1
|
Kong Y, Su M, Zhu Y, Li X, Zhang J, Gu W, Yang F, Zhou J, Ni J, Yang X, Zhu Z, Huang J. Enhancing the prediction of symptomatic radiation pneumonitis for locally advanced non-small-cell lung cancer by combining 3D deep learning-derived imaging features with dose-volume metrics: a two-center study. Strahlenther Onkol 2025; 201:274-282. [PMID: 38498173 DOI: 10.1007/s00066-024-02221-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 02/25/2024] [Indexed: 03/20/2024]
Abstract
OBJECTIVE This study aims to examine the ability of deep learning (DL)-derived imaging features for the prediction of radiation pneumonitis (RP) in locally advanced non-small-cell lung cancer (LA-NSCLC) patients. MATERIALS AND METHODS The study cohort consisted of 90 patients from the Fudan University Shanghai Cancer Center and 59 patients from the Affiliated Hospital of Jiangnan University. Occurrences of RP were used as the endpoint event. A total of 512 3D DL-derived features were extracted from two regions of interest (lung-PTV and PTV-GTV) delineated on the pre-radiotherapy planning CT. Feature selection was done using LASSO regression, and the classification models were built using the multilayered perceptron method. Performances of the developed models were evaluated by receiver operating characteristic curve analysis. In addition, the developed models were supplemented with clinical variables and dose-volume metrics of relevance to search for increased predictive value. RESULTS The predictive model using DL features derived from lung-PTV outperformed the one based on features extracted from PTV-GTV, with AUCs of 0.921 and 0.892, respectively, in the internal test dataset. Furthermore, incorporating the dose-volume metric V30Gy into the predictive model using features from lung-PTV resulted in an improvement of AUCs from 0.835 to 0.881 for the training data and from 0.690 to 0.746 for the validation data, respectively (DeLong p < 0.05). CONCLUSION Imaging features extracted from pre-radiotherapy planning CT using 3D DL networks could predict radiation pneumonitis and may be of clinical value for risk stratification and toxicity management in LA-NSCLC patients. CLINICAL RELEVANCE STATEMENT Integrating DL-derived features with dose-volume metrics provides a promising noninvasive method to predict radiation pneumonitis in LA-NSCLC lung cancer radiotherapy, thus improving individualized treatment and patient outcomes.
Collapse
Affiliation(s)
- Yan Kong
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
| | - Mingming Su
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
- Department of Medical Oncology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, 214187, Wuxi, Jiangsu, China
| | - Yan Zhu
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
| | - Xuan Li
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
- Department of Medical Oncology, Affiliated Huishan Hospital of Xinglin College, Nantong University, Wuxi Huishan District People's Hospital, 214187, Wuxi, Jiangsu, China
| | - Jinmeng Zhang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Wenchao Gu
- Department of Diagnostic and Interventional Radiology, University of Tsukuba, 305-8577, Ibaraki, Japan
| | - Fei Yang
- Department of Radiation Oncology, University of Miami, 33136, Miami, FL, USA
| | - Jialiang Zhou
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China
| | - Jianjiao Ni
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Xi Yang
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Zhengfei Zhu
- Department of Radiation Oncology, Fudan University Shanghai Cancer Center, 270 Dongan Road, Xuhui, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| | - Jianfeng Huang
- Department of Radiation Oncology, Affiliated Hospital of Jiangnan University, 1000 Hefeng Road, 214122, Wuxi, Jiangsu, China.
| |
Collapse
|
2
|
Zhang Y, Zhou SH, Yan YJ, Wu LL, Yuan XS, Hu M, Kang JJ, Jiang CX, Zhu YY, Yang SY, Zhao RF, Hu J, Hu MR, Liu H, Liu L, Zhao L, Xu YP. Predicting Severe Radiation Pneumonitis in Patients With Locally-Advanced Non-Small-Cell Lung Cancer After Thoracic Radiotherapy: Development and Validation of a Nomogram Based on the Clinical, Hematological, and Dose-Volume Histogram Parameters. Clin Lung Cancer 2025:S1525-7304(25)00042-7. [PMID: 40087057 DOI: 10.1016/j.cllc.2025.02.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 03/16/2025]
Abstract
PURPOSE This study aimed to investigate the risk factors for severe radiation pneumonitis (RP) after thoracic radiotherapy (RT) in patients with locally advanced non-small cell lung cancer (NSCLC), develop a prediction model to identify high-risk groups, and investigate the impact of severe RP on overall survival (OS). METHODS We retrospectively collected clinical, dosimetric, and hematological factors of patients with stage III NSCLC receiving thoracic RT without immunotherapy. The primary and secondary end points were severe RP and OS, respectively. Fine-Gray competing risk regression analyses were used to identify the risk factors for severe RP. The patients were randomly divided into training and validation cohorts at a ratio of 6:4. The model was evaluated using receiver operating characteristic (ROC) and calibration curves, and decision curve analysis (DCA). The OS of patients in the RP vs. non-RP and mild RP vs. severe RP groups was analyzed using the Kaplan-Meier method. RESULTS A total of 305 patients were enrolled in the analysis, and 32 (10.5%) developed severe RP. Interstitial lung disease (ILD) (P = .013), percentage of ipsilateral lung volume receiving ≥ 20 Gy (ipsilateral V20) (P = .029), pre-RT derived neutrophil lymphocyte ratio (dNLR) (P = .026), and post-RT systemic inflammation response index (SIRI) (P = .010) were independent predictors of severe RP, and were used to establish the nomogram based on a training cohort. The ROC area under the curve (AUC) of the nomogram was 0.804. Calibration curves and DCA showed favorable consistency and positive net benefits in both training and validation cohorts. Cases who developed severe RP had a shorter OS than those who developed mild RP (P = .027). CONCLUSION ILD, ipsilateral V20, pre-RT dNLR, and post-RT SIRI could predict severe RP in patients with locally advanced NSCLC receiving thoracic RT. By combining these indicators, a nomogram was constructed and validated, demonstrating its potential value in clinical practice.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shi-Hong Zhou
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yu-Jie Yan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Lei-Lei Wu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Xiao-Shuai Yuan
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Min Hu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jing-Jing Kang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chen-Xue Jiang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Yao-Yao Zhu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shuang-Yan Yang
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Rui-Feng Zhao
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jian Hu
- Department of Thoracic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China; Key Laboratory of Clinical Evaluation Technology for Medical Device of Zhejiang Province, Hangzhou, China
| | - Min-Ren Hu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Hui Liu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Liang Liu
- Clinical Research Unit, Institute of Clinical Science, Zhongshan Hospital of Fudan University, Shanghai, China.
| | - Lan Zhao
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China.
| | - Ya-Ping Xu
- Department of Radiation Oncology, Shanghai Pulmonary Hospital, Tongji University Medical School Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
3
|
Wang K, Yang F, Feng C, Xu F, Li L, Duan J, Yuan S. Dose-Volume Constraints Parameters for Lung Tissue in Thoracic Radiotherapy Following Immune Checkpoint Inhibitor Treatment. J Inflamm Res 2024; 17:7141-7154. [PMID: 39398227 PMCID: PMC11471064 DOI: 10.2147/jir.s484489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/04/2024] [Indexed: 10/15/2024] Open
Abstract
Purpose This study aims to identify risk factors associated with symptomatic radiation pneumonitis (RP, Grade ≥ 2) following immunotherapy preceding thoracic radiotherapy (ICI-TRT) and establish safe dose constraints. Patients and Methods This retrospective study enrolled patients diagnosed with non-small-cell lung cancer (NSCLC) who underwent thoracic radiotherapy (TRT) following immune checkpoint inhibitors (ICIs) treatment. The primary endpoint was the occurrence of symptomatic RP (Grade ≥ 2), as defined by the Common Terminology Criteria for Adverse Events version 5.0. Clinical and lung dosimetric parameters were analyzed to determine their associations with symptomatic RP. Dosimetric parameters included mean lung dose (MLD) and the percentage of lung volume receiving ≥10 Gy (V10), ≥20 Gy (V20), ≥30 Gy (V30), and ≥40 Gy (V40). Receiver operating characteristic curves were used to predict the risk of developing symptomatic RP to establish optimal threshold values for each dosimetric predictor. Results Among the 118 patients included, the incidence of symptomatic RP was 25.4%. Tumor locations, intervals between immunotherapy and radiotherapy, and MLD, V10, V20, V30, and V40 were identified as independent risk factors for symptomatic RP. The area under the curve (AUC) values for MLD, V10, V20, V30, and V40 were 0.788 (95% confidence interval [CI] 0.704-0.873), 0.789 (95% CI 0.705-0.874), 0.791 (95% CI 0.706-0.876), 0.784 (95% CI 0.697-0.871), and 0.749 (95% CI 0.656-0.842), respectively. The optimal threshold values for MLD, V10, V20, V30, and V40 were 9.7 Gy, 26.3%, 15.9%, 13.3%, and 8.6%, respectively. These thresholds are lower than current guideline recommendations, and maintaining dosimetric parameters below these values resulted in a cumulative symptomatic RP incidence of <12%. Conclusion The recommended dose thresholds for MLD, V10, V20, V30, and V40 are lower than the current guidelines, underscoring the importance of radiotherapy planning to minimize symptomatic RP occurrence in patients receiving ICI-TRT.
Collapse
Affiliation(s)
- Kang Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Fengchang Yang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Changxing Feng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Fuhao Xu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Li Li
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Jinghao Duan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
| | - Shuanghu Yuan
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, People’s Republic of China
- Department of Radiation Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, People’s Republic of China
| |
Collapse
|
4
|
Choi SH, Kim E, Heo SJ, Seol MY, Chung Y, Yoon HI. Integrative prediction model for radiation pneumonitis incorporating genetic and clinical-pathological factors using machine learning. Clin Transl Radiat Oncol 2024; 48:100819. [PMID: 39161733 PMCID: PMC11332843 DOI: 10.1016/j.ctro.2024.100819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/30/2024] [Accepted: 07/17/2024] [Indexed: 08/21/2024] Open
Abstract
Purpose We aimed to develop a machine learning-based prediction model for severe radiation pneumonitis (RP) by integrating relevant clinicopathological and genetic factors, considering the associations of clinical, dosimetric parameters, and single nucleotide polymorphisms (SNPs) of genes in the TGF-β1 pathway with RP. Methods We prospectively enrolled 59 primary lung cancer patients undergoing radiotherapy and analyzed pretreatment blood samples, clinicopathological/dosimetric variables, and 11 functional SNPs in TGFβ pathway genes. Using the Synthetic Minority Over-sampling Technique (SMOTE) and nested cross-validation, we developed a machine learning-based prediction model for severe RP (grade ≥ 2). Feature selection was conducted using four methods (filtered-based, wrapper-based, embedded, and logistic regression), and performance was evaluated using three machine learning models. Results Severe RP occurred in 20.3 % of patients with a median follow-up of 39.7 months. In our final model, age (>66 years), smoking history, PTV volume (>300 cc), and AG/GG genotype in BMP2 rs1979855 were identified as the most significant predictors. Additionally, incorporating genomic variables for prediction alongside clinicopathological variables significantly improved the AUC compared to using clinicopathological variables alone (0.822 vs. 0.741, p = 0.029). The same feature set was selected using both the wrapper-based method and logistic model, demonstrating the best performance across all machine learning models (AUC: XGBoost 0.815, RF 0.805, SVM 0.712, respectively). Conclusion We successfully developed a machine learning-based prediction model for RP, demonstrating age, smoking history, PTV volume, and BMP2 rs1979855 genotype as significant predictors. Notably, incorporating SNP data significantly enhanced predictive performance compared to clinicopathological factors alone.
Collapse
Affiliation(s)
- Seo Hee Choi
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Euidam Kim
- Department of Nuclear Engineering, Hanyang University, Seoul, Republic of Korea
| | - Seok-Jae Heo
- Division of Biostatistics, Department of Biomedical Systems Informatics, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mi Youn Seol
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yoonsun Chung
- Department of Nuclear Engineering, Hanyang University, Seoul, Republic of Korea
| | - Hong In Yoon
- Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
5
|
Valdes G, Scholey J, Nano TF, Gennatas ED, Mohindra P, Mohammed N, Zeng J, Kotecha R, Rosen LR, Chang J, Tsai HK, Urbanic JJ, Vargas CE, Yu NY, Ungar LH, Eaton E, Simone CB. Predicting the Effect of Proton Beam Therapy Technology on Pulmonary Toxicities for Patients With Locally Advanced Lung Cancer Enrolled in the Proton Collaborative Group Prospective Clinical Trial. Int J Radiat Oncol Biol Phys 2024; 119:66-77. [PMID: 38000701 DOI: 10.1016/j.ijrobp.2023.11.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 10/27/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023]
Abstract
PURPOSE This study aimed to predict the probability of grade ≥2 pneumonitis or dyspnea within 12 months of receiving conventionally fractionated or mildly hypofractionated proton beam therapy for locally advanced lung cancer using machine learning. METHODS AND MATERIALS Demographic and treatment characteristics were analyzed for 965 consecutive patients treated for lung cancer with conventionally fractionated or mildly hypofractionated (2.2-3 Gy/fraction) proton beam therapy across 12 institutions. Three machine learning models (gradient boosting, additive tree, and logistic regression with lasso regularization) were implemented to predict Common Terminology Criteria for Adverse Events version 4 grade ≥2 pulmonary toxicities using double 10-fold cross-validation for parameter hyper-tuning without leak of information. Balanced accuracy and area under the curve were calculated, and 95% confidence intervals were obtained using bootstrap sampling. RESULTS The median age of the patients was 70 years (range, 20-97), and they had predominantly stage IIIA or IIIB disease. They received a median dose of 60 Gy in 2 Gy/fraction, and 46.4% received concurrent chemotherapy. In total, 250 (25.9%) had grade ≥2 pulmonary toxicity. The probability of pulmonary toxicity was 0.08 for patients treated with pencil beam scanning and 0.34 for those treated with other techniques (P = 8.97e-13). Use of abdominal compression and breath hold were highly significant predictors of less toxicity (P = 2.88e-08). Higher total radiation delivered dose (P = .0182) and higher average dose to the ipsilateral lung (P = .0035) increased the likelihood of pulmonary toxicities. The gradient boosting model performed the best of the models tested, and when demographic and dosimetric features were combined, the area under the curve and balanced accuracy were 0.75 ± 0.02 and 0.67 ± 0.02, respectively. After analyzing performance versus the number of data points used for training, we observed that accuracy was limited by the number of observations. CONCLUSIONS In the largest analysis of prospectively enrolled patients with lung cancer assessing pulmonary toxicities from proton therapy to date, advanced machine learning methods revealed that pencil beam scanning, abdominal compression, and lower normal lung doses can lead to significantly lower probability of developing grade ≥2 pneumonitis or dyspnea.
Collapse
Affiliation(s)
- Gilmer Valdes
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Jessica Scholey
- Department of Radiation Oncology, University of California, San Francisco, California
| | - Tomi F Nano
- Department of Radiation Oncology, University of California, San Francisco, California.
| | - Efstathios D Gennatas
- Department of Epidemiology and Biostatistics, University of California, San Francisco, California
| | - Pranshu Mohindra
- University of Maryland School of Medicine and Maryland Proton Treatment Center, Baltimore, Maryland
| | - Nasir Mohammed
- Northwestern Medicine Chicago Proton Center, Warrenville, Illinois
| | - Jing Zeng
- University of Washington and Seattle Cancer Care Alliance Proton Therapy Center, Seattle, Washington
| | - Rupesh Kotecha
- Department of Radiation Oncology, Miami Cancer Institute, Baptist Health South Florida, Miami, Florida
| | - Lane R Rosen
- Willis-Knighton Medical Center, Shreveport, Louisiana
| | - John Chang
- Oklahoma Proton Center, Oklahoma City, Oklahoma
| | - Henry K Tsai
- New Jersey Procure Proton Therapy Center, Somerset, New Jersey
| | - James J Urbanic
- Department of Radiation Oncology, California Protons Therapy Center, San Diego, California
| | - Carlos E Vargas
- Department of Radiation Oncology, Mayo Clinic Proton Center, Phoenix, Arizona
| | - Nathan Y Yu
- Department of Radiation Oncology, Mayo Clinic Proton Center, Phoenix, Arizona
| | - Lyle H Ungar
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Eric Eaton
- Department of Computer and Information Science, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Charles B Simone
- Department of Radiation Oncology, New York Proton Center, New York, New York
| |
Collapse
|
6
|
Zha Y, Zhang J, Yan X, Yang C, Wen L, Li M. A dynamic nomogram predicting symptomatic pneumonia in patients with lung cancer receiving thoracic radiation. BMC Pulm Med 2024; 24:99. [PMID: 38409084 PMCID: PMC10895758 DOI: 10.1186/s12890-024-02899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 02/07/2024] [Indexed: 02/28/2024] Open
Abstract
PURPOSE The most common and potentially fatal side effect of thoracic radiation therapy is radiation pneumonitis (RP). Due to the lack of effective treatments, predicting radiation pneumonitis is crucial. This study aimed to develop a dynamic nomogram to accurately predict symptomatic pneumonitis (RP ≥ 2) following thoracic radiotherapy for lung cancer patients. METHODS Data from patients with pathologically diagnosed lung cancer at the Zhongshan People's Hospital Department of Radiotherapy for Thoracic Cancer between January 2017 and June 2022 were retrospectively analyzed. Risk factors for radiation pneumonitis were identified through multivariate logistic regression analysis and utilized to construct a dynamic nomogram. The predictive performance of the nomogram was validated using a bootstrapped concordance index and calibration plots. RESULTS Age, smoking index, chemotherapy, and whole lung V5/MLD were identified as significant factors contributing to the accurate prediction of symptomatic pneumonitis. A dynamic nomogram for symptomatic pneumonitis was developed using these risk factors. The area under the curve was 0.89(95% confidence interval 0.83-0.95). The nomogram demonstrated a concordance index of 0.89(95% confidence interval 0.82-0.95) and was well calibrated. Furthermore, the threshold values for high- risk and low- risk were determined to be 154 using the receiver operating curve. CONCLUSIONS The developed dynamic nomogram offers an accurate and convenient tool for clinical application in predicting the risk of symptomatic pneumonitis in patients with lung cancer undergoing thoracic radiation.
Collapse
Affiliation(s)
- Yawen Zha
- Departments of Thoracic Cancer Radiotherapy, Zhongshan People's Hospital, Zhanshan, China
| | - Jingjing Zhang
- Departments of Thoracic Cancer Radiotherapy, Zhongshan People's Hospital, Zhanshan, China
| | - Xinyu Yan
- Xinxiang Medical University, Xinxiang, China
| | - Chen Yang
- Xinxiang Medical University, Xinxiang, China
| | - Lei Wen
- Departments of Medical Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Minying Li
- Departments of Thoracic Cancer Radiotherapy, Zhongshan People's Hospital, Zhanshan, China.
| |
Collapse
|
7
|
Salz T, Chimonas S, Jinna S, Brens J, Kriplani A, Salner A, Rabinowits G, Currier B, Daly B, Korenstein D. Pain management for post-treatment survivors of complex cancers: a qualitative study of opioids and cannabis. Pain Manag 2024; 14:87-99. [PMID: 38318666 PMCID: PMC10918509 DOI: 10.2217/pmt-2023-0067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 12/01/2023] [Indexed: 02/07/2024] Open
Abstract
Aim: We aimed to understand experiences with opioids and cannabis for post-treatment cancer survivors. Patients & methods: We conducted seven focus groups among head and neck and lung cancer survivors, using standard qualitative methodology to explore themes around 1) post-treatment pain and 2) utilization, perceived benefits and perceived harms of cannabis and opioids. Results & conclusion: Survivors (N = 25) experienced addiction fears, stigma and access challenges for both products. Opioids were often perceived as critical for severe pain. Cannabis reduced pain and anxiety for many survivors, suggesting that anxiety screening, as recommended in guidelines, would improve traditional pain assessment. Opioids and cannabis present complex harms and benefits for post-treatment survivors who must balance pain management and minimizing side effects.
Collapse
Affiliation(s)
- Talya Salz
- Memorial Sloan Kettering Cancer Center, Department of
Epidemiology & Biostatistics, New York, NY 10017, USA
| | - Susan Chimonas
- Memorial Sloan Kettering Cancer Center, Department of
Epidemiology & Biostatistics, New York, NY 10017, USA
| | - Sankeerth Jinna
- Memorial Sloan Kettering Cancer Center, Department of
Epidemiology & Biostatistics, New York, NY 10017, USA
| | - Jessica Brens
- Memorial Sloan Kettering Cancer Center, Department of
Advanced Practice Providers, New York, NY 10065, USA
| | - Anuja Kriplani
- Memorial Sloan Kettering Cancer Center, Department of
Medicine, New York, NY 10065, USA
| | - Andrew Salner
- Hartford Hospital, Department of Radiation Oncology,
Hartford, CT 06106, USA
| | - Guilherme Rabinowits
- Moffit Cancer Center, Department of Head and
Neck-Endocrine Oncology, Tampa, FL 33612, USA
| | - Beatriz Currier
- Miami Cancer Institute, Department of Medicine,
Miami, FL 33176, USA
| | - Bobby Daly
- Memorial Sloan Kettering Cancer Center, Department of
Medicine, New York, NY 10065, USA
| | - Deborah Korenstein
- Mount Sinai Hospital, Department of Internal
Medicine, New York, NY 10001, USA
| |
Collapse
|
8
|
An YC, Kim JH, Noh JM, Yang KM, Oh YJ, Park SG, Pyo HR, Lee HY. Quantification of diffuse parenchymal lung disease in non-small cell lung cancer patients with definitive concurrent chemoradiation therapy for predicting radiation pneumonitis. Thorac Cancer 2023; 14:3530-3539. [PMID: 37953066 PMCID: PMC10733155 DOI: 10.1111/1759-7714.15156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Revised: 10/23/2023] [Accepted: 10/25/2023] [Indexed: 11/14/2023] Open
Abstract
BACKGROUND We sought to quantify diffuse parenchymal lung disease (DPLD) extent using quantitative computed tomography (CT) analysis and to investigate its association with radiation pneumonitis (RP) development in non-small cell lung cancer (NSCLC) patients receiving definitive concurrent chemoradiation therapy (CCRT). METHODS A total of 82 NSCLC patients undergoing definitive CCRT were included in this prospective cohort study. Pretreatment CT scans were analyzed using quantitative CT analysis software. Low-attenuation area (LAA) features based on lung density and texture features reflecting interstitial lung disease (ILD) were extracted from the whole lung. Clinical and dosimetric factors were also evaluated. RP development was assessed using the Common Terminology Criteria for Adverse Events version 5.0. Univariable and multivariable logistic regression analyses were performed to identify independent risk factors for grade ≥3 (≥GR3) RP. RESULTS RP was identified in 68 patients (73.9%), with nine patients (10.9%) experiencing ≥GR3 RP. Univariable logistic regression analysis identified excess kurtosis and high-attenuation area (HAA)_volume (cc) as significantly associated with ≥GR3 RP. Multivariable logistic regression analysis showed that the combined use of imaging features and clinical factors (forced expiratory volume in 1 second [FEV1], forced vital capacity [FVC], and CHEMO regimen) demonstrated the best performance (area under the receiver operating characteristic curve = 0.924) in predicting ≥GR3 RP. CONCLUSION Quantified imaging features of DPLD obtained from pretreatment CT scans would predict the occurrence of RP in NSCLC patients undergoing definitive CCRT. Combining imaging features with clinical factors could improve the accuracy of the predictive model for severe RP.
Collapse
Affiliation(s)
- Ye Chan An
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and TechnologySungkyunkwan UniversitySeoulSouth Korea
- Department of Radiation OncologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulSouth Korea
| | - Jong Hoon Kim
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and TechnologySungkyunkwan UniversitySeoulSouth Korea
| | - Jae Myung Noh
- Department of Radiation OncologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulSouth Korea
| | - Kyung Mi Yang
- Department of Radiation OncologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulSouth Korea
| | - You Jin Oh
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and TechnologySungkyunkwan UniversitySeoulSouth Korea
| | - Sung Goo Park
- Department of Radiology and Center for Imaging Science, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
| | - Hong Ryul Pyo
- Department of Radiation OncologySamsung Medical Center, Sungkyunkwan University School of MedicineSeoulSouth Korea
| | - Ho Yun Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences and TechnologySungkyunkwan UniversitySeoulSouth Korea
- Department of Radiology and Center for Imaging Science, Samsung Medical CenterSungkyunkwan University School of MedicineSeoulSouth Korea
| |
Collapse
|
9
|
Kim H, Hwang J, Kim SM, Choi J, Yang DS. Risk factor analysis of the development of severe radiation pneumonitis in patients with non-small cell lung cancer treated with curative radiotherapy, with focus on underlying pulmonary disease. BMC Cancer 2023; 23:992. [PMID: 37848850 PMCID: PMC10583362 DOI: 10.1186/s12885-023-11520-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Accepted: 10/12/2023] [Indexed: 10/19/2023] Open
Abstract
BACKGROUND We aim to identify the multifaceted risk factors that can affect the development of severe radiation pneumonitis (RP) in patients with non-small cell lung cancer (NSCLC) treated with curative high-dose radiotherapy with or without concurrent chemotherapy. METHODS We retrospectively reviewed the medical records of 175 patients with stage-I-III NSCLC treated with curative thoracic X-ray radiotherapy at the Korea University Guro Hospital between June 2019 and June 2022. Treatment-related complications were evaluated using the Common Terminology Criteria for Adverse Events (version 4.03). RESULTS The median follow-up duration was 15 months (range: 3-47 months). Idiopathic pulmonary fibrosis (IPF) as an underlying lung disease (P < 0.001) and clinical stage, regarded as the concurrent use of chemotherapy (P = 0.009), were associated with a high rate of severe RP. In multivariate analyses adjusting confounding variables, the presence of IPF as an underlying disease was significantly associated with severe RP (odds ratio [95% confidence interval] = 48.4 [9.09-347]; P < 0.001). In a subgroup analysis of stage-I-II NSCLC, the incidence of severe RP in the control, chronic obstructive pulmonary disease (COPD), and IPF groups was 3.2%, 4.3%, and 42.9%, respectively (P < 0.001). The incidence of severe RP was 15.2%, 10.7%, and 75.0% in the control, COPD, and IPF groups, respectively (P < 0.001) in the stage-III NSCLC group. CONCLUSIONS This study revealed that IPF as an underlying lung disease and the concurrent use of chemotherapy are associated with a high rate of severe RP. In contrast, COPD did not increase the risk of pulmonary toxicity after receiving curative high-dose radiotherapy.
Collapse
Affiliation(s)
- Hakyoung Kim
- Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea.
| | - Jeongeun Hwang
- Department of Medical IT Engineering, College of Medical Sciences, Soonchunhyang University, Chungcheongnam-Do, Republic of Korea
| | - Sun Myung Kim
- Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea
| | - Juwhan Choi
- Department of Internal Medicine, Korea University Guro Hospital, Division of Pulmonary, Allergy, and Critical Care Medicine, Korea University College of Medicine, Seoul, Republic of Korea
| | - Dae Sik Yang
- Departments of Radiation Oncology, Korea University Guro Hospital, Korea University College of Medicine, 148, Gurodong-Ro, Guro-Gu, Seoul, 08308, Republic of Korea.
| |
Collapse
|
10
|
Hirama N, Yamamoto M, Nagaoka S, Segawa W, Sugimoto C, Nagayama H, Hiro S, Kajita Y, Maeda C, Kubo S, Seki K, Nagahara Y, Teranishi S, Tashiro K, Hara Y, Kobayashi N, Watanabe S, Kudo M, Kaneko T. Predictors of lung injury during durvalumab maintenance therapy following concurrent chemoradiotherapy in unresectable locally advanced non-small cell lung carcinoma. Thorac Cancer 2023; 14:2601-2607. [PMID: 37533115 PMCID: PMC10481134 DOI: 10.1111/1759-7714.15042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 07/06/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND Based on the results of the PACIFIC trial, maintenance with durvalumab has emerged as the standard treatment following concurrent chemoradiotherapy in patients with unresectable locally advanced non-small cell lung carcinoma (NSCLC). However, adverse events attributed to durvalumab, especially lung injuries, including immune-related adverse events, and radiation pneumonitis, are concerning. This study retrospectively investigated the factors related to lung injury in patients receiving the PACIFIC regimen. METHODS Patients with unresectable locally advanced NSCLC who received durvalumab maintenance therapy following concurrent chemoradiotherapy at Yokohama City University Medical Centre between July 2018 and March 2022 were included. Clinical data, volume of normal lung receiving 20 or 5 Gy or more (V20 or V5), planning target volume (PTV), and relative lung parenchyma volume in emphysematous lung receiving 20 or 5 Gy or more (RLPV20 or 5; V20 or V5/100-percentage of low-attenuation volume) were evaluated. RESULTS Performance status (PS), V20, V5, PTV, RLPV20, and RLPV5 were significantly higher in the lung injury group in the univariate analysis. Furthermore, RLPV20 was the most significant factor in the lung injury group in the multivariate analysis comprising PS, PTV, V20, and RLPV20. CONCLUSION RLPV20 and RLPV5 are useful in estimating lung inflammation. RLPV20 could be considered the most reliable risk factor for maintenance therapy with durvalumab following concurrent chemoradiotherapy in patients with unresectable locally advanced NSCLC.
Collapse
Affiliation(s)
- Nobuyuki Hirama
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Masaki Yamamoto
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Satoshi Nagaoka
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Wataru Segawa
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Chihiro Sugimoto
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Hirokazu Nagayama
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Shuntaro Hiro
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Yukihito Kajita
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Chihiro Maeda
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Sousuke Kubo
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Kenichi Seki
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Yoshinori Nagahara
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Shuhei Teranishi
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Ken Tashiro
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Yu Hara
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | - Nobuaki Kobayashi
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| | | | - Makoto Kudo
- Respiratory Disease CenterYokohama City University Medical CenterYokohamaJapan
| | - Takeshi Kaneko
- Department of PulmonologyYokohama City University Graduate School of MedicineYokohamaJapan
| |
Collapse
|
11
|
Flakus MJ, Wuschner AE, Wallat EM, Graham M, Shao W, Shanmuganayagam D, Christensen GE, Reinhardt JM, Bayouth JE. Validation of CT-based ventilation and perfusion biomarkers with histopathology confirms radiation-induced pulmonary changes in a porcine model. Sci Rep 2023; 13:9377. [PMID: 37296169 PMCID: PMC10256800 DOI: 10.1038/s41598-023-36292-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
Imaging biomarkers can assess disease progression or prognoses and are valuable tools to help guide interventions. Particularly in lung imaging, biomarkers present an opportunity to extract regional information that is more robust to the patient's condition prior to intervention than current gold standard pulmonary function tests (PFTs). This regional aspect has particular use in functional avoidance radiation therapy (RT) in which treatment planning is optimized to avoid regions of high function with the goal of sparing functional lung and improving patient quality of life post-RT. To execute functional avoidance, detailed dose-response models need to be developed to identify regions which should be protected. Previous studies have begun to do this, but for these models to be clinically translated, they need to be validated. This work validates two metrics that encompass the main components of lung function (ventilation and perfusion) through post-mortem histopathology performed in a novel porcine model. With these methods validated, we can use them to study the nuanced radiation-induced changes in lung function and develop more advanced models.
Collapse
Affiliation(s)
- Mattison J Flakus
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA.
| | - Antonia E Wuschner
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Eric M Wallat
- Department of Medical Physics, University of Wisconsin - Madison, Madison, WI, USA
| | - Melissa Graham
- Research Animal Resources and Compliance, University of Wisconsin - Madison, Madison, WI, USA
| | - Wei Shao
- Department of Medicine, University of Florida, Gainesville, FL, USA
| | - Dhanansayan Shanmuganayagam
- Department of Surgery, University of Wisconsin - Madison, Madison, WI, USA
- Department of Animal and Dairy Sciences, University of Wisconsin - Madison, Madison, WI, USA
| | - Gary E Christensen
- Department of Electrical and Computer Engineering, University of Iowa, Iowa City, IA, USA
- Department of Radiation Oncology, University of Iowa, Iowa City, IA, USA
| | - Joseph M Reinhardt
- Roy J. Carver Department of Biomedical Engineering, University of Iowa, Iowa City, IA, USA
| | - John E Bayouth
- Department of Radiation Medicine, Oregon Health Sciences University, Portland, OR, USA
| |
Collapse
|
12
|
Chen F, Niu J, Wang M, Zhu H, Guo Z. Re-evaluating the risk factors for radiation pneumonitis in the era of immunotherapy. J Transl Med 2023; 21:368. [PMID: 37287014 DOI: 10.1186/s12967-023-04212-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/19/2023] [Indexed: 06/09/2023] Open
Abstract
As one of the common complications of radiotherapy, radiation pneumonia (RP) limits the prognosis of patients. Therefore, better identifying the high-risk factors that lead to RP is essential to effectively prevent its occurrence. However, as lung cancer treatment modalities are being replaced and the era of immunotherapy has arrived, literature that reviews the parameters and mode of radiotherapy, chemotherapy drugs, targeted drugs and current hot immune checkpoint inhibitors related to RP is lacking. This paper summarizes the risk factors for radiation pneumonia by retrieving and analysing previously published literature and the results of large clinical trials. The literature primarily included retrospective analyses, including clinical trials in different periods and a part of the literature review. A systematic literature search of Embase, PubMed, Web of Science, and Clinicaltrials.gov was performed for relevant publications up to 6 Dec. 2022. Search keywords include, but are not limited to, "radiation pneumonia", "pneumonia", "risk factors", "immunotherapy", etc. The factors related to RP in this paper include physical parameters of radiotherapy, including V5, V20, and MLD; chemoradiotherapy mode and chemotherapy drugs, including paclitaxel and gemcitabine; EGFR-TKI; ALK inhibitors; antiangiogenic drugs; immune drugs and the underlying disease of the patient. We also introduce the possible mechanism of RP. In the future, we hope that this article not only sounds the alarm for clinicians but also helps to identify a method that can effectively intervene and reduce the occurrence of RP, significantly improve the quality of life and prognosis of patients, and more effectively improve the therapeutic effect of radiation therapy.
Collapse
Affiliation(s)
- Feihu Chen
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Jiling Niu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Min Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China
| | - Hui Zhu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| | - Zhijun Guo
- Department of Intensive Care Unit, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, 250117, Shandong, China.
| |
Collapse
|
13
|
Andruska N, Schlaak RA, Frei A, Schottstaedt AM, Lin CY, Fish BL, Gasperetti T, Mpoy C, Pipke JL, Pedersen LN, Flister MJ, Javaheri A, Bergom C. Differences in radiation-induced heart dysfunction in male versus female rats. Int J Radiat Biol 2023; 99:1096-1108. [PMID: 36971580 PMCID: PMC10431914 DOI: 10.1080/09553002.2023.2194404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Revised: 02/24/2023] [Accepted: 03/14/2023] [Indexed: 03/29/2023]
Abstract
PURPOSE Radiation therapy remains part of the standard of care for breast, lung, and esophageal cancers. While radiotherapy improves local control and survival, radiation-induced heart dysfunction is a common side effect of thoracic radiotherapy. Cardiovascular dysfunction can also result from non-therapeutic total body radiation exposures. Numerous studies have evaluated the relationship between radiation dose to the heart and cardiotoxicity, but relatively little is known about whether there are differences based on biological sex in radiation-induced heart dysfunction (RIHD). MATERIALS AND METHODS We evaluated whether male and female inbred Dahl SS rats display differences in RIHD following delivery of 24 Gy in a single fraction to the whole heart using a 1.5 cm beam size (collimater). We also compared the 2.0 cm vs. 1.5 cm collimator in males. Pleural and pericardial effusions and normalized heart weights were measured, and echocardiograms were performed. RESULTS Female SS rats displayed more severe RIHD relative to age-matched SS male rats. Normalized heart weight was significantly increased in females, but not in males. A total of 94% (15/16) of males and 55% (6/11) of females survived 5 months after completion of radiotherapy (p < .01). Among surviving rats, 100% of females and 14% of males developed moderate-to-severe pericardial effusions at 5 months. Females demonstrated increased pleural effusions, with the mean normalized pleural fluid volume for females and males being 56.6 mL/kg ± 12.1 and 10.96 mL/kg ± 6.4 in males (p = .001), respectively. Echocardiogram findings showed evidence of heart failure, which was more pronounced in females. Because age-matched female rats have smaller lungs, a higher percentage of the total lung was treated with radiation in females than males using the same beam size. After using a larger 2 cm beam in males which results in higher lung exposure, there was not a significant difference between males and females in terms of the development of moderate-to-severe pericardial effusions or pleural effusions. Treatment of males with a 2 cm beam resulted in comparable increases in LV mass and reductions in stroke volume to female rats treated with a 1.5 cm beam. CONCLUSION Together, these results illustrate that there are differences in radiation-induced cardiotoxicity between male and female SS rats and add to the data that lung radiation doses, in addition to other factors, may play an important role in cardiac dysfunction following heart radiation exposure. These factors may be important to factor into future mitigation studies of radiation-induced cardiotoxicity.
Collapse
Affiliation(s)
- Neal Andruska
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Rachel A. Schlaak
- Department of Pharmacology & Toxicology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Anne Frei
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | | | - Chieh-Yu Lin
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, Missouri
| | - Brian L. Fish
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Tracy Gasperetti
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Cedric Mpoy
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Jamie L. Pipke
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Lauren N. Pedersen
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
| | - Michael J. Flister
- Department of Physiology, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Ali Javaheri
- Department of Medicine, Division of Cardiology, Washington University School of Medicine, St Louis, Missouri
| | - Carmen Bergom
- Department of Radiation Oncology, Washington University School of Medicine, St Louis, Missouri
- Department of Radiation Oncology, Medical College of Wisconsin, Milwaukee, Wisconsin
- Alvin J. Siteman Cancer Center, Washington University School of Medicine, St Louis, Missouri
| |
Collapse
|
14
|
Tepetam H, Karabulut Gul S, Alomari O, Caglayan M, Demircioglu O. Does shortening the duration of radiotherapy treatment in breast cancer increase the risk of radiation pneumonia: A retrospective study. Medicine (Baltimore) 2023; 102:e33303. [PMID: 36961146 PMCID: PMC10035996 DOI: 10.1097/md.0000000000033303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
Randomized studies evaluating hypofractionation and conventional fractionation radiotherapy treatments (RT) in patients with breast cancer have shown that hypofractionation achieves similar results to conventional fractionation in terms of survival and local control rates. It has also been shown that their long-term toxicities are similar. This study aimed to evaluate the effects of hypofractionated radiotherapy (H-RT) and conventional radiotherapy (C-RT) on lung toxicity and identify factors affecting this toxicity in patients with breast cancer. The study included 118 patients who underwent adjuvant RT following breast-conserving surgery (BCS). Out of these, 63 patients were assigned to receive C-RT, while the remaining 55 were assigned to receive H-RT. To clarify, we treated 63 patients with C-RT and 55 patients with H-RT. 60 patients were treated using 3-dimensional conformal radiotherapy (3DCRT) and 58 patients were treated using intensity modulated radiotherapy (IMRT). The patients were evaluated weekly for toxicity during radiotherapy (RT) treatment and were called every 3 months for routine controls after the treatment. The first control was performed 1 month after the treatment. Statistical analysis was performed using the SPSS20 program, and a P value of <.005 was considered statistically significant. The study found that the median age of the participants was 54.9 years and tomographic findings were observed in 70 patients. Radiological findings were detected at a median of 5 months after RT. The mean lung dose (MLD) on the treated breast side (referred to as ipsilateral lung or OAR) was 10.4 Gy for the entire group. Among patients who received 18 MV energy in RT, those with an area volume (V20) of the lung on the treated breast side >18.5%, those with a mean dose of the treated breast side lung (ipsilateral lung) >10.5 Gy, and those who received concurrent hormone therapy had significantly more tomographic findings. However, patients treated with YART had fewer tomographic findings. No symptomatic patients were observed during the follow-up period. Our findings show that the risk of lung toxicity is similar with H-RT and C-RT, and H-RT can be considered an effective and safe treatment option for breast cancer. The key factors affecting the development of lung toxicity were found to be the type of RT energy used, RT to the side breast, volume receiving 20 Gy in the side lung, side lung mean dose, and simultaneous hormonal therapy.
Collapse
Affiliation(s)
- Huseyin Tepetam
- Department of Radiation Oncology, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey
| | - Sule Karabulut Gul
- Department of Radiation Oncology, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey
| | - Omar Alomari
- Hamidiye International School of Medicine, University of Health Sciences, Istanbul, Turkey
| | - Merve Caglayan
- Department of Radiation Oncology, Dr. Lutfi Kirdar Kartal Training and Research Hospital, Istanbul, Turkey
| | - Ozlem Demircioglu
- Marmara University Research and Education Hospital, Department of Radiology, Istanbul, Turkey
| |
Collapse
|
15
|
Miller R, Castillo R, Castillo E, Jones BL, Miften M, Kavanagh B, Lu B, Werner-Wasik M, Ghassemi N, Lombardo J, Barta J, Grills I, Rusthoven CG, Guerrero T, Vinogradskiy Y. Characterizing Pulmonary Function Test Changes for Patients With Lung Cancer Treated on a 2-Institution, 4-Dimensional Computed Tomography-Ventilation Functional Avoidance Prospective Clinical Trial. Adv Radiat Oncol 2023; 8:101133. [PMID: 36618762 PMCID: PMC9816902 DOI: 10.1016/j.adro.2022.101133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Accepted: 11/17/2022] [Indexed: 12/05/2022] Open
Abstract
Purpose Four-dimensional computed tomography (4DCT)-ventilation-based functional avoidance uses 4DCT images to generate plans that avoid functional regions of the lung with the goal of reducing pulmonary toxic effects. A phase 2, multicenter, prospective study was completed to evaluate 4DCT-ventilation functional avoidance radiation therapy. The purpose of this study was to report the results for pretreatment to posttreatment pulmonary function test (PFT) changes for patients treated with functional avoidance radiation therapy. Methods and Materials Patients with locally advanced lung cancer receiving chemoradiation were accrued. Functional avoidance plans based on 4DCT-ventilation images were generated. PFTs were obtained at baseline and 3 months after chemoradiation. Differences for PFT metrics are reported, including diffusing capacity for carbon monoxide (DLCO), forced expiratory volume in 1 second (FEV1), and forced vital capacity (FVC). PFT metrics were compared for patients who did and did not experience grade 2 or higher pneumonitis. Results Fifty-six patients enrolled on the study had baseline and posttreatment PFTs evaluable for analysis. The mean change in DLCO, FEV1, and FVC was -11.6% ± 14.2%, -5.6% ± 16.9%, and -9.0% ± 20.1%, respectively. The mean change in DLCO was -15.4% ± 14.4% for patients with grade 2 or higher radiation pneumonitis and -10.8% ± 14.1% for patients with grade <2 radiation pneumonitis (P = .37). The mean change in FEV1 was -14.3% ± 22.1% for patients with grade 2 or higher radiation pneumonitis and -3.9% ± 15.4% for patients with grade <2 radiation pneumonitis (P = .09). Conclusions The current work is the first to quantitatively characterize PFT changes for patients with lung cancer treated on a prospective functional avoidance radiation therapy study. In comparison with patients treated with standard thoracic radiation planning, the data qualitatively show that functional avoidance resulted in less of a decline in DLCO and FEV1. The presented data can help elucidate the potential pulmonary function improvement with functional avoidance radiation therapy.
Collapse
Affiliation(s)
- Ryan Miller
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Richard Castillo
- Department of Radiation Oncology, Emory University, Atlanta, Georgia
| | - Edward Castillo
- Department of Biomedical Engineering, University of Texas at Austin, Austin, Texas
| | - Bernard L. Jones
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Moyed Miften
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Brian Kavanagh
- Department of Radiation Oncology, University of Colorado School of Medicine, Aurora, Colorado
| | - Bo Lu
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Maria Werner-Wasik
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Nader Ghassemi
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Joseph Lombardo
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Julie Barta
- Department of Thoracic Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Inga Grills
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Chad G. Rusthoven
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Thomas Guerrero
- Department of Radiation Oncology, Beaumont Health System, Royal Oak, Michigan
| | - Yevgeniy Vinogradskiy
- Department of Radiation Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Liang Z, Luo K, Wang Y, Zeng Q, Ling X, Wang S, Dragomir MP, Li Q, Yang H, Xi M, Chen B. Clinical and Dosimetric Predictors for Postoperative Cardiopulmonary Complications in Esophageal Squamous Cell Carcinoma Patients Receiving Neoadjuvant Chemoradiotherapy and Surgery. Ann Surg Oncol 2023; 30:529-538. [PMID: 36127527 DOI: 10.1245/s10434-022-12526-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 08/22/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND Neoadjuvant chemoradiotherapy followed by esophagectomy is the standard treatment for patients with locally advanced esophageal squamous cell carcinoma (ESCC). This study explored correlations of clinical factors and dose-volume histogram (DVH) parameters with postoperative cardiopulmonary complications and predicted their risk by establishing a nomogram model. METHODS Clinical and DVH parameters of ESCC patients who underwent trimodality treatment from 2002 to 2020 were collected. Postoperative cardiopulmonary complications were recorded. Logistic regression analysis was applied, and a nomogram model was constructed. Area under the receiver operating characteristic (AUC) curve, calibration curve, and decision curve analyses were performed to evaluate the performance of the nomogram. RESULTS Of the 307 ESCC patients enrolled in this study, 65 (21.2%) experienced pulmonary complications and 57 (18.6%) experienced cardiac complications. The following six risk factors were identified as independent risk factors for pulmonary complications by multivariate logistic regression analyses in the integrated model: male sex (odds ratio [OR], 3.26; 95% confidence interval [CI], 1.27-9.70; P = 0.021), post-radiation therapy (RT) forced expiratory volume in 1 s (FEV1) (OR, 0.51; 95% CI 0.28-0.90; P = 0.023), mean lung dose (MLD) (OR, 1.13; 95% CI 1.01-1.28; P = 0.041), and pre-RT monocyte (OR, 8.36; 95% CI 1.23-11.7; P = 0.03). The AUC of this integrated model was 0.705 (95% CI 0.64-0.77). The paclitaxel and cisplatin (TP) concurrent chemotherapy regimen was the independent predictor of cardiac complication (OR, 2.50; 95% CI 1.22-5.55; P = 0.016). CONCLUSIONS For ESCC patients who underwent trimodality treatment, male sex, post-RT FEV1, MLD, and pre-RT monocyte were confirmed as significant predictors of postoperative pulmonary complications. A nomogram model including six risk factors was further established. The independent predictor of cardiac complication was TP concurrent chemotherapy.
Collapse
Affiliation(s)
- Zhaohui Liang
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China
| | - Kongjia Luo
- Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Yuting Wang
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Qiuli Zeng
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Xiuzhen Ling
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Sifen Wang
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China
| | - Mihnea P Dragomir
- Institute of Pathology, Charité-Universitätsmedizin Berlin, Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.,Berlin Institute of Health, Berlin, Germany.,German Cancer Consortium (DKTK), Partner Site Berlin, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Qiaoqiao Li
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China.,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China
| | - Hong Yang
- Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China.,State Key Laboratory of Oncology in South China, Department of Thoracic Surgery, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China
| | - Mian Xi
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China. .,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China.
| | - Baoqing Chen
- State Key Laboratory of Oncology in South China, Department of Radiation Oncology, Collaborative Innovation Center of Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, People's Republic of China. .,Guangdong Esophageal Cancer Research Institute, Guangzhou, Guangdong, People's Republic of China.
| |
Collapse
|
17
|
Zheng K, Bassal M, Mitsakakis N, Cepalo T, Hamid JS, Momoli F, Reisman J, Nair V, Radhakrishnan D. A longitudinal analysis of early lung function trajectory in survivors of childhood Hodgkin lymphoma. Cancer Rep (Hoboken) 2023; 6:e1661. [PMID: 35760768 PMCID: PMC9875613 DOI: 10.1002/cnr2.1661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 04/29/2022] [Accepted: 05/13/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Childhood Hodgkin lymphoma survivors suffer from long-term effects decades after treatment completion with a prevalence of pulmonary dysfunction of up to 65.2%. AIMS This study explored the early trajectory of pulmonary function in pediatric cancer patients with Hodgkin lymphoma who received pulmonary toxic therapy. METHODS AND RESULTS In this single-center, 20-year retrospective cohort study, we included patients who were <18 years old at diagnosis of Hodgkin lymphoma between January 1994 and December 2014, and received bleomycin or thoracic radiation. We measured pulmonary function and reported on percent predicted values for forced expiratory volume in 1 s, total lung capacity, and diffusing capacity of the lungs. We used linear mixed models to identify the association of clinical factors with longitudinal changes in lung function at time points before and after treatment completion. Of 80 children who met inclusion criteria, all were treated with bleomycin, and 83.8% received thoracic radiation. More than half (51.2%) of patients had any abnormalities in lung function measures during the study observation period which averaged 24.2 months (±31.1SD). Females, younger age at diagnosis and treatment with radiation were associated with lower lung function measurements at various time points. While the majority of children experienced a recovery of their lung function within 1-2 years after treatment completion, some children with these risk factors did not. CONCLUSION Pulmonary function abnormalities begin early in children treated for Hodgkin lymphoma. While the majority of children demonstrate a slow and continuous improvement in lung function back to baseline over time, we recommend routine asymptomatic screening of pulmonary function in certain childhood cancer survivors, particularly females, those diagnosed young and patients who received radiation therapy.
Collapse
Affiliation(s)
- Katina Zheng
- Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
| | - Mylène Bassal
- Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Department of Pediatrics, Division of Hematology/OncologyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | - Nicholas Mitsakakis
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | | | - Jemila Seid Hamid
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
| | - Franco Momoli
- Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
| | - Joseph Reisman
- Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of Pediatrics, Division of RespirologyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
| | - Vimoj Nair
- Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Ottawa Hospital Research InstituteOttawaOntarioCanada
- Division of Radiation OncologyUniversity of OttawaOttawaOntarioCanada
| | - Dhenuka Radhakrishnan
- Faculty of MedicineUniversity of OttawaOttawaOntarioCanada
- Children's Hospital of Eastern Ontario Research InstituteOttawaOntarioCanada
- Department of Pediatrics, Division of RespirologyChildren's Hospital of Eastern OntarioOttawaOntarioCanada
- ICES uOttawaOttawaOntarioCanada
| |
Collapse
|
18
|
Predictors of high-grade radiation pneumonitis following radiochemotherapy for locally advanced non-small cell lung cancer: analysis of clinical, radiographic and radiotherapy-related factors. JOURNAL OF RADIOTHERAPY IN PRACTICE 2023. [DOI: 10.1017/s1460396923000043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
Abstract
Abstract
Purpose:
In this study, the relation between radiation pneumonitis (RP) and a wide spectrum of clinical, radiographic and treatment-related factors was investigated. As scoring of low-grade RP can be subjective, RP grade ≥3 (RP ≥ G3) was chosen as a more objective and clinically significant endpoint for this study.
Methods and Materials:
105 consecutive patients with locally advanced non-small cell lung cancer underwent conventionally fractionated radio-(chemo-)therapy to a median dose of 64 Gy. A retrospective analysis of 25 clinical (gender, race, pulmonary function, diabetes, statin use, smoking history), radiographic (emphysema, interstitial lung disease) and radiotherapy dose- and technique-related factors was performed to identify predictors of RP ≥ G3. Following testing of all variables for statistical association with RP using univariate analysis (UVA), a forward selection algorithm was implemented for building a multivariate predictive model (MVA) with limited sample size.
Results:
Median follow-up of surviving patients was 33 months (9–132 months). RP ≥ G3 was diagnosed in 10/105 (9·5%) patients. Median survival was 28·5 months. On UVA, predictors for RP ≥ G3 were diabetes, lower lobe location, planning target volume, volumetric modulated arc therapy (VMAT), lung V5 Gy (%), lung Vspared5 Gy (mL), lung V20 Gy (%) and heart V5 Gy (% and mL). On MVA, VMAT was the only significant predictor for RP ≥ G3 (p = 0·042). Lung V5 Gy and lung V20 Gy were borderline significant for RP ≥ G3. Patients with RP ≥ 3 had a median survival of 10 months compared to 29·5 months with RP < G3 (p = 0·02).
Conclusions:
In this study, VMAT was the only factor that was significantly correlated with RP ≥ G3. Avoiding RP ≥ G3 is important as a toxicity per se and as a risk factor for poor survival. To reduce RP, caution needs to be taken to reduce low-dose lung volumes in addition to other well-established dose constraints.
Collapse
|
19
|
Yang S, Huang S, Ye X, Xiong K, Zeng B, Shi Y. Risk analysis of grade ≥ 2 radiation pneumonitis based on radiotherapy timeline in stage III/IV non-small cell lung cancer treated with volumetric modulated arc therapy: a retrospective study. BMC Pulm Med 2022; 22:402. [PMID: 36344945 PMCID: PMC9639320 DOI: 10.1186/s12890-022-02211-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022] Open
Abstract
Background Radiotherapy is an important treatment for patients with stage III/IV non-small cell lung cancer (NSCLC), and due to its high incidence of radiation pneumonitis, it is essential to identify high-risk people as early as possible. The present work investigates the value of the application of different phase data throughout the radiotherapy process in analyzing risk of grade ≥ 2 radiation pneumonitis in stage III/IV NSCLC. Furthermore, the phase data fusion was gradually performed with the radiotherapy timeline to develop a risk assessment model. Methods This study retrospectively collected data from 91 stage III/IV NSCLC cases treated with Volumetric modulated arc therapy (VMAT). Patient data were collected according to the radiotherapy timeline for four phases: clinical characteristics, radiomics features, radiation dosimetry parameters, and hematological indexes during treatment. Risk assessment models for single-phase and stepwise fusion phases were established according to logistic regression. In addition, a nomogram of the final fusion phase model and risk classification system was generated. Receiver operating characteristic (ROC), decision curve, and calibration curve analysis were conducted to internally validate the nomogram to analyze its discrimination. Results Smoking status, PTV and lung radiomics feature, lung and esophageal dosimetry parameters, and platelets at the third week of radiotherapy were independent risk factors for the four single-phase models. The ROC result analysis of the risk assessment models created by stepwise phase fusion were: (area under curve [AUC]: 0.67,95% confidence interval [CI]: 0.52–0.81), (AUC: 0.82,95%CI: 0.70–0.94), (AUC: 0.90,95%CI: 0.80–1.00), and (AUC:0.90,95%CI: 0.80–1.00), respectively. The nomogram based on the final fusion phase model was validated using calibration curve analysis and decision curve analysis, demonstrating good consistency and clinical utility. The nomogram-based risk classification system could correctly classify cases into three diverse risk groups: low-(ratio:3.6%; 0 < score < 135), intermediate-(ratio:30.7%, 135 < score < 160) and high-risk group (ratio:80.0%, score > 160). Conclusions In our study, the risk assessment model makes it easy for physicians to assess the risk of grade ≥ 2 radiation pneumonitis at various phases in the radiotherapy process, and the risk classification system and nomogram identify the patient’s risk level after completion of radiation therapy.
Collapse
|
20
|
Isoyama S, Yamaguchi K, Imano N, Sakamoto S, Horimasu Y, Masuda T, Miyamoto S, Nakashima T, Iwamoto H, Fujitaka K, Hamada H, Nagata Y, Hattori N. Predictive role of circulatory levels of high-mobility group box 1 for radiation pneumonitis in patients with non-small cell lung cancer treated with definitive thoracic radiotherapy. Int J Clin Oncol 2022; 27:1698-1705. [PMID: 36057047 DOI: 10.1007/s10147-022-02239-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 08/11/2022] [Indexed: 11/05/2022]
Abstract
BACKGROUND High-mobility group box 1 (HMGB1) is a pro-inflammatory protein associated with the pathophysiology of lung injury and lung tumorigenesis. Here, we investigated the predictive potential of serum HMGB1 levels for radiation pneumonitis in patients with lung cancer. METHODS This was a retrospective biomarker study of 73 patients with non-small cell lung cancer treated with definitive thoracic radiotherapy between August 2007 and January 2021. We measured HMGB1 levels in serum stored before treatment, and analyzed its association with the development of grade ≥ 2 or grade ≥ 3 radiation pneumonitis. Additionally, baseline characteristics affecting HMGB1 levels were identified. RESULTS Of the 73 patients, 21 (28.8%) and 6 (8.2%) patients experienced grade 2 and ≥ 3 radiation pneumonitis, respectively. Univariate and multivariate logistic regression analyses revealed that higher baseline levels of serum HMGB1 were significantly associated with a higher risk of grade ≥ 3, but not grade ≥ 2, radiation pneumonitis. The incidence of grade ≥ 3 radiation pneumonitis was higher in patients with HMGB1 levels ≥ 6.2 ng/mL than in those with levels < 6.2 ng/mL (25.0% vs. 3.5%, p = 0.019). Baseline serum levels of HMGB1 were independently and positively associated with gross tumor volume. CONCLUSIONS Higher serum HMGB1 levels were significantly associated with the risk of grade ≥ 3 radiation pneumonitis in patients with lung cancer, and therefore, HMGB1 could be a potential blood biomarker for predicting severe radiation pneumonitis.
Collapse
Affiliation(s)
- Shoko Isoyama
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kakuhiro Yamaguchi
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan.
| | - Nobuki Imano
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shinjiro Sakamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Horimasu
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Takeshi Masuda
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Shintaro Miyamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Taku Nakashima
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hiroshi Iwamoto
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Kazunori Fujitaka
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Hironobu Hamada
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Yasushi Nagata
- Department of Radiation Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3, Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| | - Noboru Hattori
- Department of Molecular and Internal Medicine, Graduate School of Biomedical and Health Sciences, Hiroshima University, 1-2-3 Kasumi, Minami-ku, Hiroshima, 734-8551, Japan
| |
Collapse
|
21
|
Inoo H, Sakanaka K, Fujii K, Ishida Y, Mizowaki T. Association of volumetric-modulated arc therapy with radiation pneumonitis in thoracic esophageal cancer. JOURNAL OF RADIATION RESEARCH 2022; 63:646-656. [PMID: 35589100 PMCID: PMC9303599 DOI: 10.1093/jrr/rrac021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Revised: 02/09/2022] [Indexed: 06/15/2023]
Abstract
The lung volume receiving low-dose irradiation has been reported to increase in volumetric-modulated arc radiotherapy (VMAT) compared with three-dimensional conformal radiotherapy (3DCRT) for thoracic esophageal cancer, which raises concerns regarding radiation pneumonitis (RP) risk. This single institutional retrospective cohort study aimed to explore whether VMAT for thoracic esophageal cancer was associated with RP. Our study included 161 patients with thoracic esophageal cancer, of whom 142 were definitively treated with 3DCRT and 39 were treated with VMAT between 2008 and 2018. Radiotherapy details, dose-volume metrics, reported RP risk factors and RP incidence were collected. The RP risk factors were assessed via multivariate analysis. Dose-volume analysis showed that VMAT delivered more conformal dose distributions to the target volume (P < 0.001) and reduced V30 Gy of heart (57% vs 41%, P < 0.001) but increased V5 Gy (54% vs 41%, P < 0.001) and V20 Gy (20% vs 17%, P = 0.01) of lungs compared with 3DCRT. However, the 1-year incidence rates of RP did not differ between the two techniques (11.3% in 3DCRT vs 7.7% in VMAT, P = 0.53). The multivariate analysis suggested that the presence of interstitial lung disease (ILD) (P = 0.01) and V20 Gy of lungs ≥20% (P = 0.008) were associated with RP. Conclusively, VMAT increased the lung volume receiving low to middle doses irradiation, although this might not be associated with RP. Further studies are needed to investigate the effect of using VMAT for delivering conformal dose distributions on RP.
Collapse
Affiliation(s)
- Hiroyuki Inoo
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Katsuyuki Sakanaka
- Corresponding author. Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan, Phone: +81-75-751-3762, Fax: +81-75-771-9749,
| | - Kota Fujii
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Yuichi Ishida
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| | - Takashi Mizowaki
- Department of Radiation Oncology and Image-Applied Therapy, Graduate School of Medicine, Kyoto University, 54 Shogoin Kawahara-cho, Sakyo-ku, Kyoto, 606-8507, Japan
| |
Collapse
|
22
|
Kearney M, Keys M, Faivre-Finn C, Wang Z, Aznar MC, Duane F. Exposure of the heart in lung cancer radiation therapy: A systematic review of heart doses published during 2013 to 2020. Radiother Oncol 2022; 172:118-125. [PMID: 35577022 DOI: 10.1016/j.radonc.2022.05.007] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/26/2022] [Accepted: 05/08/2022] [Indexed: 12/25/2022]
Abstract
BACKGROUND AND PURPOSE Lung cancer radiotherapy increases the risk of cardiotoxicity and heart radiation dose is an independent predictor of poor survival. This study describes heart doses and strategies aiming to reduce exposure. MATERIALS AND METHODS A systematic review of lung cancer dosimetry studies reporting heart doses published 2013-2020 was undertaken. Doses were compared according to laterality, region irradiated, treatment modality (stereotactic ablative body radiotherapy (SABR) and non-SABR), planning technique, and respiratory motion management. RESULTS For 392 non-SABR regimens in 105 studies, the average MHD was 10.3 Gy (0.0-48.4) and was not significantly different between left and right-sided tumours. It was similar between IMRT and 3DCRT (10.9 Gy versus 10.6 Gy) and lower with particle beam therapy (proton 7.0 Gy; carbon-ion 1.9 Gy). Active respiratory motion management reduced exposure (7.4 Gy versus 9.3 Gy). For 168 SABR regimens in 35 studies, MHD was 4.0 Gy (0.0-32.4). Exposure was higher in central and lower lobe lesions (6.3 and 5.8 Gy respectively). MHD was lowest for carbon ions (0.5 Gy) compared to other techniques. Active respiratory motion management reduced exposure (2.4 Gy versus 5.0 Gy). Delineation guidelines and Dose Volume Constraints for the heart varied substantially. CONCLUSIONS There is scope to reduce heart radiation dose in lung cancer radiotherapy. Consensus on planning objectives, contouring and DVCs for the heart may lead to reduced heart doses in the future. For IMRT, more stringent optimisation objectives may reduce heart dose. Active respiratory motion management or particle therapy may be considered in situations where cardiac dose is high.
Collapse
Affiliation(s)
- Maeve Kearney
- Applied Radiation Therapy Trinity, Discipline of Radiation Therapy, Trinity College Dublin, Ireland.
| | - Maeve Keys
- St Luke's Radiation Oncology Network, St. Luke's Hospital, Dublin, Ireland; The Christie NHS Foundation Trust, University of Manchester, United Kingdom
| | | | - Zhe Wang
- Nuffield Department of Population Health, University of Oxford, United Kingdom
| | - Marianne C Aznar
- Nuffield Department of Population Health, University of Oxford, United Kingdom; Manchester Cancer Research Centre, Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, United Kingdom
| | - Frances Duane
- St Luke's Radiation Oncology Network, St. Luke's Hospital, Dublin, Ireland; School of Medicine, Trinity College Dublin, Ireland; Trinity St James's Cancer Institute, St. James's Hospital, Dublin, Ireland
| |
Collapse
|
23
|
Cosar R, Özen A, Tastekin E, Süt N, Cakina S, Demir S, Parlar S, Nurlu D, Kavuzlu Y, Koçak Z. Does Gender Difference Effect Radiation-Induced Lung Toxicity? An Experimental Study by Genetic and Histopathological Predictors. Radiat Res 2021; 197:280-288. [PMID: 34735567 DOI: 10.1667/rade-21-00075.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 09/30/2021] [Indexed: 11/03/2022]
Abstract
Several studies have reported differences in radiation toxicity between the sexes, but these differences have not been tested with respect to histopathology and genes. This animal study aimed to show an association between histopathological findings of radiation-induced lung toxicity and the genes ATM, SOD2, TGF-β1, XRCC1, XRCC3 and HHR2. In all, 120 animals were randomly divided into 2 control groups (male and female) and experimental groups comprising fifteen rats stratified by sex, radiotherapy (0 Gy vs. 10 Gy), and time to sacrifice (6, 12, and 24 weeks postirradiation). Histopathological evaluations for lung injury, namely, intra-alveolar edema, alveolar neutrophils, intra-alveolar erythrocytes, activated macrophages, intra-alveolar fibrosis, hyaline arteriosclerosis, and collapse were performed under a light microscope using a grid system; the evaluations were semi quantitatively scored. Then, the alveolar wall thickness was measured. Real-time quantitative reverse transcription PCR (RT-qPCR) was used to determine gene expression differences in ATM, TGF-β1, XRCC1, XRCC3, SOD2 and HHR2L among the groups. Histopathological data showed that radiation-induced acute, subacute, and chronic lung toxicity were worse in male rats. The expression levels of the evaluated genes were significantly higher in females than males in the control group, but this difference was lost over time after radiotherapy. Less toxicity in females may be attributable to the fact that the expression of the evaluated genes was higher in normal lung tissue in females than in males and the changes in gene expression patterns in the postradiotherapy period played a protective role in females. Additional data related to pulmonary function, lung weights, imaging, or outcomes are needed to support this data that is based on histopathology alone.
Collapse
Affiliation(s)
- Rusen Cosar
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Alaattin Özen
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Ebru Tastekin
- Department of Pathology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Necdet Süt
- Department of Biostatistics and Informatics, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Suat Cakina
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Selma Demir
- Department of Medical Genetics, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Sule Parlar
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Dilek Nurlu
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Yusuf Kavuzlu
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| | - Zafer Koçak
- Department of Radiation Oncology, Trakya University, Faculty of Medicine, Edirne, Turkey
| |
Collapse
|
24
|
Gu L, Dai W, Fu R, Lu H, Shen J, Shi Y, Zhang M, Jiang K, Wu F. Comparing Hypofractionated With Conventional Fractionated Radiotherapy After Breast-Conserving Surgery for Early Breast Cancer: A Meta-Analysis of Randomized Controlled Trials. Front Oncol 2021; 11:753209. [PMID: 34660318 PMCID: PMC8518530 DOI: 10.3389/fonc.2021.753209] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 09/09/2021] [Indexed: 12/30/2022] Open
Abstract
Background The purpose of this meta-analysis was to compare the safety and efficacy between hypofractionated and conventional fractionation radiotherapy in patients with early-stage breast cancer after breast-conserving surgery. Methods We conducted a comprehensive search of PubMed, Embase, Web of Science, and the Cochrane Library to identify relevant randomized controlled trials (RCTs) published before February 2021. At the same time, the hazard ratio (HR), risk ratio (RR), and 95% confidence interval (CI) were calculated to evaluate local recurrence (LR), relapse-free survival (RFS), overall survival (OS), adverse events, and cosmetic outcomes. Results A total of 14 articles were included in this meta-analysis. Four thousand eight hundred and sixty-nine patients were randomly assigned to the control group to receive conventional radiotherapy (CFRT); 6,072 patients were randomly assigned to the experimental group and treated with hypofractionated radiotherapy (HFRT). The results showed that there was no statistical difference between HFRT and CFRT in LR (HR = 0.99, 95%CI = 0.97-1.02, p = 0.476), RFS (HR = 0.99, 95%CI = 0.97-1.02, p = 0.485), OS (HR = 1.00, 95%CI = 0.97-1.03, p = 0.879), and cosmetic outcomes (RR = 1.03, 95%CI = 0.95-1.12, p = 0.53). In addition, HFRT showed fewer severe adverse reactions such as acute skin toxicity, induration, breast atrophy, and pain. Conclusion Our results suggest that there is no statistical difference between HFRT and CFRT in terms of LR, RFS, OS, and cosmetic outcomes. HFRT reduces the risk of developing toxicity reactions compared to CFRT. HFRT may be a better option for patients with early breast cancer after breast-conserving surgery.
Collapse
Affiliation(s)
- Lihu Gu
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China.,Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Wei Dai
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Rongrong Fu
- The First Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Hongfeng Lu
- Department of Breast Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Jingyi Shen
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Yetan Shi
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Mengting Zhang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Ke Jiang
- Ningbo Institute of Life and Health Industry, University of Chinese Academy of Sciences, Ningbo, China
| | - Feng Wu
- Department of General Surgery, HwaMei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
25
|
Impact of Smoking-Related Chronic Obstruction Pulmonary Disease on Mortality of Invasive Ductal Carcinoma Patients Receiving Standard Treatments: Propensity Score-Matched, Nationwide, Population-Based Cohort Study. Cancers (Basel) 2021; 13:cancers13153654. [PMID: 34359556 PMCID: PMC8345139 DOI: 10.3390/cancers13153654] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/13/2021] [Accepted: 07/19/2021] [Indexed: 01/10/2023] Open
Abstract
Simple Summary This study is the first to estimate the impact of smoking-related chronic obstructive pulmonary disease (COPD) on invasive ductal carcinoma (IDC) patients receiving standard treatments. Smoking-related COPD was not a significant independent risk factor for all-cause mortality in women with stage I–III IDC receiving standard treatments. The frequency of hospitalization for COPD with at least one acute exacerbation within one year before breast surgery was highly associated with high mortality for women with IDC receiving standard treatments. Abstract Purpose: the survival effect of smoking-related chronic obstructive pulmonary disease (COPD) and COPD with acute exacerbation (COPDAE) is unclear for patients with invasive ductal carcinoma (IDC) receiving standard treatments. Methods: we recruited women with clinical stage I–III IDC from the Taiwan Cancer Registry Database who had received standard treatments between 1 January 2009 and 31 December 2018. The time-dependent Cox proportional hazards model was used to analyze all-cause mortality. To reduce the effects of potential confounders when all-cause mortality between Groups 1 and 2 were compared, 1:2 propensity score matching (PSM) was performed. We categorized the patients into two groups based on COPD status to compare overall survival outcomes: Group 1 (current smokers with COPD) and Group 2 (nonsmokers without COPD group). Results: PSM yielded 2319 patients with stage I–III IDC (773 and 1546 in Groups 1 and 2, respectively) eligible for further analysis. In the multivariate time-dependent Cox regression analyses, the adjusted hazard ratio (aHR; 95% confidence interval (CI)) of all-cause mortality for Group 1 compared with Group 2 was 1.04 (0.83–1.22). The aHRs (95% CIs) of all-cause mortality for ≥1 hospitalization for COPDAE within one year before breast surgery was 1.51 (1.18–2.36) compared with no COPDAE. Conclusion: smoking-related COPD was not a significant independent risk factor for all-cause mortality in women with stage I–III IDC receiving standard treatments. Being hospitalized at least once for COPDAE within one year before breast surgery is highly associated with high mortality for women with IDC receiving standard treatments. The severity of smoking-related COPD before treatments for breast cancer might be an important prognostic factor of survival. Thus, the information of the severity of COPD before treatment for breast cancer might be valuable for increasing the survival rate in treatment of breast cancer, especially in the prevention of progress from COPD to COPDAE.
Collapse
|
26
|
Yafeng L, Jing W, Jiawei Z, Yingru X, Xin Z, Danting L, Jun X, Chang T, Min M, Xuansheng D, Dong H. Construction and Verification of a Radiation Pneumonia Prediction Model Based on Multiple Parameters. Cancer Control 2021; 28:10732748211026671. [PMID: 34263661 PMCID: PMC8287426 DOI: 10.1177/10732748211026671] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Objective: Patients with lung cancer are at risk of radiation pneumonia (RP) after
receiving radiotherapy. We established a prediction model according to the
critical indicators extracted from radiation pneumonia patients. Materials and Methods: 74 radiation pneumonia patients were involved in the training set. Firstly,
the clinical data, hematological and radiation dose parameters of the 74
patients were screened by Logistics regression univariate analysis according
to the level of radiation pneumonia. Next, Stepwise regression analysis was
utilized to construct the regression model. Then, the influence of
continuous variables on RP was tested by smoothing function. Finally, the
model was externally verified by 30 patients in validation set and
visualized by R code. Results: In the training set, there was 40 patients suffered≥ level 2 acute radiation
pneumonia. Clinical data (diabetes), blood indexes (lymphocyte percentage,
basophil percentage, platelet count) and radiation dose (V15 > 40%, V20
> 30%, V35 >18%, V40 > 15%) were related to radiation pneumonia
(P < 0.05). Particularly, stepwise regression
analysis indicated that the history of diabetes, the basophils percentage,
platelet count and V20 could be the best combination used for predicting
radiation pneumonia. The column chart was obtained by fitting the regression
model with the combined indicator. The receiver operating characteristic
(ROC) curve showed that the AUC in the development term was 0.853, the AUC
was 0.656 in the validation term. And calibration curves of both groups
showed the high stability in efficiently diagnostic. Furthermore, the DCA
curve showed that the model had a satisfactory positive net benefit. Conclusion: The combination of the basophils percentage, platelet count and V20 is
available to build a predictive model of radiation pneumonia for patients
with advanced lung cancer.
Collapse
Affiliation(s)
- Liu Yafeng
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Wu Jing
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Zhou Jiawei
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Xing Yingru
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Zhang Xin
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Li Danting
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Xie Jun
- Affiliated Cancer Hospital, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Tian Chang
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Mu Min
- Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| | - Ding Xuansheng
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China.,School of Pharmacy, Pharmaceutical University, Nanjing, China
| | - Hu Dong
- School of Medicine, Anhui University of Science and Technology, Huainan, People's Republic of China.,Anhui Province Engineering Laboratory of Occupational Health and Safety, Anhui University of Science and Technology, Huainan, People's Republic of China
| |
Collapse
|
27
|
Jiang W, Song Y, Sun Z, Qiu J, Shi L. Dosimetric Factors and Radiomics Features Within Different Regions of Interest in Planning CT Images for Improving the Prediction of Radiation Pneumonitis. Int J Radiat Oncol Biol Phys 2021; 110:1161-1170. [PMID: 33548340 DOI: 10.1016/j.ijrobp.2021.01.049] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/21/2020] [Accepted: 01/24/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE This study aimed to establish machine learning models using dosimetric factors and radiomics features within 5 regions of interest (ROIs) in treatment planning computed tomography images to improve the prediction of symptomatic radiation pneumonitis (RP) (grade ≥2). METHODS AND MATERIALS This study retrospectively collected data on 79 patients with lung cancer (25 RP ≥2) who underwent chemoradiotherapy between 2015 and 2018. We defined 5 ROIs in planning computed tomography images: gross tumor volume (GTV), planning tumor volume (PTV), PTV-GTV, total lung (TL)-GTV, and TL-PTV. We calculated the mean dose, V5, V10, V20, and V30 within TL-GTV and TL-PTV and the mean dose within the other ROIs. A total of 1924 radiomics features were extracted from all 5 ROIs. We selected the best predictors for classifying 2 groups of patients using a sequential backward elimination support vector machine model. A permutation test was used to assess its statistical significance (P < .05). RESULTS The best predictors for symptomatic RP were the combination of 11 radiomics features, 5 dosimetric factors, age, and T stage, achieving an area under the curve (AUC) of 0.94 (95% confidence interval [CI], 0.85-1) (accuracy, 90%; sensitivity, 80% [95% CI, 44%-96%]; specificity, 95% [95% CI, 73%-100%]; P = 8 × 10-4). The clinical characteristics, dosimetric factors, and their combination showed limited predictive power (accuracy, 63.3%, 70%, and 70%; AUC [95% CI]: 0.73 [0.54-0.92], 0.53 [0.31-0.75], and 0.72 [0.51-0.92], respectively). The radiomics features of PTV-GTV and TL-PTV outperformed those of the other ROIs (accuracy, 76.7% and 76.7%; AUC [95% CI]: 0.82 [0.65-0.99] and 0.80 [0.59-1], respectively). CONCLUSIONS Combining dosimetric factors and radiomics features within different ROIs can improve the prediction of symptomatic RP. Our results can help physicians adjust the radiation dose distribution of the dose-sensitive lungs and target volumes based on personalized RP estimates.
Collapse
Affiliation(s)
- Wei Jiang
- Academy of Medical Engineering and Translational Medicine, Tianjin University, Tianjin, China; Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China
| | - Yipeng Song
- Department of Radiotherapy, Yantai Yuhuangding Hospital, Qingdao University School of Medicine, Yantai, China
| | - Zhe Sun
- Medical Engineering and Technology Research Center; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China
| | - Jianfeng Qiu
- Medical Engineering and Technology Research Center; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| | - Liting Shi
- Medical Engineering and Technology Research Center; Department of Radiology, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, China.
| |
Collapse
|
28
|
Szejniuk WM, Nielsen MS, Takács-Szabó Z, Pawlowski J, Al-Saadi SS, Maidas P, Bøgsted M, McCulloch T, Frøkjær JB, Falkmer UG, Røe OD. High-dose thoracic radiation therapy for non-small cell lung cancer: a novel grading scale of radiation-induced lung injury for symptomatic radiation pneumonitis. Radiat Oncol 2021; 16:131. [PMID: 34266462 PMCID: PMC8281688 DOI: 10.1186/s13014-021-01857-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 07/09/2021] [Indexed: 12/02/2022] Open
Abstract
Background Symptomatic radiation pneumonitis (RP) may be a serious complication after thoracic radiation therapy (RT) for non-small cell lung cancer (NSCLC). This prospective observational study sought to evaluate the utility of a novel radiation-induced lung injury (RILI) grading scale (RGS) for the prediction of RP. Materials and methods Data of 41 patients with NSCLC treated with thoracic RT of 60–66 Gy were analysed. CT scans were scheduled before RT, one month post-RT, and every three months thereafter for one year. Symptomatic RP was defined as Common Terminology Criteria for Adverse Events grade ≥ 2. RGS grading ranged from 0 to 3. The inter-observer variability of the RGS was assessed by four senior radiologists. CT scans performed 28 ± 10 days after RT were used to analyse the predictive value of the RGS. The change in the RGS severity was correlated to dosimetric parameters. Results The CT obtained one month post-RT showed RILI in 36 (88%) of patients (RGS grade 0 [5 patients], 1 [25 patients], 2 [6 patients], and 3 [5 patients]). The inter-observer agreement of the RGS grading was high (Kendall’s W coefficient of concordance = 0.80, p < 0.01). Patients with RGS grades 2–3 had a significantly higher risk for development of RP (relative risk (RR): 2.4, 95% CI 1.6–3.7, p < 0.01) and RP symptoms within 8 weeks after RT (RR: 4.8, 95% CI 1.3–17.6, p < 0.01) compared to RGS grades 0–1. The specificity and sensitivity of the RGS grades 2–3 in predicting symptomatic RP was 100% (95% CI 80.5–100%) and 45.4% (95% CI 24.4–67.8%), respectively. Increase in RGS severity correlated to mean lung dose and the percentage of the total lung volume receiving 5 Gy. Conclusions The RGS is a simple radiologic tool associated with symptomatic RP. A validation study is warranted. Supplementary Information The online version contains supplementary material available at 10.1186/s13014-021-01857-8.
Collapse
Affiliation(s)
- Weronika Maria Szejniuk
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark. .,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark. .,Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.
| | | | | | - Jacek Pawlowski
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark.,Division of Radiology, Karolinska University Hospital, Stockholm, Sweden
| | | | - Panagiotis Maidas
- Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Martin Bøgsted
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Haematology, Aalborg University Hospital, Aalborg, Denmark
| | - Tine McCulloch
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Jens Brøndum Frøkjær
- Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Radiology, Aalborg University Hospital, Aalborg, Denmark
| | - Ursula Gerda Falkmer
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - Oluf Dimitri Røe
- Department of Oncology, Aalborg University Hospital, Hobrovej 18-22, 9000, Aalborg, Denmark.,Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark.,Department of Clinical Medicine, Faculty of Medicine, Aalborg University, Aalborg, Denmark.,Department of Clinical and Molecular Medicine, NTNU, Trondheim, Norway.,Cancer Clinic, Levanger Hospital, Nord-Trøndelag Health Trust, Levanger, Norway
| |
Collapse
|
29
|
Chen X, Sheikh K, Nakajima E, Lin CT, Lee J, Hu C, Hales RK, Forde PM, Naidoo J, Voong KR. Radiation Versus Immune Checkpoint Inhibitor Associated Pneumonitis: Distinct Radiologic Morphologies. Oncologist 2021; 26:e1822-e1832. [PMID: 34251728 PMCID: PMC8488797 DOI: 10.1002/onco.13900] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 07/07/2021] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Patients with non-small cell lung cancer may develop pneumonitis after thoracic radiotherapy (RT) and immune checkpoint inhibitors (ICIs). We hypothesized that distinct morphologic features are associated with different pneumonitis etiologies. MATERIALS AND METHODS We systematically compared computed tomography (CT) features of RT- versus ICI-pneumonitis. Clinical and imaging features were tested for association with pneumonitis severity. Lastly, we constructed an exploratory radiomics-based machine learning (ML) model to discern pneumonitis etiology. RESULTS Between 2009 and 2019, 82 patients developed pneumonitis: 29 after thoracic RT, 23 after ICI, and 30 after RT + ICI. Fifty patients had grade 2 pneumonitis, 22 grade 3, and 7 grade 4. ICI-pneumonitis was more likely bilateral (65% vs. 28%; p = .01) and involved more lobes (66% vs. 45% involving at least three lobes) and was less likely to have sharp border (17% vs. 59%; p = .004) compared with RT-pneumonitis. Pneumonitis morphology after RT + ICI was heterogeneous, with 47% bilateral, 37% involving at least three lobes, and 40% sharp borders. Among all patients, risk factors for severe pneumonitis included poor performance status, smoking history, worse lung function, and bilateral and multifocal involvement on CT. An ML model based on seven radiomic features alone could distinguish ICI- from RT-pneumonitis with an area under the receiver-operating curve of 0.76 and identified the predominant etiology after RT + ICI concordant with multidisciplinary consensus. CONCLUSION RT- and ICI-pneumonitis exhibit distinct spatial features on CT. Bilateral and multifocal lung involvement is associated with severe pneumonitis. Integrating these morphologic features in the clinical management of patients who develop pneumonitis after RT and ICIs may improve treatment decision-making. IMPLICATIONS FOR PRACTICE Patients with non-small cell lung cancer often receive thoracic radiation and immune checkpoint inhibitors (ICIs), both of which can cause pneumonitis. This study identified similarities and differences in pneumonitis morphology on computed tomography (CT) scans among pneumonitis due to radiotherapy (RT) alone, ICI alone, and the combination of both. Patients who have bilateral CT changes involving at least three lobes are more likely to have ICI-pneumonitis, whereas those with unilateral CT changes with sharp borders are more likely to have radiation pneumonitis. After RT and/or ICI, severe pneumonitis is associated with bilateral and multifocal CT changes. These results can help guide clinicians in triaging patients who develop pneumonitis after radiation and during ICI treatment.
Collapse
Affiliation(s)
- Xuguang Chen
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Khadija Sheikh
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Erica Nakajima
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Cheng Ting Lin
- Department of Radiology and Radiological Science, Johns Hopkins University, Baltimore, Maryland, USA
| | - Junghoon Lee
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Chen Hu
- Division of Biostatistics, Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Russell K Hales
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Patrick M Forde
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Jarushka Naidoo
- Department of Oncology, Johns Hopkins University, Baltimore, Maryland, USA
| | - Khinh Ranh Voong
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
30
|
Utsumi N, Takahashi T, Hatanaka S, Hariu M, Saito M, Kondo S, Soda R, Nishimura K, Yamano T, Watanabe W, Shimbo M, Honda N. VMAT Planning With Xe-CT Functional Images Enables Radiotherapy Planning With Consideration of Lung Function. CANCER DIAGNOSIS & PROGNOSIS 2021; 1:193-200. [PMID: 35399314 PMCID: PMC8962790 DOI: 10.21873/cdp.10026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 07/25/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND/AIM The most severe adverse event of radiotherapy in lung cancer is radiation pneumonitis (RP). Some indices commonly used to prevent RP are evaluated based on the anatomical lung volume. The irradiation dose may be more accurately assessed by using functional lung volume. We evaluated the usefulness of computed tomography (CT) incorporating functional ventilation images acquired by the inhalation of xenon (Xe) gas (Xe-CT functional images). PATIENTS AND METHODS Two plans were created for twelve patients: volumetric modulated arc therapy (VMAT) planning using conventional chest CT images (anatomical plans) and VMAT planning using Xe-CT functional images (functional plans), and the dosimetric parameters were compared. RESULTS Compared to the anatomical plans, the functional plans had significantly reduced V 20Gy in the high-functional lungs (p=0.005), but significant differences were not seen in the moderate-functional and low-functional lungs. CONCLUSION The incorporation of Xe-CT functional images into VMAT plans enables radiotherapy planning with consideration of lung function.
Collapse
Affiliation(s)
- Nobuko Utsumi
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
- Department of Radiation Therapy, JCHO Tokyo Shinjuku Medical Center, Tokyo, Japan
| | - Takeo Takahashi
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Shogo Hatanaka
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Masatsugu Hariu
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Mio Saito
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Shuichi Kondo
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Rikana Soda
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Keiichiro Nishimura
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Takafumi Yamano
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Wataru Watanabe
- Department of Radiology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Munefumi Shimbo
- Department of Radiation Oncology, Saitama Medical Center, Saitama Medical University, Saitama, Japan
| | - Norinari Honda
- Department of Radiology, Saitama Sekishinkai Hospital, Saitama, Japan
| |
Collapse
|
31
|
Rahi MS, Parekh J, Pednekar P, Parmar G, Abraham S, Nasir S, Subramaniyam R, Jeyashanmugaraja GP, Gunasekaran K. Radiation-Induced Lung Injury-Current Perspectives and Management. Clin Pract 2021; 11:410-429. [PMID: 34287252 PMCID: PMC8293129 DOI: 10.3390/clinpract11030056] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2021] [Revised: 06/11/2021] [Accepted: 06/17/2021] [Indexed: 12/25/2022] Open
Abstract
Radiotherapy plays an important role in the treatment of localized primary malignancies involving the chest wall or intrathoracic malignancies. Secondary effects of radiotherapy on the lung result in radiation-induced lung disease. The phases of lung injury from radiation range from acute pneumonitis to chronic pulmonary fibrosis. Radiation pneumonitis is a clinical diagnosis based on the history of radiation, imaging findings, and the presence of classic symptoms after exclusion of infection, pulmonary embolism, heart failure, drug-induced pneumonitis, and progression of the primary tumor. Computed tomography (CT) is the preferred imaging modality as it provides a better picture of parenchymal changes. Lung biopsy is rarely required for the diagnosis. Treatment is necessary only for symptomatic patients. Mild symptoms can be treated with inhaled steroids while subacute to moderate symptoms with impaired lung function require oral corticosteroids. Patients who do not tolerate or are refractory to steroids can be considered for treatment with immunosuppressive agents such as azathioprine and cyclosporine. Improvements in radiation technique, as well as early diagnosis and appropriate treatment with high-dose steroids, will lead to lower rates of pneumonitis and an overall good prognosis.
Collapse
Affiliation(s)
- Mandeep Singh Rahi
- Division of Pulmonary Diseases and Critical Care, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA;
| | - Jay Parekh
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA; (J.P.); (P.P.); (S.A.); (G.P.J.)
| | - Prachi Pednekar
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA; (J.P.); (P.P.); (S.A.); (G.P.J.)
| | - Gaurav Parmar
- Department of Radiology, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA;
| | - Soniya Abraham
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA; (J.P.); (P.P.); (S.A.); (G.P.J.)
| | - Samar Nasir
- Department of Internal Medicine, University at Buffalo, 462 Grider Street, Buffalo, NY 14215, USA;
| | - Rajamurugan Subramaniyam
- Department of Pulmonary Critical Care Medicine, St. Louis University, 3635 Vista Ave, St. Louis, MO 63110, USA;
| | - Gini Priyadharshini Jeyashanmugaraja
- Department of Internal Medicine, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA; (J.P.); (P.P.); (S.A.); (G.P.J.)
| | - Kulothungan Gunasekaran
- Division of Pulmonary Diseases and Critical Care, Yale-New Haven Health Bridgeport Hospital, 267 Grant Street, Bridgeport, CT 06610, USA;
- Correspondence: ; Tel.: +1-203-384-5009
| |
Collapse
|
32
|
Lim TL, Pietrofesa RA, Arguiri E, Koumenis C, Feigenberg S, Simone CB, Rengan R, Cengel K, Levin WP, Christofidou-Solomidou M, Berman AT. Phase II Trial of Flaxseed to Prevent Acute Complications After Chemoradiation for Lung Cancer. J Altern Complement Med 2021; 27:824-831. [PMID: 34161146 DOI: 10.1089/acm.2020.0542] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Background: Thoracic radiotherapy is complicated by acute radiation-induced adverse events such as radiation pneumonitis (RP) and radiation esophagitis (RE). Based on preclinical work and a randomized pilot trial from our laboratory, this single-arm phase II trial investigated administering flaxseed as a radioprotector in patients receiving definitive chemoradiation for nonsmall cell lung cancer (NSCLC). Methods: Between June 2015 and February 2018, 33 patients with locally advanced or metastatic NSCLC with planned definitive chemoradiation were enrolled. Finely-ground Linum usitatissimum L. (Linaceae; flaxseed or linseed) in 40-g packets were provided for daily consumption in any patient-desired formulation 1 week before radiotherapy and throughout radiotherapy as tolerated. The primary outcomes were overall adverse events, with particular focus on Grade ≥3 RP, and flaxseed tolerability. Adverse events were graded according to CTCAE v4.0. Results: Of the 33 patients enrolled, 5 patients (15%) did not receive chemoradiation, 4 (12%) withdrew promptly after enrollment, 4 (12%) did not return a flaxseed consumption log, and 1 patient had irritable bowel syndrome (3%). The remaining 19 patients (57%) had chemoradiation and flaxseed ingestion with a mean completion and standard deviation of the intended flaxseed course of 62% ± 8.3%. Nine (50%) of these 19 patients reported difficulties with flaxseed consumption, citing nausea, constipation, odynophagia, or poor taste or texture. One patient (5%), with unverifiable flaxseed consumption, developed Grade 3 RP. There were no cases of Grade 2 RP. Six patients (32%) developed Grade 2 RE, but no patients developed Grade ≥3 RE. Median overall and progression-free survival were 31 and 12 months, respectively. Conclusions: Despite the low incidence of acute radiation-induced complications reported, significant treatment-related gastrointestinal toxicities and subsequently low flaxseed tolerability inhibit accurate determination of flaxseed effect in patients receiving concurrent thoracic chemoradiation. Thus, further investigations should focus on optimizing flaxseed formulation for improved tolerability and evaluation. CTR #: NCT02475330, https://clinicaltrials.gov/ct2/show/study/NCT02475330.
Collapse
Affiliation(s)
- Tristan L Lim
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ralph A Pietrofesa
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Evguenia Arguiri
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Constantinos Koumenis
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Steven Feigenberg
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - C B Simone
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Ramesh Rengan
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Keith Cengel
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - William P Levin
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Melpo Christofidou-Solomidou
- Pulmonary, Allergy, and Critical Care Division, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Abigail T Berman
- Department of Radiation Oncology, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| |
Collapse
|
33
|
Li FJ, Yuan X, Chen C, Zhu ML, Bai CQ, Wang RJ. Clinical Analysis of Severe Radiation Pneumonia. Int J Gen Med 2021; 14:2581-2588. [PMID: 34163227 PMCID: PMC8216199 DOI: 10.2147/ijgm.s311569] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 06/04/2021] [Indexed: 12/21/2022] Open
Abstract
Objective The present study aims to discuss the clinical characteristics, factors, and treatment methods affecting the prognosis in patients with severe radiation pneumonia (RP). Methods The radiotherapy status, clinical features, imaging characteristics, laboratory examination results, treatment methods, and prognoses of 34 patients with severe RP treated in our department between January 2011 and July 2017 were retrospectively analyzed. The severe RP grading was based on the Common Terminology Criteria for Adverse Events version 4.0; patients who scored Grade ≥3 were considered to have a severe case of RP. Results The results of the present study showed that 22 patients had lung cancer, 6 had esophageal cancer, 5 had breast cancer, and 1 had colon cancer with lung metastasis. The total radiation dose was 37.5–66 Gy, and the overall average dose was 53 Gy; the average dose in the patients who died was 52.9 Gy. A total of 28 patients presented with a cough and sputum as the initial symptom, and 24 presented with wheezing as an accompanying symptom; of the 24 patients, 8 experienced fever, 2 experienced wheezing as the only symptom, 1 had chest pain, and 1 had chest tightness. In 26 patients, the changes were in the radiation field, and in 8 cases, the changes appeared both inside and outside the radiation field. After the use of glucocorticoid methylprednisolone, respiratory support, and anti-infection treatment, 18 patients were cured, 8 showed a condition improvement, and 8 died. Conclusion The prognosis of severe RP was not significantly correlated with the administered radiation dose; however, lung cancer, a high Acute Physiology and Chronic Health Evaluation score, and delayed diagnosis were risk factors for patient death. However, a combination of antibiotic therapy, ventilator-assisted respiration, and steroid therapy could improve patient prognosis.
Collapse
Affiliation(s)
- Feng-Jiang Li
- Department of Respiratory Medicine, Strategic Support Force Medical Center, Beijing, 100101, People's Republic of China
| | - Xin Yuan
- Department of Respiratory and Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, People's Republic of China
| | - Cheng Chen
- Department of Neurology, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, People's Republic of China
| | - Min-Li Zhu
- Department of Respiratory Medicine, Strategic Support Force Medical Center, Beijing, 100101, People's Republic of China
| | - Chang-Qing Bai
- Department of Respiratory and Critical Care Medicine, The Fifth Medical Center of Chinese PLA General Hospital, Beijing, 100071, People's Republic of China
| | - Rui-Juan Wang
- Department of Respiratory Medicine, Strategic Support Force Medical Center, Beijing, 100101, People's Republic of China
| |
Collapse
|
34
|
Li N, Luo P, Li C, Hong Y, Zhang M, Chen Z. Analysis of related factors of radiation pneumonia caused by precise radiotherapy of esophageal cancer based on random forest algorithm. MATHEMATICAL BIOSCIENCES AND ENGINEERING : MBE 2021; 18:4477-4490. [PMID: 34198449 DOI: 10.3934/mbe.2021227] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The precise radiotherapy of esophageal cancer may cause different degrees of radiation damage for lung tissues and cause radioactive pneumonia. However, the occurrence of radioactive pneumonia is related to many factors. To further clarify the correlation between the occurrence of radioactive pneumonia and related factors, a random forest model was used to build a risk prediction model for patients with esophageal cancer undergoing radiotherapy. In this study, we retrospectively reviewed 118 patients with esophageal cancer confirmed by pathology in our hospital. The health characteristics and related parameters of all patients were analyzed, and the predictive effect of radiation pneumonia was discussed using the random forest algorithm. After treatment, 71 patients developed radioactive pneumonia (60.17%). In univariate analyses, age, planning target volume length, Karnofsky performance score (KPS), pulmonary emphysema, with or without chemotherapy, and the ratio of planning target volume to planning gross tumor volume (PTV/PGTV) in mediastinum were significantly associated with radioactive pneumonia (P < 0.05 for each comparison). Multivariate analysis revealed that with or without pulmonary emphysema (OR = 7.491, P = 0.001), PTV/PGTV (OR = 0.205, P = 0.007), and KPS (OR = 0.251, P = 0.011) were independent predictors for radiation pneumonia. The results concluded that the analysis of radiation pneumonia-related factors based on the random forest algorithm could build a mathematical prediction model for the easily obtained data. This algorithm also could effectively analyze the risk factors of radiation pneumonia and formulate the appropriate treatment plan for esophageal cancer.
Collapse
Affiliation(s)
- Na Li
- Department of Oncology Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Peng Luo
- The First Department of Oncology, Cancer Hospital, Chinese Academy of Sciences, Hefei, Anhui 230031, China
| | - Chunyang Li
- Radiotherapy Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Yanyan Hong
- Department of Oncology Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Mingjun Zhang
- Department of Oncology Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| | - Zhendong Chen
- Department of Oncology Center, Second Hospital of Anhui Medical University, Hefei, Anhui 230601, China
| |
Collapse
|
35
|
Impact of Low-Dose Irradiation of the Lung and Heart on Toxicity and Pulmonary Function Parameters after Thoracic Radiotherapy. Cancers (Basel) 2020; 13:cancers13010022. [PMID: 33374564 PMCID: PMC7793060 DOI: 10.3390/cancers13010022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2020] [Revised: 12/14/2020] [Accepted: 12/19/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary To assess the impact of thoracic (low) dose irradiation on pulmonary function changes after thoracic radiotherapy (RT) data of 62 patients were analyzed. There were several significant correlations between pulmonary function and dose parameters of the lung and heart, most of which remained significant in the multivariate analysis. Abstract Objective: To assess the impact of (low) dose irradiation to the lungs and heart on the incidence of pneumonitis and pulmonary function changes after thoracic radiotherapy (RT). Methods/Material: Data of 62 patients treated with curative thoracic radiotherapy were analyzed. Toxicity data and pulmonary function tests (PFTs) were obtained before RT and at 6 weeks, at 12 weeks, and at 6 months after RT. PFTs included ventilation (e.g., vital capacity) and diffusion parameters (e.g., diffusion capacity for carbon monoxide (DLCO)). Dosimetric data of the lung and heart were extracted to assess the impact of dose on PFT changes and radiation pneumonitis (RP). Results: No statistically significant correlations between dose parameters and changes in ventilation parameters were found. There were statistically significant correlations between DLCO and low-dose parameters of the lungs (V5Gy–V30Gy (%)) and irradiation of the heart during the follow-up up to 6 months after RT, as well as a temporary correlation of the V60Gy (%) on the blood gas parameters at 12 weeks after RT. On multivariate analysis, both heart and lung parameters had a significant impact on DLCO. There was no statistically significant influence of any patient or treatment-related (including dose parameters) factors on the incidence of ≥G2 pneumonitis. Conclusion: There seems to be a lasting impact of low dose irradiation to the lung as well as irradiation to the heart on the DLCO after thoracic radiotherapy. No influence on RP was found in this analysis.
Collapse
|
36
|
Abe T, Ryuno Y, Saito S, Aoshika T, Igari M, Hirai R, Kumazaki Y, Kaira K, Kagamu H, Ishida H, Noda SE, Kato S. Stereotactic body radiation therapy using CyberKnife for T1N0M0 lung cancer patients with severe pulmonary dysfunction. JOURNAL OF RADIATION RESEARCH 2020; 61:903-907. [PMID: 32880653 PMCID: PMC7674703 DOI: 10.1093/jrr/rraa075] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/10/2020] [Accepted: 08/12/2020] [Indexed: 06/11/2023]
Abstract
We retrospectively investigated the efficacy and safety of stereotactic body radiotherapy (SBRT) for T1N0M0 lung cancer using CyberKnife (CK) among 13 patients with severe pulmonary dysfunction which was defined as forced expiratory volume in 1 s (FEV1.0) of <1 L. The prescribed dose was 54 Gy in 3 fractions but adjusted for some patients if their tumors were in close proximity to the organs at risk (54 Gy/3 fractions: n = 11; 50 Gy/5 fractions: n = 1; 60 Gy/8 fractions: n = 1). During follow up (median follow-up: 27 months), we evaluated local control, overall survival and toxicity, using diagnostic imaging and laboratory tests. The patients' median FEV1.0 was 0.84 L. Of the 13 patients, 3 were diagnosed as having lung cancer histologically and 10 diagnosed clinically. Their 2-year rates for overall survival and local control were 89 and 100%, respectively. So far, we have seen no adverse effects of grade 2 or higher. We concluded that CK-SBRT is effective and well tolerated for T1N0M0 lung cancer, even in patients with severe pulmonary dysfunction, but should be further evaluated with a larger cohort and longer follow-up periods.
Collapse
Affiliation(s)
- Takanori Abe
- Corresponding author: Department of Radiation Oncology, International Medical Center, Saitama Medical University, 1397-1, Yamane, Hidaka, Saitama 350-1298, Japan. Tel: +81-429844136; Fax: +81-429844136;
| | - Yasuhiro Ryuno
- Departments of Radiation Oncology, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Satoshi Saito
- Departments of Radiation Oncology, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Tomomi Aoshika
- Departments of Radiation Oncology, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Mitsunobu Igari
- Departments of Radiation Oncology, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Ryuta Hirai
- Departments of Radiation Oncology, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Yu Kumazaki
- Departments of Radiation Oncology, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Kyoichi Kaira
- Departments of Respiratory Medicine, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Hiroshi Kagamu
- Departments of Respiratory Medicine, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Hironori Ishida
- Departments of General Thoracic Surgery, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Shin-ei Noda
- Departments of Radiation Oncology, International Medical Center, Saitama Medical University, Hidaka, Japan
| | - Shingo Kato
- Departments of Radiation Oncology, International Medical Center, Saitama Medical University, Hidaka, Japan
| |
Collapse
|
37
|
Higher Dose Volumes May Be Better for Evaluating Radiation Pneumonitis in Lung Proton Therapy Patients Compared With Traditional Photon-Based Dose Constraints. Adv Radiat Oncol 2020; 5:943-950. [PMID: 33083657 PMCID: PMC7557193 DOI: 10.1016/j.adro.2020.06.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 05/14/2020] [Accepted: 06/22/2020] [Indexed: 12/13/2022] Open
Abstract
Purpose The dosimetric parameters used clinically to reduce the likelihood of radiation pneumonitis (RP) for lung cancer radiation therapy have traditionally been V20Gy ≤ 30% to 35% and mean lung dose ≤ 20 to 23 Gy; however, these parameters are derived based on studies from photon therapy. The purpose of this study is to evaluate whether such dosimetric predictors for RP are applicable for locally advanced non-small cell lung cancer (LA-NSCLC) patients treated with proton therapy. Methods and Materials In the study, 160 (78 photon, 82 proton) patients with LA-NSCLC treated with chemoradiotherapy between 2011 and 2016 were retrospectively identified. Forty (20 photon, 20 proton) patients exhibited grade ≥2 RP after therapy. Dose volume histograms for the uninvolved lung were extracted for each patient. The percent lung volumes receiving above various dose levels were obtained in addition to V20Gy and Dmean. These dosimetric parameters and patient characteristics were evaluated with univariate and multivariate logistic regression tests. Receiver operating characteristic curves were generated to obtain the optimal dosimetric constraints through analyzing RP and non-RP sensitivity and specificity values. Results The multivariate analysis showed V40Gy and Dmean to be statistically significant for proton and photon patients, respectively. V35Gy to V50Gy were strongly correlated to V40Gy for proton patients. Based on the receiver operating characteristic curves, V35Gy to V50Gy had the highest area under the curve compared with other dose levels for proton patients. A potential dosimetric constraint for RP predictor in proton patients is V40Gy ≤ 23%. Conclusions In addition to V20Gy and Dmean, the lung volume receiving higher doses, such as V40Gy, may be used as an additional indicator for RP in LA-NSCLC patients treated with proton therapy.
Collapse
|
38
|
Shepherd AF, Iocolano M, Leeman J, Imber BS, Wild AT, Offin M, Chaft JE, Huang J, Rimner A, Wu AJ, Gelblum DY, Shaverdian N, Simone CB, Gomez DR, Yorke ED, Jackson A. Clinical and Dosimetric Predictors of Radiation Pneumonitis in Patients With Non-Small Cell Lung Cancer Undergoing Postoperative Radiation Therapy. Pract Radiat Oncol 2020; 11:e52-e62. [PMID: 33068790 DOI: 10.1016/j.prro.2020.09.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 08/03/2020] [Accepted: 09/28/2020] [Indexed: 12/25/2022]
Abstract
PURPOSE Radiation pneumonitis (RP) is a common and potentially life-threatening toxicity from lung cancer radiation therapy. Data sets reporting RP rates after postoperative radiation therapy (PORT) have historically been small and with predominantly outdated field designs and radiation techniques. We examined a large cohort of patients in this context to assess the incidence and causes of RP in the modern era. METHODS AND MATERIALS We reviewed 285 patients with non-small cell lung cancer treated with PORT at our institution from May 2004 to January 2017. Complete dosimetric data and clinical records were reviewed and analyzed with grade 2 or higher RP as the endpoint (RP2+) (Common Terminology Criteria for Adverse Events v4.0). Patients were a median of 67 years old (range, 28-87), and most had pathologic stage III non-small cell lung cancer (91%) and received trimodality therapy (90%). Systematic dosimetric analyses using Dx increments of 5% and Vx increments of 2 Gy were performed to robustly evaluate dosimetric variables. Lung V5 was also evaluated. RESULTS The incidence of RP2+ after PORT was 12.6%. Dosimetric factors most associated with RP2+ were total lungV4 (hazard ratio [HR] 1.04, P < .001) and heart V16 (HR 1.03, P = .001). On univariate analysis, the clinical factors of age (HR 1.05, P = .006) and carboplatin chemotherapy (HR 2.32, P = .012) were correlated with RP2+. On step-up multivariate analysis, only bivariate models remained significant, including lungV5 (HR 1.037, P < .001) and age (HR 1.052, P = .011). CONCLUSIONS The incidence of RP after PORT is consistent with the literature. Factors correlated with RP include lung and heart doses, age, and carboplatin chemotherapy. These data also suggest that elderly patients may be more susceptible to lower doses of radiation to the lung. Based on these data, dose constraints to limit the risk of RP2+ to <5% in the setting of PORT include lungV5 ≤65% in patients <65 years old and lungV5 ≤36% in patients 65 years or older.
Collapse
Affiliation(s)
- Annemarie F Shepherd
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York.
| | - Michelle Iocolano
- Department of Radiation Oncology, The Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jonathan Leeman
- Department of Radiation Oncology, Dana-Farber/Brigham and Women's Cancer Center, Boston, Massachusetts
| | - Brandon S Imber
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aaron T Wild
- Southeast Radiation Oncology Group, Charlotte, North Carolina
| | - Michael Offin
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Jamie E Chaft
- Thoracic Oncology Service, Division of Solid Tumor Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James Huang
- Thoracic Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andreas Rimner
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Abraham J Wu
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daphna Y Gelblum
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Narek Shaverdian
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Charles B Simone
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Daniel R Gomez
- Department of Radiation Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Ellen D Yorke
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Andrew Jackson
- Department of Medical Physics, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
39
|
Teng F, Li M, Yu J. Radiation recall pneumonitis induced by PD-1/PD-L1 blockades: mechanisms and therapeutic implications. BMC Med 2020; 18:275. [PMID: 32943072 PMCID: PMC7499987 DOI: 10.1186/s12916-020-01718-3] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 07/24/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND The synergistic effect of radiotherapy (RT) in combination with immunotherapy has been shown in several clinical trials and case reports. The overlapping pulmonary toxicity induced by thoracic RT and programmed death 1/programmed death ligand-1 (PD-1/PD-L1) blockades is an important issue of clinical investigation in combination treatment. Thus far, the underlying mechanism of this toxicity remains largely unknown. MAIN TEXT In this review, we discuss the unique pattern of radiation recall pneumonitis (RRP) induced by PD-1 blockade. The clinical presentation is different from common radiation pneumonitis (RP) or RRP induced by cytotoxic drugs. The immune checkpoint inhibitors may evoke an inflammatory reaction in patients' previously irradiated fields, with infiltrating lymphocytes and potential involvement of related cytokines. All RRP patients have showed durable response to anti-PD-1/PD-L1. RRP is manageable; however, interruption of checkpoint blockades is necessary and immunosuppressive treatment should be started immediately. Further analyses of the predictive factors, including RT dosimetric parameters, tumor-infiltrating lymphocytes (TILs), and PD-L1 expression, are needed given the wide use of immune checkpoint inhibitors and high mortality from lung toxicity with the combination treatment. CONCLUSION Immune checkpoint inhibitors may evoke an RRP in the patients' previously irradiated fields. Interactions between immune checkpoint inhibitors and radiotherapy should be studied further.
Collapse
Affiliation(s)
- Feifei Teng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, China
| | - Min Li
- Department of Surgery, Department of Medicine, The University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jinming Yu
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, 440 Jiyan Road, Jinan, China.
| |
Collapse
|
40
|
Li QS, Liang N, Ouyang WW, Su SF, Ma Z, Geng YC, Yang WG, Hu YX, Li HQ, Lu B. Simultaneous integrated boost of intensity-modulated radiation therapy to Stage II-III non-small cell lung cancer with metastatic lymph nodes. Cancer Med 2020; 9:8364-8372. [PMID: 32902184 PMCID: PMC7666737 DOI: 10.1002/cam4.3446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 08/19/2020] [Accepted: 08/20/2020] [Indexed: 12/13/2022] Open
Abstract
Local tumor failure remains a major problem after radiation‐based nonsurgical treatment for unresectable locally advanced nonsmall cell lung cancer (NSCLC)and inoperable stage II NSCLC. The aim of this study was to evaluate the feasibility of simultaneous integrated boost of intensity‐modulated radiation therapy (SIB‐IMRT) to stage II‐III NSCLC with metastatic lymph nodes (ChiCTR 2000029304). Patients were diagnosed by pathology or PET‐CT. PTV was divided into two parts as follows, the PTV of primary tumor (PTVp) and the PTV of metastatic lymph nodes (PTVn). The radiotherapy doses were simultaneously prescripted 78 Gy (BED = 101.48 Gy) for PTVp and 60‐65 Gy (BED = 73.6‐81.25 Gy) for PTVn, 26f/5.2 weeks. Response was scored according to WHO criteria. Radiotherapy toxicity was scored according to RTOG criteria. Hematology and gastrointestinal toxicity were scored according to CTCAE1.0 criteria. A total of 20 patients were enrolled. Seventeen patients were diagnosed by pathology and three patients were diagnosed by PET‐CT. All patients were treated with SIB‐IMRT. The objective response rate (ORR) was 90%, with CR 25%, PR 65%, NC 10%, and PD 0%. Although radiotherapy toxicity was common, there were no grade ≥3, with radiation pneumonitis (10 cases), esophagitis (17 cases), and dermatitis (12 cases). The local control rates at 1, 3, and 5 years were 85%, 75%, and 70%, respectively. The overall survival(OS)and local progression‐free survival (LPFS) rates at 1, 3, and 5 years were 90%, 42.6%, and 35.5% and 84.4%, 35.5%, and 28.4%, respectively. SIB‐IMRT can significantly improve ORR and survival for stage II‐III NSCLC with metastatic lymph nodes, with high safety, and satisfactory efficacy. However, due to the limitation of small sample, these findings are needed to confirm by future trials with a larger sample size.
Collapse
Affiliation(s)
- Qing-Song Li
- Department of Thoracic Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Cancer Hospital, Guiyang, China
| | - Na Liang
- Department of Thoracic Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Cancer Hospital, Guiyang, China
| | - Wei-Wei Ouyang
- Department of Thoracic Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Cancer Hospital, Guiyang, China
| | - Sheng-Fa Su
- Department of Thoracic Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Cancer Hospital, Guiyang, China
| | - Zhu Ma
- Guizhou Cancer Hospital, Guiyang, China
| | - Yi-Chao Geng
- Department of Thoracic Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Cancer Hospital, Guiyang, China
| | - Wen-Gang Yang
- Department of Thoracic Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Cancer Hospital, Guiyang, China
| | - Yin-Xiang Hu
- Department of Thoracic Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Cancer Hospital, Guiyang, China
| | | | - Bing Lu
- Department of Thoracic Oncology, Affiliated Hospital of Guizhou Medical University, Guiyang, China.,Guizhou Cancer Hospital, Guiyang, China
| |
Collapse
|
41
|
Jiao Y, Ren Y, Ge W, Zhang L, Zheng X. Adoption of Biologically Effective Dose of the Non-Target Lung Volume to Predict Symptomatic Radiation Pneumonitis After Stereotactic Body Radiation Therapy With Variable Fractionations for Lung Cancer. Front Oncol 2020; 10:1153. [PMID: 32850328 PMCID: PMC7411255 DOI: 10.3389/fonc.2020.01153] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 06/08/2020] [Indexed: 11/18/2022] Open
Abstract
Background: This study aims to establish lung biologically effective dose (BED)–based uniform dosimetric constraints for minimizing the risk of symptomatic radiation pneumonitis (SRP) from stereotactic body radiation therapy (SBRT) using variable fractionations in patients with lung tumors. Materials and Methods: A total of 102 patients with primary or oligometastatic lung tumors treated with SBRT in our institution were enrolled into this study. The associations between the clinical and dosimetric parameters and the incidences of SRP were analyzed using univariate and multivariate Cox regression hazard models. The receiver operating characteristic (ROC) curve was generated to evaluate the predictive performance of lung BED on the SRP risk compared with the physical dose. Results: SRP occurred in 11 patients (10.8%). In univariate analysis, the mean lung dose (p = 0.002), V5 (p = 0.005), V20 (p < 0.001), and the percentage of non-target normal lung volume receiving more than a BED of 5–170 Gy (VBED5−170, p < 0.05) were associated with SRP. Multivariate logistic regression analysis showed that there existed a significant statistical correlation between SRP and VBED70 (p < 0.001), which performed better than V5 or V20 on the ROC curves, resulting in an optimal cut-off value of lung VBED70 of 2.22%. Conclusions: This retrospective study indicated that non-target lung BED may better predict SRP from patients with SBRT-treated lung cancer. Limiting the lung VBED70 below 2.22% may be favorable to reduce the incidence of SRP, which warranted further prospective validation.
Collapse
Affiliation(s)
- Yuxin Jiao
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, China
| | - Yanping Ren
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, China
| | - Weiqiang Ge
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, China
| | - Libo Zhang
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, China
| | - Xiangpeng Zheng
- Department of Radiation Oncology, Huadong Hospital, Fudan University, Shanghai, China
| |
Collapse
|
42
|
Ergen SA, Dincbas FO, Yücel B, Altınok P, Akyurek S, Korkmaz Kıraklı E, Ulger S, Etiz D, Yilmaz U, Kılıc D, Bozcuk H. Risk factors of radiation pneumonitis in patients with NSCLC treated with concomitant chemoradiotherapy--Are we underestimating diabetes?--Turkish oncology group (TOG)/Lung cancer study group. CLINICAL RESPIRATORY JOURNAL 2020; 14:871-879. [PMID: 32470205 DOI: 10.1111/crj.13220] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 12/03/2019] [Accepted: 05/12/2020] [Indexed: 12/17/2022]
Abstract
INTRODUCTION To evaluate the clinical and dosimetric parameters that increase the risk of radiation pneumonitis (RP) in locally advanced non-small cell lung cancer (NSCLC) patients treated with concomitant chemoradiotherapy of nationwide multicentric data analysis. METHODS All data of 268 patients who underwent definitive chemoradiotherapy were retrospectively collected from eight institutes participating in this study. Patient, tumor and treatment-related factors and dosimetric parameters were analyzed for grade ≥2 RP. The toxicity scoring system of The Radiation Therapy Oncology Group used for grading the severity of pneumonitis. A relationship with the risk of RP with potential predictive factors were evaluated by univariate and multivariate analyses. A recursive partition analysis (RPA) was applied to stratify patients according to the risk of developing RP. RESULTS There were 90 (33.6%) patients who had grade ≥2 RP. The median time to pneumonitis after treatment was 4 months (range:1-6 months). In univariate analysis, diabetes mellitus (DM), use of cisplatin/etoposide, total and daily radiotherapy (RT) fraction dose, the planning target volume (PTV) size, mean lung dose, V5, V10 and RT technique were associated with the development of pneumonitis. In multivariate analysis, only DM (P = 0.008) was found to be independent risk factors for RP. According to RPA, the risk of developing RP was highest in patients with DM. CONCLUSIONS In our study, besides the known dosimetric factors, DM was found to be the most important risk factor causing RP development in multivariate analysis and RPA. The risk is tripled compared to patients without DM.
Collapse
Affiliation(s)
- Sefika A Ergen
- Department of Radiation Oncology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Fazilet O Dincbas
- Department of Radiation Oncology, Istanbul University-Cerrahpasa, Cerrahpasa Medical Faculty, Istanbul, Turkey
| | - Birsen Yücel
- Department of Radiation Oncology, Cumhuriyet University Medical Faculty, Sivas, Turkey
| | - Pelin Altınok
- Department of Radiation Oncology, Bezmialem Foundation University Medical Faculty Hospital, Istanbul, Turkey
| | - Serap Akyurek
- Department of Radiation Oncology, Ankara University Medical Faculty, Ankara, Turkey
| | - Esra Korkmaz Kıraklı
- Department of Radiation Oncology, Dr. Suat Seren Chest Disease and Surgery Training Hospital, Izmir, Turkey
| | - Sukran Ulger
- Department of Radiation Oncology (retired), Gazi University Medical Faculty, Ankara, Turkey
| | - Durmus Etiz
- Department of Radiation Oncology, Eskisehir Osmangazi University Medical Faculty, Eskisehir, Turkey
| | - Ufuk Yilmaz
- Department of Pulmonology, Dr. Suat Seren Chest Disease and Surgery Training Hospital, Izmir, Turkey
| | - Diclehan Kılıc
- Department of Radiation Oncology, Gazi University Medical Faculty, Ankara, Turkey
| | - Hakan Bozcuk
- Department of Medical Oncology, Medical Park Hospital, Antalya, Turkey
| |
Collapse
|
43
|
Bajraszewski C, Manser R, Chu J, Cox RA, Tran P, Duffy M, Irving L, Herschtal A, Siva S, Ball D. Adverse respiratory outcomes following conventional long‐course radiotherapy for non‐small‐cell lung cancer in patients with pre‐existing pulmonary fibrosis: A comparative retrospective study. J Med Imaging Radiat Oncol 2020; 64:546-555. [DOI: 10.1111/1754-9485.13041] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Revised: 03/21/2020] [Accepted: 03/27/2020] [Indexed: 12/25/2022]
Affiliation(s)
- Clare Bajraszewski
- Division of Radiation Oncology Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Renee Manser
- Department of Respiratory and Sleep Medicine Royal Melbourne Hospital Melbourne Victoria Australia
- Department of Haematology and Medical Oncology Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Medicine (Royal Melbourne Hospital) University of Melbourne Melbourne Victoria Australia
| | - James Chu
- Division of Radiation Oncology Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - R Ashley Cox
- Division of Radiation Oncology Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Phillip Tran
- Division of Radiation Oncology Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Mary Duffy
- Department of Nursing Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Louis Irving
- Department of Respiratory and Sleep Medicine Royal Melbourne Hospital Melbourne Victoria Australia
- Department of Haematology and Medical Oncology Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Department of Medicine (Royal Melbourne Hospital) University of Melbourne Melbourne Victoria Australia
| | - Alan Herschtal
- Centre for Biostatistics and Clinical Trials Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Shankar Siva
- Division of Radiation Oncology Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
| | - David Ball
- Division of Radiation Oncology Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Melbourne Victoria Australia
| |
Collapse
|
44
|
Radiographic patterns of symptomatic radiation pneumonitis in lung cancer patients: Imaging predictors for clinical severity and outcome. Lung Cancer 2020; 145:132-139. [PMID: 32447116 DOI: 10.1016/j.lungcan.2020.03.023] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 03/18/2020] [Accepted: 03/24/2020] [Indexed: 12/25/2022]
Abstract
OBJECTIVE Investigate the spectrum of radiographic patterns of radiation pneumonitis (RP) in lung cancer patients and identify imaging markers for high-grade RP and RP-related death. METHODS Eighty-two patients with lung cancer treated with conventional chest radiotherapy who had symptomatic RP were identified from the radiation oncology database. The imaging features of RP were studied for association with high-grade RP (Grade ≥3) and RP-related death (Grade 5). RESULTS RP was Grade 2 in 60 (73%), Grade 3 in 15 (18%), and Grade 5 in 7 patients (9%). Lower performance status (p = 0.04), squamous cell histology (p = 0.03), and FEV1 ≤ 2 (p = 0.009) were associated with high-grade pneumonitis. Older age (p = 0.03) and squamous cell histology (p = 0.03) were associated with RP-related death. The CT findings included ground-glass and reticular opacities in all patients, with traction bronchiectasis in 77 (94%) and consolidation in 74 (90%). The most common radiographic pattern of RP was cryptogenic organizing pneumonia (COP) pattern (n = 54), followed by acute interstitial pneumonia (AIP)/acute respiratory distress syndrome (ARDS) pattern (n = 10). Higher extent of lung involvement, diffuse distribution, and AIP/ARDS pattern were associated with high-grade pneumonitis and RP-related death. AIP/ARDS pattern was a significant factor for high-grade pneumonitis (OR:12.62, p = 0.01) in multivariable analyses adjusting for clinical variables. CONCLUSION COP pattern was the most common radiographic pattern for symptomatic RP in lung cancer patients. AIP/ARDS pattern was significantly associated with high-grade RP and RP-related deaths, and was an independent marker for high-grade RP. The recognition of the radiographic patterns of RP can help to effectively contribute to patient management.
Collapse
|
45
|
Zhou P, Chen L, Yan D, Huang C, Chen G, Wang Z, Zhong L, Luo W, Chen D, Chun C, Zhang S, Li G. Early variations in lymphocytes and T lymphocyte subsets are associated with radiation pneumonitis in lung cancer patients and experimental mice received thoracic irradiation. Cancer Med 2020; 9:3437-3444. [PMID: 32207253 PMCID: PMC7221303 DOI: 10.1002/cam4.2987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 11/29/2022] Open
Abstract
There were no ideal markers to predict the development of radiation pneumonitis (RP). We want to investigate the value of variations of lymphocytes and T lymphocyte subsets in predicting RP after radiotherapy (RT) of lung cancer based on previous clinical findings. A total of 182 lung cancer patients who received RT were retrospectively analyzed. Circulating lymphocytes and T lymphocyte subsets were measured before, during, and after RT. Patients were evaluated from the start of RT to 6 months post‐RT. A mice model with acute radiation‐induced lung injury was established and circulating lymphocytes were measured weekly until 8 weeks after irradiation. Univariate and multivariate analyses were adopted to identify risk factors of RP. Lymphocyte levels significantly decreased (P < .001) in patients before RP symptoms developed that also was able to be seen in the mice model and the values recovered during remission of symptoms. The decrease in lymphocyte count reflected the severity of RP. Meanwhile, CD4+ T lymphocyte count was significantly lower during the occurrence of symptoms in patients with RP than in those without RP (P < .001), and it improved along with RP recovery. Levels of lymphocytes and CD4+ T lymphocyte subsets proved as independent predictors of RP. Here we showed that lower peripheral blood levels of lymphocytes and CD4+ T lymphocyte were associated with an increased risk of RP, which was validated by this mice model, and thus are associated with differences in radiation‐induced lung toxicity among individuals and help identify those who are susceptible to developing RP after RT.
Collapse
Affiliation(s)
- Pu Zhou
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Lu Chen
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Dong Yan
- Institute for Pathology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Changlin Huang
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guangpeng Chen
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Zhiyi Wang
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Liangzhi Zhong
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Wen Luo
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Diangang Chen
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Chui Chun
- Institute for Radiology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Shushu Zhang
- Institute for Radiology, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Guanghui Li
- Institute for Cancer Research in People's Liberation Army, Xinqiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
46
|
Farias VDA, Tovar I, del Moral R, O'Valle F, Expósito J, Oliver FJ, Ruiz de Almodóvar JM. Enhancing the Bystander and Abscopal Effects to Improve Radiotherapy Outcomes. Front Oncol 2020; 9:1381. [PMID: 31970082 PMCID: PMC6960107 DOI: 10.3389/fonc.2019.01381] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2019] [Accepted: 11/22/2019] [Indexed: 12/12/2022] Open
Abstract
In this paper, we summarize published articles and experiences related to the attempt to improve radiotherapy outcomes and, thus, to personalize the radiation treatment according to the individual characteristics of each patient. The evolution of ideas and the study of successively published data have led us to envisage new biophysical models for the interpretation of tumor and healthy normal tissue response to radiation. In the development of the model, we have shown that when mesenchymal stem cells (MSCs) and radiotherapy are administered simultaneously in experimental radiotherapy on xenotumors implanted in a murine model, the results of the treatment show the existence of a synergic mechanism that is able to enhance the local and systemic actions of the radiation both on the treated tumor and on its possible metastasis. We are convinced that, due to the physical hallmarks that characterize the neoplastic tissues, the physical-chemical tropism of MSCs, and the widespread functions of macromolecules, proteins, and exosomes released from activated MSCs, the combination of radiotherapy plus MSCs used intratumorally has the effect of counteracting the pro-tumorigenic and pro-metastatic signals that contribute to the growth, spread, and resistance of the tumor cells. Therefore, we have concluded that MSCs are appropriate for therapeutic use in a clinical trial for rectal cancer combined with radiotherapy, which we are going to start in the near future.
Collapse
Affiliation(s)
- Virgínea de Araújo Farias
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
| | - Isabel Tovar
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Rosario del Moral
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Francisco O'Valle
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
- Departamento de Anatomía Patológica, Facultad de Medicina, Universidad de Granada, PTS Granada, Granada, Spain
| | - José Expósito
- Complejo Hospitalario de Granada, Servicio Andaluz de Salud, PTS Granada, Granada, Spain
| | - Francisco Javier Oliver
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
- Instituto de Parasitología y Biomedicina “López Neyra”, Consejo Superior de Investigaciones Científicas, PTS Granada, Granada, Spain
| | - José Mariano Ruiz de Almodóvar
- Centro de Investigación Biomédica, Instituto Universitario de Investigación en Biopatología y Medicina Regenerativa, PTS Granada, Granada, Spain
- CIBERONC (Instituto de Salud Carlos III), Granada, Spain
| |
Collapse
|
47
|
Bai L, Zhou BS, Zhao YX. Dynamic changes in T-cell subsets and C-reactive protein after radiation therapy in lung cancer patients and correlation with symptomatic radiation pneumonitis treated with steroid therapy. Cancer Manag Res 2019; 11:7925-7931. [PMID: 31686908 PMCID: PMC6709788 DOI: 10.2147/cmar.s209286] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Accepted: 07/25/2019] [Indexed: 12/14/2022] Open
Abstract
Objectives To investigate relationships among serum T-cell subsets, CRP, levels and radiation pneumonitis (RP) in lung cancer patients receiving radiotherapy. Methods A case-control study with frequency matching was carried out. The case group comprised 36 lung cancer patients who had developed grade ≥2 RP after thoracic radiotherapy. The control group was 36 patients with lung cancer without RP. Patients in the case group received steroid therapy for 1 month after diagnosis of RP and were followed up for 3 months. T-cell subsets, CRP, and pulmonary function were detected at three time points (onset of RP and 1 and 3 months after diagnosis). Data for the control group were collected 3 months after radiotherapy. Treatment effectiveness was evaluated at 1 and 3 months after diagnosis of RP. Results Of the 36 patients in the case group, three with grade5 RP died from respiratory failure. The other 33 cases had all improved with steroid therapy at 3 months after RP diagnosis. In these 33, CD3+T-cell quantity, CD4+T-cell quantity, and of CD4+:CD8+ ratio in T-cell subsets decreased significantly and CRP increased (P<0.05) at the onset of RP compared with the control group. After steroid therapy, CD4+T-cell quantity increased significantly compared to before treatment. The same change was seen in CD4+:CD8+ ratio, whereas CRP levels decreased obviously, with treatment effectiveness improved. In addition, with the damage level of RP increased, CD4+ T -cell quantity decreased obviously and CRP levels increased accordingly at the onset of RP (P<0.05). Conclusion T-cell subsets and CRP may become effective immunological biomarkers for predicting damage from RP and evaluating treatment effectivesness of steroid therapy.
Collapse
Affiliation(s)
- Lu Bai
- Department of Radiation Oncology, First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Bao-Sen Zhou
- Department of Epidemiology, School of Public Health, China Medical University, Shenyang 110122, People's Republic of China.,Liaoning Provincial Department of Education, Key Laboratory of Cancer Etiology and Prevention, First Affiliated Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Yu-Xia Zhao
- Department of Radiation Oncology, Fourth Affiliated Hospital of China Medical University, Shenyang 110032, People's Republic of China
| |
Collapse
|
48
|
Mondal T, Nautiyal A, Agrawal M, Mitra D, Goel A, Kumar Dey S. 18F-FDG-induced DNA damage, chromosomal aberrations, and toxicity in V79 lung fibroblast cells. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2019; 847:503105. [PMID: 31699341 DOI: 10.1016/j.mrgentox.2019.503105] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 12/20/2022]
Abstract
18F-FDG PET/CT imaging is used in the diagnosis of diseases, including cancers. The principal photons used for imaging are 511 ke V gamma photons resulting from positron annihilation. The absorbed dose varies among body organs, depending on administered radioactivity and biological clearance. We have attempted to evaluate DNA double-strand breaks (DSB) and toxicity induced in V79 lung fibroblast cells in vitro by 18F-FDG, at doses which might result from PET procedures. Cells were irradiated by 18F-FDG at doses (14.51 and 26.86 mGy), comparable to absorbed doses received by critical organs during PET procedures. The biological endpoints measured were formation of γ-H2AX foci, mitochondrial stress, chromosomal aberrations, and cell cycle perturbation. Irradiation induced DSB (γH2AX assay), mitochondrial depolarization, and both chromosome and chromatid types of aberrations. At higher radiation doses, increased aneuploidy and reduced mitotic activity were also seen. Thus, significant biological effects were observed at the doses delivered by the 18F-FDG exposure and the effects increased with dose.
Collapse
Affiliation(s)
- Tanmoy Mondal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Sector-I, Salt Lake, Kolkata, 700 064, West Bengal, India
| | - Amit Nautiyal
- Institute of Nuclear Medicine & Molecular Imaging, Advance Medicare & Research Institute, P-4&5, Gariahat Road Block-A, Scheme-L11, Dhakuria, Kolkata, 700029, West Bengal, India
| | - Milee Agrawal
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Sector-I, Salt Lake, Kolkata, 700 064, West Bengal, India
| | - Deepanjan Mitra
- Institute of Nuclear Medicine & Molecular Imaging, Advance Medicare & Research Institute, P-4&5, Gariahat Road Block-A, Scheme-L11, Dhakuria, Kolkata, 700029, West Bengal, India
| | - Alpana Goel
- Amity Institute of Nuclear Science & Technology, Amity University, Noida, Delhi, India
| | - Subrata Kumar Dey
- Department of Biotechnology, Maulana Abul Kalam Azad University of Technology, BF-142, Sector-I, Salt Lake, Kolkata, 700 064, West Bengal, India.
| |
Collapse
|
49
|
Giuranno L, Ient J, De Ruysscher D, Vooijs MA. Radiation-Induced Lung Injury (RILI). Front Oncol 2019; 9:877. [PMID: 31555602 PMCID: PMC6743286 DOI: 10.3389/fonc.2019.00877] [Citation(s) in RCA: 232] [Impact Index Per Article: 38.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Accepted: 08/23/2019] [Indexed: 12/12/2022] Open
Abstract
Radiation pneumonitis (RP) and radiation fibrosis (RF) are two dose-limiting toxicities of radiotherapy (RT), especially for lung, and esophageal cancer. It occurs in 5-20% of patients and limits the maximum dose that can be delivered, reducing tumor control probability (TCP) and may lead to dyspnea, lung fibrosis, and impaired quality of life. Both physical and biological factors determine the normal tissue complication probability (NTCP) by Radiotherapy. A better understanding of the pathophysiological sequence of radiation-induced lung injury (RILI) and the intrinsic, environmental and treatment-related factors may aid in the prevention, and better management of radiation-induced lung damage. In this review, we summarize our current understanding of the pathological and molecular consequences of lung exposure to ionizing radiation, and pharmaceutical interventions that may be beneficial in the prevention or curtailment of RILI, and therefore enable a more durable therapeutic tumor response.
Collapse
Affiliation(s)
- Lorena Giuranno
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Jonathan Ient
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Dirk De Ruysscher
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| | - Marc A Vooijs
- Department of Radiotherapy, GROW School for Oncology Maastricht University Medical Centre, Maastricht, Netherlands
| |
Collapse
|
50
|
Schröder C, Engenhart-Cabillic R, Kirschner S, Blank E, Buchali A. Changes of lung parenchyma density following high dose radiation therapy for thoracic carcinomas - an automated analysis of follow up CT scans. Radiat Oncol 2019; 14:72. [PMID: 31036015 PMCID: PMC6489276 DOI: 10.1186/s13014-019-1276-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/11/2019] [Indexed: 11/10/2022] Open
Abstract
Background An objective way to qualify the effect of radiotherapy (RT) on lung tissue is the analysis of CT scans after RT. In this analysis we focused on the changes in Hounsfield units (ΔHU) and the correlation with the corresponding radiation dose after RT. Methods Pre- and post-RT CT scans were matched and ΔHU was calculated using customized research software. ΔHU was calculated in 5-Gy-intervals and the correlation between ΔHU and the corresponding dose was calculated as well as the regression coefficients. Additionally the mean ΔHU and ΔHU in 5-Gy-intervals were calculated for each tumor entity. Results The mean density changes at 12 weeks and 6 months post RT were 28,16 HU and 32,83 HU. The correlation coefficient between radiation dose and ΔHU at 12 weeks and 6 months were 0,166 (p = 0,000) and 0,158 (p = 0,000). The resulting regression coefficient were 1439 HU/Gy (p = 0,000) and 1612 HU/Gy (p = 0,000). The individual regression coefficients for each patient range from − 2,23 HU/Gy to 7,46 HU/Gy at 12 weeks and − 0,45 HU/Gy to 10,51 HU/Gy at 6 months. When looking at the three tumor entities individually the highest ΔHU at 12 weeks was seen in patients with SCLC (38,13 HU) and at 6 month in those with esophageal carcinomas (40,98 HU). Conclusion For most dose intervals there was an increase of ΔHU with an increased radiation dose. This is reflected by a statistically significant, although low correlation coefficient. The regression coefficients of all patients show large interindividual differences.
Collapse
Affiliation(s)
- Christina Schröder
- Clinic for Radiotherapy and Radiation Oncology, University Clinic Giessen and Marburg, Marburg, Germany. .,Clinic for Radiation Oncology, Universitätsspital Zürich, Rämistrasse 100, CH-8091, Zürich, Switzerland.
| | - Rita Engenhart-Cabillic
- Clinic for Radiotherapy and Radiation Oncology, University Clinic Giessen and Marburg, Marburg, Germany
| | - Sven Kirschner
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| | - Eyck Blank
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| | - André Buchali
- Clinic for Radiotherapy and Radiation Oncology, Ruppiner Kliniken GmbH, Neuruppin, Germany
| |
Collapse
|