1
|
Dusoswa SA, Verhoeff J, van Asten S, Lübbers J, van den Braber M, Peters S, Abeln S, Crommentuijn MH, Wesseling P, Vandertop WP, Twisk JWR, Würdinger T, Noske D, van Kooyk Y, Garcia-Vallejo JJ. The immunological landscape of peripheral blood in glioblastoma patients and immunological consequences of age and dexamethasone treatment. Front Immunol 2024; 15:1343484. [PMID: 38318180 PMCID: PMC10839779 DOI: 10.3389/fimmu.2024.1343484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 01/02/2024] [Indexed: 02/07/2024] Open
Abstract
Background Glioblastomas manipulate the immune system both locally and systemically, yet, glioblastoma-associated changes in peripheral blood immune composition are poorly studied. Age and dexamethasone administration in glioblastoma patients have been hypothesized to limit the effectiveness of immunotherapy, but their effects remain unclear. We compared peripheral blood immune composition in patients with different types of brain tumor to determine the influence of age, dexamethasone treatment, and tumor volume. Methods High-dimensional mass cytometry was used to characterise peripheral blood mononuclear cells of 169 patients with glioblastoma, lower grade astrocytoma, metastases and meningioma. We used blood from medically-refractory epilepsy patients and healthy controls as control groups. Immune phenotyping was performed using FlowSOM and t-SNE analysis in R followed by supervised annotation of the resulting clusters. We conducted multiple linear regression analysis between intracranial pathology and cell type abundance, corrected for clinical variables. We tested correlations between cell type abundance and survival with Cox-regression analyses. Results Glioblastoma patients had significantly fewer naive CD4+ T cells, but higher percentages of mature NK cells than controls. Decreases of naive CD8+ T cells and alternative monocytes and an increase of memory B cells in glioblastoma patients were influenced by age and dexamethasone treatment, and only memory B cells by tumor volume. Progression free survival was associated with percentages of CD4+ regulatory T cells and double negative T cells. Conclusion High-dimensional mass cytometry of peripheral blood in patients with different types of intracranial tumor provides insight into the relation between intracranial pathology and peripheral immune status. Wide immunosuppression associated with age and pre-operative dexamethasone treatment provide further evidence for their deleterious effects on treatment with immunotherapy.
Collapse
Affiliation(s)
- Sophie A. Dusoswa
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
- Department of Neurosurgery, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Jan Verhoeff
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Saskia van Asten
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Joyce Lübbers
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Marlous van den Braber
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Sophie Peters
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Sanne Abeln
- Department of Computer Science, Free University, Amsterdam, Netherlands
| | - Matheus H.W. Crommentuijn
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Pieter Wesseling
- Department of Pathology, Cancer Center Amsterdam, Brain Tumor Center Amsterdam, Amsterdam and Princes Máxima Center for Pediatric Oncology, Amsterdam UMC, VU Amsterdam, Utrecht, Netherlands
| | | | - Jos W. R. Twisk
- Department of Epidemiology and Biostatistics and Biostatistics, Amsterdam Public Health Research Institute, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Thomas Würdinger
- Department of Neurosurgery, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - David Noske
- Department of Neurosurgery, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Yvette van Kooyk
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| | - Juan J. Garcia-Vallejo
- Department of Molecular Cell Biology and Immunology, Amsterdam Infection and Immunity Institute, Cancer Center Amsterdam, Amsterdam UMC, VU Amsterdam, Amsterdam, Netherlands
| |
Collapse
|
2
|
Singh H, Chauhan P, Singh J, Saurabh S, Gautam CS, Kakkar AK. Concomitant use of dexamethasone and tetracyclines: a potential therapeutic option for the management of severe COVID-19 infection? Expert Rev Clin Pharmacol 2021; 14:315-322. [PMID: 33586566 PMCID: PMC7938652 DOI: 10.1080/17512433.2021.1888714] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Accepted: 02/08/2021] [Indexed: 02/07/2023]
Abstract
Introduction: The global coronavirus disease-2019 (COVID-19) pandemic has posed a critical challenge to the research community as well as to the healthcare systems. Severe COVID-19 patients are at a higher risk of developing serious complications and mortality. There is a dire need for safe and effective pharmacotherapy for addressing unmet needs of these patients. Concomitant use of dexamethasone and tetracyclines, by virtue of their immunomodulatory and other relevant pharmacological properties, offers a potential strategy for synergy aimed at improving clinical outcomes.Areas covered: Here we review the potential benefits of combining dexamethasone and tetracyclines (minocycline or doxycycline) for the management of severe COVID-19 patients. We have critically examined the evidence obtained from in silico, experimental, and clinical research. We have also discussed the plausible mechanisms, advantages, and drawbacks of this proposed combination therapy for managing severe COVID-19.Expert opinion: The concomitant use of dexamethasone and one of the tetracyclines among severe COVID-19 patients offers several advantages in terms of additive immunomodulatory effects, cost-effectiveness, wide-availability, and well-known pharmacological properties including adverse-effect profile and contraindications. There is an urgent need to facilitate pilot studies followed by well-designed and adequately-powered multicentric clinical trials to generate conclusive evidence related to utility of this approach.
Collapse
Affiliation(s)
- Harmanjit Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Prerna Chauhan
- Multidisciplinary Research Unit, Government Medical College and Hospital, Chandigarh, India
| | - Jasbir Singh
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
- Department of Pharmacology, Rajindra Hospital, Patiala, India
| | - Saurabh Saurabh
- Department of Neurosurgery, Dayanand Medical College and Hospital, Ludhiana, India
| | - CS Gautam
- Department of Pharmacology, Government Medical College and Hospital, Chandigarh, India
| | - Ashish Kumar Kakkar
- Department of Pharmacology, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| |
Collapse
|
3
|
van den Bossche WBL, Vincent AJPE, Teodosio C, Koets J, Taha A, Kleijn A, de Bruin S, Dik WA, Damasceno D, Almeida J, Dippel DWJ, Dirven CMF, Orfao A, Lamfers MLM, van Dongen JJM. Monocytes carrying GFAP detect glioma, brain metastasis and ischaemic stroke, and predict glioblastoma survival. Brain Commun 2020; 3:fcaa215. [PMID: 33501422 PMCID: PMC7811761 DOI: 10.1093/braincomms/fcaa215] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 01/20/2023] Open
Abstract
Diagnosis and monitoring of primary brain tumours, brain metastasis and acute ischaemic stroke all require invasive, burdensome and costly diagnostics, frequently lacking adequate sensitivity, particularly during disease monitoring. Monocytes are known to migrate to damaged tissues, where they act as tissue macrophages, continuously scavenging, phagocytizing and digesting apoptotic cells and other tissue debris. We hypothesize that upon completion of their tissue-cleaning task, these tissue macrophages might migrate via the lymph system to the bloodstream, where they can be detected and evaluated for their phagolysosomal contents. We discovered a blood monocyte subpopulation carrying the brain-specific glial fibrillary acidic protein in glioma patients and in patients with brain metastasis and evaluated the diagnostic potential of this finding. Blood samples were collected in a cross-sectional study before or during surgery from adult patients with brain lesions suspected of glioma. Together with blood samples from healthy controls, these samples were flowing cytometrically evaluated for intracellular glial fibrillary acidic protein in monocyte subsets. Acute ischaemic stroke patients were tested at multiple time points after onset to evaluate the presence of glial fibrillary acidic protein-carrying monocytes in other forms of brain tissue damage. Clinical data were collected retrospectively. High-grade gliomas (N = 145), brain metastasis (N = 21) and large stroke patients (>100 cm3) (N = 3 versus 6; multiple time points) had significantly increased frequencies of glial fibrillary acidic protein+CD16+ monocytes compared to healthy controls. Based on both a training and validation set, a cut-off value of 0.6% glial fibrillary acidic protein+CD16+ monocytes was established, with 81% sensitivity (95% CI 75–87%) and 85% specificity (95% CI 80–90%) for brain lesion detection. Acute ischaemic strokes of >100 cm3 reached >0.6% of glial fibrillary acidic protein+CD16+ monocytes within the first 2–8 h after hospitalization and subsided within 48 h. Glioblastoma patients with >20% glial fibrillary acidic protein+CD16+ non-classical monocytes had a significantly shorter median overall survival (8.1 versus 12.1 months). Our results and the available literature, support the hypothesis of a tissue-origin of these glial fibrillary acidic protein-carrying monocytes. Blood monocytes carrying glial fibrillary acidic protein have a high sensitivity and specificity for the detection of brain lesions and for glioblastoma patients with a decreased overall survival. Furthermore, their very rapid response to acute tissue damage identifies large areas of ischaemic tissue damage within 8 h after an ischaemic event. These studies are the first to report the clinical applicability for brain tissue damage detection through a minimally invasive diagnostic method, based on blood monocytes and not serum markers, with direct consequences for disease monitoring in future (therapeutic) studies and clinical decision making in glioma and acute ischaemic stroke patients.
Collapse
Affiliation(s)
- Wouter B L van den Bossche
- Department of Neurosurgery, Brain Tumour Center, Erasmus MC, Rotterdam, The Netherlands.,Department of Immunology, Leiden University Medical Center, Leiden, Netherlands.,Department of Immunology, Erasmus MC, Rotterdam, Netherlands
| | - Arnaud J P E Vincent
- Department of Neurosurgery, Brain Tumour Center, Erasmus MC, Rotterdam, The Netherlands
| | - Cristina Teodosio
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Jeroen Koets
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, Netherlands
| | - Aladdin Taha
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands.,Department of Neurology, Erasmus MC, Rotterdam, Netherlands
| | - Anne Kleijn
- Department of Neurosurgery, Brain Tumour Center, Erasmus MC, Rotterdam, The Netherlands
| | - Sandra de Bruin
- Department of Immunology, Leiden University Medical Center, Leiden, Netherlands
| | - Willem A Dik
- Department of Immunology, Erasmus MC, Rotterdam, Netherlands
| | - Daniela Damasceno
- Cytometry Service and Department of Medicine, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, IBSAL and CIBERONC, Salamanca, Spain
| | - Julia Almeida
- Cytometry Service and Department of Medicine, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, IBSAL and CIBERONC, Salamanca, Spain
| | | | - Clemens M F Dirven
- Department of Neurosurgery, Brain Tumour Center, Erasmus MC, Rotterdam, The Netherlands
| | - Alberto Orfao
- Cytometry Service and Department of Medicine, Cancer Research Center (IBMCC-CSIC/USAL), University of Salamanca, IBSAL and CIBERONC, Salamanca, Spain
| | - Martine L M Lamfers
- Department of Neurosurgery, Brain Tumour Center, Erasmus MC, Rotterdam, The Netherlands
| | | | | |
Collapse
|
4
|
Herting CJ, Chen Z, Maximov V, Duffy A, Szulzewsky F, Shayakhmetov DM, Hambardzumyan D. Tumour-associated macrophage-derived interleukin-1 mediates glioblastoma-associated cerebral oedema. Brain 2020; 142:3834-3851. [PMID: 31665239 DOI: 10.1093/brain/awz331] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Revised: 08/12/2019] [Accepted: 09/10/2019] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common and uncompromising primary brain tumour and is characterized by a dismal prognosis despite aggressive treatment regimens. At the cellular level, these tumours are composed of a mixture of neoplastic cells and non-neoplastic cells, including tumour-associated macrophages and endothelial cells. Cerebral oedema is a near-universal occurrence in patients afflicted with glioblastoma and it is almost exclusively managed with the corticosteroid dexamethasone despite significant drawbacks associated with its use. Here, we demonstrate that dexamethasone blocks interleukin-1 production in both bone marrow-derived and brain resident macrophage populations following stimulation with lipopolysaccharide and interferon gamma. Additionally, dexamethasone is shown to inhibit downstream effectors of interleukin-1 signalling in both macrophage populations. Co-culture of bone marrow-derived macrophages with organotypic tumour slices results in an upregulation of interleukin-1 cytokines, an effect that is absent in co-cultured microglia. Genetic ablation of interleukin-1 ligands or receptor in mice bearing RCAS/tv-a-induced platelet-derived growth factor B-overexpressing glioblastoma results in reduced oedema and partial restoration of the integrity of the blood-brain barrier, respectively; similar to results obtained with vascular endothelial growth factor neutralization. We establish that tumours from dexamethasone-treated mice exhibit reduced infiltration of cells of the myeloid and lymphoid compartments, an effect that should be considered during clinical trials for immunotherapy in glioblastoma patients. Additionally, we emphasize that caution should be used when immune profiling and single-cell RNA sequencing data are interpreted from fresh glioblastoma patient samples, as nearly all patients receive dexamethasone after diagnosis. Collectively, this evidence suggests that interleukin-1 signalling inhibition and dexamethasone treatment share therapeutic efficacies and establishes interleukin-1 signalling as an attractive and specific therapeutic target for the management of glioblastoma-associated cerebral oedema.
Collapse
Affiliation(s)
- Cameron J Herting
- Graduate Division of Molecular and Systems Pharmacology, Emory University, Atlanta, GA, USA.,Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Zhihong Chen
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| | - Victor Maximov
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Alyssa Duffy
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Frank Szulzewsky
- Department of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Dmitry M Shayakhmetov
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA
| | - Dolores Hambardzumyan
- Aflac Cancer and Blood Disorders Center of Children's Healthcare of Atlanta and Emory University Department of Pediatrics, Atlanta, GA, USA.,Winship Cancer Institute, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
5
|
Corrick RM, Tu H, Zhang D, Barksdale AN, Muelleman RL, Wadman MC, Li YL. Dexamethasone Protects Against Tourniquet-Induced Acute Ischemia-Reperfusion Injury in Mouse Hindlimb. Front Physiol 2018; 9:244. [PMID: 29615933 PMCID: PMC5870039 DOI: 10.3389/fphys.2018.00244] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2018] [Accepted: 03/06/2018] [Indexed: 01/21/2023] Open
Abstract
Extremity injuries with hemorrhage have been a significant cause of death in civilian medicine and on the battlefield. The use of a tourniquet as an intervention is necessary for treatment to an injured limb; however, the tourniquet and subsequent release results in serious acute ischemia-reperfusion (IR) injury in the skeletal muscle and neuromuscular junction (NMJ). Much evidence demonstrates that inflammation is an important factor to cause acute IR injury. To find effective therapeutic interventions for tourniquet-induced acute IR injuries, our current study investigated effect of dexamethasone, an anti-inflammatory drug, on tourniquet-induced acute IR injury in mouse hindlimb. In C57/BL6 mice, a tourniquet was placed on unilateral hindlimb (left hindlimb) at the hip joint for 3 h, and then released for 24 h to induce IR. Three hours of tourniquet and 24 h of release (24-h IR) caused gastrocnemius muscle injuries including rupture of the muscle sarcolemma and necrosis (42.8 ± 2.3% for infarct size of the gastrocnemius muscle). In the NMJ, motor nerve terminals disappeared, and endplate potentials were undetectable in 24-h IR mice. There was no gastrocnemius muscle contraction in 24-h IR mice. Western blot data showed that inflammatory cytokines (TNFα and IL-1β) were increased in the gastrocnemius muscle after 24-h IR. Treatment with dexamethasone at the beginning of reperfusion (1 mg/kg, i.p.) significantly inhibited expression of TNFα and IL-1β, reduced rupture of the muscle sarcolemma and infarct size (24.8 ± 2.0%), and improved direct muscle stimulation-induced gastrocnemius muscle contraction in 24-h IR mice. However, this anti-inflammatory drug did not improve NMJ morphology and function, and sciatic nerve-stimulated skeletal muscle contraction in 24-h IR mice. The data suggest that one-time treatment with dexamethasone at the beginning of reperfusion only reduced structural and functional impairments of the skeletal muscle but not the NMJ through inhibiting inflammatory cytokines.
Collapse
Affiliation(s)
- Ryan M Corrick
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Huiyin Tu
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Dongze Zhang
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Aaron N Barksdale
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Robert L Muelleman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Michael C Wadman
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| | - Yu-Long Li
- Department of Emergency Medicine, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
6
|
Banuelos J, Cao Y, Shin SC, Bochner BS, Avila P, Li S, Jiang X, Lingen MW, Schleimer RP, Lu NZ. Granulocyte colony-stimulating factor blockade enables dexamethasone to inhibit lipopolysaccharide-induced murine lung neutrophils. PLoS One 2017; 12:e0177884. [PMID: 28542361 PMCID: PMC5438114 DOI: 10.1371/journal.pone.0177884] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 05/04/2017] [Indexed: 01/13/2023] Open
Abstract
Glucocorticoids promote neutrophilic inflammation, the mechanisms of which are poorly characterized. Using a lipopolysaccharide (LPS)-induced acute murine lung injury model, we determined the role of granulocyte colony-stimulating factor (G-CSF) in mouse lung neutrophil numbers in the absence and presence of dexamethasone, a potent glucocorticoid. G-CSF was blocked using a neutralizing antibody. Airway neutrophil numbers, cytokine levels, and lung injury parameters were measured. Glucocorticoid treatment maintained LPS-induced airway G-CSF while suppressing TNF and IL-6. The addition of anti-G-CSF antibodies enabled dexamethasone to decrease airway G-CSF, neutrophils, and lung injury scores. In LPS-challenged murine lungs, structural cells and infiltrating leukocytes produced G-CSF. In vitro using BEAS 2B bronchial epithelial cells, A549 lung epithelial cells, human monocyte-derived macrophages, and human neutrophils, we found that dexamethasone and proinflammatory cytokines synergistically induced G-CSF. Blocking G-CSF production in BEAS 2B cells using shRNAs diminished the ability of BEAS 2B cells to protect neutrophils from undergoing spontaneous apoptosis. These data support that G-CSF plays a role in upregulation of airway neutrophil numbers by dexamethasone in the LPS-induced acute lung injury model.
Collapse
Affiliation(s)
- Jesus Banuelos
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Yun Cao
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Soon Cheon Shin
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Bruce S. Bochner
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Pedro Avila
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Shihong Li
- Department of Pharmacology and Human Tissue Resource Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Xin Jiang
- Department of Pharmacology and Human Tissue Resource Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Mark W. Lingen
- Department of Pharmacology and Human Tissue Resource Center, The University of Chicago, Chicago, Illinois, United States of America
| | - Robert P. Schleimer
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Nick Z. Lu
- Division of Allergy-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * E-mail:
| |
Collapse
|
7
|
Easley JT, Nelson JW, Mellas RE, Sommakia S, Wu C, Trump B, Baker OJ. Aspirin-Triggered Resolvin D1 Versus Dexamethasone in the Treatment of Sjögren's Syndrome-Like NOD/ShiLtJ Mice - A Pilot Study. ACTA ACUST UNITED AC 2015; 1. [PMID: 27110599 DOI: 10.23937/2469-5726/1510027] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Resolvin D1 (RvD1) and its aspirin-triggered epimeric form (AT-RvD1) are endogenous lipid mediators (derived from docosahexaenoic acid, DHA) that control the duration and magnitude of inflammation in models of complex diseases. Our previous studies demonstrated that RvD1-mediated signaling pathways are expressed and active in salivary glands from rodents and humans. Furthermore, treatment of salivary cells with RvD1 blocked TNF-α-mediated inflammatory signals and improved epithelial integrity. The purpose of this pilot study was to determine the feasibility of treatment with AT-RvD1 versus dexamethasone (DEX) on inflammation (i.e., lymphocytic infiltration, cytokine expression and apoptosis) observed in submandibular glands (SMG) from the NOD/ShiLtJ Sjögren's syndrome (SS) mouse model before experimenting with a larger population. NOD/ShiLtJ mice were treated intravenously with NaCl (0.9%, negative control), AT-RvD1 (0.01-0.1 mg/kg) or DEX (4.125-8.25 mg/kg) twice a week for 14 weeks beginning at 4 weeks of age. At 18 weeks of age, SMG were collected for pathological analysis and detection of SS-associated inflammatory genes. The AT-RvD1 treatment alone did not affect lymphocytic infiltration seen in NOD/ShiLtJ mice while DEX partially prevented lymphocytic infiltration. Interestingly, both AT-RvD1 and DEX caused downregulation of SS-associated inflammatory genes and reduction of apoptosis. Results from this pilot study suggest that a systemic treatment with AT-RvD1 and DEX alone attenuated inflammatory responses observed in the NOD/ShiLtJ mice; therefore, they may be considered as potential therapeutic tools in treating SS patients when used alone or in combination.
Collapse
Affiliation(s)
- Justin T Easley
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Joel W Nelson
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Rachel E Mellas
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Salah Sommakia
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Chunhua Wu
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Bryan Trump
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| | - Olga J Baker
- School of Dentistry, University of Utah, Salt Lake City, UT 84108-1201, USA
| |
Collapse
|
8
|
Allen AP, Kennedy PJ, Cryan JF, Dinan TG, Clarke G. Biological and psychological markers of stress in humans: focus on the Trier Social Stress Test. Neurosci Biobehav Rev 2013; 38:94-124. [PMID: 24239854 DOI: 10.1016/j.neubiorev.2013.11.005] [Citation(s) in RCA: 463] [Impact Index Per Article: 38.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2013] [Revised: 11/01/2013] [Accepted: 11/06/2013] [Indexed: 12/24/2022]
Abstract
Validated biological and psychological markers of acute stress in humans are an important tool in translational research. The Trier Social Stress Test (TSST), involving public interview and mental arithmetic performance, is among the most popular methods of inducing acute stress in experimental settings, and reliably increases hypothalamic-pituitary-adrenal axis activation. However, although much research has focused on HPA axis activity, the TSST also affects the sympathetic-adrenal-medullary system, the immune system, cardiovascular outputs, gastric function and cognition. We critically assess the utility of different biological and psychological markers, with guidance for future research, and discuss factors which can moderate TSST effects. We outline the effects of the TSST in stress-related disorders, and if these responses can be abrogated by pharmacological and psychological treatments. Modified TSST protocols are discussed, and the TSST is compared to alternative methods of inducing acute stress. Our analysis suggests that multiple readouts are necessary to derive maximum information; this strategy will enhance our understanding of the psychobiology of stress and provide the means to assess novel therapeutic agents.
Collapse
Affiliation(s)
- Andrew P Allen
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - Paul J Kennedy
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - John F Cryan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Anatomy and Neuroscience, University College Cork, Cork, Ireland
| | - Timothy G Dinan
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland
| | - Gerard Clarke
- Alimentary Pharmabiotic Centre, University College Cork, Cork, Ireland; Department of Psychiatry, University College Cork, Cork, Ireland.
| |
Collapse
|
9
|
A meta-analysis of cytokines in major depression. Biol Psychiatry 2010; 67:446-57. [PMID: 20015486 DOI: 10.1016/j.biopsych.2009.09.033] [Citation(s) in RCA: 3311] [Impact Index Per Article: 220.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2009] [Revised: 08/31/2009] [Accepted: 09/26/2009] [Indexed: 02/08/2023]
Abstract
BACKGROUND Major depression occurs in 4.4% to 20% of the general population. Studies suggest that major depression is accompanied by immune dysregulation and activation of the inflammatory response system (IRS). Our objective was to quantitatively summarize the data on concentrations of specific cytokines in patients diagnosed with a major depressive episode and controls. METHODS We performed a meta-analysis of studies measuring cytokine concentration in patients with major depression, with a database search of the English literature (to August 2009) and a manual search of references. RESULTS Twenty-four studies involving unstimulated measurements of cytokines in patients meeting DSM criteria for major depression were included in the meta-analysis; 13 for tumor necrosis factor (TNF)-alpha, 9 for interleukin (IL)-1beta, 16 for IL-6, 5 for IL-4, 5 for IL-2, 4 for IL-8, 6 for IL-10, and 4 for interferon (IFN)-gamma. There were significantly higher concentrations of TNF-alpha (p < .00001), weighted mean difference (WMD) (95% confidence interval) 3.97 pg/mL (2.24 to 5.71), in depressed subjects compared with control subjects (438 depressed/350 nondepressed). Also, IL-6 concentrations were significantly higher (p < .00001) in depressed subjects compared with control subjects (492 depressed/400 nondepressed) with an overall WMD of 1.78 pg/mL (1.23 to 2.33). There were no significant differences among depressed and nondepressed subjects for the other cytokines studied. CONCLUSIONS This meta-analysis reports significantly higher concentrations of the proinflammatory cytokines TNF-alpha and IL-6 in depressed subjects compared with control subjects. While both positive and negative results have been reported in individual studies, this meta-analytic result strengthens evidence that depression is accompanied by activation of the IRS.
Collapse
|
10
|
Man SFP, Xuekui Zhang, Vessey R, Walker T, Lee K, Park D, Sin DD. The effects of inhaled and oral corticosteroids on serum inflammatory biomarkers in COPD: an exploratory study. Ther Adv Respir Dis 2009; 3:73-80. [PMID: 19465442 DOI: 10.1177/1753465809336697] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Several studies suggest that inhaled and oral corticosteroids repress systemic inflammation in chronic obstructive pulmonary disease (COPD). However, the cytokines that may respond to these medications are unclear. METHOD We used data from 41 patients with a history of stable moderate COPD (average age 64 years) who were randomised to inhaled fluticasone (500 microg twice daily from a Diskus inhaler), oral prednisone (30 mg daily) or placebo for 2 weeks. Using a multiplexed array system, different serum cytokines that have been implicated in COPD pathogenesis were measured. RESULTS We found that compared with placebo, inhaled fluticasone significantly reduced levels of soluble tumour necrosis factor receptor-2 (sTNF-R2) by 24% (95% CI, 7-38%; p = 0.01), monocyte chemoattractant protein-1 by 20% (95% CI, 5-32%; p = 0.01), interferon gamma inducible CXCL10 (IP-10) by 43% (95% CI, 3-66%; p = 0.04), and soluble L-selectin levels by 15% (95% CI, 1-28%; p = 0.04). Compared with placebo, oral prednisone reduced levels of sTNF-R2 by 26% (95% CI, 15-36%; p < 0.001), L-selectin by 22% (95% CI, 8-34%; p = 0.004), intercellular adhesion molecule-1 by 31% (95% CI, 9-48%; p = 0.01), pulmonary and activation-regulated chemokine (PARC) by 18% (95% CI, 2-32%; p = 0.03) and IP-10 by 40% (95% CI, 0-64%; p = 0.05). sTNF-R2, L-selectin and IP-10 were significantly reduced by both oral and inhaled corticosteroids. The other cytokines were not significantly repressed by either oral or inhaled corticosteroids. CONCLUSIONS In summary, inhaled and oral corticosteroids significantly repressed a selected number of systemic cytokines in patients with stable, moderate COPD; most of the steroid-responsive cytokines appear to be chemoattractants.
Collapse
Affiliation(s)
- S F Paul Man
- Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | | | | | | |
Collapse
|
11
|
Effects of cortisol on emotional but not on neutral memory are correlated with peripheral glucocorticoid sensitivity of inflammatory cytokine production. Int J Psychophysiol 2009; 72:74-80. [DOI: 10.1016/j.ijpsycho.2008.03.010] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2007] [Revised: 03/21/2008] [Accepted: 03/25/2008] [Indexed: 11/20/2022]
|
12
|
Reikerås O, Helle A, Krohn CD, Brox JI. Cytokine Responses to Glucocorticoids and Surgery. Eur J Trauma Emerg Surg 2008; 34:141-7. [DOI: 10.1007/s00068-007-7003-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2007] [Accepted: 06/16/2007] [Indexed: 02/04/2023]
|
13
|
Macedo JA, Hesse J, Turner JD, Ammerlaan W, Gierens A, Hellhammer DH, Muller CP. Adhesion molecules and cytokine expression in fibromyalgia patients: increased L-selectin on monocytes and neutrophils. J Neuroimmunol 2007; 188:159-66. [PMID: 17602758 DOI: 10.1016/j.jneuroim.2007.06.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2006] [Revised: 05/30/2007] [Accepted: 06/04/2007] [Indexed: 01/17/2023]
Abstract
Several lines of evidence implicate the immune system in the pathophysiology of fibromyalgia (FM). We investigated the role of cytokines and adhesion molecules involved in immune cell trafficking and the influence of 1.5 mg of dexamethasone (DEX) per os on their expression. L-selectin was elevated on monocytes and neutrophils of FM patients. Differences in group response to DEX were observed for CD11b on NK cells, sICAM-1 and IL-2. This study shows a slight disturbance in the innate immune system of FM patients, and suggests an enhanced adhesion and recruitment of leukocytes to inflammatory sites.
Collapse
Affiliation(s)
- Joana A Macedo
- Institute of Immunology, Laboratoire National de Santé, Luxembourg
| | | | | | | | | | | | | |
Collapse
|
14
|
Schwarz E, Saalmüller A, Gerner W, Claus R. Intraepithelial but not lamina propria lymphocytes in the porcine gut are affected by dexamethasone treatment. Vet Immunol Immunopathol 2005; 105:125-39. [PMID: 15797482 DOI: 10.1016/j.vetimm.2004.12.019] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2003] [Revised: 11/29/2004] [Accepted: 12/21/2004] [Indexed: 12/17/2022]
Abstract
It is well established that glucocorticoids are key regulators of the immune system and act as immunosuppressive agents in high concentrations. In the pig, effects on the gut immune system and trafficking of lymphocytes between tissues and blood plasma were not investigated so far. Twelve pigs of 70 kg were fed 0.4 mg portions of dexamethasone (Dexa) twice daily for 9 days or remained untreated (controls) and were sacrificed for tissue collection at the end of Dexa treatment. Another six pigs with jugular vein catheters were left untreated for 7 days (control period) and then received Dexa for 9 days. Blood was drawn twice during the control period and at days 3, 6 and 9 of the Dexa period for characterization of peripheral blood leukocytes. Cells were obtained from thymus, mesenteric lymph nodes, jejunal mucosa and Peyer's patches. Lymphoid cells from gut tissue were isolated from two fractions: the EDTA-fraction, containing the intraepithelial lymphocytes (IEL), and the Collagenase-fraction, containing the lamina propria lymphocytes (LPL). In all samples, cell counts and phenotypic characterization of cells by flow cytometry (FCM) were performed. In thymus, Dexa led to a more than 90% reduction of the absolute cell number, which was mainly found in the CD4+CD8+ subpopulation. Dexa effects on lymphocytes from mesenteric lymph nodes were less severe (50%) and led mainly to a decrease (71%) of B-lymphocytes. The number of lymphocytes in the EDTA-fraction (IEL) of the jejunal mucosa decreased significantly by 56% in the Dexa-treated animals compared to the controls, whereas the number of lymphocytes in the Collagenase-fraction (LPL) decreased only moderately. In the Peyer's patches, a decreasing tendency in the number of lymphocytes in the EDTA-fraction was observed which, however, was not significant. In blood, monocytes and granulocytes were significantly increased in an order of 60%. The data show that supraphysiological amounts of Dexa remarkably reduce cell numbers in thymus and also in the intraepithelial compartment of the jejunal mucosa and ileal Peyer's patches. In blood, a notable homeostasis was observed for several leukocyte populations whereas both monocytes and granulocytes increased.
Collapse
Affiliation(s)
- Eveline Schwarz
- Institut für Tierhaltung und Tierzüchtung (470), Fachgebiet Tierhaltung und Leistungphysiologie, Universität Hohenheim, Garbenstr. 17, 70599 Stuttgart, Germany
| | | | | | | |
Collapse
|
15
|
Schuld A, Schmid DA, Haack M, Holsboer F, Friess E, Pollmächer T. Hypothalamo-pituitary-adrenal function in patients with depressive disorders is correlated with baseline cytokine levels, but not with cytokine responses to hydrocortisone. J Psychiatr Res 2003; 37:463-70. [PMID: 14563377 DOI: 10.1016/s0022-3956(03)00054-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Dysfunction of the hyopthalamo-pituitary adrenal (HPA) system is frequently found in major depression. In addition, signs of non-specific inflammatory system activation have been reported. However, very little is known about interactions between the HPA and immune systems in depressive patients. To assess HPA system function, we performed a combined dexamethasone suppression and corticotropin-releasing hormone stimulation (DEX/CRH) test in 14 depressive patients. Moreover, baseline nocturnal plasma levels of the inflammatory cytokines interleukin-6 (IL-6) and tumor necrosis factor (TNF)-alpha were measured. In addition, the system was challenged with an intraveneous pulsatile injection of hydrocortisone (1 mg/kg body weight in total) and again cytokine levels were measured across one night. Baseline TNF-alpha levels were negatively correlated with the amount of ACTH released upon CRH stimulation during the DEX/CRH test. Acute hydrocortisone administration suppressed TNF-alpha and IL-6 levels independently of baseline HPA system activity. We conclude that chronic HPA system overactivity in depressed patients might compromise the production of inflammatory cytokines under baseline conditions. However, the responsivity of the cytokine production to acutely administered glucocorticoids does not seem to correlate with the state of the HPA system.
Collapse
Affiliation(s)
- Andreas Schuld
- Max Planck Institute of Psychiatry, Kraepelinstrasse 10, D-80804, Munich, Germany.
| | | | | | | | | | | |
Collapse
|
16
|
Anderson KO, Getto CJ, Mendoza TR, Palmer SN, Wang XS, Reyes-Gibby CC, Cleeland CS. Fatigue and sleep disturbance in patients with cancer, patients with clinical depression, and community-dwelling adults. J Pain Symptom Manage 2003; 25:307-18. [PMID: 12691682 DOI: 10.1016/s0885-3924(02)00682-6] [Citation(s) in RCA: 133] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study compared the severity of fatigue in patients with cancer to the fatigue reported by depressed psychiatric patients and community-dwelling adults. Data were collected for this study during the process of validating a new fatigue assessment tool, the Brief Fatigue Inventory (BFI). The sample included 354 cancer patients, 72 psychiatric patients, and 290 non-patient volunteers. Study subjects reported severity of fatigue and the degree to which fatigue interfered with various aspects of life. Data were also collected on sleep disturbance and demographic variables that might correlate with fatigue. The psychiatric patients reported significantly higher levels of fatigue and fatigue-related interference than the cancer patients, who reported more severe fatigue and interference than the community subjects. The sleep disturbance scores of the cancer patients and the community subjects were significantly correlated with fatigue severity. Although the majority of the psychiatric patients reported sleep disturbance, their sleep disturbance scores were not significantly associated with fatigue severity.
Collapse
Affiliation(s)
- Karen O Anderson
- Department of Symptom Research, Division of Anesthesiology and Critical Care, The University of Texas M. D. Anderson Cancer Center, 1100 Holcombe Boulevard, Box 221, Houston, TX 77030, USA
| | | | | | | | | | | | | |
Collapse
|
17
|
Bauer ME, Papadopoulos A, Poon L, Perks P, Lightman SL, Checkley S, Shanks N. Dexamethasone-induced effects on lymphocyte distribution and expression of adhesion molecules in treatment-resistant depression. Psychiatry Res 2002; 113:1-15. [PMID: 12467941 DOI: 10.1016/s0165-1781(02)00243-3] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Alterations in immune function are associated with major depression and have been related to changes in endocrine function. We investigated whether alterations in immune function were associated with altered basal hypothalamic-pituitary-adrenal (HPA) function (salivary cortisol) and lymphocyte sensitivity to dexamethasone (DEX) intake (1 mg PO). The latter was explored by comparing the impact of DEX-induced changes on peripheral lymphocyte redistribution and expression of adhesion molecules (beta2 integrins and L-selectin). The study included 36 inpatients with treatment-resistant major depression (unipolar subtype) and 31 matched healthy controls. The dexamethasone suppression test (DST) was carried out and used to classify 10 patients as HPA axis non-suppressors. The latter presented significantly higher post-DEX salivary cortisol levels than DST suppressors, 82.0 vs. 8.9 nM l(-1) h(-1). No differences in basal salivary cortisol levels were found between patients and controls. Changes in cell redistribution (CD4(+), CD8(+), CD19(+), CD56(+) and HLADR(+) cells) after DEX administration were more prominent in controls than in patients, but the effects of DEX varied dependent on whether patients exhibited DEX-induced suppression of cortisol secretion. Glucocorticoid-induced suppression of adhesion molecule expression was also generally less marked in patients than controls. Our data indicate that alterations in immune function and steroid regulation associated with depression are not related to elevated basal levels of cortisol and further suggest that lymphocyte steroid resistance is associated with drug-resistant depression.
Collapse
Affiliation(s)
- Moisés E Bauer
- Department of Microbiology, Faculdade de Biociências, Pontifícia Universidade Católica do Rio Grande do Sul, Caixa Postal 1429, 90619-900, Porto Alegre, RS, Brazil.
| | | | | | | | | | | | | |
Collapse
|
18
|
Pichler R, Maschek W, Krieglsteiner S, Raml A, Schmekal B, Berg J. Pro-inflammatory role of serotonin and interleukin-6 in arthritis and spondyloarthropathies--measurement of disease activity by bone scan and effect of steroids. Scand J Rheumatol 2002; 31:41-3. [PMID: 11922199 DOI: 10.1080/030097402317255363] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
Abstract
OBJECTIVE As serotonin is a mediator of inflammatory joint disease, serum levels were investigated in human patients with arthritis for a possible corresponding role as a disease marker. DESIGN 48 patients were evaluated by bone scan for disease activity. 5-HT and CRP were measured in the whole group, and IL-6 in those not yet receiving corticosteroids. The pro-inflammatory parameters were compared to each other and to scintigraphic features. RESULTS The serum levels of serotonin did not correspond to disease activity measured by CRP, IL-6 or activity on joints in skeletal scintigraphy. No difference was seen in comparison to the values of a control group, but when glucocorticoid treatment was included, low 5-HT serum values were observed. A significant correlation between CRP and IL-6 as indicators of inflammation and bone scan results versus CRP could be shown. CONCLUSION The measurement of serum serotonin provides no relevant information about disease activity in synovial inflammation. For monitoring osteoarthritis and synovial inflammation, bone scan and laboratory determination of CRP and IL-6 together appear to present useful information about infestation in the disease process.
Collapse
Affiliation(s)
- Robert Pichler
- Institute for Nuclear Medicine and Endocrinology, General Hospital Linz, Austria.
| | | | | | | | | | | |
Collapse
|