral paragigantocellular nucleus and parapyramidal region were increased from P0 to P7, but were strikingly reduced at P10 and plateaued thereafter; and 3) in the nonrespiratory cuneate nucleus showed a gentle plateau throughout the first 3 postnatal weeks, with only a slight decline of BDNF expression after P11. Thus, the significant downregulation of both BDNF and TrkB in respiratory-related nuclei during the critical period may form the basis of, or at least contribute to, the inhibitory-excitatory imbalance within the respiratory network during this time.
Collapse
Affiliation(s)
- Qiuli Liu
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin 53226, USA
| | | |
Collapse
|
24
|
Jourdi H, Kabbaj M. Acute BDNF treatment upregulates GluR1-SAP97 and GluR2-GRIP1 interactions: implications for sustained AMPA receptor expression. PLoS One 2013; 8:e57124. [PMID: 23460828 PMCID: PMC3584105 DOI: 10.1371/journal.pone.0057124] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2012] [Accepted: 01/17/2013] [Indexed: 12/23/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays several prominent roles in synaptic plasticity and in learning and memory formation. Reduced BDNF levels and altered BDNF signaling have been reported in several brain diseases and behavioral disorders, which also exhibit reduced levels of AMPAr subunits. BDNF treatment acutely regulates AMPA receptor expression and function, including synaptic AMPAr subunit trafficking, and implicates several well defined signaling molecules that are required to elicit long term potentiation and depression (LTP and LTD, respectively). Long term encoding of synaptic events, as in long term memory formation, requires AMPAr stabilization and maintenance. However, factors regulating AMPAr stabilization in neuronal cell membranes and synaptic sites are not well characterized. In this study, we examine the effects of acute BDNF treatment on levels of AMPAr-associated scaffolding proteins and on AMPAr subunit-scaffolding protein interactions. We also examine the effects of BDNF-dependent enhanced interactions between AMPAr subunits with their specific scaffolding proteins on the accumulation of both types of proteins. Our results show that acute BDNF treatment upregulates the interactions between AMPAr subunits (GluR1 and GluR2) with their scaffold proteins SAP97 and GRIP1, respectively, leading to prolonged increased accumulation of both categories of proteins, albeit with distinct mechanisms for GluR1 and GluR2. Our findings reveal a new role for BDNF in the long term maintenance of AMPA receptor subunits and associated scaffolding proteins at synapses and further support the role of BDNF as a key regulator of synaptic consolidation. These results have potential implications for recent findings implicating BDNF and AMPAr subunits in various brain diseases and behavioral disorders.
Collapse
Affiliation(s)
- Hussam Jourdi
- Department of Biomedical Sciences, College of Medicine, Florida State University, Tallahassee, Florida, United States of America.
| | | |
Collapse
|
25
|
Vermehren-Schmaedick A, Jenkins VK, Hsieh HY, Brown AL, Page MP, Brooks VL, Balkowiec A. Upregulation of brain-derived neurotrophic factor expression in nodose ganglia and the lower brainstem of hypertensive rats. J Neurosci Res 2012; 91:220-9. [PMID: 23172808 DOI: 10.1002/jnr.23158] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/12/2012] [Accepted: 09/20/2012] [Indexed: 01/19/2023]
Abstract
Hypertension leads to structural and functional changes at baroreceptor synapses in the medial nucleus tractus solitarius (NTS), but the underlying molecular mechanisms remain unknown. Our previous studies show that brain-derived neurotrophic factor (BDNF) is abundantly expressed by rat nodose ganglion (NG) neurons, including baroreceptor afferents and their central terminals in the medial NTS. We hypothesized that hypertension leads to upregulation of BDNF expression in NG neurons. To test this hypothesis, we used two mechanistically distinct models of hypertension, the spontaneously hypertensive rat (SHR) and the deoxycorticosterone acetate (DOCA)-salt rat. Young adult SHRs, whose blood pressure was significantly elevated compared with age-matched Wistar-Kyoto (WKY) control rats, exhibited dramatic upregulation of BDNF mRNA and protein in the NG. BDNF transcripts from exon 4, known to be regulated by activity, and exon 9 (protein-coding region) showed the largest increases. Electrical stimulation of dispersed NG neurons with patterns that mimic baroreceptor activity during blood pressure elevations led to increases in BDNF mRNA that were also mediated through promoter 4. The increase in BDNF content of the NG in vivo was associated with a significant increase in the percentage of BDNF-immunoreactive NG neurons. Moreover, upregulation of BDNF in cell bodies of NG neurons was accompanied by a significant increase in BDNF in the NTS region, the primary central target of NG afferents. A dramatic increase in BDNF in the NG was also detected in DOCA-salt hypertensive rats. Together, our study identifies BDNF as a candidate molecular mediator of activity-dependent changes at baroafferent synapses during hypertension.
Collapse
Affiliation(s)
- Anke Vermehren-Schmaedick
- Department of Integrative Biosciences, Oregon Health & Science University, Portland, Oregon 97239, USA
| | | | | | | | | | | | | |
Collapse
|
26
|
ELMARIAH SARINAB, HUGHES ETHANG, OH EUNJOO, BALICE-GORDON RITAJ. Neurotrophin signaling among neurons and glia during formation of tripartite synapses. ACTA ACUST UNITED AC 2012; 1:1-11. [PMID: 16528404 PMCID: PMC1397704 DOI: 10.1017/s1740925x05000189] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Synapse formation in the CNS is a complex process that involves the dynamic interplay of numerous signals exchanged between pre- and postsynaptic neurons as well as perisynaptic glia. Members of the neurotrophin family, which are widely expressed in the developing and mature CNS and are well-known for their roles in promoting neuronal survival and differentiation, have emerged as key synaptic modulators. However, the mechanisms by which neurotrophins modulate synapse formation and function are poorly understood. Here, we summarize our work on the role of neurotrophins in synaptogenesis in the CNS, in particular the role of these signaling molecules and their receptors, the Trks, in the development of excitatory and inhibitory hippocampal synapses. We discuss our results that demonstrate that postsynaptic TrkB signaling plays an important role in modulating the formation and maintenance of NMDA and GABAA receptor clusters at central synapses, and suggest that neurotrophin signaling coordinately modulates these receptors as part of mechanism that promotes the balance between excitation and inhibition in developing circuits. We also discuss our results that demonstrate that astrocytes promote the formation of GABAergic synapses in vitro by differentially regulating the development of inhibitory presynaptic terminals and postsynaptic GABAA receptor clusters, and suggest that glial modulation of inhibitory synaptogenesis is mediated by neurotrophin-dependent and -independent signaling. Together, these findings extend our understanding of how neuron-glia communication modulates synapse formation, maintenance and function, and set the stage for defining the cellular and molecular mechanisms by which neurotrophins and other cell-cell signals direct synaptogenesis in the developing brain.
Collapse
Affiliation(s)
| | | | | | - RITA J. BALICE-GORDON
- Correspondence should be addressed to: Rita Balice-Gordon Ph.D., Department of Neuroscience, University of Pennsylvania School of Medicine, 215 Stemmler Hall, Philadelphia, PA 19104-6074, USA, phone: +1 215 8981037, fax: +1 215 5739122,
| |
Collapse
|
27
|
Brain-derived neurotrophic factor activation of CaM-kinase kinase via transient receptor potential canonical channels induces the translation and synaptic incorporation of GluA1-containing calcium-permeable AMPA receptors. J Neurosci 2012; 32:8127-37. [PMID: 22699894 DOI: 10.1523/jneurosci.6034-11.2012] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Glutamatergic synapses in early postnatal development transiently express calcium-permeable AMPA receptors (CP-AMPARs). Although these GluA2-lacking receptors are essential and are elevated in response to brain-derived neurotrophic factor (BDNF), little is known regarding molecular mechanisms that govern their expression and synaptic insertion. Here we show that BDNF-induced GluA1 translation in rat primary hippocampal neurons requires the activation of mammalian target of rapamycin (mTOR) via calcium calmodulin-dependent protein kinase kinase (CaMKK). Specifically, BDNF-mediated phosphorylation of threonine 308 (T308) in AKT, a known substrate of CaMKK and an upstream activator of mTOR-dependent translation, was prevented by (1) pharmacological inhibition of CaMKK with STO-609, (2) overexpression of a dominant-negative CaMKK, or (3) short hairpin-mediated knockdown of CaMKK. GluA1 surface expression induced by BDNF, as assessed by immunocytochemistry using an extracellular N-terminal GluA1 antibody or by surface biotinylation, was impaired following knockdown of CaMKK or treatment with STO-609. Activation of CaMKK by BDNF requires transient receptor potential canonical (TRPC) channels as SKF-96365, but not the NMDA receptor antagonist d-APV, prevented BDNF-induced GluA1 surface expression as well as phosphorylation of CaMKI, AKT(T308), and mTOR. Using siRNA we confirmed the involvement of TRPC5 and TRPC6 subunits in BDNF-induced AKT(T308) phosphorylation. The BDNF-induced increase in mEPSC was blocked by IEM-1460, a selected antagonist of CP-AMPARs, as well as by the specific repression of acute GluA1 translation via siRNA to GluA1 but not GluA2. Together these data support the conclusion that newly synthesized GluA1 subunits, induced by BDNF, are readily incorporated into synapses where they enhance the expression of CP-AMPARs and synaptic strength.
Collapse
|
28
|
Socodato R, Santiago FN, Portugal CC, Domingues AF, Santiago AR, Relvas JB, Ambrósio AF, Paes-de-Carvalho R. Calcium-permeable α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptors trigger neuronal nitric-oxide synthase activation to promote nerve cell death in an Src kinase-dependent fashion. J Biol Chem 2012; 287:38680-94. [PMID: 22992730 DOI: 10.1074/jbc.m112.353961] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the retina information decoding is dependent on excitatory neurotransmission and is critically modulated by AMPA glutamate receptors. The Src-tyrosine kinase has been implicated in modulating neurotransmission in CNS. Thus, our main goal was to correlate AMPA-mediated excitatory neurotransmission with the modulation of Src activity in retinal neurons. Cultured retinal cells were used to access the effects of AMPA stimulation on nitric oxide (NO) production and Src phosphorylation. 4-Amino-5-methylamino-2',7'-difluorofluorescein diacetate fluorescence mainly determined NO production, and immunocytochemistry and Western blotting evaluated Src activation. AMPA receptors activation rapidly up-regulated Src phosphorylation at tyrosine 416 (stimulatory site) and down-regulated phosphotyrosine 527 (inhibitory site) in retinal cells, an effect mainly mediated by calcium-permeable AMPA receptors. Interestingly, experiments confirmed that neuronal NOS was activated in response to calcium-permeable AMPA receptor stimulation. Moreover, data suggest NO pathway as a key regulatory signaling in AMPA-induced Src activation in neurons but not in glial cells. The NO donor SNAP (S-nitroso-N-acetyl-DL-penicillamine) and a soluble guanylyl cyclase agonist (YC-1) mimicked AMPA effect in Src Tyr-416 phosphorylation, reinforcing that Src activation is indeed modulated by the NO pathway. Gain and loss-of-function data demonstrated that ERK is a downstream target of AMPA-induced Src activation and NO signaling. Furthermore, AMPA stimulated NO production in organotypic retinal cultures and increased Src activity in the in vivo retina. Additionally, AMPA-induced apoptotic retinal cell death was regulated by both NOS and Src activity. Because Src activity is pivotal in several CNS regions, the data presented herein highlight that Src modulation is a critical step in excitatory retinal cell death.
Collapse
Affiliation(s)
- Renato Socodato
- Program of Neurosciences and Department of Neurobiology, Institute of Biology, Fluminense Federal University, Niterói, 24020-971, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Gulino R, Gulisano M. Involvement of brain-derived neurotrophic factor and sonic hedgehog in the spinal cord plasticity after neurotoxic partial removal of lumbar motoneurons. Neurosci Res 2012; 73:238-47. [PMID: 22579680 DOI: 10.1016/j.neures.2012.04.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2011] [Revised: 04/24/2012] [Accepted: 04/26/2012] [Indexed: 01/19/2023]
Abstract
Adult mammals could spontaneously achieve a partial sensory-motor recovery after spinal cord injury, by mechanisms including synaptic plasticity. We previously showed that this recovery is associated to the expression of synapsin-I, and that sonic hedgehog and Notch-1 could be also involved in plasticity. The role of brain-derived neurotrophic factor and glutamate receptors in regulating synaptic efficacy has been explored in the last decade but, although these mechanisms are now well-defined in the brain, the molecular mechanisms underlying the so called "spinal learning" are still less clear. Here, we measured the expression levels of choline acetyltransferase, synapsin-I, sonic hedgehog, Notch-1, glutamate receptor subunits (GluR1, GluR2, GluR4, NMDAR1) and brain-derived neurotrophic factor, in a motoneuron-depleted mouse spinal lesion model obtained by intramuscular injection of cholera toxin-B saporin. The lesion caused the down-regulation of the majority of analysed proteins. Moreover, we found that in lesioned but not in control spinal tissue, synapsin-I expression is associated to that of both brain-derived neurotrophic factor and sonic hedgehog, whereas GluR2 expression is linked to that of Shh. These results suggest that brain-derived neurotrophic factor and sonic hedgehog could collaborate in modulating synaptic plasticity after the removal of motoneurons, by a mechanism involving both pre- and post-synaptic processes. Interestingly, the involvement of sonic hedgehog showed here is novel, and offers new routes to address spinal cord plasticity and repair.
Collapse
Affiliation(s)
- Rosario Gulino
- Department of Bio-Medical Sciences, Section of Physiology, University of Catania, Viale Andrea Doria 6, I95125 Catania, Italy.
| | | |
Collapse
|
30
|
The BDNF Val66Met polymorphism impairs synaptic transmission and plasticity in the infralimbic medial prefrontal cortex. J Neurosci 2012; 32:2410-21. [PMID: 22396415 DOI: 10.1523/jneurosci.5205-11.2012] [Citation(s) in RCA: 124] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The brain-derived neurotrophic factor (BDNF) Val66Met polymorphism is a common human single nucleotide polymorphism (SNP) that affects the regulated release of BDNF, and has been implicated in affective disorders and cognitive dysfunction. A decreased activation of the infralimbic medial prefrontal cortex (IL-mPFC), a brain region critical for the regulation of affective behaviors, has been described in BDNF(Met) carriers. However, it is unclear whether and how the Val66Met polymorphism affects the IL-mPFC synapses. Here, we report that spike timing-dependent plasticity (STDP) was absent in the IL-mPFC pyramidal neurons from BDNF(Met/Met) mice, a mouse that recapitulates the specific phenotypic properties of the human BDNF Val66Met polymorphism. Also, we observed a decrease in NMDA and GABA receptor-mediated synaptic transmission in the pyramidal neurons of BDNF(Met/Met) mice. While BDNF enhanced non-NMDA receptor transmission and depressed GABA receptor transmission in the wild-type mice, both effects were absent in BDNF(Met/Met) mice after BDNF treatment. Indeed, exogenous BDNF reversed the deficits in STDP and NMDA receptor transmission in BDNF(Met/Met) neurons. BDNF-mediated selective reversal of the deficit in plasticity and NMDA receptor transmission, but its lack of effect on GABA and non-NMDA receptor transmission in BDNF(Met/Met) mice, suggests separate mechanisms of Val66Met polymorphism upon synaptic transmission. The effect of the Val66Met polymorphism on synaptic transmission and plasticity in the IL-mPFC represents a mechanism to account for this impact of SNP on affective disorders and cognitive dysfunction.
Collapse
|
31
|
Huang YWA, Ruiz CR, Eyler ECH, Lin K, Meffert MK. Dual regulation of miRNA biogenesis generates target specificity in neurotrophin-induced protein synthesis. Cell 2012; 148:933-46. [PMID: 22385959 DOI: 10.1016/j.cell.2012.01.036] [Citation(s) in RCA: 100] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2010] [Revised: 09/08/2011] [Accepted: 01/06/2012] [Indexed: 11/18/2022]
Abstract
Control of translation is a fundamental source of regulation in gene expression. The induction of protein synthesis by brain-derived neurotrophic factor (BDNF) critically contributes to enduring modifications of synaptic function, but how BDNF selectively affects only a minority of expressed mRNAs is poorly understood. We report that BDNF rapidly elevates Dicer, increasing mature miRNA levels and inducing RNA processing bodies in neurons. BDNF also rapidly induces Lin28, causing selective loss of Lin28-regulated miRNAs and a corresponding upregulation in translation of their target mRNAs. Binding sites for Lin28-regulated miRNAs are necessary and sufficient to confer BDNF responsiveness to a transcript. Lin28 deficiency, or expression of a Lin28-resistant Let-7 precursor miRNA, inhibits BDNF translation specificity and BDNF-dependent dendrite arborization. Our data establish that specificity in BDNF-regulated translation depends upon a two-part posttranscriptional control of miRNA biogenesis that generally enhances mRNA repression in association with GW182 while selectively derepressing and increasing translation of specific mRNAs.
Collapse
Affiliation(s)
- Yu-Wen A Huang
- Solomon H. Snyder Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
32
|
Robinet C, Pellerin L. Brain-derived neurotrophic factor enhances the hippocampal expression of key postsynaptic proteins in vivo including the monocarboxylate transporter MCT2. Neuroscience 2011; 192:155-63. [DOI: 10.1016/j.neuroscience.2011.06.059] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Revised: 06/19/2011] [Accepted: 06/21/2011] [Indexed: 10/18/2022]
|
33
|
Li X, Wolf ME. Brain-derived neurotrophic factor rapidly increases AMPA receptor surface expression in rat nucleus accumbens. Eur J Neurosci 2011; 34:190-8. [PMID: 21692887 DOI: 10.1111/j.1460-9568.2011.07754.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
In the rodent nucleus accumbens (NAc), cocaine elevates levels of brain-derived neurotrophic factor (BDNF). Conversely, BDNF can augment cocaine-related behavioral responses. The latter could reflect enhancement of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) transmission, because AMPARs in the NAc mediate some cocaine-induced behaviors. Furthermore, in vitro studies in other cell types show that BDNF can promote AMPAR synaptic delivery. In this study, we investigated whether BDNF similarly promotes AMPAR trafficking in the adult rat NAc. After unilateral intracranial injection of BDNF into NAc core or shell, rats were killed at post-injection times ranging from 30 min to 3 days. NAc core or shell tissue from both injected and non-injected hemispheres was analysed by Western blotting. A protein cross-linking assay was used to measure AMPAR surface expression. Assessment of tropomyosin receptor kinase B signaling demonstrated that injected BDNF was biologically active. BDNF injection into NAc core, but not NAc shell, led to a protein synthesis- and extracellular signal-regulated kinase-dependent increase in cell surface GluA1 and a trend towards increased total GluA1. This was detected 30 min post-injection but not at longer time-points. GluA2 and GluA3 were unaffected, suggesting an effect of BDNF on homomeric GluA1 Ca(2+) -permeable AMPARs. These results demonstrate that exogenous BDNF rapidly increases AMPAR surface expression in the rat NAc core, raising the possibility of a relationship between increases in endogenous BDNF levels and alterations in AMPAR transmission observed in the NAc of cocaine-experienced rats.
Collapse
Affiliation(s)
- Xuan Li
- Department of Neuroscience, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064-3095, USA
| | | |
Collapse
|
34
|
Neuregulin-1 signals from the periphery regulate AMPA receptor sensitivity and expression in GABAergic interneurons in developing neocortex. J Neurosci 2011; 31:5699-709. [PMID: 21490211 DOI: 10.1523/jneurosci.3477-10.2011] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neuregulin-1 (NRG1) signaling is thought to contribute to both neuronal development and schizophrenia neuropathology. Here, we describe the developmental effects of excessive peripheral NRG1 signals on synaptic activity and AMPA receptor expression of GABAergic interneurons in postnatal rodent neocortex. A core peptide common to all NRG1 variants (eNRG1) was subcutaneously administered to mouse pups. Injected eNRG1 penetrated the blood-brain barrier and activated ErbB4 NRG1 receptors in the neocortex, in which ErbB4 mRNA is predominantly expressed by parvalbumin-positive GABAergic interneurons. We prepared neocortical slices from juvenile mice that were receiving eNRG1 subchronically and recorded inhibitory synaptic activity from layer V pyramidal neurons. Postnatal eNRG1 treatment significantly enhanced polysynaptic IPSCs, although monosynaptic IPSCs were not affected. Examination of excitatory inputs to parvalbumin-containing GABAergic interneurons revealed that eNRG1 treatment significantly increased AMPA-triggered inward currents and the amplitudes and frequencies of miniature EPSCs (mEPSCs). Similar effects on mEPSCs were observed in mice treated with a soluble, full-length form of NRG1 type I. Consistent with the electrophysiologic data, expression of the AMPA receptor GluA1 (i.e., GluR1, GluRA) was upregulated in the postsynaptic density/cytoskeletal fraction prepared from eNRG1-treated mouse neocortices. Cortical GABAergic neurons cultured with eNRG1 exhibited a significant increase in surface GluA1 immunoreactivity at putative synaptic sites on their dendrites. These results indicate that NRG1 circulating in the periphery influences postnatal development of synaptic AMPA receptor expression in cortical GABAergic interneurons and may play a role in conditions characterized by GABA-associated neuropathologic processes.
Collapse
|
35
|
D'Antoni S, Berretta A, Seminara G, Longone P, Giuffrida-Stella AM, Battaglia G, Sortino MA, Nicoletti F, Catania MV. A prolonged pharmacological blockade of type-5 metabotropic glutamate receptors protects cultured spinal cord motor neurons against excitotoxic death. Neurobiol Dis 2011; 42:252-64. [DOI: 10.1016/j.nbd.2011.01.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2010] [Revised: 12/24/2010] [Accepted: 01/03/2011] [Indexed: 01/23/2023] Open
|
36
|
Tanabe Y, Hirano A, Iwasato T, Itohara S, Araki K, Yamaguchi T, Ichikawa T, Kumanishi T, Aizawa Y, Takahashi H, Kakita A, Nawa H. Molecular characterization and gene disruption of a novel zinc-finger protein, HIT-4, expressed in rodent brain. J Neurochem 2009; 112:1035-44. [PMID: 19968752 DOI: 10.1111/j.1471-4159.2009.06525.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
To identify a novel regulatory factor involved in brain development or synaptic plasticity, we applied the differential display PCR method to mRNA samples from NMDA-stimulated and un-stimulated neocortical cultures. Among 64 cDNA clones isolated, eight clones were novel genes and one of them encodes a novel zinc-finger protein, HIT-4, which is 317 amino acid residues (36-38 kDa) in length and contains seven C2H2 zinc-finger motifs. Rat HIT-4 cDNA exhibits strong homology to human ZNF597 (57% amino acid identity and 72% homology) and identity to rat ZNF597 at the carboxyl region. Furthermore, genomic alignment of HIT-4 cDNA indicates that the alternative use of distinct promoters and exons produces HIT-4 and ZNF597 mRNAs. Northern blotting revealed that HIT-4 mRNA (approximately 6 kb) is expressed in various tissues such as the lung, heart, and liver, but enriched in the brain, while ZNF597 mRNA (approximately 1.5 kb) is found only in the testis. To evaluate biological roles of HIT-4/ZNF597, targeted mutagenesis of this gene was performed in mice. Homozygous (-/-) mutation was embryonic lethal, ceasing embryonic organization before cardiogenesis at embryonic day 7.5. Heterozygous (+/-) mice were able to survive but showing cell degeneration and vacuolization of the striatum, cingulate cortex, and their surrounding white matter. These results reveal novel biological and pathological roles of HIT-4 in brain development and/or maintenance.
Collapse
Affiliation(s)
- Yasutaka Tanabe
- Department of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Sun W, Salvi RJ. Brain derived neurotrophic factor and neurotrophic factor 3 modulate neurotransmitter receptor expressions on developing spiral ganglion neurons. Neuroscience 2009; 164:1854-66. [PMID: 19778585 DOI: 10.1016/j.neuroscience.2009.09.037] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Revised: 09/12/2009] [Accepted: 09/14/2009] [Indexed: 12/25/2022]
Abstract
Cochlear spiral ganglion neurons (SGN) provide the only pathway for transmitting sound evoked activity from the hair cells to the central auditory system. Neurotrophic factor 3 (NT-3) and brain derived neurotrophic factor (BDNF) released from hair cells and supporting cells exert a profound effect on SGN survival and neural firing patterns; however, it is unclear what the effects NT-3 and BDNF have on the type of neurotransmitter receptors expressed on SGN. To address this question, the whole-cell patch clamp recording technique was used to determine what effect NT-3 and BDNF had on the function and expression of glutamate, GABA and glycine receptors (GlyR) on SGN of cochlea from postnatal C57 mouse. Receptor currents induced by the agonist of each receptor were recorded from SGN cultured with or without BDNF or NT-3. NT-3 and BDNF exerted different effects. NT-3, and to a lesser extent BDNF, enhanced the expression of GABA receptors and had comparatively little effect on glutamate receptors. Absence of BDNF and NT-3 resulted in the emergence of glycine-induced currents; however, GlyR currents were absent from the short term cultured SGN. In contrast, NT-3 and BDNF suppressed GlyR expression on SGN. These results indicate that NT-3 and BDNF exert a profound effect on the types of neurotransmitter receptors expressed on postnatal SGN, results that may have important implications for neural development and plasticity.
Collapse
Affiliation(s)
- W Sun
- Center for Hearing and Deafness, Department of Communicative Disorders and Sciences, 137 Cary Hall, State University of New York at Buffalo, 3435 Main Street, Buffalo, NY 14214, USA.
| | | |
Collapse
|
38
|
Positive AMPA receptor modulation rapidly stimulates BDNF release and increases dendritic mRNA translation. J Neurosci 2009; 29:8688-97. [PMID: 19587275 DOI: 10.1523/jneurosci.6078-08.2009] [Citation(s) in RCA: 175] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) stimulates local dendritic mRNA translation and is involved in formation and consolidation of memory. 2H,3H,6aH-pyrrolidino[2'',1''-3',2']1,3-oxazino[6',5'-5,4]-benzo[e]1,4-dioxan-10-one (CX614), one of the best-studied positive AMPA receptor modulators (also known as ampakines), increases BDNF mRNA and protein and facilitates long-term potentiation (LTP) induction. Several other ampakines also improve performance in various behavioral and learning tasks. Since local dendritic protein synthesis has been implicated in LTP stabilization and in memory consolidation, this study investigated whether CX614 could influence synaptic plasticity by upregulating dendritic protein translation. CX614 treatment of primary neuronal cultures and acute hippocampal slices rapidly activated the translation machinery and increased local dendritic protein synthesis. CX614-induced activation of translation was blocked by K252a [(9S,10R,12R)-2,3,9,10,11,12-hexahydro-10-hydroxy-9-methyl-1-oxo-9,12-epoxy-1H-diindolo[1,2,3-fg:3',2',1'-kl]pyrrolo[3,4-i][1,6]benzodiazocine-10-carboxylic acid methyl ester], CNQX, APV, and TTX, and was inhibited in the presence of an extracellular BDNF scavenger, TrkB-Fc. The acute effect of CX614 on translation was mediated by increased BDNF release as demonstrated with a BDNF scavenging assay using TrkB-Fc during CX614 treatment of cultured primary neurons and was blocked by nifedipine, ryanodine, and lack of extracellular Ca(2+) in acute hippocampal slices. Finally, CX614, like BDNF, rapidly increased dendritic translation of an exogenous translation reporter. Together, our results demonstrate that positive modulation of AMPA receptors rapidly stimulates dendritic translation, an effect mediated by BDNF secretion and TrkB receptor activation. They also suggest that increased BDNF secretion and stimulation of local protein synthesis contribute to the effects of ampakines on synaptic plasticity.
Collapse
|
39
|
McKernan DP, Dinan TG, Cryan JF. “Killing the Blues”: A role for cellular suicide (apoptosis) in depression and the antidepressant response? Prog Neurobiol 2009; 88:246-63. [DOI: 10.1016/j.pneurobio.2009.04.006] [Citation(s) in RCA: 105] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Revised: 03/19/2009] [Accepted: 04/29/2009] [Indexed: 01/15/2023]
|
40
|
Slipczuk L, Bekinschtein P, Katche C, Cammarota M, Izquierdo I, Medina JH. BDNF activates mTOR to regulate GluR1 expression required for memory formation. PLoS One 2009; 4:e6007. [PMID: 19547753 PMCID: PMC2695538 DOI: 10.1371/journal.pone.0006007] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2009] [Accepted: 05/27/2009] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The mammalian target of Rapamycin (mTOR) kinase plays a key role in translational control of a subset of mRNAs through regulation of its initiation step. In neurons, mTOR is present at the synaptic region, where it modulates the activity-dependent expression of locally-translated proteins independently of mRNA synthesis. Indeed, mTOR is necessary for different forms of synaptic plasticity and long-term memory (LTM) formation. However, little is known about the time course of mTOR activation and the extracellular signals governing this process or the identity of the proteins whose translation is regulated by this kinase, during mnemonic processing. METHODOLOGY/PRINCIPAL FINDINGS Here we show that consolidation of inhibitory avoidance (IA) LTM entails mTOR activation in the dorsal hippocampus at the moment of and 3 h after training and is associated with a rapid and rapamycin-sensitive increase in AMPA receptor GluR1 subunit expression, which was also blocked by intra-hippocampal delivery of GluR1 antisense oligonucleotides (ASO). In addition, we found that pre- or post-training administration of function-blocking anti-BDNF antibodies into dorsal CA1 hampered IA LTM retention, abolished the learning-induced biphasic activation of mTOR and its readout, p70S6K and blocked GluR1 expression, indicating that BDNF is an upstream factor controlling mTOR signaling during fear-memory consolidation. Interestingly, BDNF ASO hindered LTM retention only when given into dorsal CA1 1 h after but not 2 h before training, suggesting that BDNF controls the biphasic requirement of mTOR during LTM consolidation through different mechanisms: an early one involving BDNF already available at the moment of training, and a late one, happening around 3 h post-training that needs de novo synthesis of this neurotrophin. CONCLUSIONS/SIGNIFICANCE IN CONCLUSION, OUR FINDINGS DEMONSTRATE THAT: 1) mTOR-mediated mRNA translation is required for memory consolidation during at least two restricted time windows; 2) this kinase acts downstream BDNF in the hippocampus and; 3) it controls the increase of synaptic GluR1 necessary for memory consolidation.
Collapse
Affiliation(s)
- Leandro Slipczuk
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Pedro Bekinschtein
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Cynthia Katche
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
| | - Martín Cammarota
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Centro de Memoria, Instituto de Pesquisas Biomedicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brasil
| | - Iván Izquierdo
- Centro de Memoria, Instituto de Pesquisas Biomedicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brasil
| | - Jorge H. Medina
- Instituto de Biología Celular y Neurociencias, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Departamento de Fisiología, Facultad de Medicina, Universidad de Buenos Aires (UBA), Buenos Aires, Argentina
- Centro de Memoria, Instituto de Pesquisas Biomedicas, Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Porto Alegre, Brasil
| |
Collapse
|
41
|
Trophic factor-induced intracellular calcium oscillations are required for the expression of postsynaptic acetylcholine receptors during synapse formation between Lymnaea neurons. J Neurosci 2009; 29:2167-76. [PMID: 19228969 DOI: 10.1523/jneurosci.4682-08.2009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Nervous system functions in all animals rely upon synaptic connectivity that is established during early development. Whereas cell-cell signaling plays a critical role in establishing synapse specificity, the involvement of extrinsic growth factors cannot, however, be undermined. We have previously demonstrated that trophic factors are required for excitatory but not inhibitory synapse formation between Lymnaea neurons. Moreover, in the absence of trophic factors, neurons from a number of species establish inappropriate inhibitory synapses, which can, however, be corrected by the addition of trophic factors. The precise site of trophic factor actions (presynaptic versus postsynaptic) and the underlying mechanisms remain, however, undefined. Here, we provide the first direct evidence that the trophic factor-mediated excitatory synapse formation involves activity-induced calcium (Ca(2+)) oscillations in the postsynaptic left pedal dorsal 1 (LPeD1) but not the presynaptic visceral dorsal 4 (VD4, cholinergic) neuron. These oscillations involved Ca(2+) influx through voltage-gated Ca(2+) channels and required receptor tyrosine kinase activity which was essential for the expression of excitatory, nicotinic acetylcholine receptors in the postsynaptic cell during synapse formation. We also demonstrate that selectively blocking the electrical activity presynaptically did not perturb trophic factor-induced synapse formation between the paired cells, whereas hyperpolarizing the postsynaptic cell prevented appropriate synaptogenesis between VD4 and LPeD1 cells. Together, our data underscore the importance of extrinsic trophic factors in regulating the electrical activity of the postsynaptic but not the presynaptic cell and that the resulting Ca(2+) oscillations are essential for the expression of postsynaptic receptors during specific synapse formation.
Collapse
|
42
|
O'Leary OF, Wu X, Castren E. Chronic fluoxetine treatment increases expression of synaptic proteins in the hippocampus of the ovariectomized rat: role of BDNF signalling. Psychoneuroendocrinology 2009; 34:367-81. [PMID: 18977602 DOI: 10.1016/j.psyneuen.2008.09.015] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2008] [Revised: 09/23/2008] [Accepted: 09/24/2008] [Indexed: 01/27/2023]
Abstract
Antidepressant drugs have been suggested to regulate synaptic transmission and structure. We hypothesised that antidepressant-induced changes in synapses and their associated proteins might become more apparent if they were measured under conditions of reduced synapse density. Therefore, in the present study, we examined whether chronic treatment with the antidepressant, fluoxetine alters expression of synaptic proteins in the hippocampus of rodents that underwent ovariectomy, a procedure which reportedly decreases synapse density in the CA1 region of the rat hippocampus. Using Western blotting, we measured changes in hippocampal expression of proteins associated with synapse structure, strength and activity namely, postsynaptic density protein 95 (PSD-95), the alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPA-R) subunit GluR1 and phosphosynapsin (Ser9), respectively. We found that fluoxetine treatment increased expression of phosphosynapsin, PSD-95 and synaptic GluR1 (but not total GluR1) in the hippocampus of ovariectomized but not sham rats. Since BDNF and signalling at its receptor, TrkB, can mediate behavioural responses to antidepressants and induce neuronal plasticity, we investigated the contribution of TrkB signalling to fluoxetine-induced changes in synaptic protein expression by using a transgenic mouse model overexpressing a truncated form of the TrkB receptor (TrkB.T1). Fluoxetine produced a small but significant increase in hippocampal PSD-95 in ovariectomized wildtype mice but not in ovariectomized TrkB.T1 mice or sham mice. In contrast to rats, fluoxetine did not alter expression of synaptic GluR1 and did not reverse ovariectomy-induced decreases in hippocampal phosphosynapsin in either genotype. Taken together, these results suggest that chronic fluoxetine treatment can increase synaptic protein expression in the hippocampus and at least some of these effects require TrkB signalling. Moreover, these effects were only observed in ovariectomized animals, thus suggesting that fluoxetine-induced increases in synaptic protein levels might only occur or become detectable when hippocampal synaptic connectivity is perturbed.
Collapse
|
43
|
Toth E, Gersner R, Wilf-Yarkoni A, Raizel H, Dar DE, Richter-Levin G, Levit O, Zangen A. Age-dependent effects of chronic stress on brain plasticity and depressive behavior. J Neurochem 2008; 107:522-32. [PMID: 18752645 DOI: 10.1111/j.1471-4159.2008.05642.x] [Citation(s) in RCA: 157] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Exposure to chronic mild stress (CMS) is known to induce anhedonia in adult animals, and is associated with induction of depression in humans. However, the behavioral effects of CMS in young animals have not yet been characterized, and little is known about the long-term neurochemical effects of CMS in either young or adult animals. Here, we found that CMS induces anhedonia in adult but not in young animals, as measured by a set of behavioral paradigms. Furthermore, while CMS decreased neurogenesis and levels of brain-derived neurotrophic factor (BDNF) in the hippocampus of adult animals, it increased these parameters in young animals. We also found that CMS altered alpha-amino-3-hydroxy-5-methylisoxazole-4-propionate (AMPA) receptor GluR1 subunit levels in the hippocampus and the nucleus accumbens of adult, but not young animals. Finally, no significant differences were observed between the effects of CMS on circadian corticosterone levels in the different age groups. The substantially different neurochemical effects chronic stress exerts in young and adult animals may explain the behavioral resilience to such stress young animals possess.
Collapse
Affiliation(s)
- Erika Toth
- Department of Neurobiology, Weizmann Institute of Science, Rehovot, Israel
| | | | | | | | | | | | | | | |
Collapse
|
44
|
Langemann D, Pellerin L, Peters A. Making sense of AMPA receptor trafficking by modeling molecular mechanisms of synaptic plasticity. Brain Res 2008; 1207:60-72. [DOI: 10.1016/j.brainres.2008.01.097] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2007] [Revised: 11/14/2007] [Accepted: 01/16/2008] [Indexed: 10/22/2022]
|
45
|
Chenal J, Pierre K, Pellerin L. Insulin and IGF-1 enhance the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of the phosphoinositide 3-kinase-Akt-mammalian target of rapamycin pathway. Eur J Neurosci 2007; 27:53-65. [PMID: 18093179 DOI: 10.1111/j.1460-9568.2007.05981.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
MCT2 is the main neuronal monocarboxylate transporter essential for facilitating lactate and ketone body utilization as energy substrates. Our study reveals that treatment of cultured cortical neurons with insulin and IGF-1 led to a striking enhancement of MCT2 immunoreactivity in a time- and concentration-dependent manner. Surprisingly, neither insulin nor IGF-1 affected MCT2 mRNA expression, suggesting that regulation of MCT2 protein expression occurs at the translational rather than the transcriptional level. Investigation of the putative signalling pathways leading to translation activation revealed that insulin and IGF-1 induced p44- and p42 MAPK, Akt and mTOR phosphorylation. S6 ribosomal protein, a component of the translational machinery, was also strongly activated by insulin and IGF-1. Phosphorylation of p44- and p42 MAPK was blocked by the MEK inhibitor PD98058, while Akt phosphorylation was abolished by the PI3K inhibitor LY294002. Phosphorylation of mTOR and S6 was blocked by the mTOR inhibitor rapamycin. In parallel, it was observed that LY294002 and rapamycin almost completely blocked the effects of insulin and IGF-1 on MCT2 protein expression, whereas PD98059 and SB202190 (a p38K inhibitor) had no effect on insulin-induced MCT2 expression and only a slight effect on IGF-1-induced MCT2 expression. At the subcellular level, a significant increase in MCT2 protein expression within an intracellular pool was observed while no change at the cell surface was apparent. As insulin and IGF-1 are involved in synaptic plasticity, their effect on MCT2 protein expression via an activation of the PI3K-Akt-mTOR-S6K pathway might contribute to the preparation of neurons for enhanced use of nonglucose energy substrates following altered synaptic efficacy.
Collapse
Affiliation(s)
- Julie Chenal
- Department of Physiology, Université de Lausanne, 7 Rue du Bugnon, 1005 Lausanne, Switzerland
| | | | | |
Collapse
|
46
|
Nagano T, Namba H, Abe Y, Aoki H, Takei N, Nawa H. In vivo administration of epidermal growth factor and its homologue attenuates developmental maturation of functional excitatory synapses in cortical GABAergic neurons. Eur J Neurosci 2007; 25:380-90. [PMID: 17284178 DOI: 10.1111/j.1460-9568.2007.05297.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ErbB1 ligand family includes epidermal growth factor (EGF), transforming growth factor-alpha (TGFalpha), heparin-binding EGF-like growth factor, amphiregulin and betacellulin. Previously, we demonstrated that TGFalpha decreases alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA)-type glutamate receptors in cultured neocortical gamma-aminobutyric acid (GABA) neurons. In the present study, we examined in vivo effects of EGF and TGFalpha in the mouse neocortex using electrophysiological and biochemical techniques. In mouse neonates, subcutaneously administered EGF penetrated the blood-brain barrier and activated ErbB1 in the neocortex. Daily administration of EGF or TGFalpha attenuates developmental increases in expression of the AMPA receptor subunits (GluR1 and GluR2/3) in the neocortex of postnatal mice. Immunohistochemistry revealed that the reduction in AMPA receptor expression was significant in the GABAergic neurons, especially those positive for parvalbumin. Using cortical slices prepared from EGF-treated mice, we recorded miniature excitatory postsynaptic currents (mEPSCs) in both GABAergic and pyramidal neurons. Subchronic treatment with EGF decreased the amplitude and frequency of mEPSCs in GABAergic neurons, but its effects were negligible on pyramidal neurons. We conclude that EGF or other ErbB1 ligand(s) attenuates a developmental increase in AMPA receptor expression and function in cortical GABAergic neurons.
Collapse
Affiliation(s)
- Tadasato Nagano
- Molecular Neurobiology, Brain Research Institute, Niigata University, 951-8585 Japan
| | | | | | | | | | | |
Collapse
|
47
|
Caldeira MV, Melo CV, Pereira DB, Carvalho RF, Carvalho AL, Duarte CB. BDNF regulates the expression and traffic of NMDA receptors in cultured hippocampal neurons. Mol Cell Neurosci 2007; 35:208-19. [PMID: 17428676 DOI: 10.1016/j.mcn.2007.02.019] [Citation(s) in RCA: 179] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2006] [Revised: 02/20/2007] [Accepted: 02/22/2007] [Indexed: 12/19/2022] Open
Abstract
The neurotrophin BDNF regulates the activity-dependent modifications of synaptic strength in the CNS. Physiological and biochemical evidences implicate the NMDA glutamate receptor as one of the targets for BDNF modulation. In the present study, we investigated the effect of BDNF on the expression and plasma membrane abundance of NMDA receptor subunits in cultured hippocampal neurons. Acute stimulation of hippocampal neurons with BDNF differentially upregulated the protein levels of the NR1, NR2A and NR2B NMDA receptor subunits, by a mechanism sensitive to transcription and translation inhibitors. Accordingly, BDNF also increased the mRNA levels for NR1, NR2A and NR2B subunits. The neurotrophin NT3 also upregulated the protein levels of NR2A and NR2B subunits, but was without effect on the NR1 subunit. The amount of NR1, NR2A and NR2B proteins associated with the plasma membrane of hippocampal neurons was differentially increased by BDNF stimulation for 30 min or 24 h. The rapid upregulation of plasma membrane-associated NMDA receptor subunits was correlated with an increase in NMDA receptor activity. The results indicate that BDNF increases the abundance of NMDA receptors and their delivery to the plasma membrane, thereby upregulating receptor activity in cultured hippocampal neurons.
Collapse
Affiliation(s)
- Margarida V Caldeira
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | |
Collapse
|
48
|
Caldeira MV, Melo CV, Pereira DB, Carvalho R, Correia SS, Backos DS, Carvalho AL, Esteban JA, Duarte CB. Brain-derived neurotrophic factor regulates the expression and synaptic delivery of alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid receptor subunits in hippocampal neurons. J Biol Chem 2007; 282:12619-28. [PMID: 17337442 DOI: 10.1074/jbc.m700607200] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF) plays an important role in synaptic plasticity in the hippocampus, but the mechanisms involved are not fully understood. The neurotrophin couples synaptic activation to changes in gene expression underlying long term potentiation and short term plasticity. Here we show that BDNF acutely up-regulates GluR1, GluR2, and GluR3 alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptor subunits in 7-day in vitro cultured hippocampal neurons. The increase in GluR1 and GluR2 protein levels in developing cultures was impaired by K252a, a tropomyosin-related [corrected] kinase (Trk) inhibitor, and by translation (emetine and anisomycin) and transcription (alpha-amanitine and actinomycin D) inhibitors [corrected] The increase in GluR1 and GluR2 protein levels in developing cultures was impaired by K252a, a Trk inhibitor, and by translation (emetine and anisomycin) and transcription (alpha-amanitine and actinomycin D) inhibitors. Accordingly, BDNF increased the mRNA levels for GluR1 and GluR2 subunits. Biotinylation studies showed that stimulation with BDNF for 30 min selectively increased the amount of GluR1 associated with the plasma membrane, and this effect was abrogated by emetine. Under the same conditions, BDNF induced GluR1 phosphorylation on Ser-831 through activation of protein kinase C and Ca(2+)-calmodulin-dependent protein kinase II. Chelation of endogenous extracellular BDNF with TrkB-IgG selectively decreased GluR1 protein levels in 14-day in vitro cultures of hippocampal neurons. Moreover, BDNF promoted synaptic delivery of homomeric GluR1 AMPA receptors in cultured organotypic slices, by a mechanism independent of NMDA receptor activation. Taken together, the results indicate that BDNF up-regulates the protein levels of AMPA receptor subunits in hippocampal neurons and induces the delivery of AMPA receptors to the synapse.
Collapse
Affiliation(s)
- Margarida V Caldeira
- Center for Neuroscience and Cell Biology, Department of Zoology, University of Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Chenal J, Pellerin L. Noradrenaline enhances the expression of the neuronal monocarboxylate transporter MCT2 by translational activation via stimulation of PI3K/Akt and the mTOR/S6K pathway. J Neurochem 2007; 102:389-97. [PMID: 17394554 DOI: 10.1111/j.1471-4159.2007.04495.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Monocarboxylate transporter 2 (MCT2) expression is up-regulated by noradrenaline (NA) in cultured cortical neurons via a putative but undetermined translational mechanism. Western blot analysis showed that p44/p42 mitogen-activated protein kinase (MAPK) was rapidly and strongly phosphorylated by NA treatment. NA also rapidly induced serine/threonine protein kinase from AKT virus (Akt) phosphorylation but to a lesser extent than p44/p42 MAPK. However, Akt activation persisted over a longer period. Similarly, NA induced a rapid and persistent phosphorylation of mammalian target of rapamycin (mTOR), a kinase implicated in the regulation of translation in the central nervous system. Consistent with activation of the mTOR/S6 kinase pathway, phosphorylation of the ribosomal S6 protein, a component of the translation machinery, could be observed upon treatment with NA. In parallel, it was found that the NA-induced increase in MCT2 protein was almost completely blocked by LY294002 (phosphoinositide 3-kinase inhibitor) as well as by rapamycin (mTOR inhibitor), while mitogen-activated protein kinase kinase and p38 MAPK inhibitors had much smaller effects. Taken together, these data reveal that NA induces an increase in neuronal MCT2 protein expression by a mechanism involving stimulation of phosphoinositide 3-kinase/Akt and translational activation via the mTOR/S6 kinase pathway. Moreover, considering the role of NA in synaptic plasticity, alterations in MCT2 expression as described in this study might represent an adaptation to face energy demands associated with enhanced synaptic transmission.
Collapse
Affiliation(s)
- Julie Chenal
- Département de Physiologie, Université de Lausanne, Lausanne, Switzerland
| | | |
Collapse
|
50
|
Shishido Y, Tanaka T, Piao YS, Araki K, Takei N, Higashiyama S, Nawa H. Activity-dependent shedding of heparin-binding EGF-like growth factor in brain neurons. Biochem Biophys Res Commun 2006; 348:963-70. [PMID: 16901467 DOI: 10.1016/j.bbrc.2006.07.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2006] [Accepted: 07/23/2006] [Indexed: 01/08/2023]
Abstract
Heparin-binding epidermal growth factor-like growth factor (HB-EGF) is initially produced as a membrane-anchored precursor (pro-HB-EGF) and subsequently liberated from the cell membrane through ectodomain shedding. Here, we characterized the molecular regulation of pro-HB-EGF shedding in the central nervous system. Cultured neocortical or hippocampal neurons were transfected with the alkaline-phosphatase-tagged pro-HB-EGF gene and stimulated with various neurotransmitters. Both kainate and N-methyl-D-aspartate, but not agonists for metabotropic glutamate receptors, promoted pro-HB-EGF shedding and HB-EGF release, which were attenuated by an exocytosis blocker and metalloproteinase inhibitors. In the brain of transgenic mice over-expressing human pro-HB-EGF, kainate-induced seizure activity decreased content of pro-HB-EGF-like immunoreactivity and conversely increased levels of soluble HB-EGF. There was concomitant phosphorylation of EGF receptors (ErbB1) following seizures, suggesting that seizure activities liberated HB-EGF and activated neighboring ErbB1 receptors. Therefore, we propose that glutamatergic neurotransmission in the central nervous system plays a crucial role in regulating ectodomain shedding of pro-HB-EGF.
Collapse
Affiliation(s)
- Yuji Shishido
- Division of Molecular Neurobiology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | | | | | | | | | | | | |
Collapse
|