1
|
Reich N, Hölscher C. Cholecystokinin (CCK): a neuromodulator with therapeutic potential in Alzheimer's and Parkinson's disease. Front Neuroendocrinol 2024; 73:101122. [PMID: 38346453 DOI: 10.1016/j.yfrne.2024.101122] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/04/2024] [Accepted: 01/25/2024] [Indexed: 02/16/2024]
Abstract
Cholecystokinin (CCK) is a neuropeptide modulating digestion, glucose levels, neurotransmitters and memory. Recent studies suggest that CCK exhibits neuroprotective effects in Alzheimer's disease (AD) and Parkinson's disease (PD). Thus, we review the physiological function and therapeutic potential of CCK. The neuropeptide facilitates hippocampal glutamate release and gates GABAergic basket cell activity, which improves declarative memory acquisition, but inhibits consolidation. Cortical CCK alters recognition memory and enhances audio-visual processing. By stimulating CCK-1 receptors (CCK-1Rs), sulphated CCK-8 elicits dopamine release in the substantia nigra and striatum. In the mesolimbic pathway, CCK release is triggered by dopamine and terminates reward responses via CCK-2Rs. Importantly, activation of hippocampal and nigral CCK-2Rs is neuroprotective by evoking AMPK activation, expression of mitochondrial fusion modulators and autophagy. Other benefits include vagus nerve/CCK-1R-mediated expression of brain-derived neurotrophic factor, intestinal protection and suppression of inflammation. We also discuss caveats and the therapeutic combination of CCK with other peptide hormones.
Collapse
Affiliation(s)
- Niklas Reich
- The ALBORADA Drug Discovery Institute, University of Cambridge, Island Research Building, Cambridge Biomedical Campus, Hills Road, Cambridge CB2 0AH, UK; Faculty of Health and Medicine, Biomedical & Life Sciences Division, Lancaster University, Lancaster LA1 4YQ, UK.
| | - Christian Hölscher
- Second associated Hospital, Neurology Department, Shanxi Medical University, Taiyuan, Shanxi, China; Henan Academy of Innovations in Medical Science, Neurodegeneration research group, Xinzhen, Henan province, China
| |
Collapse
|
2
|
Patharapankal EJ, Ajiboye AL, Mattern C, Trivedi V. Nose-to-Brain (N2B) Delivery: An Alternative Route for the Delivery of Biologics in the Management and Treatment of Central Nervous System Disorders. Pharmaceutics 2023; 16:66. [PMID: 38258077 PMCID: PMC10818989 DOI: 10.3390/pharmaceutics16010066] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/21/2023] [Accepted: 12/26/2023] [Indexed: 01/24/2024] Open
Abstract
In recent years, there have been a growing number of small and large molecules that could be used to treat diseases of the central nervous system (CNS). Nose-to-brain delivery can be a potential option for the direct transport of molecules from the nasal cavity to different brain areas. This review aims to provide a compilation of current approaches regarding drug delivery to the CNS via the nose, with a focus on biologics. The review also includes a discussion on the key benefits of nasal delivery as a promising alternative route for drug administration and the involved pathways or mechanisms. This article reviews how the application of various auxiliary agents, such as permeation enhancers, mucolytics, in situ gelling/mucoadhesive agents, enzyme inhibitors, and polymeric and lipid-based systems, can promote the delivery of large molecules in the CNS. The article also includes a discussion on the current state of intranasal formulation development and summarizes the biologics currently in clinical trials. It was noted that significant progress has been made in this field, and these are currently being applied to successfully transport large molecules to the CNS via the nose. However, a deep mechanistic understanding of this route, along with the intimate knowledge of various excipients and their interactions with the drug and nasal physiology, is still necessary to bring us one step closer to developing effective formulations for nasal-brain drug delivery.
Collapse
Affiliation(s)
- Elizabeth J. Patharapankal
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | - Adejumoke Lara Ajiboye
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| | | | - Vivek Trivedi
- Medway School of Pharmacy, University of Kent, Central Avenue, Chatham Maritime, Canterbury ME4 4TB, UK; (E.J.P.); (A.L.A.)
| |
Collapse
|
3
|
Drug delivery to the brain via the nasal route of administration: exploration of key targets and major consideration factors. JOURNAL OF PHARMACEUTICAL INVESTIGATION 2023; 53:119-152. [PMID: 35910081 PMCID: PMC9308891 DOI: 10.1007/s40005-022-00589-5] [Citation(s) in RCA: 76] [Impact Index Per Article: 38.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/30/2022] [Indexed: 01/06/2023]
Abstract
Background Cranial nerve-related diseases such as brain tumors, Alzheimer's disease, and epilepsy are serious diseases that continue to threaten human. Brain-related diseases are increasing worldwide, including in the United States and Korea, and these increases are closely related to the exposure to harmful substances and excessive stress caused by rapid industrialization and environmental pollution. Drug delivery to the brain is very important for the effective prevention and treatment of brain-related diseases. However, due to the presence of the blood-brain barrier and the extensive first-pass metabolism effect, the general routes of administration such as oral and intravenous routes have limitations in drug delivery to the brain. Therefore, as an alternative, the nasal-brain drug delivery route is attracting attention as a route for effective drug delivery to the brain. Areas covered This review includes physiological factors, advantages, limitations, current application status, especially in clinical applications, and the necessary factors for consideration in formulation development related to nasal-brain drug delivery. Expert opinion The nasal-brain drug delivery route has the advantage of enhancing drug delivery to the brain locally, mainly through the olfactory route rather than the systemic circulation. The nasal-brain lymphatic system has recently attracted attention, and it has been implied that the delivery of anticancer drugs to the brain nervous system is possible effectively. However, there are limitations such as low drug permeability, as well as nasal mucosa and the mucociliary system, as obstacles in nasal-brain drug delivery. Therefore, to overcome the limitations of nasal-brain drug delivery, the use of nanocarriers and mucoadhesive agents is being attempted. However, very few drugs have been officially approved for clinical application via the nasal-brain drug delivery route. This is probably because the understanding of and related studies on nasal-brain drug delivery are limited. In this review, we tried to explore the major considerations and target factors in drug delivery through the nasal-brain route based on physiological knowledge and formulation research information. This will help to provide a mechanistic understanding of drug delivery through the nasal-brain route and bring us one step closer to developing effective formulations and drugs in consideration of the key factors for nasal-brain drug delivery.
Collapse
|
4
|
Trevino JT, Quispe RC, Khan F, Novak V. Non-Invasive Strategies for Nose-to-Brain Drug Delivery. JOURNAL OF CLINICAL TRIALS 2020; 10:439. [PMID: 33505777 PMCID: PMC7836101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Intranasal drug administration is a promising method for delivering drugs directly to the brain. Animal studies have described pathways and potential brain targets, but nose-to-brain delivery and treatment efficacy in humans remains debated. We describe the proposed pathways and barriers for nose-to-brain drug delivery in humans, drug properties that influence central nervous system delivery, clinically tested methods to enhance absorption, and the devices used in clinical trials. This review compiles the available evidence for nose-to-brain drug delivery in humans and summarizes the factors involved in nose-to-brain drug delivery.
Collapse
Affiliation(s)
- J T Trevino
- Department of Neurology, SAFE Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - R C Quispe
- Department of Neurology, SAFE Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - F Khan
- Department of Neurology, SAFE Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - V Novak
- Department of Neurology, SAFE Laboratory, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
5
|
Heinzlmann A, Oláh M, Köves K. Intranasal application of PACAP and β-cyclodextrin before the "critical period of proestrous stage" can block ovulation. Biol Futur 2019; 70:62-70. [PMID: 34554429 DOI: 10.1556/019.70.2019.08] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 11/12/2018] [Indexed: 11/19/2022]
Abstract
INTRODUCTION It was previously shown that intracerebroventricular administration of pituitary adenylate cyclase-activating polypeptide (PACAP) prior to GnRH mobilization in proestrus prevents ovulation in rats. In this study, we examined whether PACAP given intranasally could influence luteinizing hormone (LH) and prolactin (PRL) surges and ovulation. METHODS On the day of proestrus PACAP, p-cyclodextrin (modifier of blood-brain barrier) or PACAP + p-cyclodextrin was applied intranasally between 12:30 and 13:00. Blood samples were taken at 16:00, 18:00, and 20:00 for measuring plasma hormone levels. In the next morning, the expelled ova were counted. p-Cyclodextrin was also administered to male and diestrous female rats between 12:30 and 13:00 and blood was taken at 18:00. RESULTS PACAP prevented LH and PRL surges and ovulation in about half of the rats, p-cyclodextrin alone more effectively prevented ovulation. When PACAP and p-cyclodextrin were administered together, more rats ovulated like when PACAP given alone. p-Cyclodextrin did not influence LH and PRL levels in diestrous females; however, in males, it significantly enhanced PRL level. DISCUSSION Not only the intracerebroventricular, but the intranasal application of PACAP prevented ovulation. p-Cyclodextrin alone is more effective than PACAP and enhances PRL levels in male rats. PACAP and p-cyclodextrin given together weaken each other's effect. p-Cyclodextrin, as excipient of various drugs, has to be used carefully in human medications.
Collapse
Affiliation(s)
- Andrea Heinzlmann
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tuzolto u. 58., H-1094, Budapest, Hungary
| | - Márk Oláh
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tuzolto u. 58., H-1094, Budapest, Hungary
| | - Katalin Köves
- Department of Anatomy, Histology and Embryology, Faculty of Medicine, Semmelweis University, Tuzolto u. 58., H-1094, Budapest, Hungary.
| |
Collapse
|
6
|
Abstract
Social dysfunction is a core symptom of many psychiatric disorders and current medications have little or no remedial effects on this. Following on from extensive studies on animal models demonstrating that the neuropeptide oxytocin plays an important role in social recognition and bonding, human-based research has explored its therapeutic potential for social dysfunction in psychiatric disorders. Here we outline the historical background of this human-based research and some of the current methodological challenges it is facing. To date, research has primarily attempted to establish functional effects through measuring altered endogenous concentrations, observing effects of exogenous administration and by investigating the effects of polymorphisms and epigenetic modifications of the oxytocin receptor gene. We summarize some of the key findings on behavioral and neural effects that have been reported in healthy subjects in the context of social cognition which have provided encouragement that oxytocin could represent a promising therapeutic target. At the same time, we have identified a number of key areas where we urgently need further information about optimal dosing strategies and interactions with other peptide and transmitter systems. Finally, we have summarized current translational findings, particularly in the context of therapeutic outcomes of intranasal oxytocin administration in autism and schizophrenia. These clinical findings while somewhat varied in outcome do offer increasing cause for optimism that targeting the oxytocin system may provide a successful therapeutic approach for social dysfunction. However, future research needs to focus on the most effective treatment strategy and which types of individuals are likely to benefit most.
Collapse
|
7
|
Jain DS, Bajaj AN, Athawale RB, Shikhande SS, Pandey A, Goel PN, Gude RP, Patil S, Raut P. Thermosensitive PLA based nanodispersion for targeting brain tumor via intranasal route. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2016; 63:411-21. [PMID: 27040235 DOI: 10.1016/j.msec.2016.03.015] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2015] [Revised: 01/19/2016] [Accepted: 03/03/2016] [Indexed: 11/18/2022]
Abstract
Delivery of drugs to the brain via nasal route has been studied by many researchers. However, low residence time, mucociliary clearance and enzymatically active environment of nasal cavity pose many challenges to successful nasal delivery of drugs. We aim to deliver methotrexate by designing thermosensitive nanodispersion exhibiting enhanced residence time in nasal cavity and bypassing the blood brain barrier (BBB). PLA nanoparticles were developed using solvent evaporation technique. The developed nanoparticles were further dispersed in prepared thermosensitive vehicle of poloxamer 188 and Carbopol 934 to impart the property of increased residence time. The formulated nanoparticles demonstrated no interaction with the simulated nasal fluids (SNF), mucin, serum proteins and erythrocytes which demonstrate the safety of developed formulation for nasal administration. The penetration property of nanoparticles though the nasal mucosa was higher than the pure drug due to low mucociliary clearance. The developed nanoparticles diffused though the membrane pores and rapidly distributed into the brain portions compared to the pure drug. There was detectable and quantifiable amount of drug seen in the brain as demonstrated by in vivo brain distribution studies with considerably low amount of drug deposition in the lungs. The pharmacokinetic parameters demonstrated the enhancement in circulation half life, area under curve (AUC) and Cmax of the drug when administered intranasal in encapsulated form. Thus, the thermosensitive nanodispersions are surely promising delivery systems for delivering anticancer agents though the nasal route for potential treatment of brain tumors.
Collapse
Affiliation(s)
- Darshana S Jain
- C.U. Shah College of Pharmacy, S.N.D.T Women's University, Juhu Tara Road, Santacruz (West), Mumbai 400 049, India.
| | - Amrita N Bajaj
- C.U. Shah College of Pharmacy, S.N.D.T Women's University, Juhu Tara Road, Santacruz (West), Mumbai 400 049, India
| | - Rajani B Athawale
- C.U. Shah College of Pharmacy, S.N.D.T Women's University, Juhu Tara Road, Santacruz (West), Mumbai 400 049, India.
| | - Shruti S Shikhande
- C.U. Shah College of Pharmacy, S.N.D.T Women's University, Juhu Tara Road, Santacruz (West), Mumbai 400 049, India
| | - Abhijeet Pandey
- H. R Patel Institute of Pharmaceutical Education and Research, Shirpur, Maharashtra, India
| | - Peeyush N Goel
- Gude Lab, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410 210, India
| | - Rajiv P Gude
- Gude Lab, Advanced Centre for Treatment, Research & Education in Cancer (ACTREC), Tata Memorial Centre, Kharghar, Navi Mumbai 410 210, India
| | | | - Preeti Raut
- Cipla Pvt. Ltd., Vikhroli (West), Mumbai, India
| |
Collapse
|
8
|
Hamidovic A. Position on zinc delivery to olfactory nerves in intranasal insulin phase I-III clinical trials. Contemp Clin Trials 2015; 45:277-280. [PMID: 26386292 DOI: 10.1016/j.cct.2015.08.011] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Revised: 08/18/2015] [Accepted: 08/23/2015] [Indexed: 11/29/2022]
Abstract
Zinc in pancreatic insulin is essential for processing and action of the peptide, while in commercial preparations zinc promotes hexameric structure and prevents aggregate formation. In 2002, for the first time, insulin was delivered to humans intranasally with resulting cerebrospinal fluid insulin increases, but steady peripheral insulin levels. The novel method of increasing brain insulin levels without changes in the periphery resulted in an expansion of brain insulin research in clinical trials. As pre-clinical research has shown that brain insulin modulates a number functions, including food cravings and eating behavior, learning and memory functions, stress and mood regulation; realization of beneficial effects of insulin in modulating these functions in clinical populations became a possibility with the new direct-to-brain insulin delivery methodology. However, zinc, being integral to insulin structure and function, is neurotoxic, and has resulted in adverse effects to human health. In the last century, intranasal zinc was given preventively during the time of polio outbreak, and in the 21st century intranasal zinc was widely used over the counter to prevent common cold. In both cases, patients experienced partial or complete loss of smell. This paper is the first one to analyze zinc salts and concentrations of those two epidemiological adversities and directly compare formulations distributed to the public with animal toxicity data. The information gained from animal and epidemiological data provides a foundation for the formation of opinion given in this paper regarding safety of intranasal zinc in emerging clinical trials with intranasal insulin.
Collapse
Affiliation(s)
- A Hamidovic
- College of Pharmacy, University of New Mexico, MSC09 5360, 1 University of New Mexico, Albuquerque, NM 87131-0001, United States.
| |
Collapse
|
9
|
Jiang Y, Li Y, Liu X. Intranasal delivery: circumventing the iron curtain to treat neurological disorders. Expert Opin Drug Deliv 2015. [PMID: 26206202 DOI: 10.1517/17425247.2015.1065812] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
INTRODUCTION The blood-brain barrier (BBB) is like an iron curtain that prevents exogenous substances, including most drugs, from entering the CNS. Intranasal delivery has been demonstrated to circumvent the BBB due to the special anatomy of the olfactory and trigeminal neural pathways that connect the nasal mucosa with the brain and the perivascular pathway within the CNS. In the last two decades, the concepts, mechanisms and pathways of intranasal delivery to the CNS have led to great success both in preclinical and clinical studies. More researchers have translated results from bench to bedside, and a number of publications have reported the clinical application of intranasal delivery. AREAS COVERED This review summarizes results from recent clinical trials utilizing intranasal delivery of therapeutics to explore its pharmacokinetics and application to treating neurological disorders. Moreover, existing problems with the methods and possible solutions have also been discussed. The promising results from clinical trials have demonstrated that intranasal delivery provides an extraordinary approach for circumventing the BBB. Many drugs, including high-molecular-weight molecules, could potentially improve the treatment of neurological disorders via intranasal administration. EXPERT OPINION Intranasal delivery is a novel method with great potential for delivering and targeting therapeutics to the CNS to treat neurological disorders.
Collapse
Affiliation(s)
- Yongjun Jiang
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Yun Li
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| | - Xinfeng Liu
- a Department of Neurology, Jinling Hospital, Medical School of Nanjing University , 305 East Zhongshan Road, Nanjing 210002, Jiangsu Province, China +86 25 8086 0124 ; +86 25 8466 4563 ;
| |
Collapse
|
10
|
Jafarieh O, Md S, Ali M, Baboota S, Sahni JK, Kumari B, Bhatnagar A, Ali J. Design, characterization, and evaluation of intranasal delivery of ropinirole-loaded mucoadhesive nanoparticles for brain targeting. Drug Dev Ind Pharm 2014; 41:1674-81. [PMID: 25496439 DOI: 10.3109/03639045.2014.991400] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
CONTEXT Parkinson disease (PD) is a common, progressive neurodegenerative disorder, characterized by marked depletion of striatal dopamine and degeneration of dopaminergic neurons in the substantia nigra. OBJECTIVE The purpose of the present study was to investigate the possibility of targeting an anti-Parkinson's drug ropinirole (RH) to the brain using polymeric nanoparticles. MATERIALS AND METHODS Ropinirole hydrochloride (RH)-loaded chitosan nanoparticles (CSNPs) were prepared by an ionic gelation method. The RH-CSNPs were characterized for particle size, polydispersity index (PDI), zeta potential, loading capacity, entrapment efficiency in vitro release study, and in vivo distribution after intranasal administration. RESULTS AND DISCUSSION The RH-CSNPs showed sustained release profiles for up to 18 h. The RH concentrations (% Radioactivity/g) in the brain following intranasal administration (i.n.) of RH-CSNPs were found to be significantly higher at all the time points compared with RH solution. The concentration of RH was highest in the liver (7.210 ± 0.52), followed by kidneys (6.862 ± 0.62), intestine (4.862 ± 0.45), and lungs (4.640 ± 0.92) in rats following i.n. administration of RH-CSNPs. Gamma scintigraphy imaging in rats was performed to ascertain the localization of drug in the brain following intranasal administration of formulations. The brain/blood ratios obtained (0.251 ± 0.09 and 0.386 ± 0.57 of RH (i.n.) and RH-CSNPs (i.n.), respectively) at 0.5 h are indicative of direct nose to brain transport, bypassing the blood-brain barrier (BBB). CONCLUSION The novel formulation showed the superiority of nose to brain delivery of RH using mucoadhesive nanoparticles compared with other delivery routes reported earlier.
Collapse
Affiliation(s)
- Omidreza Jafarieh
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , Hamdard Nagar , New Delhi , India
| | - Shadab Md
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , Hamdard Nagar , New Delhi , India .,b Department of Pharmaceutical Technology, School of Pharmacy , International Medical University (IMU) , Bukit Jalil , Kuala Lumpur , Malaysia
| | - Mushir Ali
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , Hamdard Nagar , New Delhi , India
| | - Sanjula Baboota
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , Hamdard Nagar , New Delhi , India
| | - J K Sahni
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , Hamdard Nagar , New Delhi , India .,c Department of Pharmaceutics , Khalsa College of Pharmacy , Amritsar , India
| | - Bhavna Kumari
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , Hamdard Nagar , New Delhi , India .,d Department of Pharmaceutics , Dehradun Institute of Technology (DIT) , Dehradun , Uttaranchal , India , and
| | - Aseem Bhatnagar
- e Department of Radiopharmaceuticals , Institute of Nuclear Medicine and Allied Sciences (INMAS) , New Delhi , India
| | - Javed Ali
- a Department of Pharmaceutics, Faculty of Pharmacy , Jamia Hamdard , Hamdard Nagar , New Delhi , India
| |
Collapse
|
11
|
Agile delivery of protein therapeutics to CNS. J Control Release 2014; 190:637-63. [PMID: 24956489 DOI: 10.1016/j.jconrel.2014.06.017] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 06/10/2014] [Accepted: 06/13/2014] [Indexed: 12/11/2022]
Abstract
A variety of therapeutic proteins have shown potential to treat central nervous system (CNS) disorders. Challenge to deliver these protein molecules to the brain is well known. Proteins administered through parenteral routes are often excluded from the brain because of their poor bioavailability and the existence of the blood-brain barrier (BBB). Barriers also exist to proteins administered through non-parenteral routes that bypass the BBB. Several strategies have shown promise in delivering proteins to the brain. This review, first, describes the physiology and pathology of the BBB that underscore the rationale and needs of each strategy to be applied. Second, major classes of protein therapeutics along with some key factors that affect their delivery outcomes are presented. Third, different routes of protein administration (parenteral, central intracerebroventricular and intraparenchymal, intranasal and intrathecal) are discussed along with key barriers to CNS delivery associated with each route. Finally, current delivery strategies involving chemical modification of proteins and use of particle-based carriers are overviewed using examples from literature and our own work. Whereas most of these studies are in the early stage, some provide proof of mechanism of increased protein delivery to the brain in relevant models of CNS diseases, while in few cases proof of concept had been attained in clinical studies. This review will be useful to broad audience of students, academicians and industry professionals who consider critical issues of protein delivery to the brain and aim developing and studying effective brain delivery systems for protein therapeutics.
Collapse
|
12
|
Lalatsa A, Schatzlein AG, Uchegbu IF. Strategies to deliver peptide drugs to the brain. Mol Pharm 2014; 11:1081-93. [PMID: 24601686 DOI: 10.1021/mp400680d] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Neurological diseases such as neurodegeneration, pain, psychiatric disorders, stroke, and brain cancers would greatly benefit from the use of highly potent and specific peptide pharmaceuticals. Peptides are especially desirable because of their low inherent toxicity. The presence of the blood brain barrier (BBB), their short duration of action, and their need for parenteral administration limits their clinical use. However, over the past decade there have been significant advances in delivering peptides to the central nervous system. Angiopep peptides developed by Angiochem (Montreal, Canada), transferrin antibodies developed by ArmaGen (Santa Monica, USA), and cell penetrating peptides have all shown promise in delivering therapeutic peptides across the BBB after intravenous administration. Noninvasive methods of delivering peptides to the brain include the use of chitosan amphiphile nanoparticles for oral delivery and nose to brain strategies. The uptake of the chitosan amphiphile nanoparticles by the gastrointestinal epithelium is important for oral peptide delivery. Finally protecting peptides from plasma degradation is integral to the success of most of these peptide delivery strategies.
Collapse
Affiliation(s)
- Aikaterini Lalatsa
- Department of Pharmaceutics, School of Pharmacy and Biomedical Sciences, University of Portsmouth , St Michael's Building 5.05, White Swan Road, Portsmouth, PO1 2DT, U.K
| | | | | |
Collapse
|
13
|
Veening JG, Olivier B. Intranasal administration of oxytocin: behavioral and clinical effects, a review. Neurosci Biobehav Rev 2013; 37:1445-65. [PMID: 23648680 PMCID: PMC7112651 DOI: 10.1016/j.neubiorev.2013.04.012] [Citation(s) in RCA: 139] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2012] [Revised: 04/22/2013] [Accepted: 04/24/2013] [Indexed: 12/11/2022]
Abstract
The mechanisms behind the effects of IN-applied substances need more attention. The mechanisms involved in the brain-distribution of IN-OT are completely unexplored. The possibly cascading effects of IN-OT on the intrinsic OT-system require serious investigation. IN-OT induces clear and specific changes in neural activation. IN-OT is a promising approach to treat certain clinical symptoms.
The intranasal (IN-) administration of substances is attracting attention from scientists as well as pharmaceutical companies. The effects are surprisingly fast and specific. The present review explores our current knowledge about the routes of access to the cranial cavity. ‘Direct-access-pathways’ from the nasal cavity have been described but many additional experiments are needed to answer a variety of open questions regarding anatomy and physiology. Among the IN-applied substances oxytocin (OT) has an extensive history. Originally applied in women for its physiological effects related to lactation and parturition, over the last decade most studies focused on their behavioral ‘prosocial’ effects: from social relations and ‘trust’ to treatment of ‘autism’. Only very recently in a microdialysis study in rats and mice, the ‘direct-nose-brain-pathways’ of IN-OT have been investigated directly, implying that we are strongly dependent on results obtained from other IN-applied substances. Especially the possibility that IN-OT activates the ‘intrinsic’ OT-system in the hypothalamus as well needs further clarification. We conclude that IN-OT administration may be a promising approach to influence human communication but that the existing lack of information about the neural and physiological mechanisms involved is a serious problem for the proper understanding and interpretation of the observed effects.
Collapse
Affiliation(s)
- Jan G Veening
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, P.O. Box 80082, 3508 TB, Utrecht, The Netherlands; Department of Anatomy (109), Radboud University of Medical Sciences, P.O. Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | | |
Collapse
|
14
|
Pardeshi CV, Belgamwar VS. Direct nose to brain drug delivery via integrated nerve pathways bypassing the blood-brain barrier: an excellent platform for brain targeting. Expert Opin Drug Deliv 2013; 10:957-72. [PMID: 23586809 DOI: 10.1517/17425247.2013.790887] [Citation(s) in RCA: 277] [Impact Index Per Article: 23.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
INTRODUCTION The blood-brain barrier (BBB) represents a stringent barrier for delivery of neurotherapeutics in vivo. An attempt to overcome this barrier is represented by the direct transport of drugs from the nose to the brain along the olfactory and trigeminal nerve pathways. These nerve pathways initiate in the nasal cavity at olfactory neuroepithelium and terminate in the brain. An enormous range of neurotherapeutics, both macromolecules and low molecular weight drugs, can be delivered to the central nervous system (CNS) via this route. AREAS COVERED Present review highlights the literature on the anatomy-physiology of the nasal cavity, pathways and mechanisms of neurotherapeutic transport across nasal epithelium and their biofate and various strategies to enhance direct nose to brain drug delivery. The authors also emphasize a variety of drug molecules and carrier systems delivered via this route for treating CNS disorders. Patents related to direct nose to brain drug delivery systems have also been listed. EXPERT OPINION Direct nose to brain drug delivery system is a practical, safe, non-invasive and convenient form of formulation strategy and could be viewed as an excellent alternative approach to conventional dosage forms. Existence of a direct transport route from the nasal cavity to the brain, bypassing the BBB, would offer an exciting mode of delivering neurotherapeutic agents.
Collapse
Affiliation(s)
- Chandrakantsing Vijaysing Pardeshi
- R C Patel Institute of Pharmaceutical Education and Research, Department of Pharmaceutics, Near Karwand Naka, Shirpur, 425405, Maharashtra, India.
| | | |
Collapse
|
15
|
Heinzlmann A, Kiss G, Tóth ZE, Dochnal R, Pál Á, Sipos I, Manczinger M, Szabó G, Hashimoto H, Köves K. Intranasal application of secretin, similarly to intracerebroventricular administration, influences the motor behavior of mice probably through specific receptors. J Mol Neurosci 2012; 48:558-64. [PMID: 22752505 DOI: 10.1007/s12031-012-9839-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 06/11/2012] [Indexed: 11/27/2022]
Abstract
Secretin and its receptors show wide distribution in the central nervous system. It was demonstrated previously that intravenous (i.v.) and intracerebroventricular (i.c.v.) application of secretin influenced the behavior of rat, mouse, and human. In our previous experiment, we used a special animal model, Japanese waltzing mice (JWM). These animals run around without stopping (the ambulation distance is very limited) and they do not bother with their environment. The i.c.v. secretin attenuated this hyperactive repetitive movement. In the present work, the effect of i.c.v. and intranasal (i.n.) application of secretin was compared. We have also looked for the presence of secretin receptors in the brain structures related to motor functions. Two micrograms of i.c.v. secretin improved the horizontal movement of JWM, enhancing the ambulation distance. It was nearly threefold higher in treated than in control animals. The i.n. application of secretin to the left nostril once or twice a day or once for 3 days more effectively enhanced the ambulation distance than i.c.v. administration. When secretin was given twice a day for 3 days it had no effect. Secretin did not improve the explorative behavior (the rearing), of JWM. With the use of in situ hybridization, we have found very dense secretin receptor labeling in the cerebellum. In the primary motor cortex and in the striatum, only a few labeled cells were seen. It was supposed that secretin exerted its effect through specific receptors, mainly present in the cerebellum.
Collapse
MESH Headings
- Administration, Intranasal
- Animals
- Cerebellum/chemistry
- Cerebellum/drug effects
- Corpus Striatum/chemistry
- Drug Evaluation, Preclinical
- Exploratory Behavior/drug effects
- Female
- Hyperkinesis/drug therapy
- Hyperkinesis/genetics
- In Situ Hybridization
- Injections, Intraventricular
- Male
- Mice
- Mice, Neurologic Mutants
- Motor Activity/drug effects
- Motor Activity/physiology
- Motor Cortex/chemistry
- Nerve Tissue Proteins/agonists
- Nerve Tissue Proteins/analysis
- Nerve Tissue Proteins/physiology
- Rats
- Rats, Sprague-Dawley
- Receptors, G-Protein-Coupled/agonists
- Receptors, G-Protein-Coupled/analysis
- Receptors, G-Protein-Coupled/physiology
- Receptors, Gastrointestinal Hormone/agonists
- Receptors, Gastrointestinal Hormone/analysis
- Receptors, Gastrointestinal Hormone/physiology
- Secretin/administration & dosage
- Secretin/pharmacology
- Secretin/therapeutic use
Collapse
Affiliation(s)
- Andrea Heinzlmann
- Department of Human Morphology and Developmental Biology, Semmelweis University, Tűzoltó u. 58, Budapest 1094, Hungary
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lochhead JJ, Thorne RG. Intranasal delivery of biologics to the central nervous system. Adv Drug Deliv Rev 2012; 64:614-28. [PMID: 22119441 DOI: 10.1016/j.addr.2011.11.002] [Citation(s) in RCA: 804] [Impact Index Per Article: 61.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 11/03/2011] [Accepted: 11/07/2011] [Indexed: 12/28/2022]
Abstract
Treatment of central nervous system (CNS) diseases is very difficult due to the blood-brain barrier's (BBB) ability to severely restrict entry of all but small, non-polar compounds. Intranasal administration is a non-invasive method of drug delivery which may bypass the BBB to allow therapeutic substances direct access to the CNS. Intranasal delivery of large molecular weight biologics such as proteins, gene vectors, and stem cells is a potentially useful strategy to treat a variety of diseases/disorders of the CNS including stroke, Parkinson's disease, multiple sclerosis, Alzheimer's disease, epilepsy, and psychiatric disorders. Here we give an overview of relevant nasal anatomy and physiology and discuss the pathways and mechanisms likely involved in drug transport from the nasal epithelium to the CNS. Finally we review both pre-clinical and clinical studies involving intranasal delivery of biologics to the CNS.
Collapse
Affiliation(s)
- Jeffrey J Lochhead
- Pharmaceutical Sciences Division, University of Wisconsin-Madison School of Pharmacy, Madison, WI 53705, USA
| | | |
Collapse
|
17
|
Chan AS, Cheung MC, Sze SL, Leung WW, Shi D. An herbal nasal drop enhanced frontal and anterior cingulate cortex activity. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2011; 2011:543648. [PMID: 19996154 PMCID: PMC3140066 DOI: 10.1093/ecam/nep198] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/14/2009] [Accepted: 10/26/2009] [Indexed: 01/13/2023]
Abstract
The present study examined the neuro-electrophysiological activity of the brain associated with the application of a herbal remedy developed by a Shaolin monk based upon the Chan healing principle of clearing the orifices (i.e., the nasal cavities). A repeated-measures design was used. Fourteen normal adults were administered herbal remedy and saline solution intranasally on separate sessions. Two intervals of eyes-closed resting EEG data were obtained individually before and after each administration. Results showed that only the herbal remedy but not the saline solution induced elevation in cordance, an index correlated with cerebral perfusion, in the anterior brain region. In addition, the activity of the anterior cingulate cortex (ACC), as examined by the LORETA analysis, was also increased after the application of the herbal remedy but not saline solution. The present study provided some preliminary evidence suggesting that the herbal nasal drop enhanced the activity of the frontal lobe and ACC. Implications for the potential clinical application of the herbal remedy to treat patients with frontal lobe disorders were discussed.
Collapse
Affiliation(s)
- Agnes S Chan
- Neuropsychology Laboratory, Department of Psychology, The Chinese University of Hong Kong, Shatin, N.T., Hong Kong
| | | | | | | | | |
Collapse
|
18
|
Patel RB, Patel BG, Patel MR, Bhatt KK. HPTLc method development and validation for analysis of risperidone in formulations, and in-vitro release study. ACTA CHROMATOGR 2010. [DOI: 10.1556/achrom.22.2010.4.5] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Patel S, Chavhan S, Soni H, Babbar AK, Mathur R, Mishra AK, Sawant K. Brain targeting of risperidone-loaded solid lipid nanoparticles by intranasal route. J Drug Target 2010; 19:468-74. [PMID: 20958095 DOI: 10.3109/1061186x.2010.523787] [Citation(s) in RCA: 113] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Intranasal drug delivery is known to overcome the blood-brain barrier (BBB) for delivery of drugs to brain. The objective of this study was to prepare risperidone (RSP)-loaded solid lipid nanoparticles (RSLNs) and explore the possibility of brain targeting by nose-to-brain delivery. RSLNs were prepared by solvent emulsification-solvent evaporation method and characterized for drug content, particle size and size distribution, zeta potential, and in vitro drug-release study. The pharmacodynamic study of RSLNs, which was performed by paw test using Perspex platform, showed higher hindlimb retraction time (HRT) values as compared with RSP solution (RS) indicating the superiority of RSLNs over the RS for brain targeting. The pharmacokinetics and biodistribution studies in mice showed that brain/blood ratio 1 h post-administration of RSLNs (i.n.) was found to be 1.36 ± 0.06 (nearly 10- and 5-fold higher) as compared with 0.17 ± 0.05 for RS (i.v.) and 0.78 ± 0.07 for RSLNs (i.v.), respectively. Gamma scintigraphy imaging of mice brain following intravenous and intranasal administration confirmed the localization of drug in brain. This finding substantiates the existence of direct nose-to-brain delivery route for nanoparticles administered to the nasal cavity.
Collapse
Affiliation(s)
- Sonal Patel
- Drug Delivery Laboratory, Centre of Relevance and Excellence in NDDS, G.H. Patel Building of Pharmacy, Pharmacy Department, The Maharaja Sayajirao University of Baroda, Vadodara, India
| | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
IMPORTANCE OF THE FIELD Recombinant erythropoietin (rEPO) failed in a recent clinical study to protect from damages induced by ischemic stroke. The lack of acute treatments in ischemic stroke and the promising outcome in numerous preclinical studies in vivo demands a more critical evaluation of the future use of EPO as an acute treatment. AREAS COVERED IN THIS REVIEW The current use and administration of rhEPO and its analogs in animal models and the future use of this cytokine in the treatment of ischemic stroke. WHAT THE READER WILL GAIN In this review the potential reasons for the failure of EPO in the clinical trial are analysed and whether the preclinical trials sufficiently evaluated the true potential of recombinant EPO and its analogs is assessed. Alternative methods for administration of EPO to enhance its potential as a neuroprotective drug in ischemic stroke are discussed. TAKE HOME MESSAGE Failure in clinical trial does not necessarily indicate the lack of therapeutic potential of EPO. This review encourages further investigation of the true potential of EPO as a candidate drug for the treatment of ischemic stroke by improved preclinical experimental design and utilization of alternative administration methods.
Collapse
Affiliation(s)
- Murat Digicaylioglu
- Department of Neurosurgery and Physiology, University of Texas, Health Science Center, 7703 Floyd Curl Drive-7843, San Antonio, TX 78229-3900, USA.
| |
Collapse
|
21
|
Craft S. The Role of Insulin Dysregulation in Aging and Alzheimer’s Disease. DIABETES, INSULIN AND ALZHEIMER'S DISEASE 2010. [DOI: 10.1007/978-3-642-04300-0_8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
22
|
Heinrichs M, von Dawans B, Domes G. Oxytocin, vasopressin, and human social behavior. Front Neuroendocrinol 2009; 30:548-557. [PMID: 19505497 DOI: 10.1016/j.yfrne.2009.05.005] [Citation(s) in RCA: 549] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 05/07/2009] [Accepted: 05/22/2009] [Indexed: 10/20/2022]
Abstract
There is substantial evidence from animal research indicating a key role of the neuropeptides oxytocin (OT) and arginine vasopressin (AVP) in the regulation of complex social cognition and behavior. As social interaction permeates the whole of human society, and the fundamental ability to form attachment is indispensable for social relationships, studies are beginning to dissect the roles of OT and AVP in human social behavior. New experimental paradigms and technologies in human research allow a more nuanced investigation of the molecular basis of social behavior. In addition, a better understanding of the neurobiology and neurogenetics of human social cognition and behavior has important implications for the current development of novel clinical approaches for mental disorders that are associated with social deficits (e.g., autism spectrum disorder, social anxiety disorder, and borderline personality disorder). This review focuses on our recent knowledge of the behavioral, endocrine, genetic, and neural effects of OT and AVP in humans and provides a synthesis of recent advances made in the effort to implicate the oxytocinergic system in the treatment of psychopathological states.
Collapse
Affiliation(s)
- Markus Heinrichs
- Department of Psychology, University of Freiburg, Freiburg i. Br., Germany.
| | | | - Gregor Domes
- Department of Psychology, University of Freiburg, Freiburg i. Br., Germany
| |
Collapse
|
23
|
Mistry A, Stolnik S, Illum L. Nanoparticles for direct nose-to-brain delivery of drugs. Int J Pharm 2009; 379:146-57. [DOI: 10.1016/j.ijpharm.2009.06.019] [Citation(s) in RCA: 368] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2009] [Revised: 06/12/2009] [Accepted: 06/16/2009] [Indexed: 12/19/2022]
|
24
|
Kumar M, Pathak K, Misra A. Formulation and characterization of nanoemulsion-based drug delivery system of risperidone. Drug Dev Ind Pharm 2009; 35:387-95. [PMID: 19016058 DOI: 10.1080/03639040802363704] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Risperidone nanoemulsion (NE) and mucoadhesive NE formulations were successfully prepared by the spontaneous emulsification method (titration method) using Capmul MCM as the oily phase on the basis of solubility studies. The NE formulation containing 8% oil, 44% S(mix), 48% (wt/wt) aqueous phase that displayed an optical transparency of 99.82%, globule size of 15.5 +/- 2.12 nm, and polydispersity of 0.172 +/- 0.02 was selected for the incorporation of mucoadhesive components. The mucoadhesive formulation that contained 0.5% by weight of chitosan displayed highest diffusion coefficient that followed Higuchi model was free from nasal ciliotoxicity and stable for 3 months.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Pharmaceutics Rajiv Academy for Pharmacy, Mathura, Uttar Pradesh, India
| | | | | |
Collapse
|
25
|
Effect of intranasally administered cholecystokinin on encoding of controlled and automatic memory processes. Psychopharmacology (Berl) 2009; 202:559-67. [PMID: 18836704 DOI: 10.1007/s00213-008-1332-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2008] [Accepted: 09/01/2008] [Indexed: 10/21/2022]
Abstract
RATIONALE The neuropeptide cholecystokinin (CCK) is present in abundance in the central nervous system, where it is involved in the regulation of a wide range of functions. It also takes part in the modulation of memory processes, but its effect on human memory systems and processes is not yet well understood. OBJECTIVE The present experiment was conducted to examine the influence of CCK when present during encoding on later controlled and automatic recognition memory processes in humans. MATERIALS AND METHODS A version of the process dissociation procedure was used to separate the contributions of controlled and automatic memory processes to participants' recognition memory performance. Data were analyzed within a multinomial modeling framework. Participants (N = 64) received either 40 microg CCK-8S or placebo intranasally. The learning and test phases began 30 min after substance application. Behavioral, physiological, and self-report control variables were measured at three points of time during the experiment. RESULTS Compared to placebo, CCK increased the automatic, familiarity-based recognition memory component, while the parameter representing controlled, retrieval-based processes did not differ between groups. Also, in the exclusion condition of the test phase, the guessing parameter was reduced by CCK. None of the control variables were affected by the peptide. CONCLUSIONS This result-the enhancement of the automatic recognition memory component when CCK is applied before encoding (and thus present during encoding and retrieval)-complements earlier results indicating that CCK decreases controlled, recollection-based recognition memory when applied during consolidation. The possible neuronal systems and processes mediating these effects are discussed.
Collapse
|
26
|
Kumar M, Misra A, Mishra AK, Mishra P, Pathak K. Mucoadhesive nanoemulsion-based intranasal drug delivery system of olanzapine for brain targeting. J Drug Target 2009; 16:806-14. [PMID: 18988064 DOI: 10.1080/10611860802476504] [Citation(s) in RCA: 106] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The objective of the present study was to optimize olanzapine nanoemulsion (ONE), for nose-to-brain delivery. The nanoemulsions and olanzapine mucoadhesive nanoemulsions (OMNEs) were prepared using water titration method and characterized for technical and electrokinetic properties. Biodistribution of nanoemulsions and olanzapine solution (OS) in the brain and blood of rats following intranasal (intranasal) and intravenous (intravenous) administrations were examined using optimized technetium-labeled ((99m)Tc-labeled) olanzapine formulations. The brain/blood uptake ratios of 0.45, 0.88, 0.80, and 0.04 of OS (intranasal), ONE (intranasal), OMNE (intranasal), ONE (intravenous), respectively, at 0.5 h are indicative of direct nose-to-brain transport (DTP). Higher % drug targeting efficiency (%DTE) and %DTP for mucoadhesive nanoemulsions indicated effective brain targeting of olanzapine among the prepared nanoemulsions. Gamma scintigraphy imaging of the rat brain conclusively demonstrated rapid and larger extent of transport of olanzapine by OMNE (intranasal), when compared with OS (intranasal), ONE (intranasal), and ONE (intravenous), into the rat brain.
Collapse
Affiliation(s)
- Mukesh Kumar
- Department of Pharmaceutics, Rajiv Academy for Pharmacy, Mathura, India
| | | | | | | | | |
Collapse
|
27
|
Van den Berg MP, Merkus P, Romeijn SG, Verhoef JC, Merkus FWHM. Hydroxocobalamin Uptake into the Cerebrospinal Fluid after Nasal and Intravenous Delivery in Rats and Humans. J Drug Target 2008; 11:325-31. [PMID: 14668053 DOI: 10.1080/10611860310001640075] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
The possibility of direct transport of hydroxocobalamin from the nasal cavity into the cerebrospinal fluid (CSF) after nasal administration in rats was investigated and the results were compared with a human study. Hydroxocobalamin was given to rats (n=8) both intranasally (214 microg/rat) and intravenously (49.5 microg/rat) into the jugular vein using a Vascular Access Port (VAP). Prior to and after drug administration, blood and CSF samples were taken and analysed by radioimmunoassay. The AUCCSF/AUCplasma ratio after nasal delivery does not differ from the ratio after intravenous infusion, indicating that hydroxocobalamin enters the CSF via the blood circulation across the blood-brain barrier (BBB). This same transport route is confirmed by the cumulative AUC-time profiles in CSF and plasma, demonstrating a 30 min delay between plasma absorption and CSF uptake of hydroxocobalamin in rats and in a comparative human study. The present results in rats show that there is no additional uptake of hydroxocobalamin in the CSF after nasal delivery compared to intravenous administration, which is in accordance with the results found in humans. This indicates a predictive value of the used rat model for the human situation when studying the nose to CSF transport of drugs.
Collapse
Affiliation(s)
- Mascha P Van den Berg
- Division of Pharmaceutical Technology and Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, P.O. Box 9502 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
28
|
Zhang Q, Liu Y, Yang N, Wan X, Zuo P. Nasal administration of cholera toxin B subunit–nerve growth factor improves the space learning and memory abilities in β-amyloid protein25-35-induced amnesic mice. Neuroscience 2008; 155:234-40. [DOI: 10.1016/j.neuroscience.2008.05.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Revised: 04/22/2008] [Accepted: 05/23/2008] [Indexed: 12/16/2022]
|
29
|
Kumar M, Misra A, Babbar A, Mishra A, Mishra P, Pathak K. Intranasal nanoemulsion based brain targeting drug delivery system of risperidone. Int J Pharm 2008; 358:285-91. [DOI: 10.1016/j.ijpharm.2008.03.029] [Citation(s) in RCA: 288] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2007] [Revised: 03/05/2008] [Accepted: 03/09/2008] [Indexed: 11/24/2022]
|
30
|
Intranasal Mucoadhesive Microemulsion of Tacrine to Improve Brain Targeting. Alzheimer Dis Assoc Disord 2008; 22:116-24. [DOI: 10.1097/wad.0b013e318157205b] [Citation(s) in RCA: 80] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
|
31
|
Abstract
In the treatment of Alzheimer's disease tacrine, a cholinesterase inhibitor, is not the drug of choice due to its low oral bioavailability, extensive hepatic first-pass effect, rapid clearance from the systemic circulation, pronounced hepatotoxicity, and the availability of drugs better than tacrine in the same pharmacological class. Hence, the aim of this investigation was to ascertain the possibility of direct nose-to-brain delivery of tacrine to improve bioavailability, to avoid the first-pass effect and to minimize hepatotoxicity. Tacrine solution (TS) in propylene glycol was radiolabelled with (99m)Tc (technetium) and administered in BALB/c mice intranasally (i.n.) and intravenously (i.v.). Drug concentrations in blood and brain were determined at predetermined time intervals post dosing. Drug targeting efficiency (DTE %) and the brain drug direct transport percentage (DTP %) were calculated to evaluate the brain targeting efficiency. Brain scintigraphy imaging in rabbits was performed to ascertain the uptake of the drug into the brain. Tacrine solution was effectively labelled with (99m)Tc and was found to be stable and suitable for in-vivo studies. Following intranasal administration tacrine was delivered quickly (T(max) 60 min) to the brain compared with intravenous administration (T(max) 120 min). The brain/blood ratios of the drug were found to be higher for [(99m)Tc]TS(i.n.) compared with [(99m)Tc]TS(i.v.) at all time points. The DTE (207.23%) and DTP (51.75%) following intranasal administration suggested that part of tacrine was directly transported to brain from the nasal cavity. Rabbit brain scintigraphy imaging showed higher uptake of the drug into the brain following intranasal administration compared with intravenous administration. The results showed that tacrine could be directly transported into the brain from the nasal cavity and intranasal administration resulted in higher bioavailability of drug with reduced distribution into non-targeted tissues. This selective localization of tacrine in the brain may be helpful in reducing dose, frequency of dosing and dose-dependent side effects, and may prove an interesting new approach in delivery of the drug to the brain for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Viral V Jogani
- Department of Pharmacy, Faculty of Technology & Engineering, The Maharaja Sayajirao University of Baroda, Post Box No. 51, Kalabhavan, Vadodara 390001, India
| | | | | | | | | |
Collapse
|
32
|
Sibarov DA, Vol'nova AB, Frolov DS, Nozdrachev AD. Effects of intranasal administration of epitalon on neuron activity in the rat neocortex. NEUROSCIENCE AND BEHAVIORAL PHYSIOLOGY 2007; 37:889-93. [PMID: 17955380 DOI: 10.1007/s11055-007-0095-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2005] [Revised: 03/13/2006] [Indexed: 11/26/2022]
Abstract
This report discusses the properties of the synthetic tetrapeptide epitalon (Ala-Glu-Asp-Gly), synthesized on the basis of an epiphyseal peptide extract. Intranasal administration of epitalon was selected as a noninvasive means of applying the agent to the CNS by bypassing the blood-brain barrier. The aim of the present work was to assess the characteristics of the action of epitalon on the frequency of spontaneous neuron activity in the cerebral cortex of white rats. Studies were performed using male Wistar rats anesthetized with urethane (1 g/kg). Extracellular activity of cortical neurons was recorded with a glass microelectrode of resistance 1-2 MOmega. Recording of spontaneous neuron discharges for 10-15 min was followed by intranasal administration of epitalon solution and recording of neuron activity to 30 min after doses of 30 ng per animal. Significant activation of neuron activity was seen several minutes after dosage, with an increase (by factors of 2-2.5) in discharge frequency. In some experiments, the effect of epitalon was multiphasic. The first peak of increased neuron discharge frequency at 5-7 min was followed by peaks at 11-12 and 17-18 min. The increase in discharge frequency occurred because of an increase in the discharge frequency of neurons which were already active and the recruitment of previously silent neurons. At least the first peak of increased neuron activity following exposure to epitalon was found to be associated with the direct action of the peptide on cortical cells.
Collapse
Affiliation(s)
- D A Sibarov
- Reception Physiology Laboratory, I. P. Pavlov Institute of Physiology, Russian Academy of Sciences, 6 Makarov Bank, 199034 St. Petersburg, Russia
| | | | | | | |
Collapse
|
33
|
Haus E. Chronobiology in the endocrine system. Adv Drug Deliv Rev 2007; 59:985-1014. [PMID: 17804113 DOI: 10.1016/j.addr.2007.01.001] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2006] [Accepted: 01/15/2007] [Indexed: 12/13/2022]
Abstract
Biological signaling occurs in a complex web with participation and interaction of the central nervous system, the autonomous nervous system, the endocrine glands, peripheral endocrine tissues including the intestinal tract and adipose tissue, and the immune system. All of these show an intricate time structure with rhythms and pulsatile variations in multiple frequencies. Circadian (about 24-hour) and circannual (about 1-year) rhythms are kept in step with the cyclic environmental surrounding by the timing and length of the daily light span. Rhythmicity of many endocrine variables is essential for their efficacy and, even in some instances, for the qualitative nature of their effects. Indeed, the continuous administration of certain hormones and their synthetic analogues may show substantially different effects than expected. In the design of drug-delivery systems and treatment schedules involving directly or indirectly the endocrine system, consideration of the human time organization is essential. A large amount of information on the endocrine time structure has accumulated, some of which is discussed in this review.
Collapse
Affiliation(s)
- Erhard Haus
- Department of Laboratory Medicine and Pathology, University of Minnesota, Health Partners Medical Group, Regions Hospital, 640 Jackson Street, St. Paul, Minnesota 55101, USA.
| |
Collapse
|
34
|
Merkus FWHM, van den Berg MP. Can nasal drug delivery bypass the blood-brain barrier?: questioning the direct transport theory. Drugs R D 2007; 8:133-44. [PMID: 17472409 DOI: 10.2165/00126839-200708030-00001] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
The connection between the nasal cavity and the CNS by the olfactory neurones has been investigated extensively during the last decades with regard to its feasibility to serve as a direct drug transport route to the CSF and brain. This drug transport route has gained much interest as it may circumvent the blood-brain barrier (BBB), which prevents some drugs from entering the brain. Approximately 100 published papers mainly reporting animal experiments were reviewed to evaluate whether the experimental design used and the results generated provided adequate pharmacokinetic information to assess whether the investigated drug was transported directly from the olfactory area to the CNS. In the analysis the large anatomical differences between the olfactory areas of animals and humans and the experimental conditions used were evaluated. The aim of this paper was to establish the actual evidence for the feasibility of this direct transport route in humans. Twelve papers presented a sound experimental design to study direct nose to CNS transport of drugs based on the authors' criteria. Of these, only two studies in rats were able to provide results that can be seen as an indication for direct transport from the nose to the CNS. No pharmacokinetic evidence could be found to support a claim that nasal administration of drugs in humans will result in an enhanced delivery to their target sites in the brain compared with intravenous administration of the same drug under similar dosage conditions.
Collapse
Affiliation(s)
- Frans W H M Merkus
- Leiden/Amsterdam Centre for Drug Research, Leiden University, Leiden, The Netherlands.
| | | |
Collapse
|
35
|
Vyas TK, Babbar AK, Sharma RK, Singh S, Misra A. Intranasal Mucoadhesive Microemulsions of Clonazepam: Preliminary Studies on Brain Targeting. J Pharm Sci 2006; 95:570-80. [PMID: 16419051 DOI: 10.1002/jps.20480] [Citation(s) in RCA: 111] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this investigation was to prepare clonazepam microemulsions (CME) for rapid drug delivery to the brain to treat acute status epileptic patients and to characterize and evaluate the performance of CME in vitro and in vivo in rats. The CME were prepared by the titration method and were characterized for globule size and size distribution, zeta potential, and drug content. CME was radiolabeled with (99m)Tc (technetium) and biodistribution of drug in the brain was studied in Swiss albino rats after intranasal and intravenous administrations. Brain scintigraphy imaging in rabbits was also performed to ascertain the uptake of the drug into the brain. Pre and postCME formulation treated human nasal mucosa was subjected to transmission electron microscopy to investigate the mechanism of drug uptake across the nasal mucosa. CME were transparent and stable with mean globule size of 15 +/- 10 nm and zeta potential of -30 mV to -40 mV. (99m)Tc-labeled clonazepam solution ((99m)Tc CS)/ clonazepam microemulsion (CME)/clonazepam mucoadhesive microemulsion (CMME) were found to be stable and suitable for in vivo studies. Brain/blood uptake ratios at 0.50 hour (h) following intranasal CMME, CME, clonazepam solution (CS), and intravenous CME administrations were found to be 0.67, 0.50, 0.48, and 0.13, respectively indicating more effective targeting with intranasal administration and best targeting of the brain with intranasal CMME. Brain/blood ratio at all sampling points up to 8 h following intranasal administration of CMME compared to intravenous was found to be twofold higher indicating larger extent of distribution of the drug in brain. Rabbit brain scintigraphy also showed higher intranasal uptake of the drug into the brain. Transmission electron microscopy revealed significant accretion of CMME within interstitial spaces and paracellular mode of transport due to stretching of the tight junctions present in the nasal mucosa. This investigation demonstrates a more rapid and larger extent of transport of clonazepam into the rat brain with intranasal CMME, which may prove useful in treating acute status epileptics.
Collapse
Affiliation(s)
- Tushar K Vyas
- Pharmacy Department, Faculty of Technology and Engineering, The Maharaja Sayajirao University of Baroda, Kalabhavan, Vadodara, Gujarat, India
| | | | | | | | | |
Collapse
|
36
|
in 't Veen JPM, van den Berg MP, Romeijn SG, Verhoef JC, Merkus FWHM. Uptake of fluorescein isothiocyanate-labelled dextran into the CSF after intranasal and intravenous administration to rats. Eur J Pharm Biopharm 2005; 61:27-31. [PMID: 15893918 DOI: 10.1016/j.ejpb.2005.02.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2004] [Revised: 02/18/2005] [Accepted: 02/28/2005] [Indexed: 11/16/2022]
Abstract
With the growing number of patients suffering from central nervous system (CNS) diseases a suitable approach for drug targeting to the brain becomes more and more important. In the present study, the contribution of the nose-CSF pathway to the uptake of the model drug fluorescein isothiocyanate-labelled dextran with a molecular weight of 3.0 kDa (FD3) into the CSF was determined in rats. FD3 was administered intranasally (489 microg/rat) and by intravenous infusion (24.4 microg/ml; 119 microg/rat) in the same set of animals (n=6). Blood samples were taken from the tail vein and CSF was sampled by cisternal puncture using a stereotaxic frame. The contribution of the olfactory pathway to the uptake of FD3 into the CSF was determined by comparing the AUCCSF/AUCplasma ratios after intranasal and after intravenous application of FD3 mimicking the blood levels after intranasal delivery. No significant difference was observed between the AUCCSF/AUCplasma ratios of FD3 after intranasal administration (1.33+/-0.40%) and intravenous infusion (1.03+/-0.56%). This indicates that in rats about 1% of the amount of FD3 in plasma reaches the CSF both after nasal and intravenous administration and that no direct transport of FD3 from the nose-CSF could be found.
Collapse
Affiliation(s)
- Joke P M in 't Veen
- Division of Pharmaceutical Technology and Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
37
|
Yang Z, Huang Y, Gan G, Sawchuk RJ. Microdialysis evaluation of the brain distribution of stavudine following intranasal and intravenous administration to rats. J Pharm Sci 2005; 94:1577-88. [PMID: 15920773 DOI: 10.1002/jps.20334] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Intranasal (IN) administration as a potential route of enhancing brain delivery of stavudine (d4T) was investigated in rats using microdialysis as a sampling technique. Sprague-Dawley rats were divided into two groups (n = 7 per group). One group of animals received IN administration of 5 mg/kg d4T (50 microL); the other group was dosed intravenously (IV) at the same dose. Following IN administration, d4T was rapidly and completely absorbed into the systemic circulation with a T(max) of 14 min and an IN bioavailability of 105%. The brain/plasma AUC ratios in the lateral ventricle, caudate putamen, and frontal cortex in the anesthetized and nasal surgery-operated rats were 0.36 +/- 0.090, 0.47 +/- 0.089, and 0.41 +/- 0.087, respectively, whereas they were 0.63 +/- 0.077, 0.62 +/- 0.17, 0.60 +/- 0.13, respectively, following IV dosing to sham animals. The half-life of d4T in the various brain regions was significantly longer than that in plasma (p < 0.05). Moreover, the systemic clearance of d4T was significantly reduced in these anesthetized and nasal surgery-operated animals. Further studies of the effect of anesthesia suggest the additive role of anesthesia, possibly in additional to nasal surgery, in decreasing the systemic clearance. The extent of the brain distribution, however, was not significantly affected by anesthesia. Lack of enhancement of the brain delivery of d4T following IN administration over systemic dosing cannot be attributed to its absorption into systemic circulation, since direct nose-brain transport, if fully functional and effective, should be a parallel and competing process with systemic absorption. The current study results along with several physiological considerations raise a question regarding the overall effectiveness of IN administration for direct delivery of small molecules into brain tissues, particularly where passive diffusion predominates.
Collapse
Affiliation(s)
- Zheng Yang
- Department of Pharmaceutics, University of Minnesota, 308 Harvard St. SE., Minneapolis, MN 55455, USA
| | | | | | | |
Collapse
|
38
|
Schneider R, Stöhr C, Pietrowsky R. Intranasally administered Cholecystokinin decreases controlled memory. Biol Psychol 2005; 69:297-314. [PMID: 15925032 DOI: 10.1016/j.biopsycho.2004.08.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2003] [Accepted: 08/29/2004] [Indexed: 11/28/2022]
Abstract
The neuropeptide Cholecystokinin (CCK) is involved in the modulation of memory processes. In this study, we examined for the first time the effect of intranasally administered CCK on controlled recollection and automatic familiarity in humans. To separate controlled from automatic memory processes, we used a modified version of Jacoby's process dissociation procedure (1991). Immediately after two successive learning phases, which are necessary for the implementation of the procedure, half of the participants received CCK, the other half a placebo solution. Recognition was tested 30 min after the learning phases. CCK decreased controlled recollection but not automatic familiarity when compared to placebo. Behavioral, physiological, and subjective control variables were not affected by the peptide. The results indicate a differential effect of CCK on controlled memory processes. Either consolidation and/or retrieval of verbal material are impaired.
Collapse
Affiliation(s)
- Ronald Schneider
- Heinrich-Heine-University Düsseldorf, Institute of Experimental Psychology, Department of Clinical Psychology, Geb. 23.03.U1, Universitätsstr. 1, 40225 Düsseldorf, Germany.
| | | | | |
Collapse
|
39
|
Lerner EN, van Zanten EH, Stewart GR. Enhanced delivery of octreotide to the brain via transnasal iontophoretic administration. J Drug Target 2004; 12:273-80. [PMID: 15512778 DOI: 10.1080/10611860400000938] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Transnasal drug delivery affords an opportunity to circumvent the blood-brain barrier and gain direct access to the brain. To date, this approach has used a relatively passive process relying on drug instillation high into the nasal cavity, formulation and gravity for drug delivery. The present study examined the use of an applied electrical field (transnasal iontophoresis or electrotransport) to actively drive a charged peptide, octreotide, into the rabbit brain. A simply designed electrode containing a reservoir of octreotide was placed deep into the nasal cavity on both sides. A return electrode was applied to the back of the head and a current strength of 3.0 mA was applied for 60 min. In control rabbits, electrodes were placed into the nasal cavity, but no current was applied (passive delivery). Additional control animals were given a bolus intra-arterial injection of octreotide. At the conclusion of drug delivery, animals were sacrificed and samples of brain, spinal cord, cerebrospinal fluid (CSF) and plasma were taken for measurement of octreotide levels by radioimmunoassay (RIA). In a second experiment, rabbits were exsanguinated prior to drug delivery to measure the ability of iontophoresis to transport octreotide into the brain in the absence of blood or CSF circulation. In both experiments, transnasal iontophoresis resulted in significantly elevated levels of octreotide in the brain, although results varied considerably due to electrode and tissue damage related to problems with electrode insertion into the rabbit's nasal cavity. Octreotide was present in samples extending from the olfactory bulb to the cerebellum with 2- to 13-fold increases in active compared to control/passive animals. High and sustained levels of octreotide were also present in the blood following transnasal delivery, but there were negligible amounts of octreotide in the brain following systemic administration indicating that the blood was not a significant route for drug redistribution. The results demonstrate that transnasal electrotransport is a unique, minimally invasive approach for enhancing drug delivery to the brain.
Collapse
|
40
|
van den Berg MP, Merkus P, Romeijn SG, Verhoef JC, Merkus FWHM. Uptake of melatonin into the cerebrospinal fluid after nasal and intravenous delivery: studies in rats and comparison with a human study. Pharm Res 2004; 21:799-802. [PMID: 15180337 DOI: 10.1023/b:pham.0000026431.55383.69] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
PURPOSE To investigate the possibility of direct transport of melatonin from the nasal cavity into the cerebrospinal fluid (CSF) after nasal administration in rats and to compare the animal results with a human study. METHODS Rats (n = 8) were given melatonin both intranasally in one nostril (40 microg/rat) and intravenously by bolus injection (40 microg/rat) into the jugular vein using a Vascular Access Port. Just before and after drug administration, blood and CSF samples were taken and analyzed by HPLC. RESULTS Melatonin is quickly absorbed in plasma (T(max) = 2.5 min) and shows a delayed uptake into CSF (T(max) = 15 min) after nasal administration. The melatonin concentration-time profiles in plasma and CSF are comparable to those after intravenous delivery. The AUC(CSF)/AUC(plasma) ratio after nasal delivery (32.7 +/- 6.3%) does not differ from the one after intravenous injection (46.0 +/- 10.4%), which indicates that melatonin enters the CSF via the blood circulation across the blood-brain barrier. This demonstrates that there is no additional transport via the nose-CSF pathway. These results resemble the outcome of a human study. CONCLUSIONS The current results in rats show that there is no additional uptake of melatonin in the CSF after nasal delivery compared to intravenous administration. This is in accordance with the results found in humans, indicating that animal experiments could be predictive for the human situation when studying nose-CSF transport.
Collapse
Affiliation(s)
- Mascha P van den Berg
- Division of Pharmaceutical Technology and Biopharmaceutics, Leiden/Amsterdam Center for Drug Research, Leiden University, 2300 RA Leiden, The Netherlands
| | | | | | | | | |
Collapse
|
41
|
Bagger MA, Bechgaard E. The potential of nasal application for delivery to the central brain-a microdialysis study of fluorescein in rats. Eur J Pharm Sci 2004; 21:235-42. [PMID: 14757495 DOI: 10.1016/j.ejps.2003.10.012] [Citation(s) in RCA: 39] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Previous animal studies have shown that various types of nasally administered drugs and model substances can access the central nervous system (CNS) via direct transport across the olfactory epithelium, and thereby circumventing the blood-brain barrier (BBB). These compounds, however, have mainly been identified in the cerebrospinal fluid and the olfactory bulbs which are usually not pharmacologically relevant targets. The aim of the present study was to evaluate the potential of targeting the central brain by olfactory absorption by use of sodium fluorescein as a hydrophilic model substance with limited permeability across the blood-brain barrier. Microdialysis probes were implanted in blood and in right and left side of the brain (striatum) in rats. The pharmacokinetics of sodium fluorescein was studied from 0 to 180min following intravenous and unilateral nasal administration without occlusion of the oesophagus. Pharmacokinetic modelling showed a significantly higher absorption rate and lower T(max) in the ipsilateral striatum (0.097min(-1) and 41min) compared with the contralateral side (0.056min(-1) and 54min). The rate of elimination in brain was significantly lower after nasal administration (0.004min(-1)) compared with intravenous administration (0.012min(-1)). However, the brain to plasma area under the curve ratios of model substance were low (2-3%) and not significantly different between right and left side of the brain, regardless of the route of administration. The results obtained by microdialysis were supported by findings in whole brain homogenates where concentrations of fluorescein were approximately 40% higher in the right striatum compared with the left side initially after nasal administration to the right nostril of rats. Despite some indications of olfactory transport to the central rat brain it was concluded that the drug targeting potential of sodium fluorescein and most likely other hydrophilic compounds is limited.
Collapse
Affiliation(s)
- Morten Aavad Bagger
- Department of Pharmaceutics, The Danish University of Pharmaceutical Sciences, Universitetsparken 2, DK-2100, Copenhagen, Denmark.
| | | |
Collapse
|
42
|
Abstract
The blood-brain barrier that segregates the brain interstitial fluid from the circulating blood provides an efficient barrier for the diffusion of most, especially polar, drugs from the blood to receptors in the central nervous system (CNS). Hence limitations are evident in the treatment of CNS diseases, such as Parkinson's and Alzheimer's diseases, especially exploiting neuropeptides and similar polar and large molecular weight drugs. In recent years interest has been expressed in the use of the nasal route for delivery of drugs to the brain, exploiting the olfactory pathway. A wealth of studies has reported proof of nose-to-brain delivery of a range of different drugs in animal models, such as the rat. Studies in man have mostly compared the pharmacological effects (e.g. brain functions) of nasally applied drugs with parenterally applied drugs and have shown a distinct indication of direct nose-to-brain transport. Recent studies in volunteers involving cerebrospinal fluid sampling, blood sampling and pharmacokinetic analysis after nasal, and in some instances parenteral administration of different drugs, have in my opinion confirmed the likely existence of a direct pathway from nose to brain.
Collapse
Affiliation(s)
- Lisbeth Illum
- Identity, 19 Cavendish Crescent North, the Park, Nottingham NG7 1BA, UK.
| |
Collapse
|
43
|
Abstract
This paper discusses the problems associated with nasal drug delivery and how it is possible, sometimes by means of quite simple concepts, to improve transport across the nasal membrane. In this way it is feasible to deliver efficiently challenging drugs such as small polar molecules, peptides and proteins and even the large proteins and polysaccharides used in vaccines or DNA plasmids exploited for DNA vaccines. The transport of drugs from the nasal cavity directly to the brain is also described and examples of studies in man, where this has been shown to be feasible, are discussed. Recent results from Phase I/II studies in man with a novel nasal chitosan vaccine delivery system are also described. Finally, the author's thoughts about the future for nasal drug delivery are also depicted.
Collapse
Affiliation(s)
- Lisbeth Illum
- West Pharmaceutical Services, Drug Delivery and Clinical Research Centre Ltd, Albert Einstein Centre, Nottingham Science and Technology Park, Nottingham, UK.
| |
Collapse
|
44
|
Perras B, Schultes B, Schwaiger R, Metz C, Wesseler W, Born J, Fehm HL. Growth hormone-releasing hormone facilitates hypoglycemia-induced release of cortisol. REGULATORY PEPTIDES 2002; 110:85-91. [PMID: 12468113 DOI: 10.1016/s0167-0115(02)00163-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Early sleep in humans is characterized by a distinct suppression of pituitary-adrenal activity coinciding with enhanced activity of the somatotropic axis. Here, we tested in awake humans the hypothesis of an inhibiting influence of hypothalamic growth hormone-releasing hormone (GHRH) on pituitary-adrenal activity. For this purpose, pituitary-adrenal activity was stimulated in 10 men through a standard insulin-hypoglycemia-test (IHT) and in another 10 men through combined administration of CRH/vasopressin. Stimulation was performed in each man on three conditions following pretreatment with Placebo and GHRH administered intravenously (50 microg) or intranasally (300 microg) 1 h before. GH, ACTH and cortisol as well as blood pressure and heart rate were measured repeatedly. Contrary to expectations, pretreatment with GHRH did not suppress but enhanced secretion of cortisol upon insulin-induced hypoglycemia regardless of the route of GHRH pretreatment (p<0.05). In contrast, GHRH did not facilitate cortisol release after stimulation with CRH/vasopressin. Changes in ACTH remained inconsistent. Plasma levels of GH increased significantly after i.v. GHRH application, but remained unchanged after the intranasal administration. Blood pressure and heart rate were not influenced by the treatments. Results indicate facilitating effects of GHRH mediated at a suprapituitary (i.e. hypothalamic) level as suggested by restriction of the effect to the hypoglycemia-induced cortisol release with no effects after pituitary stimulation with CRH/vasopressin.
Collapse
Affiliation(s)
- Boris Perras
- Department of Neuroendocrinology, University of Lübeck, Lübeck, Germany.
| | | | | | | | | | | | | |
Collapse
|
45
|
Kern W, Born J, Fehm HL. Role of insulin in Alzheimer's disease:approaches emerging from basic animal research and neurocognitive studies in humans. Drug Dev Res 2002. [DOI: 10.1002/ddr.10101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
46
|
Thorne RG, Frey WH. Delivery of neurotrophic factors to the central nervous system: pharmacokinetic considerations. Clin Pharmacokinet 2002; 40:907-46. [PMID: 11735609 DOI: 10.2165/00003088-200140120-00003] [Citation(s) in RCA: 353] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Neurotrophic factors are proteins with considerable potential in the treatment of central nervous system (CNS) diseases and traumatic injuries. However, a significant challenge to their clinical use is the difficulty associated with delivering these proteins to the CNS. Neurotrophic factors are hydrophilic, typically basic, monomeric or dimeric proteins, mostly in the size range of 5 to 30 kDa. Neurotrophic factors potently support the development, growth and survival of neurons, eliciting biological effects at concentrations in the nanomolar to femtomolar range. They are not orally bioavailable and the blood-brain and blood-cerebrospinal fluid barriers severely limit their ability to enter into and act on sites in the CNS following parenteral systemic routes of administration. Most neurotrophic factors have short in vivo half-lives and poor pharmacokinetic profiles. Their access to the CNS is restricted by rapid enzymatic inactivation, multiple clearance processes, potential immunogenicity and sequestration by binding proteins and other components of the blood and peripheral tissues. The development of targeted drug delivery strategies for neurotrophic factors will probably determine their clinical effectiveness for CNS conditions. Achieving significant CNS target site concentrations while limiting systemic exposure and distribution to peripheral sites of action will lessen unwanted pleiotropic effects and toxicity. Local introduction of neurotrophic factors into the CNS intraparenchymally by direct injection/infusion or by implantation of delivery vectors such as polymer matrices or genetically modified cells yields the highest degree of targeting, but is limited by diffusion restrictions and invasiveness. Delivery of neurotrophic factors into the cerebrospinal fluid (CSF) following intracerebroventricular or intrathecal administration is less invasive and allows access to a much wider area of the CNS through CSF circulation pathways. However, diffusional and cellular barriers to penetration into surrounding CNS tissue and significant clearance of CSF into the venous and lymphatic circulation are also limiting. Unconventional delivery strategies such as intranasal administration may offer some degree of CNS targeting with minimal invasiveness. This review presents a summary of the neurotrophic factors and their indications for CNS disorders, their physicochemical characteristics and the different approaches that have been attempted or suggested for their delivery to the CNS. Future directions for further research such as the potential for CNS disease treatment utilising combinations of neurotrophic factors, displacement strategies, small molecule mimetics, chimaeric molecules and gene therapy are also discussed.
Collapse
Affiliation(s)
- R G Thorne
- Department of Pharmaceutics, University of Minnesota, Minneapolis, Minnesota, USA
| | | |
Collapse
|
47
|
Hruz P, Zechner S, Heimberg D, Hobi V, Schönenberger GA, Scheffler K, Müller-Spahn F, Seifritz E. Intranasal administration of delta sleep-inducing peptide increases P300. J Clin Psychopharmacol 2001; 21:626-8. [PMID: 11763019 DOI: 10.1097/00004714-200112000-00021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
48
|
Perras B, Smolnik R, Fehm HL, Born J. Signs of sexual behaviour are not increased after subchronic treatment with LHRH in young men. Psychoneuroendocrinology 2001; 26:1-15. [PMID: 11070330 DOI: 10.1016/s0306-4530(00)00031-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Apart from its action as gonadotropin releasing factor, luteinizing hormone-releasing hormone (LHRH) is a potent regulator of sexual behaviour in animals. The present study aimed to assess a similar role of LHRH for sexuality in humans. In a double-blind placebo-controlled and randomized study, effects of human LHRH after acute (400 microg) and subchronic (800 microg/day over 2 weeks) intranasal administration were evaluated in 20 young and healthy men. Sexual desire and activity was assessed by a diary, ratings of women's attractiveness, a modified version of the Stroop colour naming task and a short term memory task. Effects on sexuality were contrasted with those on eating motivation and general neurocognitive functioning, the latter being assessed in addition by tasks of divergent thinking and a motor perseveration test. None of the measures of sexual desire and activity indicated any effect of LHRH, neither after acute nor after subchronic treatment. Unexpectedly, the diary indicated a significant increase in 'food intake' towards the end of the 14-day LHRH treatment. Enhanced colour naming performance on the Stroop task (independently of whether sex, food or neutral stimuli were used) in conjunction with an increased motor perseveration after LHRH points to a general effect on cognitive function towards stronger focussing of cortical processing. While overall the data show discrete central nervous changes after LHRH, a particular influence on sexuality after acute or subchronic intranasal administration in healthy men was not detected.
Collapse
Affiliation(s)
- B Perras
- Clinical Neuroendocrinology, University of Lübeck, Ratzeburger Allee 160, D-23538, Lübeck, Germany.
| | | | | | | |
Collapse
|
49
|
Smolnik R, Perras B, Molle M, Fehm HL, Born J. Event-related brain potentials and working memory function in healthy humans after single-dose and prolonged intranasal administration of adrenocorticotropin 4-10 and desacetyl-alpha-melanocyte stimulating hormone. J Clin Psychopharmacol 2000; 20:445-54. [PMID: 10917406 DOI: 10.1097/00004714-200008000-00009] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Neuropeptides of the adrenocorticotropin/melanocorticotropin (ACTH/MSH) family are most potent modulators of cognitive function. Their neurobehavioral activity is principally encoded in the 4-10 fragment of the ACTH/MSH molecule; in humans, it has been shown to pertain primarily to functions of attentive stimulus/response processing. The aims of this study were (1) to examine the effects of ACTH 4-10 on event-related brain potentials (ERPs) and behavioral indicators of stimulus encoding within the working memory; (2) to compare the effects after a single dose and after prolonged treatment with ACTH 4-10; and (3) to compare the effects of ACTH 4-10 with those of desacetyl-alpha-MSH (i.e., ACTH 1-13 amide), which, like ACTH 4-10, binds to the known brain melanocortin receptors (MC-Rs) but with distinctly higher affinity. Double-blind, placebo-controlled experiments were performed in 60 healthy control subjects. The authors monitored ERPs and reaction times while these subjects performed an auditory vigilance task ("oddball"). Recall was tested on a verbal short-term memory task including different word categories (neutral, rare, food, sex). After a single (1 mg) as well as prolonged intranasal administration (1 mg/day over a period of 6 weeks), ACTH 4-10 enhanced the positive slow wave in ERPs to target stimuli of the vigilance task (p < 0.05), but left classic P3 unaffected. Moreover, single-dose and prolonged administration of ACTH 4-10 increased the rate of false responses during vigilance (p < 0.01). In the short term, ACTH 4-10 also impaired recall of neutral words (p < 0.05). Equimolar doses of desacetyl-alpha-MSH did not influence ERPs, neither after a single dose nor after prolonged treatment. Similar to ACTH 4-10, desacetyl-alpha-MSH increased the error rate during vigilance and acutely impaired the recall of neutral words. The increase in ERP slow-wave positivity, in conjunction with behavioral impairments after treatment with ACTH 4-10, complemented previous results of inferior focusing of attention and a less concise structure of thought after administration of ACTH 4-10. The changes indicated an impairment in differential processing of relevant versus irrelevant contents within the working memory, and, in this regard, might mimic aspects of psychopathologic disturbances of attention and thought processes. Their persistence after prolonged treatment with ACTH 4-10 suggests an activation of mechanisms subserving the consolidation of the peptide's effects. The poor efficacy of desacetyl-alpha-MSH suggests that the known MC-Rs may be irrelevant for mediating cognitive effects of this neuropeptide family.
Collapse
Affiliation(s)
- R Smolnik
- Department of Clinical Neuroendocrinology, University of Lübeck, Germany.
| | | | | | | | | |
Collapse
|
50
|
Affiliation(s)
- L Illum
- West Pharmaceutical Services Drug Delivery and Clinical Research Centre Ltd., Albert Einstein Centre, Nottingham Science and Technology Park, UK
| |
Collapse
|