1
|
Das P, Mekonnen B, Alkhofash R, Ingle AV, Workman EB, Feather A, Zhang G, Chasen N, Liu P, Lechtreck KF. The Small Interactor of PKD2 protein promotes the assembly and ciliary entry of the Chlamydomonas PKD2-mastigoneme complexes. J Cell Sci 2024; 137:jcs261497. [PMID: 38063216 PMCID: PMC10846610 DOI: 10.1242/jcs.261497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
In Chlamydomonas, the channel polycystin 2 (PKD2) is primarily present in the distal region of cilia, where it is attached to the axoneme and mastigonemes, extracellular polymers of MST1. In a smaller proximal ciliary region that lacks mastigonemes, PKD2 is more mobile. We show that the PKD2 regions are established early during ciliogenesis and increase proportionally in length as cilia elongate. In chimeric zygotes, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia, whereas the assembly of the distal region was hindered, suggesting that axonemal binding of PKD2 requires de novo assembly of cilia. We identified the protein Small Interactor of PKD2 (SIP), a PKD2-related, single-pass transmembrane protein, as part of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from the cilia. Like the pkd2 and mst1 mutants, sip mutant cells swam with reduced velocity. Cilia of the pkd2 mutant beat with an increased frequency but were less efficient in moving the cells, suggesting a structural role for the PKD2-SIP-mastigoneme complex in increasing the effective surface of Chlamydomonas cilia.
Collapse
Affiliation(s)
- Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Betlehem Mekonnen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Rama Alkhofash
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Abha V. Ingle
- Department of Computer Science, University of Georgia, Athens, GA 30602, USA
| | - E. Blair Workman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Alec Feather
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Gui Zhang
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Nathan Chasen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Peiwei Liu
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602, USA
| |
Collapse
|
2
|
Das P, Mekonnen B, Alkhofash R, Ingle A, Workman EB, Feather A, Liu P, Lechtreck KF. Small Interactor of PKD2 (SIP), a novel PKD2-related single-pass transmembrane protein, is required for proteolytic processing and ciliary import of Chlamydomonas PKD2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.13.544839. [PMID: 37398320 PMCID: PMC10312728 DOI: 10.1101/2023.06.13.544839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
In Chlamydomonas cilia, the ciliopathy-relevant TRP channel PKD2 is spatially compartmentalized into a distal region, in which PKD2 binds the axoneme and extracellular mastigonemes, and a smaller proximal region, in which PKD2 is more mobile and lacks mastigonemes. Here, we show that the two PKD2 regions are established early during cilia regeneration and increase in length as cilia elongate. In abnormally long cilia, only the distal region elongated whereas both regions adjusted in length during cilia shortening. In dikaryon rescue experiments, tagged PKD2 rapidly entered the proximal region of PKD2-deficient cilia whereas assembly of the distal region was hindered, suggesting that axonemal docking of PKD2 requires de novo ciliary assembly. We identified Small Interactor of PKD2 (SIP), a small PKD2-related protein, as a novel component of the PKD2-mastigoneme complex. In sip mutants, stability and proteolytic processing of PKD2 in the cell body were reduced and PKD2-mastigoneme complexes were absent from mutant cilia. Like the pkd2 and mst1 mutants, sip swims with reduced velocity. Cilia of the pkd2 mutant beat with normal frequency and bending pattern but were less efficient in moving cells supporting a passive role of the PKD2-SIP-mastigoneme complexes in increasing the effective surface of Chlamydomonas cilia.
Collapse
Affiliation(s)
- Poulomi Das
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Betlehem Mekonnen
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Rama Alkhofash
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Abha Ingle
- Department of Computer Science, University of Georgia, Athens, GA 30602
| | - E. Blair Workman
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | - Alec Feather
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| | | | - Karl F. Lechtreck
- Department of Cellular Biology, University of Georgia, Athens, GA 30602
| |
Collapse
|
3
|
Boccaccio A, Menini A, Pifferi S. The cyclic AMP signaling pathway in the rodent main olfactory system. Cell Tissue Res 2021; 383:429-443. [PMID: 33447881 DOI: 10.1007/s00441-020-03391-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/10/2020] [Indexed: 01/15/2023]
Abstract
Odor perception begins with the detection of odorant molecules by the main olfactory epithelium located in the nasal cavity. Odorant molecules bind to and activate a large family of G-protein-coupled odorant receptors and trigger a cAMP-mediated transduction cascade that converts the chemical stimulus into an electrical signal transmitted to the brain. Morever, odorant receptors and cAMP signaling plays a relevant role in olfactory sensory neuron development and axonal targeting to the olfactory bulb. This review will first explore the physiological response of olfactory sensory neurons to odorants and then analyze the different components of cAMP signaling and their different roles in odorant detection and olfactory sensory neuron development.
Collapse
Affiliation(s)
- Anna Boccaccio
- Institute of Biophysics, National Research Council (CNR), Genova, Italy.
| | - Anna Menini
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy
| | - Simone Pifferi
- Neurobiology Group, SISSA, Scuola Internazionale Superiore di Studi Avanzati, Trieste, Italy.,Department of Experimental and Clinical Medicine, Università Politecnica delle Marche, Ancona, Italy
| |
Collapse
|
4
|
Abstract
Olfactory sensory neurons (OSNs) are bipolar neurons, unusual because they turn over continuously and have a multiciliated dendrite. The extensive changes in gene expression accompanying OSN differentiation in mice are largely known, especially the transcriptional regulators responsible for altering gene expression, revealing much about how differentiation proceeds. Basal progenitor cells of the olfactory epithelium transition into nascent OSNs marked by Cxcr4 expression and the initial extension of basal and apical neurites. Nascent OSNs become immature OSNs within 24-48 h. Immature OSN differentiation requires about a week and at least 2 stages. Early-stage immature OSNs initiate expression of genes encoding key transcriptional regulators and structural proteins necessary for further neuritogenesis. Late-stage immature OSNs begin expressing genes encoding proteins important for energy production and neuronal homeostasis that carry over into mature OSNs. The transition to maturity depends on massive expression of one allele of one odorant receptor gene, and this results in expression of the last 8% of genes expressed by mature OSNs. Many of these genes encode proteins necessary for mature function of axons and synapses or for completing the elaboration of non-motile cilia, which began extending from the newly formed dendritic knobs of immature OSNs. The cilia from adjoining OSNs form a meshwork in the olfactory mucus and are the site of olfactory transduction. Immature OSNs also have a primary cilium, but its role is unknown, unlike the critical role in proliferation and differentiation played by the primary cilium of the olfactory epithelium's horizontal basal cell.
Collapse
Affiliation(s)
- Timothy S McClintock
- Department of Physiology, University of Kentucky, Lexington, KY, USA
- Correspondence to be sent to: Timothy S. McClintock, Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY 40536-0298, USA. e-mail:
| | - Naazneen Khan
- Department of Physiology, University of Kentucky, Lexington, KY, USA
| | - Chao Xie
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| | - Jeffrey R Martens
- Department of Pharmacology and Therapeutics, and Center for Smell and Taste, University of Florida College of Medicine, Gainesville, FL, USA
| |
Collapse
|
5
|
Lee J, Chung YD. Ciliary subcompartments: how are they established and what are their functions? BMB Rep 2016; 48:380-7. [PMID: 25936781 PMCID: PMC4577287 DOI: 10.5483/bmbrep.2015.48.7.084] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2015] [Indexed: 12/15/2022] Open
Abstract
Cilia are conserved subcellular organelles with diverse sensory and developmental roles. Recently, they have emerged as crucial organelles whose dysfunction causes a wide spectrum of disorders called ciliopathies. Recent studies on the pathological mechanisms underlying ciliopathies showed that the ciliary compartment is further divided into subdomains with specific roles in the biogenesis, maintenance and function of cilia. Several conserved sets of molecules that play specific roles in each subcompartment have been discovered. Here we review recent progress on our understanding of ciliary subcompartments, especially focusing on the molecules required for their structure and/or function. [BMB Reports 2015; 48(7): 380-387]
Collapse
Affiliation(s)
- Jeongmi Lee
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| | - Yun Doo Chung
- Department of Life Science, University of Seoul, Seoul 130-743, Korea
| |
Collapse
|
6
|
Yu Y, Ren W, Ren B. Nanosize titanium dioxide cause neuronal apoptosis: a potential linkage between nanoparticle exposure and neural disorder. Neurol Res 2016; 30:1115-20. [PMID: 26154883 DOI: 10.1179/0161641215z.000000000587] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
OBJECTIVES Nanosize titanium dioxide is used in water and air decontamination and in numerous home appliances and products designed for direct human use. However, the impact of nanoparticle on biological system is not known to us. Therefore, it is our urgent and primary task to ascertain the information about safety and potential hazards of products derived from nanomaterial to the health of mankind. METHODS We made use of MTT, bromodeoxyuridine (BrdU), and Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) assays to testify the biological impact of nanosize TiO2 on olfactory bulb neurons cultured in vitro. RESULTS In this article, we elucidate the cytotoxicity of titanium dioxide to olfactory bulb neurons on cellular and molecular level. We come to a conclusion that nanosize titanium dioxide causes neuronal apoptosis, and it also down-regulate the expression of olfactory marker protein (OMP) and tyrosine hydroxylase (TH). DISCUSSION These results show that a relationship between nanoparticle exposure and pathogeny of neurodegenerative diseases may exist.
Collapse
Affiliation(s)
- Yiqun Yu
- Research and Development Department, Jianrong Chemistry and Nanomaterial Limited Corporation, Industrial Development Zone of Eastern Juancheng County, Shandong Province, China.
| | | | | |
Collapse
|
7
|
Oberland S, Ackels T, Gaab S, Pelz T, Spehr J, Spehr M, Neuhaus EM. CD36 is involved in oleic acid detection by the murine olfactory system. Front Cell Neurosci 2015; 9:366. [PMID: 26441537 PMCID: PMC4584952 DOI: 10.3389/fncel.2015.00366] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Accepted: 09/03/2015] [Indexed: 11/29/2022] Open
Abstract
Olfactory signals influence food intake in a variety of species. To maximize the chances of finding a source of calories, an animal’s preference for fatty foods and triglycerides already becomes apparent during olfactory food search behavior. However, the molecular identity of both receptors and ligands mediating olfactory-dependent fatty acid recognition are, so far, undescribed. We here describe that a subset of olfactory sensory neurons expresses the fatty acid receptor CD36 and demonstrate a receptor-like localization of CD36 in olfactory cilia by STED microscopy. CD36-positive olfactory neurons share olfaction-specific transduction elements and project to numerous glomeruli in the ventral olfactory bulb. In accordance with the described roles of CD36 as fatty acid receptor or co-receptor in other sensory systems, the number of olfactory neurons responding to oleic acid, a major milk component, in Ca2+ imaging experiments is drastically reduced in young CD36 knock-out mice. Strikingly, we also observe marked age-dependent changes in CD36 localization, which is prominently present in the ciliary compartment only during the suckling period. Our results support the involvement of CD36 in fatty acid detection by the mammalian olfactory system.
Collapse
Affiliation(s)
- Sonja Oberland
- Pharmacology and Toxicology, University Hospital Jena, Friedrich-Schiller-University Jena Jena, Germany ; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin Berlin, Germany ; Freie Universität-Berlin, Fachbereich Biologie, Chemie und Pharmazie Berlin, Germany
| | - Tobias Ackels
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University Aachen, Germany
| | - Stefanie Gaab
- Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Thomas Pelz
- Pharmacology and Toxicology, University Hospital Jena, Friedrich-Schiller-University Jena Jena, Germany ; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin Berlin, Germany
| | - Jennifer Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University Aachen, Germany
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University Aachen, Germany
| | - Eva M Neuhaus
- Pharmacology and Toxicology, University Hospital Jena, Friedrich-Schiller-University Jena Jena, Germany ; Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin Berlin, Germany
| |
Collapse
|
8
|
Henkel B, Drose DR, Ackels T, Oberland S, Spehr M, Neuhaus EM. Co-expression of anoctamins in cilia of olfactory sensory neurons. Chem Senses 2014; 40:73-87. [PMID: 25500808 DOI: 10.1093/chemse/bju061] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Vertebrates can sense and identify a vast array of chemical cues. The molecular machinery involved in chemodetection and transduction is expressed within the cilia of olfactory sensory neurons. Currently, there is only limited information available on the distribution and density of individual signaling components within the ciliary compartment. Using super-resolution microscopy, we show here that cyclic-nucleotide-gated channels and calcium-activated chloride channels of the anoctamin family are localized to discrete microdomains in the ciliary membrane. In addition to ANO2, a second anoctamin, ANO6, also localizes to ciliary microdomains. This observation, together with the fact that ANO6 and ANO2 co-localize, indicates a role for ANO6 in olfactory signaling. We show that both ANO2 and ANO6 can form heteromultimers and that this heteromerization alters the recombinant channels' physiological properties. Thus, we provide evidence for interaction of ANO2 and ANO6 in olfactory cilia, with possible physiological relevance for olfactory signaling.
Collapse
Affiliation(s)
- Bastian Henkel
- Department of Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Strasse 1, 07747 Jena, Germany, Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany, FU Berlin, Fachbereich Biologie, Chemie und Pharmazie , Takustr. 3, 14195 Berlin, Germany and
| | - Daniela R Drose
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Tobias Ackels
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Sonja Oberland
- Department of Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Strasse 1, 07747 Jena, Germany, Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany, FU Berlin, Fachbereich Biologie, Chemie und Pharmazie , Takustr. 3, 14195 Berlin, Germany and
| | - Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Worringerweg 3, 52074 Aachen, Germany
| | - Eva M Neuhaus
- Department of Pharmacology and Toxicology, University Hospital Jena, Drackendorfer Strasse 1, 07747 Jena, Germany, Cluster of Excellence NeuroCure, Charité-Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany,
| |
Collapse
|
9
|
Blacque OE, Sanders AAWM. Compartments within a compartment: what C. elegans can tell us about ciliary subdomain composition, biogenesis, function, and disease. Organogenesis 2014; 10:126-37. [PMID: 24732235 DOI: 10.4161/org.28830] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The primary cilium has emerged as a hotbed of sensory and developmental signaling, serving as a privileged domain to concentrate the functions of a wide number of channels, receptors and downstream signal transducers. This realization has provided important insight into the pathophysiological mechanisms underlying the ciliopathies, an ever expanding spectrum of multi-symptomatic disorders affecting the development and maintenance of multiple tissues and organs. One emerging research focus is the subcompartmentalised nature of the organelle, consisting of discrete structural and functional subdomains such as the periciliary membrane/basal body compartment, the transition zone, the Inv compartment and the distal segment/ciliary tip region. Numerous ciliopathy, transport-related and signaling molecules localize at these compartments, indicating specific roles at these subciliary sites. Here, by focusing predominantly on research from the genetically tractable nematode C. elegans, we review ciliary subcompartments in terms of their structure, function, composition, biogenesis and relationship to human disease.
Collapse
Affiliation(s)
- Oliver E Blacque
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| | - Anna A W M Sanders
- School of Biomolecular and Biomedical Science; University College Dublin; Dublin, Ireland
| |
Collapse
|
10
|
Wojtyniak M, Brear AG, O'Halloran DM, Sengupta P. Cell- and subunit-specific mechanisms of CNG channel ciliary trafficking and localization in C. elegans. J Cell Sci 2013; 126:4381-95. [PMID: 23886944 DOI: 10.1242/jcs.127274] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Primary cilia are ubiquitous sensory organelles that concentrate transmembrane signaling proteins essential for sensing environmental cues. Mislocalization of crucial ciliary signaling proteins, such as the tetrameric cyclic nucleotide-gated (CNG) channels, can lead to cellular dysfunction and disease. Although several cis- and trans-acting factors required for ciliary protein trafficking and localization have been identified, whether these mechanisms act in a protein- and cell-specific manner is largely unknown. Here, we show that CNG channel subunits can be localized to discrete ciliary compartments in individual sensory neurons in C. elegans, suggesting that channel composition is heterogeneous across the cilium. We demonstrate that ciliary localization of CNG channel subunits is interdependent on different channel subunits in specific cells, and identify sequences required for efficient ciliary targeting and localization of the TAX-2 CNGB and TAX-4 CNGA subunits. Using a candidate gene approach, we show that Inversin, transition zone proteins, intraflagellar transport motors and a MYND-domain protein are required to traffic and/or localize CNG channel subunits in both a cell- and channel subunit-specific manner. We further find that TAX-2 and TAX-4 are relatively immobile in specific sensory cilia subcompartments, suggesting that these proteins undergo minimal turnover in these domains in mature cilia. Our results uncover unexpected diversity in the mechanisms that traffic and localize CNG channel subunits to cilia both within and across cell types, highlighting the essential contribution of this process to cellular functions.
Collapse
Affiliation(s)
- Martin Wojtyniak
- Department of Biology and National Center for Behavioral Genomics, Brandeis University, Waltham, MA 02454, USA
| | | | | | | |
Collapse
|
11
|
Fisch C, Dupuis-Williams P. [The rebirth of the ultrastructure of cilia and flagella]. Biol Aujourdhui 2012; 205:245-67. [PMID: 22251859 DOI: 10.1051/jbio/2011023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Indexed: 11/14/2022]
Abstract
The sensory and motility functions of eukaryotic cilia and flagella are essential for cell survival in protozoans and for cell differentiation and homoeostasis in metazoans. Ciliary biology has benefited early on from the input of electron microscopy. Over the last decade, the visualization of cellular structures has greatly progressed, thus it becomes timely to review the ultrastructure of cilia and flagella. Briefly touching upon the typical features of a 9+2 axoneme, we dwell extensively on the transition zone, the singlet zone, the ciliary necklace, cap and crown. The relation of the singlet zone to sensory and/or motile function, the link of the ciliary cap to microtubule dynamics and to ciliary beat, the involvement of the ciliary crown in ovocyte and mucosal propulsion, and the role of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier will all be discussed.
Collapse
Affiliation(s)
- Cathy Fisch
- ATIGE Centriole et Pathologies Associées, INSERM/UEVE U829, 91000 Évry, France.
| | | |
Collapse
|
12
|
Abstract
Eukaryotic cilia and flagella perform motility and sensory functions which are essential for cell survival in protozoans, and to organism development and homoeostasis in metazoans. Their ultrastructure has been studied from the early beginnings of electron microscopy, and these studies continue to contribute to much of our understanding about ciliary biology. In the light of the progress made in the visualization of cellular structures over the last decade, we revisit the ultrastructure of cilia and flagella. We briefly describe the typical features of a 9+2 axoneme before focusing extensively on the transition zone, the ciliary necklace, the singlet zone, the ciliary cap and the ciliary crown. We discuss how the singlet zone is linked to sensory and/or motile function, the contribution of the ciliary crown to ovocyte and mucosal propulsion, and the relationship between the ciliary cap and microtubule growth and shortening, and its relation to ciliary beat. We further examine the involvement of the transition zone/the ciliary necklace in axonemal stabilization, autotomy and as a diffusion barrier.
Collapse
|
13
|
Hyperpolarization-activated cyclic nucleotide-gated channels in olfactory sensory neurons regulate axon extension and glomerular formation. J Neurosci 2011; 30:16498-508. [PMID: 21147989 DOI: 10.1523/jneurosci.4225-10.2010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechanisms influencing the development of olfactory bulb glomeruli are poorly understood. While odor receptors (ORs) play an important role in olfactory sensory neuron (OSN) axon targeting/coalescence (Mombaerts et al., 1996; Wang et al., 1998; Feinstein and Mombaerts, 2004), recent work showed that G protein activation alone is sufficient to induce OSN axon coalescence (Imai et al., 2006; Chesler et al., 2007), suggesting an activity-dependent mechanism in glomerular development. Consistent with these data, OSN axon projections and convergence are perturbed in mice deficient for adenylyl cyclase III, which is downstream from the OR and catalyzes the conversion of ATP to cAMP. However, in cyclic nucleotide-gated (CNG) channel knock-out mice OSN axons are only transiently perturbed (Lin et al., 2000), suggesting that the CNG channel may not be the sole target of cAMP. This prompted us to investigate an alternative channel, the hyperpolarization-activated, cyclic nucleotide-gated cation channel (HCN), as a potential developmental target of cAMP in OSNs. Here, we demonstrate that HCN channels are developmentally precocious in OSNs and therefore are plausible candidates for affecting OSN axon development. Inhibition of HCN channels in dissociated OSNs significantly reduced neurite outgrowth. Moreover, in HCN1 knock-out mice the formation of glomeruli was delayed in parallel with perturbations of axon organization in the olfactory nerve. These data support the hypothesis that the outgrowth and coalescence of OSN axons is, at least in part, subject to activity-dependent mechanisms mediated via HCN channels.
Collapse
|
14
|
French DA, Badamdorj D, Kleene SJ. Spatial distribution of calcium-gated chloride channels in olfactory cilia. PLoS One 2010; 5:e15676. [PMID: 21209888 PMCID: PMC3012700 DOI: 10.1371/journal.pone.0015676] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Accepted: 11/21/2010] [Indexed: 11/18/2022] Open
Abstract
Background In vertebrate olfactory receptor neurons, sensory cilia transduce odor stimuli into changes in neuronal membrane potential. The voltage changes are primarily caused by the sequential openings of two types of channel: a cyclic-nucleotide-gated (CNG) cationic channel and a calcium-gated chloride channel. In frog, the cilia are 25 to 200 µm in length, so the spatial distributions of the channels may be an important determinant of odor sensitivity. Principal Findings To determine the spatial distribution of the chloride channels, we recorded from single cilia as calcium was allowed to diffuse down the length of the cilium and activate the channels. A computational model of this experiment allowed an estimate of the spatial distribution of the chloride channels. On average, the channels were concentrated in a narrow band centered at a distance of 29% of the ciliary length, measured from the base of the cilium. This matches the location of the CNG channels determined previously. This non-uniform distribution of transduction proteins is consistent with similar findings in other cilia. Conclusions On average, the two types of olfactory transduction channel are concentrated in the same region of the cilium. This may contribute to the efficient detection of weak stimuli.
Collapse
Affiliation(s)
- Donald A. French
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Dorjsuren Badamdorj
- Department of Mathematical Sciences, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Steven J. Kleene
- Department of Cancer and Cell Biology, University of Cincinnati, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
15
|
Endo D, Yamamoto Y, Yamaguchi-Yamada M, Nakamuta N, Taniguchi K. Localization of eNOS in the olfactory epithelium of the rat. J Vet Med Sci 2010; 73:423-30. [PMID: 21068516 DOI: 10.1292/jvms.10-0353] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Nitric oxide (NO) is a free radical and produced from L-arginine by nitric oxide synthase (NOS). Since NO is recently suggested to be involved in olfactory perception, the expression of eNOS, an isoform of NOS, was examined in the rat olfactory epithelium. The activity of NADPH-diaphorase was also examined as a marker of NOS. In the dorsomedial region of the nasal cavity, intensely positive reactions for NADPH-diaphorase were observed in the entire cytoplasm of sensory cells (olfactory cells). By immunohistochemistry, intensely positive reactions for eNOS were also found in the dorsomedial region of the nasal cavity. These reactions were observed on the free border of the olfactory epithelium. By immunoelectron microscopy, positive reactions for eNOS were found in the cilia of olfactory cells. In addition, in situ hybridization analysis of the olfactory epithelium revealed the expression of eNOS mRNA in the olfactory cells. These results indicate the presence of eNOS in the olfactory cells of the rat, and differential expression of eNOS in the olfactory epithelium depending on the regions of the nasal cavity. In addition, NO produced by eNOS may be involved in olfactory perception in the cilia of olfactory cells.
Collapse
Affiliation(s)
- Daisuke Endo
- Basic Veterinary Science, The United Graduate School of Veterinary Sciences, Gifu University, Gifu, Japan
| | | | | | | | | |
Collapse
|
16
|
Bigdai EV, Samoilov VO, Bekusova VV, Kryzhanovskii VE, Dudich BA, Panov VA. Unbiased criteria for the estimation of the transition from unordered to ordered motor activity of olfactory cilia. Biophysics (Nagoya-shi) 2010. [DOI: 10.1134/s0006350910050179] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
17
|
Jenkins PM, McEwen DP, Martens JR. Olfactory cilia: linking sensory cilia function and human disease. Chem Senses 2009; 34:451-64. [PMID: 19406873 DOI: 10.1093/chemse/bjp020] [Citation(s) in RCA: 87] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The olfactory system gives us an awareness of our immediate environment by allowing us to detect airborne stimuli. The components necessary for detection of these odorants are compartmentalized in the cilia of olfactory sensory neurons. Cilia are microtubule-based organelles, which can be found projecting from the surface of almost any mammalian cell, and are critical for proper olfactory function. Mislocalization of ciliary proteins and/or the loss of cilia cause impaired olfactory function, which is now recognized as a clinical manifestation of a broad class of human diseases, termed ciliopathies. Future work investigating the mechanisms of olfactory cilia function will provide us important new information regarding the pathogenesis of human sensory perception diseases.
Collapse
Affiliation(s)
- Paul M Jenkins
- Department of Pharmacology, University of Michigan, 1301 MSRB III, Ann Arbor, MI 48109-5632, USA
| | | | | |
Collapse
|
18
|
Samoilov VO, Bigdai EV, Rudenko YN, Bekusova VV, Dudich BA. Two molecular motility systems of the frog olfactory cilia. Biophysics (Nagoya-shi) 2008. [DOI: 10.1134/s0006350908060134] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
19
|
Chen H, Dadsetan S, Fomina AF, Gong Q. Expressing exogenous functional odorant receptors in cultured olfactory sensory neurons. Neural Dev 2008; 3:22. [PMID: 18786248 PMCID: PMC2546397 DOI: 10.1186/1749-8104-3-22] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2008] [Accepted: 09/11/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Olfactory discrimination depends on the large numbers of odorant receptor genes and differential ligand-receptor signaling among neurons expressing different receptors. In this study, we describe an in vitro system that enables the expression of exogenous odorant receptors in cultured olfactory sensory neurons. Olfactory sensory neurons in the culture express characteristic signaling molecules and, therefore, provide a system to study receptor function within its intrinsic cellular environment. RESULTS We demonstrate that cultured olfactory sensory neurons express endogenous odorant receptors. Lentiviral vector-mediated gene transfer enables successful ectopic expression of odorant receptors. We show that the ectopically expressed mouse I7 is functional in the cultured olfactory sensory neurons. When two different odorant receptors are ectopically expressed simultaneously, both receptor proteins co-localized in the same olfactory sensory neurons up to 10 days in vitro. CONCLUSION This culture technique provided an efficient method to culture olfactory sensory neurons whose morphology, molecular characteristics and maturation progression resembled those observed in vivo. Using this system, regulation of odorant receptor expression and its ligand specificity can be studied in its intrinsic cellular environment.
Collapse
Affiliation(s)
- Huaiyang Chen
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95616, USA
| | - Sepehr Dadsetan
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA
| | - Alla F Fomina
- Department of Physiology and Membrane Biology, School of Medicine, University of California, Davis, California 95616, USA
| | - Qizhi Gong
- Department of Cell Biology and Human Anatomy, School of Medicine, University of California, Davis, California 95616, USA
| |
Collapse
|
20
|
Kleene SJ. The electrochemical basis of odor transduction in vertebrate olfactory cilia. Chem Senses 2008; 33:839-59. [PMID: 18703537 DOI: 10.1093/chemse/bjn048] [Citation(s) in RCA: 143] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Most vertebrate olfactory receptor neurons share a common G-protein-coupled pathway for transducing the binding of odorant into depolarization. The depolarization involves 2 currents: an influx of cations (including Ca2+) through cyclic nucleotide-gated channels and a secondary efflux of Cl- through Ca2+-gated Cl- channels. The relation between stimulus strength and receptor current shows positive cooperativity that is attributed to the channel properties. This cooperativity amplifies the responses to sufficiently strong stimuli but reduces sensitivity and dynamic range. The odor response is transient, and prolonged or repeated stimulation causes adaptation and desensitization. At least 10 mechanisms may contribute to termination of the response; several of these result from an increase in intraciliary Ca2+. It is not known to what extent regulation of ionic concentrations in the cilium depends on the dendrite and soma. Although many of the major mechanisms have been identified, odor transduction is not well understood at a quantitative level.
Collapse
Affiliation(s)
- Steven J Kleene
- Department of Cancer and Cell Biology, University of Cincinnati, PO Box 670667, 231 Albert Sabin Way, Cincinnati, OH 45267-0667, USA.
| |
Collapse
|
21
|
Gutièrrez-Mecinas M, Blasco-Ibáñez JM, Nàcher J, Varea E, Martínez-Guijarro FJ, Crespo C. Distribution of the A3 subunit of the cyclic nucleotide-gated ion channels in the main olfactory bulb of the rat. Neuroscience 2008; 153:1164-76. [PMID: 18434027 DOI: 10.1016/j.neuroscience.2008.03.012] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/29/2008] [Accepted: 03/04/2008] [Indexed: 10/22/2022]
Abstract
Previous data suggest that cyclic GMP (cGMP) signaling can play key roles in the circuitry of the olfactory bulb (OB). Therefore, the expression of cGMP-selective subunits of the cyclic nucleotide-gated ion channels (CNGs) can be expected in this brain region. In the present study, we demonstrate a widespread expression of the cGMP-selective A3 subunit of the cyclic nucleotide-gated ion channels (CNGA3) in the rat OB. CNGA3 appears in principal cells, including mitral cells and internal, medium and external tufted cells. Moreover, it appears in two populations of interneurons, including a subset of periglomerular cells and a group of deep short-axon cells. In addition to neurons, CNGA3-immunoreactivity is found in the ensheathing glia of the olfactory nerve. Finally, an abundant population of CNGA3-containing cells with fusiform morphology and radial processes is found in the inframitral layers. These cells express doublecortin and have a morphology similar to that of the undifferentiated cells that leave the rostral migratory stream and migrate radially through the layers of the OB. Altogether, our results suggest that CNGA3 can play important and different roles in the OB. Channels composed of this subunit can be involved in the processing of the olfactory information taking place in the bulbar circuitry. Moreover, they can be involved in the function of the ensheathing glia and in the radial migration of immature cells through the bulbar layers.
Collapse
Affiliation(s)
- M Gutièrrez-Mecinas
- Departamento de Biología Celular, Unidad de Neurobiología, Facultad de Ciencias Biológicas, Universidad de Valencia, Street Dr. Moliner 50, Burjasot, Spain
| | | | | | | | | | | |
Collapse
|
22
|
Distribution, amplification, and summation of cyclic nucleotide sensitivities within single olfactory sensory cilia. J Neurosci 2008; 28:766-75. [PMID: 18199776 DOI: 10.1523/jneurosci.3531-07.2008] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Submicron local cAMP elevation was used to map the distribution of transduction channels in single olfactory cilia. After the fine fluorescent visualization of the cilium with the laser-scanning confocal microscope, the intraciliary cAMP was jumped locally with the laser beam that photolyzes cytoplasmic caged compounds. Simultaneously, cells' responses were obtained with the whole-cell patch clamp. Responses were observed anywhere within the cilia, showing the broad distribution of transduction channels. For odor detection, such distribution would be useful for expanding the available responding area to increase the quantum efficiency. Also, the stimulus onto only 1 microm region induced >100 pA response operated by >700-2300 channels, although only 1 pA is sufficient for olfactory cells to generate action potentials. The large local response indicates a presence of strong amplification achieved with a high-density distribution of the transduction channels for the local ciliary excitation.
Collapse
|
23
|
McEwen DP, Jenkins PM, Martens JR. Olfactory cilia: our direct neuronal connection to the external world. Curr Top Dev Biol 2008; 85:333-70. [PMID: 19147011 DOI: 10.1016/s0070-2153(08)00812-0] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
An organism's awareness of its surroundings is dependent on sensory function. As antennas to our external environment, cilia are involved in fundamental biological processes such as olfaction, photoreception, and touch. The olfactory system has adapted this organelle for its unique sensory function and optimized it for detection of external stimuli. The elongated and tapering structure of olfactory cilia and their organization into an overlapping meshwork bathed by the nasal mucosa is optimized to enhance odor absorption and detection. As many as 15-30 nonmotile, sensory cilia on dendritic endings of single olfactory sensory neurons (OSNs) compartmentalize signaling molecules necessary for odor detection allowing for efficient and spatially confined responses to sensory stimuli. Although the loss of olfactory cilia or deletion of selected components of the olfactory signaling cascade leads to anosmia, the mechanisms of ciliogenesis and the selected enrichment of signaling molecules remain poorly understood. Much of our current knowledge is the result of elegant electron microscopy studies describing the structure and organization of the olfactory epithelium and cilia. New genetic and cell biological approaches, which compliment these early studies, show promise in elucidating the mechanisms of olfactory cilia assembly, maintenance, and compartmentalization. Importantly, emerging evidence suggests that olfactory dysfunction represents a previously unrecognized clinical manifestation of multiple ciliary disorders. Future work investigating the mechanisms of olfactory dysfunction combining both clinical studies with basic science research will provide us important new information regarding the pathogenesis of human sensory perception diseases.
Collapse
Affiliation(s)
- Dyke P McEwen
- Department of Pharmacology, University of Michigan, Ann Arbor, MI 48109-5632, USA
| | | | | |
Collapse
|
24
|
Lin W, Margolskee R, Donnert G, Hell SW, Restrepo D. Olfactory neurons expressing transient receptor potential channel M5 (TRPM5) are involved in sensing semiochemicals. Proc Natl Acad Sci U S A 2007; 104:2471-6. [PMID: 17267604 PMCID: PMC1892929 DOI: 10.1073/pnas.0610201104] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Olfactory sensory neurons (OSNs) in the main olfactory epithelium respond to environmental odorants. Recent studies reveal that these OSNs also respond to semiochemicals such as pheromones and that main olfactory input modulates animal reproduction, but the transduction mechanism for these chemosignals is not fully understood. Previously, we determined that responses to putative pheromones in the main olfactory system were reduced but not eliminated in mice defective for the canonical cAMP transduction pathway, and we suggested, on the basis of pharmacology, an involvement of phospholipase C. In the present study, we find that a downstream signaling component of the phospholipase C pathway, the transient receptor potential channel M5 (TRPM5), is coexpressed with the cyclic nucleotide-gated channel subunit A2 in a subset of mature OSNs. These neurons project axons primarily to the ventral olfactory bulb, where information from urine and other socially relevant signals is processed. We find that these chemosignals activate a subset of glomeruli targeted by TRPM5-expressing OSNs. Our data indicate that TRPM5-expressing OSNs that project axons to glomeruli in the ventral area of the main olfactory bulb are involved in processing of information from semiochemicals.
Collapse
Affiliation(s)
- Weihong Lin
- *Department of Biological Sciences, University of Maryland Baltimore County, Baltimore, MD 21250
| | - Robert Margolskee
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029
| | - Gerald Donnert
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Stefan W. Hell
- Department of Biophotonics, Max Planck Institute for Biophysical Chemistry, 37070 Göttingen, Germany; and
| | - Diego Restrepo
- Department of Cell and Developmental Biology, Neuroscience Program, and Rocky Mountain Taste and Smell Center, University of Colorado at Denver and Health Sciences Center, Aurora, CO 80045
- To whom correspondence should be addressed at:
Department of Cell and Developmental Biology, University of Colorado at Denver and Health Sciences Center at Fitzsimons, Mail Stop 8108, Building RC1, Room L18-11119, 12801 East 17th Avenue, P.O. Box 6511, Aurora, CO 80045. E-mail:
| |
Collapse
|
25
|
Nicolay DJ, Doucette JR, Nazarali AJ. Transcriptional regulation of neurogenesis in the olfactory epithelium. Cell Mol Neurobiol 2006; 26:803-21. [PMID: 16708285 DOI: 10.1007/s10571-006-9058-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2005] [Accepted: 03/14/2006] [Indexed: 11/30/2022]
Abstract
1. The olfactory epithelium (OE) is a simple structure that gives rise to olfactory sensory neurons (OSNs) throughout life. 2. Numerous transcription factors (TFs) are expressed in regions of the OE which contain progenitor cells and OSNs. The function of some of these TFs in OSN development has been elucidated with the aide of transgenic knockout mice. 3. We review here the current state of knowledge on the role of TFs in OE neurogenesis and relate the expression of these TFs, where possible, to the well-documented phenotype of the cells as they progress through the OSN lineage from progenitor cells to mature neurons.
Collapse
Affiliation(s)
- Danette J Nicolay
- Laboratory of Molecular Biology, College of Pharmacy and Nutrition, University of Saskatchewan, 116 Thorvaldson Building, 110 Science Place, Saskatoon, Saskatchewan, Canada S7N 5C9
| | | | | |
Collapse
|
26
|
Abstract
Olfactory cilia contain the known components of olfactory signal transduction, including a high density of cyclic-nucleotide-gated (CNG) channels. CNG channels play an important role in mediating odor detection. The channels are activated by cAMP, which is formed by a G-protein-coupled transduction cascade. Frog olfactory cilia are 25-200 microm in length, so the spatial distribution of CNG channels along the length should be important in determining the sensitivity of odor detection. We have recorded from excised cilia and modeled diffusion of cAMP into a cilium to determine the spatial distribution of the CNG channels along the ciliary length. The proximal segment, which in frog is the first 20% of the cilium, appears to express a small fraction of the CNG channels, whereas the distal segment contains the majority, mostly clustered in one region.
Collapse
Affiliation(s)
- Richard J Flannery
- Department of Cell Biology, Neurobiology, and Anatomy, University of Cincinnati, Cincinnati, Ohio 45267-0667, USA
| | | | | |
Collapse
|
27
|
Menco BPM. The fine-structural distribution of G-protein receptor kinase 3, beta-arrestin-2, Ca2+/calmodulin-dependent protein kinase II and phosphodiesterase PDE1C2, and a Cl(-)-cotransporter in rodent olfactory epithelia. ACTA ACUST UNITED AC 2006; 34:11-36. [PMID: 16374707 DOI: 10.1007/s11068-005-5045-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2005] [Revised: 02/25/2005] [Accepted: 02/25/2005] [Indexed: 11/28/2022]
Abstract
The sequentially activated molecules of olfactory signal-onset are mostly concentrated in the long, thin distal parts of olfactory epithelial receptor cell cilia. Is this also true for molecules of olfactory signal-termination and -regulation? G-protein receptor kinase 3 (GRK3) supposedly aids in signal desensitization at the level of odor receptors, whereas beta-arrestin-2, Ca2+/calmodulin-dependent protein kinase II (CaMKII) and phosphodiesterase (PDE) PDE1C2 are thought to do so at the level of the adenylyl cyclase, ACIII. The Na+, K(+)-2Cl(-)-cotransporter NKCC1 regulates Cl(-)-channel activity. In an attempt to localize the subcellular sites olfactory signal-termination and -regulation we used four antibodies to GRK3, two to beta-arrestin-2, five to CaMKII (one to both the alpha and beta form, and two each specific to CaMKII alpha and beta), two to PDE1C2, and three to Cl(-)-cotransporters. Only antibodies to Cl(-)-cotransporters labeled cytoplasmic compartments of, especially, supporting cells but also those of receptor cells. For all other antibodies, immunoreactivity was mostly restricted to the olfactory epithelial luminal border, confirming light microscopic studies that had shown that antibodies to GRK3, beta- arrestin-2, CaMKII, and PDE1C2 labeled this region. Labeling did indeed include receptor cell cilia but occurred in microvilli of neighboring supporting cells as well. Apical parts of microvillous cells that are distinct from supporting cells, and also of ciliated respiratory cells, immunoreacted slightly with most antibodies. When peptides were available, antibody preabsorption with an excess of peptide reduced labeling intensities. Though some of the antibodies did label apices and microvilli of vomeronasal (VNO) supporting cells, none immunoreacted with VNO sensory structures.
Collapse
Affiliation(s)
- Bert Ph M Menco
- Department of Neurobiology & Physiology, O. T. Hogan Hall, Northwestern University, 2205 Tech Drive, Evanston, IL 60208-3520, USA.
| |
Collapse
|
28
|
Treloar HB, Uboha U, Jeromin A, Greer CA. Expression of the neuronal calcium sensor protein NCS-1 in the developing mouse olfactory pathway. J Comp Neurol 2005; 482:201-16. [PMID: 15611992 DOI: 10.1002/cne.20431] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Neuron specific calcium sensor 1 (NCS-1) is widely expressed in the developing and adult nervous system. Like calmodulin, NCS-1 is a member of a family of calcium binding proteins that contain EF-hand motifs, which bind calcium and induce conformational changes in the protein. Their binding varies with calcium concentration, allowing them to act as true calcium sensors rather than just calcium binding proteins. This family of proteins has been implicated in important synaptic events including neurotransmitter release and synapse formation. We examined the expression of NCS-1 in the developing and mature olfactory system to determine whether this molecule may be playing a role in establishing and/or maintaining olfactory circuitry. During development, expression of NCS-1 in the olfactory epithelium was localized in the dendritic knobs and axons of olfactory sensory neurons. Axonal expression was down-regulated after synapse formation. In the developing olfactory bulb, NCS-1 was expressed in the processes of mitral/tufted and granule cells. However, in the adult olfactory bulb, strongest expression was found in a subset of periglomerular cells (PGCs). This subset of PGCs did not express other known markers of PGCs including tyrosine hydroxylase, glutamic acid decarboxylase, calbindin, or calretinin, and only partially overlapped with the subpopulation of PGCs that express parvalbumin. Together, these data suggest multiple and overlapping roles of NCS-1 in the developing and mature olfactory system.
Collapse
Affiliation(s)
- Helen B Treloar
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082, USA
| | | | | | | |
Collapse
|
29
|
Murphy GJ, Isaacson JS. Presynaptic cyclic nucleotide-gated ion channels modulate neurotransmission in the mammalian olfactory bulb. Neuron 2003; 37:639-47. [PMID: 12597861 DOI: 10.1016/s0896-6273(03)00057-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Cyclic nucleotide-gated channels (CNGCs) on the dendritic cilia of olfactory receptor neurons (ORNs) are critical for sensory transduction in the olfactory system. Do CNGCs also play a role in the axons and/or nerve terminals of ORNs? We find that the cyclic nucleotides cAMP and cGMP can both facilitate and depress synaptic transmission between olfactory nerve fibers and their targets in olfactory bulb glomeruli. Cyclic nucleotides increase intracellular Ca(2+) in ORN terminals and enhance spontaneous transmitter release; at higher concentrations, cyclic nucleotides depress evoked transmission by altering olfactory nerve excitability. Cyclic nucleotides have no effect on transmission or nerve excitability, however, in mice lacking olfactory CNGCs. Taken together, our results identify a novel role for presynaptic CNGCs in modulating neurotransmission.
Collapse
Affiliation(s)
- Gabe J Murphy
- Neuroscience Graduate Program and Department of Neuroscience, University of California, San Diego, School of Medicine, La Jolla, CA 92093, USA
| | | |
Collapse
|
30
|
Schulze DH, Pyrski M, Ruknudin A, Margolis JW, Polumuri SK, Margolis FL. Sodium-calcium exchangers in olfactory tissue. Ann N Y Acad Sci 2002; 976:67-72. [PMID: 12502536 DOI: 10.1111/j.1749-6632.2002.tb04716.x] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- D H Schulze
- Department of Microbiology-Immunology, University of Maryland School of Medicine, Baltimore, Maryland 21201, USA
| | | | | | | | | | | |
Collapse
|
31
|
Moon C, Yoo JY, Matarazzo V, Sung YK, Kim EJ, Ronnett GV. Leukemia inhibitory factor inhibits neuronal terminal differentiation through STAT3 activation. Proc Natl Acad Sci U S A 2002; 99:9015-20. [PMID: 12084939 PMCID: PMC124415 DOI: 10.1073/pnas.132131699] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
The discovery of stem cells in the adult central nervous system raises questions concerning the neurotrophic factors that regulate postnatal neuronal development. Olfactory receptor neurons (ORNs) are a useful model, because they are capable of robust neurogenesis throughout adulthood. We have investigated the role of leukemia inhibitory factor (LIF) in postnatal neuronal development by using ORNs as a model. LIF is a multifunctional cytokine implicated in various aspects of neuronal development, including phenotype determination, survival, and in response to nerve injury. LIF-deficient mice display significant increases, both in the absolute amount and in the number of cells expressing olfactory marker protein, a marker of mature ORNs. The maturation of ORNs was significantly inhibited by LIF in vitro. LIF activated the STAT3 pathway in ORNs, and transfection of ORNs with a dominant negative form of STAT3 abolished the effect of LIF. These findings demonstrate that LIF negatively regulates ORN maturation via the STAT3 pathway. Thus, LIF plays a critical role in controlling the transition of ORNs to maturity. Consequently, a population of ORNs is maintained in an immature state to facilitate the rapid repopulation of the olfactory epithelium with mature neurons during normal cell turnover or after injury.
Collapse
Affiliation(s)
- Cheil Moon
- Department of Neuroscience, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | | | |
Collapse
|
32
|
Menco BP, Carr VM, Ezeh PI, Liman ER, Yankova MP. Ultrastructural localization of G-proteins and the channel protein TRP2 to microvilli of rat vomeronasal receptor cells. J Comp Neurol 2001; 438:468-89. [PMID: 11559902 DOI: 10.1002/cne.1329] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Microvilli of vomeronasal organ (VNO) sensory epithelium receptor cells project into the VNO lumen. This lumen is continuous with the outside environment. Therefore, the microvilli are believed to be the subcellular sites of VNO receptor cells that interact with incoming VNO-targeted odors, including pheromones. Candidate molecules, which are implicated in VNO signaling cascades, are shown to be present in VNO receptor cells. However, ultrastructural evidence that such molecules are localized within the microvilli is sparse. The present study provides firm evidence that immunoreactivity for several candidate VNO signaling molecules, notably the G-protein subunits G(ialpha2) and G(oalpha), and the transient receptor potential channel 2 (TRP2), is localized prominently and selectively in VNO receptor cell microvilli. Although G(ialpha2) and G(oalpha) are localized separately in the microvilli of two cell types that are otherwise indistinguishable in their apical and microvillar morphology, the microvilli of both cell types are TRP2(+). VNO topographical distinctions were also apparent. Centrally within the VNO sensory epithelium, the numbers of receptor cells with G(ialpha2)(+) and G(oalpha)(+) microvilli were equal. However, near the sensory/non-sensory border, cells with G(ialpha2)(+) microvilli predominated. Scattered ciliated cells in this transition zone resembled neither VNO nor main olfactory organ (MO) receptor cells and may represent the same ciliated cells as those found in the non-sensory part of the VNO. Thus, this study shows that, analogous to the cilia of MO receptor cells, microvilli of VNO receptor cells are enriched selectively in proteins involved putatively in signal transduction. This provides important support for the role of these molecules in VNO signaling.
Collapse
Affiliation(s)
- B P Menco
- Department of Neurobiology and Physiology, Northwestern University, Evanston, Illinois 60208-3520, USA.
| | | | | | | | | |
Collapse
|
33
|
Abstract
The role of ciliary geometry for transduction events was explored by numerical simulation. The changes in intraciliary ion concentrations, suspected to occur during transduction, could thus be estimated. The case of a single excised cilium, having a uniform distribution of membrane channels, voltage clamped to -80 mV, was especially investigated. The axial profile of membrane voltage was that of a leaky cable. The Ca(2+) concentration profile tended to show a maximum in proximal segments, due to a preponderance of Ca(2+) inflow over Ca(2+) export at those locations. The local increase in Ca(2+) concentration activated Cl(-) channels. The resulting current caused a local drop in Cl(-) concentration, especially at the tip of the cilium and in distal segments, accompanied by a drop in ciliary K(+) concentration. In consequence, the membrane Cl(-) current was low in distal segments but stronger in proximal segments, where resupply was sufficient. The model predicts that the Cl(-) depletion will codetermine the time course of the receptor potential or current and the ciliary stimulus-response curve. In conclusion, when modeling with transduction elements presently known to participate, the ciliary geometry has large effects on ion distributions and transduction currents because ciliary ion transport is limited by axial electrodiffusion.
Collapse
Affiliation(s)
- B Lindemann
- Department of Physiology, Universität des Saarlandes, D-66421 Homburg, Germany.
| |
Collapse
|
34
|
Zheng C, Feinstein P, Bozza T, Rodriguez I, Mombaerts P. Peripheral olfactory projections are differentially affected in mice deficient in a cyclic nucleotide-gated channel subunit. Neuron 2000; 26:81-91. [PMID: 10798394 DOI: 10.1016/s0896-6273(00)81140-x] [Citation(s) in RCA: 194] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Axons of olfactory sensory neurons expressing a given odorant receptor converge to a few glomeruli in the olfactory bulb. We have generated mice with unresponsive olfactory sensory neurons by targeted mutagenesis of a cyclic nucleotide-gated channel subunit gene, OCNC1. When these anosmic mice were crossed with mice in which neurons expressing a given odorant receptor can be visualized by coexpression of an axonal marker, the pattern of convergence was affected for one but not another receptor. In a novel paradigm, termed monoallelic deprivation, axons from channel positive or negative neurons that express the same odorant receptor segregate into distinct glomeruli within the same bulb. Thus, the peripheral olfactory projections are in part influenced by mechanisms that depend on neuronal activity.
Collapse
Affiliation(s)
- C Zheng
- The Rockefeller University, New York, New York 10021, USA
| | | | | | | | | |
Collapse
|