1
|
Rey-Keim S, Schito L. Origins and molecular effects of hypoxia in cancer. Semin Cancer Biol 2024; 106-107:166-178. [PMID: 39427969 DOI: 10.1016/j.semcancer.2024.10.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/02/2024] [Accepted: 10/09/2024] [Indexed: 10/22/2024]
Abstract
Hypoxia (insufficient O2) is a pivotal factor in cancer progression, triggering genetic, transcriptional, translational and epigenetic adaptations associated to therapy resistance, metastasis and patient mortality. In this review, we outline the microenvironmental origins and molecular mechanisms responsible for hypoxic cancer cell adaptations in situ and in vitro, whilst outlining current approaches to stratify, quantify and therapeutically target hypoxia in the context of precision oncology.
Collapse
Affiliation(s)
- Sergio Rey-Keim
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| | - Luana Schito
- UCD School of Medicine, University College Dublin, Belfield, Dublin D04 C7X2, Ireland; UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Belfield, Dublin D04 C7X2, Ireland.
| |
Collapse
|
2
|
Demuytere J, Ernst S, Ceelen W. Pathophysiology of Peritoneal Metastasis. J Surg Oncol 2024. [PMID: 39400354 DOI: 10.1002/jso.27890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 08/23/2024] [Indexed: 10/15/2024]
Abstract
Peritoneal metastasis is the result of a complex, stepwise process that involves multiple, spatially and temporally distinct interactions between the primary cancer, disseminated cancer cells or clusters, and the mesothelial lining of the peritoneal cavity and intraperitoneal organs. The biology of peritoneal metastasis, long a neglected field of research, is now increasingly being unraveled. Here, we provide an update on the mechanisms that drive the journey that eventually leads to widespread peritoneal metastatic disease.
Collapse
Affiliation(s)
- Jesse Demuytere
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Sam Ernst
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
- Laboratory of Experimental Cancer Research (LECR), Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Experimental Surgery Lab, Ghent University, Ghent, Belgium
- Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
3
|
Petusseau AF, Ochoa M, Reed M, Doyley MM, Hasan T, Bruza P, Pogue BW. Pressure-enhanced sensing of tissue oxygenation via endogenous porphyrin: Implications for dynamic visualization of cancer in surgery. Proc Natl Acad Sci U S A 2024; 121:e2405628121. [PMID: 39141355 PMCID: PMC11348300 DOI: 10.1073/pnas.2405628121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/21/2024] [Indexed: 08/15/2024] Open
Abstract
Fluorescence guidance is routinely used in surgery to enhance perfusion contrast in multiple types of diseases. Pressure-enhanced sensing of tissue oxygenation (PRESTO) via fluorescence is a technique extensively analyzed here, that uses an FDA-approved human precursor molecule, 5-aminolevulinic acid (ALA), to stimulate a unique delayed fluorescence signal that is representative of tissue hypoxia. The ALA precontrast agent is metabolized in most tissues into a red fluorescent molecule, protoporphyrin IX (PpIX), which has both prompt fluorescence, indicative of the concentration, and a delayed fluorescence, that is amplified in low tissue oxygen situations. Applied pressure from palpation induces transient capillary stasis and a resulting transient PRESTO contrast, dominant when there is near hypoxia. This study examined the kinetics and behavior of this effect in both normal and tumor tissues, with a prolonged high PRESTO contrast (contrast to background of 7.3) across 5 tumor models, due to sluggish capillaries and inhibited vasodynamics. This tissue function imaging approach is a fundamentally unique tool for real-time palpation-induced tissue response in vivo, relevant for chronic hypoxia, such as vascular diseases or oncologic surgery.
Collapse
Affiliation(s)
| | - Marien Ochoa
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI53705
| | - Matthew Reed
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI53705
| | - Marvin M. Doyley
- Department of Electrical and Computer Engineering, University of Rochester, Rochester, NY14627
| | - Tayyaba Hasan
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
| | - Petr Bruza
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
| | - Brian W. Pogue
- Thayer School of Engineering, Dartmouth College, Hanover, NH03755
- Department of Medical Physics, University of Wisconsin-Madison, Madison, WI53705
| |
Collapse
|
4
|
Salavati H, Pullens P, Debbaut C, Ceelen W. Hydraulic conductivity of human cancer tissue: A hybrid study. Bioeng Transl Med 2024; 9:e10617. [PMID: 38435818 PMCID: PMC10905546 DOI: 10.1002/btm2.10617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 09/22/2023] [Accepted: 10/15/2023] [Indexed: 03/05/2024] Open
Abstract
Background Elevated tumor tissue interstitial fluid pressure (IFP) is an adverse biomechanical biomarker that predicts poor therapy response and an aggressive phenotype. Advances in functional imaging have opened the prospect of measuring IFP non-invasively. Image-based estimation of the IFP requires knowledge of the tissue hydraulic conductivity (K), a measure for the ease of bulk flow through the interstitium. However, data on the magnitude of K in human cancer tissue are not available. Methods We measured the hydraulic conductivity of tumor tissue using modified Ussing chambers in surgical resection specimens. The effect of the tumor microenvironment (TME) on K was investigated by quantifying the collagen content, cell density, and fibroblast density of the tested samples using quantitative immune histochemistry. Also, we developed a computational fluid dynamics (CFD) model to evaluate the role of K on interstitial fluid flow and drug transport in solid tumors. Results The results show that the hydraulic conductivity of human tumor tissues is very limited, ranging from approximately 10-15 to 10-14 m2/Pa∙s. Moreover, K values varied significantly between tumor types and between different samples from the same tumor. A significant inverse correlation was found between collagen fiber density and hydraulic conductivity values. However, no correlation was detected between K and cancer cell or fibroblast densities. The computational model demonstrated the impact of K on the interstitial fluid flow and the drug concentration profile: higher K values led to a lower IFP and deeper drug penetration. Conclusions Human tumor tissue is characterized by a very limited hydraulic conductivity, representing a barrier to effective drug transport. The results of this study can inform the development of realistic computational models, facilitate non-invasive IFP estimation, and contribute to stromal targeting anticancer therapies.
Collapse
Affiliation(s)
- Hooman Salavati
- Department of Human Structure and RepairGhent UniversityGhentBelgium
- IBiTech–BioMMedA, Ghent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Pim Pullens
- Department of RadiologyUniversity Hospital GhentGhentBelgium
- Ghent Institute of Functional and Metabolic Imaging (GIFMI)Ghent UniversityGhentBelgium
- IBiTech–Medisip, Ghent UniversityGhentBelgium
| | - Charlotte Debbaut
- IBiTech–BioMMedA, Ghent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| | - Wim Ceelen
- Department of Human Structure and RepairGhent UniversityGhentBelgium
- Cancer Research Institute Ghent (CRIG)GhentBelgium
| |
Collapse
|
5
|
Souri M, Elahi S, Soltani M. Programmable intratumoral drug delivery to breast cancer using wireless bioelectronic device with electrochemical actuation. Expert Opin Drug Deliv 2024; 21:495-511. [PMID: 38396366 DOI: 10.1080/17425247.2024.2323211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 02/14/2024] [Indexed: 02/25/2024]
Abstract
OBJECTIVE Breast cancer is a global health concern that demands attention. In our contribution to addressing this disease, our study focuses on investigating a wireless micro-device for intratumoral drug delivery, utilizing electrochemical actuation. Microdevices have emerged as a promising approach in this field due to their ability to enable controlled injections in various applications. METHODS Our study is conducted within a computational framework, employing models that simulate the behavior of the microdevice and drug discharge based on the principles of the ideal gas law. Furthermore, the distribution of the drug within the tissue is simulated, considering both diffusion and convection mechanisms. To predict the therapeutic response, a pharmacodynamic model is utilized, considering the chemotherapeutic effects and cell proliferation. RESULTS The findings demonstrate that an effective current of 3 mA, along with an initial gas volume equal to the drug volume in the microdevice, optimizes drug delivery. Microdevices with multiple injection capabilities exhibit enhanced therapeutic efficacy, effectively suppressing cell proliferation. Additionally, tumors with lower microvascular density experience higher drug concentrations in the extracellular space, resulting in significant cell death in hypoxic regions. CONCLUSIONS Achieving an efficient therapeutic response involves considering both the characteristics of the tumor microenvironment and the frequency of injections within a specific time frame.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of NanoBiotechnology, Pasteur Institute of Iran, Tehran, Iran
| | - Sohail Elahi
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - Madjid Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, Ontario, Canada
- Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, Ontario, Canada
- Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada
| |
Collapse
|
6
|
Sormoli HA, Mojra A, Heidarinejad G. A novel gas embolotherapy using microbubbles electrocoalescence for cancer treatment. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2024; 244:107953. [PMID: 38043501 DOI: 10.1016/j.cmpb.2023.107953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/24/2023] [Accepted: 11/25/2023] [Indexed: 12/05/2023]
Abstract
BACKGROUND AND OBJECTIVE Embolotherapy has been increasingly used to disrupt tumor growth. Despite its success in the occlusion of microvessels, it has drawbacks such as limited access to the target location, limited control of the blocker size, and inattention to the tumor characteristics, especially high interstitial fluid pressure. The present work introduces a novel numerical method of gas embolotherapy for cancer treatment through tumor vessel occlusion. METHODS The gas microbubbles are generated from Levovist bolus injection into the tumor microvessel. The microbubble movement in the blood flow is innovatively controlled by an electric field applied to the tumor-feeding vessel. The interaction between the Levovist microbubbles and the electric field is resolved by developing a fully coupled model using the phase-field model, Carreau model for non-Newtonian blood, Navier-Stokes equations and Maxwell stress tensor. Additionally, the critical effect of high interstitial fluid pressure as a characteristic of solid tumors is included. RESULTS The findings of this study indicate that the rates of microbubble deformation and displacement increase with the applied potential intensity to the microvessel wall. Accordingly, the required time for a microbubble to join the upper microvessel wall reduces from 1.97ms to 22 μs with an increase of the electric potential from 3.5V to 12.5V. Additionally, an electric potential of 12.5V causes the microbubbles coalescence and formation of a gas column against the bloodstream. CONCLUSIONS Clinically, our novel embolization procedure can be considered a non-invasive targeted therapy, and under a controlled electric field, the blocker size can be precisely controlled. Also, the proposed method has the potential to be used as a gradual treatment in advanced cancers as tumors develop resistance and relapse.
Collapse
Affiliation(s)
| | - Afsaneh Mojra
- Department of Mechanical Engineering, K. N. Toosi University of Technology, 7 Pardis St., Tehran, Iran.
| | | |
Collapse
|
7
|
Salavati H, Pullens P, Ceelen W, Debbaut C. Drug transport modeling in solid tumors: A computational exploration of spatial heterogeneity of biophysical properties. Comput Biol Med 2023; 163:107190. [PMID: 37392620 DOI: 10.1016/j.compbiomed.2023.107190] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/19/2023] [Indexed: 07/03/2023]
Abstract
Inadequate uptake of therapeutic agents by tumor cells is still a major barrier in clinical cancer therapy. Mathematical modeling is a powerful tool to describe and investigate the transport phenomena involved. However, current models for interstitial flow and drug delivery in solid tumors have not yet embedded the existing heterogeneity of tumor biomechanical properties. The purpose of this study is to introduce a novel and more realistic methodology for computational models of solid tumor perfusion and drug delivery accounting for these regional heterogeneities as well as lymphatic drainage effects. Several tumor geometries were studied using an advanced computational fluid dynamics (CFD) modeling approach of intratumor interstitial fluid flow and drug transport. Hereby, the following novelties were implemented: (i) the heterogeneity of tumor-specific hydraulic conductivity and capillary permeability; (ii) the effect of lymphatic drainage on interstitial fluid flow and drug penetration. Tumor size and shape both have a crucial role on the interstitial fluid flow regime as well as drug transport illustrating a direct correlation with interstitial fluid pressure (IFP) and an inverse correlation with drug penetration, except for large tumors having a diameter larger than 50 mm. The results also suggest that the interstitial fluid flow and drug penetration in small tumors depend on tumor shape. A parameter study on the necrotic core size illustrated that the core effect (i.e. fluid flow and drug penetration alteration) was only profound in small tumors. Interestingly, the impact of a necrotic core on drug penetration differs depending on the tumor shape from having no effect in ideally spherical tumors to a clear effect in elliptical tumors with a necrotic core. A realistic presence of lymphatic vessels only slightly affected tumor perfusion, having no substantial effect on drug delivery. In conclusion, our findings illustrated that our novel parametric CFD modeling strategy in combination with accurate profiling of heterogeneous tumor biophysical properties can provide a powerful tool for better insights into tumor perfusion and drug transport, enabling effective therapy planning.
Collapse
Affiliation(s)
- Hooman Salavati
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; IBiTech-BioMMedA, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| | - Pim Pullens
- Department of Radiology, University Hospital Ghent, Ghent, Belgium; Ghent Institute of Functional and Metabolic Imaging (GIFMI), Ghent University, Ghent, Belgium; IBitech-Medisip, Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Charlotte Debbaut
- IBiTech-BioMMedA, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| |
Collapse
|
8
|
Tal MG, Keidar R, Magnazi G, Henn O, Kim JH, Chudnoff SG, Stepp KJ. Pressure-Induced Fibroid Ischemia: First-In-Human Experience with a Novel Device for Laparoscopic Treatment of Symptomatic Uterine Fibroids. Reprod Sci 2023; 30:1366-1375. [PMID: 35941511 PMCID: PMC9360636 DOI: 10.1007/s43032-022-01033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Accepted: 07/04/2022] [Indexed: 11/29/2022]
Abstract
The purpose of this study was to assess the feasibility of use of a novel uterine fibroid treatment device hypothesized to cause fibroid infarction by increasing intra-tumoral pressure. Between August 2019 and January 2020, 21 uterine fibroids were treated in 16 symptomatic pre-menopausal black women. Pelvic magnetic resonance imaging was performed before the procedure, a day after the procedure and at 1, 3, 6, and 12 months. The subjects were also followed for clinical outcomes and quality of life up to 12 months at a single investigational site. At 3 months, the mean reduction in the fibroid volume was 36.3% (P = .002). Incremental reduction in volume peaked at the end of the follow-up, at the 12-month mark (60.4%; P = .008). There were no procedures in which the users failed to perform laparoscopic pressure suturing of fibroids with the pressure-induced fibroid ischemia device. Improvement in the quality of life was evident in the Health-Related Quality of Life total, Energy/Mood, Control, and Sexual Function domains of the Uterine Fibroid Symptom and Quality of Life questionnaire at 3 months post-procedure. Unanticipated risks were not identified. Serious adverse events were not identified. The initial clinical assessment of the pressure-induced fibroid ischemia device supports feasibility of the approach and does not reveal serious safety concerns. Trial is currently being registered retrospectively (This was a feasibility study and therefore registration was not mandatory).
Collapse
Affiliation(s)
- Michael G Tal
- Division of Interventional Radiology, Hadassah Medical Center, Jerusalem, Israel.
| | - Ran Keidar
- Department of Obstetrics and Gynecology, E. Wolfson Medical Center, Holon, Israel
- Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | | | - Ohad Henn
- Empress Medical Ltd., Tel Aviv, Israel
| | - Jin Hee Kim
- Department of Obstetrics & Gynecology, Columbia University, New York, NY, USA
| | - Scott G Chudnoff
- Obstetrics and Gynecology, Maimonides Medical Center, New York, NY, USA
| | - Kevin J Stepp
- Atrium Health Women's Care Urogynecology and Pelvic Surgery, Atrium Health, Charlotte, NC, USA
| |
Collapse
|
9
|
Salavati H, Debbaut C, Pullens P, Ceelen W. Interstitial fluid pressure as an emerging biomarker in solid tumors. Biochim Biophys Acta Rev Cancer 2022; 1877:188792. [PMID: 36084861 DOI: 10.1016/j.bbcan.2022.188792] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/12/2022] [Accepted: 08/30/2022] [Indexed: 11/28/2022]
Abstract
The physical microenvironment of cancer is characterized by elevated stiffness and tissue pressure, the main component of which is the interstitial fluid pressure (IFP). Elevated IFP is an established negative predictive and prognostic parameter, directly affecting malignant behavior and therapy response. As such, measurement of the IFP would allow to develop strategies aimed at engineering the physical microenvironment of cancer. Traditionally, IFP measurement required the use of invasive methods. Recent progress in dynamic and functional imaging methods such as dynamic contrast enhanced (DCE) magnetic resonance imaging and elastography, combined with numerical models and simulation, allows to comprehensively assess the biomechanical landscape of cancer, and may help to overcome physical barriers to drug delivery and immune cell infiltration. Here, we provide a comprehensive overview of the origin of elevated IFP, and its role in the malignant phenotype. Also, we review the methods used to measure IFP using invasive and imaging based methods, and highlight remaining obstacles and potential areas of progress in order to implement IFP measurement in clinical practice.
Collapse
Affiliation(s)
- Hooman Salavati
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; IBitech- Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Charlotte Debbaut
- IBitech- Biommeda, Department of Electronics and Information Systems, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium
| | - Pim Pullens
- Department of Radiology, Ghent University Hospital, Ghent, Belgium; Ghent Institute of Functional and Metabolic Imaging (GIFMI), Ghent University, Ghent, Belgium; IBitech- Medisip, Ghent University, Ghent, Belgium
| | - Wim Ceelen
- Department of Human Structure and Repair, Ghent University, Ghent, Belgium; Cancer Research Institute Ghent (CRIG), Ghent, Belgium.
| |
Collapse
|
10
|
Hypoxia orchestrates the lymphovascular–immune ensemble in cancer. Trends Cancer 2022; 8:771-784. [DOI: 10.1016/j.trecan.2022.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/31/2022] [Accepted: 04/25/2022] [Indexed: 11/18/2022]
|
11
|
Abstract
Ecological fitness is the ability of individuals in a population to survive and reproduce. Individuals with increased fitness are better equipped to withstand the selective pressures of their environments. This paradigm pertains to all organismal life as we know it; however, it is also becoming increasingly clear that within multicellular organisms exist highly complex, competitive, and cooperative populations of cells under many of the same ecological and evolutionary constraints as populations of individuals in nature. In this review I discuss the parallels between populations of cancer cells and populations of individuals in the wild, highlighting how individuals in either context are constrained by their environments to converge on a small number of critical phenotypes to ensure survival and future reproductive success. I argue that the hallmarks of cancer can be distilled into key phenotypes necessary for cancer cell fitness: survival and reproduction. I posit that for therapeutic strategies to be maximally beneficial, they should seek to subvert these ecologically driven phenotypic responses.
Collapse
|
12
|
Zaidi M, Fu F, Cojocari D, McKee TD, Wouters BG. Quantitative Visualization of Hypoxia and Proliferation Gradients Within Histological Tissue Sections. Front Bioeng Biotechnol 2019; 7:397. [PMID: 31867322 PMCID: PMC6906162 DOI: 10.3389/fbioe.2019.00397] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Accepted: 11/22/2019] [Indexed: 12/16/2022] Open
Abstract
The formation of hypoxic microenvironments within solid tumors is known to contribute to radiation resistance, chemotherapy resistance, immune suppression, increased metastasis, and an overall poor prognosis. It is therefore crucial to understand the spatial and molecular mechanisms that contribute to tumor hypoxia formation to improve the efficacy of radiation treatment, develop hypoxia-directed therapies, and increase patient survival. The objective of this study is to present a number of complementary novel methods for quantifying tumor hypoxia and proliferation in multiplexed immunofluorescence images, especially in relation to the location of perfused blood vessels. A standard marker analysis strategy is to take a positive pixel count approach, in which a threshold for positive stain is used to compute a positive area fraction for hypoxia. This work is a reassessment of that approach, utilizing not only cell segmentation but also distance to nearest blood vessel in order to incorporate spatial information into the analysis. We describe a reproducible pipeline for the visualization and quantitative analysis of hypoxia using a vessel distance analysis approach. This methodological pipeline can serve to further elucidate the relationship between vessel distance and microenvironment-linked markers such as hypoxia and proliferation, can help to quantify parameters relating to oxygen consumption and hypoxic tolerance in tissues, as well as potentially serve as a hypothesis generating tool for future studies testing hypoxia-linked markers.
Collapse
Affiliation(s)
- Mark Zaidi
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,STTARR Innovation Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Fred Fu
- STTARR Innovation Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Dan Cojocari
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada
| | - Trevor D McKee
- STTARR Innovation Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| | - Bradly G Wouters
- Department of Medical Biophysics, University of Toronto, Toronto, ON, Canada.,STTARR Innovation Centre, Princess Margaret Cancer Centre, University Health Network, Toronto, ON, Canada
| |
Collapse
|
13
|
Rodríguez-Barbeito P, Díaz-Botana P, Gago-Arias A, Feijoo M, Neira S, Guiu-Souto J, López-Pouso Ó, Gómez-Caamaño A, Pardo-Montero J. A Model of Indirect Cell Death Caused by Tumor Vascular Damage after High-Dose Radiotherapy. Cancer Res 2019; 79:6044-6053. [PMID: 31641030 DOI: 10.1158/0008-5472.can-19-0181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Revised: 07/02/2019] [Accepted: 10/16/2019] [Indexed: 11/16/2022]
Abstract
There is increasing evidence that high doses of radiotherapy, like those delivered in stereotactic body radiotherapy (SBRT), trigger indirect mechanisms of cell death. Such effect seems to be two-fold. High doses may trigger an immune response and may cause vascular damage, leading to cell starvation and death. Development of mathematical response models, including indirect death, may help clinicians to design SBRT optimal schedules. Despite increasing experimental literature on indirect tumor cell death caused by vascular damage, efforts on modeling this effect have been limited. In this work, we present a biomathematical model of this effect. In our model, tumor oxygenation is obtained by solving the reaction-diffusion equation; radiotherapy kills tumor cells according to the linear-quadratic model, and also endothelial cells (EC), which can trigger loss of functionality of capillaries. Capillary death will affect tumor oxygenation, driving nearby tumor cells into severe hypoxia. Capillaries can recover functionality due to EC proliferation. Tumor cells entering a predetermined severe hypoxia status die according to a hypoxia-death model. This model fits recently published experimental data showing the effect of vascular damage on surviving fractions. It fits surviving fraction curves and qualitatively reproduces experimental values of percentages of functional capillaries 48 hours postirradiation, and hypoxic cells pre- and 48 hours postirradiation. This model is useful for exploring aspects of tumor and EC response to radiotherapy and constitutes a stepping stone toward modeling indirect tumor cell death caused by vascular damage and accounting for this effect during SBRT planning. SIGNIFICANCE: A novel biomathematical model of indirect tumor cell death caused by vascular radiation damage could potentially help clinicians interpret experimental data and design better radiotherapy schedules.
Collapse
Affiliation(s)
- Pedro Rodríguez-Barbeito
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Department of Applied Mathematics, Universidade de Santiago de Compostela, Spain
| | - Pablo Díaz-Botana
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Galician Supercomputation Center (CESGA), Santiago de Compostela, Spain
| | - Araceli Gago-Arias
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Institute of Physics, Pontificia Universidad Católica de Chile, Santiago de Chile, Chile
| | - Manuel Feijoo
- Department of Particle Physics, Universidade de Santiago de Compostela, Spain
| | - Sara Neira
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain
| | - Jacobo Guiu-Souto
- Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, Spain.,Department of Medical Physics, Fundación Centro Oncolóxico de Galicia, A Coruña, Spain
| | - Óscar López-Pouso
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain.,Department of Applied Mathematics, Universidade de Santiago de Compostela, Spain
| | - Antonio Gómez-Caamaño
- Department of Radiotherapy, Complexo Hospitalario Universitario de Santiago de Compostela, Spain
| | - Juan Pardo-Montero
- Group of Medical Physics and Biomathematics, Instituto de Investigación Sanitaria de Santiago (IDIS), Santiago de Compostela, Spain. .,Department of Medical Physics, Complexo Hospitalario Universitario de Santiago de Compostela, Spain
| |
Collapse
|
14
|
Kusamura S, Azmi N, Fumagalli L, Baratti D, Guaglio M, Cavalleri A, Garrone G, Battaglia L, Barretta F, Deraco M. Phase II randomized study on tissue distribution and pharmacokinetics of cisplatin according to different levels of intra-abdominal pressure (IAP) during HIPEC (NCT02949791). Eur J Surg Oncol 2019; 47:82-88. [PMID: 31262599 DOI: 10.1016/j.ejso.2019.06.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 05/28/2019] [Accepted: 06/12/2019] [Indexed: 01/01/2023] Open
Abstract
AIMS To evaluate the effects of high intra-abdominal pressure (IAP) during hyperthermic intraperitoneal chemotherapy (HIPEC) on cisplatin uptake by residual tumor and normal tissues, pharmacokinetics, and short-term surgical outcomes. PATIENTS & METHODS Patients with peritoneal metastasis from colorectal cancer or pseudomyxoma peritonei were randomized to closed-abdomen HIPEC with low-IAP or high-IAP, after complete cytoreduction. High-IAP was obtained increasing the volume of perfusate maintaining constant the cisplatin concentration (42 mg/L). We determined the Platinum concentration using an Inductive Coupled Plasma Mass Spectrometry System. Randomization was stratified according to tumor type. To consider the multiple sampling in the three tissues types of interest, we performed linear mixed models to assess the differences of cisplatin concentration between study arms. We also compared AUC perfusate/plasma ratios (Wilcoxon-Mann-Whitney) and perioperative severe complication rates (chi-square) between study arms. RESULTS 38 cases were randomly assigned to IAP arms (n = 19 each). Median IAPs were 19 mmHg and 11 mmHg in the high and low arms, respectively. Cisplatin concentrations did not differ in the tumor residual tissues and in the muscular fascia [22.8 ng/mg (SD: 25.5) vs. 15.9 ng/mg (SD: 13.3), p = 0.181] and [50.3 ng/mg (SD: 40.1) vs. 42.0 ng/mg (SD: 38.3), p = 0.426, respectively], whereas in the mesenteric peritoneum it did [5.4 ng/mg (SD: 7.82) vs. 2.7 ng/mg (SD: 2.9), p = 0.048]. Pharmacokinetic advantage did not differ between the two arms. High-IAP did not increase perioperative severe complications rate (NCI-CTCAE.v3). CONCLUSIONS high-IAP HIPEC increases cisplatin distribution in the mesenteric peritoneum, is safe, and could be considered to obtain microscopic cytoreduction.
Collapse
Affiliation(s)
- Shigeki Kusamura
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Peritoneal Surface Malignancies Unit, Italy
| | - Norfarizan Azmi
- Fellow of European School of Peritoneal Surface Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Anesthesiology Unit, Italy
| | - Luca Fumagalli
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Anesthesiology Unit, Italy
| | - Dario Baratti
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Peritoneal Surface Malignancies Unit, Italy
| | - Marcello Guaglio
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Peritoneal Surface Malignancies Unit, Italy
| | - Adalberto Cavalleri
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Laboratory of Department of Preventive and Predictive Medicine, Italy
| | - Giulia Garrone
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Laboratory of Department of Preventive and Predictive Medicine, Italy
| | - Luigi Battaglia
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Peritoneal Surface Malignancies Unit, Italy
| | - Francesco Barretta
- Department of Clinical Epidemiology and Trial Organization, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Milan, Italy
| | - Marcello Deraco
- Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Peritoneal Surface Malignancies Unit, Italy.
| |
Collapse
|
15
|
Intratumor Heterogeneity in Interstitial Fluid Pressure in Cervical and Pancreatic Carcinoma Xenografts. Transl Oncol 2019; 12:1079-1085. [PMID: 31174058 PMCID: PMC6556493 DOI: 10.1016/j.tranon.2019.05.012] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 05/09/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
Preclinical studies have suggested that interstitial fluid pressure (IFP) is uniformly elevated in the central region of tumors, whereas clinical studies have revealed that IFP may vary among different measurement sites in the tumor center. IFP measurements are technically difficult, and it has been claimed that the intratumor heterogeneity in IFP reported for human tumors is due to technical problems. The main purpose of this study was to determine conclusively whether IFP may be heterogeneously elevated in the central tumor region, and if so, to reveal possible mechanisms and possible consequences. Tumors of two xenograft models were included in the study: HL-16 cervical carcinoma and Panc-1 pancreatic carcinoma. IFP was measured with Millar SPC 320 catheters in two positions in each tumor and related to tumor histology or the metastatic status of the host mouse. Some tumors of both models showed significant intratumor heterogeneity in IFP, and this heterogeneity was associated with a compartmentalized histological appearance (i.e., the tissue was divided into compartments separated by thick connective tissue bands) in HL-16 tumors and with a dense collagen-I-rich extracellular matrix in Panc-1 tumors, suggesting that these connective tissue structures prevented efficient interstitial convection. Furthermore, some tumors of both models developed lymph node metastases, and of the two IFP values measured in each tumor, only the higher value was significantly higher in metastatic than in non-metastatic tumors, suggesting that metastatic propensity was determined by the tumor region having the highest IFP.
Collapse
|
16
|
Bollella P, Sharma S, Cass AEG, Antiochia R. Minimally-invasive Microneedle-based Biosensor Array for Simultaneous Lactate and Glucose Monitoring in Artificial Interstitial Fluid. ELECTROANAL 2019. [DOI: 10.1002/elan.201800630] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Paolo Bollella
- Department of Chemistry and Drug Technologies; Sapienza University of Rome; Rome Italy
| | - Sanjiv Sharma
- College of Engineering; Swansea University; Swansea Wales
| | | | - Riccarda Antiochia
- Department of Chemistry and Drug Technologies; Sapienza University of Rome; Rome Italy
| |
Collapse
|
17
|
Vicente-Blázquez A, González M, Álvarez R, Del Mazo S, Medarde M, Peláez R. Antitubulin sulfonamides: The successful combination of an established drug class and a multifaceted target. Med Res Rev 2018; 39:775-830. [PMID: 30362234 DOI: 10.1002/med.21541] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Revised: 09/02/2018] [Accepted: 09/06/2018] [Indexed: 12/13/2022]
Abstract
Tubulin, the microtubules and their dynamic behavior are amongst the most successful antitumor, antifungal, antiparasitic, and herbicidal drug targets. Sulfonamides are exemplary drugs with applications in the clinic, in veterinary and in the agrochemical industry. This review summarizes the actual state and recent progress of both fields looking from the double point of view of the target and its drugs, with special focus onto the structural aspects. The article starts with a brief description of tubulin structure and its dynamic assembly and disassembly into microtubules and other polymers. Posttranslational modifications and the many cellular means of regulating and modulating tubulin's biology are briefly presented in the tubulin code. Next, the structurally characterized drug binding sites, their occupying drugs and the effects they induce are described, emphasizing on the structural requirements for high potency, selectivity, and low toxicity. The second part starts with a summary of the favorable and highly tunable combination of physical-chemical and biological properties that render sulfonamides a prototypical example of privileged scaffolds with representatives in many therapeutic areas. A complete description of tubulin-binding sulfonamides is provided, covering the different species and drug sites. Some of the antimitotic sulfonamides have met with very successful applications and others less so, thus illustrating the advances, limitations, and future perspectives of the field. All of them combine in a mechanism of action and a clinical outcome that conform efficient drugs.
Collapse
Affiliation(s)
- Alba Vicente-Blázquez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Laboratory of Cell Death and Cancer Therapy, Department of Molecular Biomedicine, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, Spain
| | - Myriam González
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Raquel Álvarez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Sara Del Mazo
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Manuel Medarde
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| | - Rafael Peláez
- Laboratorio de Química Orgánica y Farmacéutica, Departamento de Ciencias Farmacéuticas, Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Instituto de Investigación Biomédica de Salamanca (IBSAL), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain.,Facultad de Farmacia, Centro de Investigación de Enfermedades Tropicales de la Universidad de Salamanca (CIETUS), Universidad de Salamanca, Campus Miguel de Unamuno, Salamanca, Spain
| |
Collapse
|
18
|
Gillies RJ, Brown JS, Anderson ARA, Gatenby RA. Eco-evolutionary causes and consequences of temporal changes in intratumoural blood flow. Nat Rev Cancer 2018; 18:576-585. [PMID: 29891961 PMCID: PMC6441333 DOI: 10.1038/s41568-018-0030-7] [Citation(s) in RCA: 94] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Temporal changes in blood flow are commonly observed in malignant tumours, but the evolutionary causes and consequences are rarely considered. We propose that stochastic temporal variations in blood flow and microenvironmental conditions arise from the eco-evolutionary dynamics of tumour angiogenesis in which cancer cells, as individual units of selection, can influence and respond only to local environmental conditions. This leads to new vessels arising from the closest available vascular structure regardless of the size or capacity of this parental vessel. These dynamics produce unstable vascular networks with unpredictable spatial and temporal variations in blood flow and microenvironmental conditions. Adaptations of evolving populations to temporally varying environments in nature include increased diversity, greater motility and invasiveness, and highly plastic phenotypes, allowing for broad metabolic adaptability and rapid shifts to high rates of proliferation and profound quiescence. These adaptive strategies, when adopted in cancer cells, promote many commonly observed phenotypic properties including those found in the stem phenotype and in epithelial-to-mesenchymal transition. Temporal variations in intratumoural blood flow, which occur through the promotion of cancer cell phenotypes that facilitate both metastatic spread and resistance to therapy, may have substantial clinical consequences.
Collapse
Affiliation(s)
- Robert J Gillies
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | - Joel S Brown
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA
| | | | - Robert A Gatenby
- Cancer Biology and Evolution Program, Moffitt Cancer Center, Tampa, FL, USA.
| |
Collapse
|
19
|
Kuznetsov MB, Kolobov AV. Transient alleviation of tumor hypoxia during first days of antiangiogenic therapy as a result of therapy-induced alterations in nutrient supply and tumor metabolism - Analysis by mathematical modeling. J Theor Biol 2018; 451:86-100. [PMID: 29705492 DOI: 10.1016/j.jtbi.2018.04.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 04/10/2018] [Accepted: 04/25/2018] [Indexed: 12/20/2022]
Abstract
A number of experiments on mouse tumor models, as well as certain clinical data, have demonstrated, that antiangiogenic therapy can lead to transient improvement in tumor oxygenation, that allows to increase efficiency of following radiotherapy. In the majority of works, this phenomenon has been explained by enhanced tumor perfusion due to normalization of capillaries' structure, that results in elevated oxygen inflow in tumor. However, changes in tumor perfusion often haven't been directly measured in relevant works, moreover, antiangiogenic therapy has been proven to have ambiguous effect on tumor perfusion both in mouse tumor models and in clinics. Herein, we suggest that elevation of blood perfusion may be not the only reason for transient alleviation of tumor hypoxia, and that it may manifest itself even under unchanged tumor blood flow. We propose that it may be as well caused by the decrease in tumor oxygen consumption rate (OCR) due to the reduction of tumor proliferation level, caused by nutrient shortage in result of antiangiogenic treatment. We provide detailed explanation of this hypothesis and visualize it using a specially developed mathematical model, which takes into account basic features of tumor growth and antiangiogenic therapy. We investigate the influence of the model parameters on oxygen dynamics; demonstrate, that transient alleviation of tumor hypoxia occurs in a fairly wide range of physiologically justified values of parameters; and point out the major factors, that determine oxygen dynamics during antiangiogenic therapy.
Collapse
Affiliation(s)
- Maxim B Kuznetsov
- Division of Theoretical Physics, P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskii Prospekt, Moscow 119991, Russia.
| | - Andrey V Kolobov
- Division of Theoretical Physics, P.N. Lebedev Physical Institute of the Russian Academy of Sciences, 53 Leninskii Prospekt, Moscow 119991, Russia; Working group on modeling of blood flow and vascular pathologies, Institute of Numerical Mathematics of the Russian Academy of Sciences, 8 Gubkin str., Moscow 119333, Russia
| |
Collapse
|
20
|
Islam MT, Reddy JN, Righetti R. An analytical poroelastic model of a non-homogeneous medium under creep compression for ultrasound poroelastography applications - Part II. J Biomech Eng 2018; 141:2686531. [PMID: 30029209 DOI: 10.1115/1.4040604] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/08/2022]
Abstract
An analytical theory for the unconfined creep behavior of a cylindrical inclusion (simulating a soft tissue tumor) embedded in a cylindrical background sample (simulating normal tissue) is presented and analyzed in this paper. Both the inclusion and the background are considered as fluid-filled, porous materials, each of them being characterized by a set of mechanical parameters. Specifically, in this derivation, the inclusion is assumed to have significantly higher interstitial permeability than the background. The formulations of the effective Poisson's ratio (EPR) and fluid pressure in the inclusion and in the background are derived for the case of a sample subjected to a creep compression. The developed analytical expressions are validated using finite element models (FEM). Statistical comparison between the results obtained from the developed model and the results from FEM demonstrates accuracy of the proposed theoretical model higher than 99.4%. The model presented in this paper complements the one reported in the companion paper (Part I), which refers to the case of an inclusion having less interstitial permeability than the background.
Collapse
Affiliation(s)
- Md Tauhidul Islam
- Graduate Research Assistant, Ultrasound and Elasticity Imaging Laboratory, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - J N Reddy
- Professor, Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - Raffaella Righetti
- Associate Professor, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| |
Collapse
|
21
|
Islam MT, Reddy JN, Righetti R. An analytical poroelastic model of a non-homogeneous medium under creep compression for ultrasound poroelastography applications - Part I. J Biomech Eng 2018; 141:2686530. [PMID: 30029267 DOI: 10.1115/1.4040603] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Indexed: 11/08/2022]
Abstract
An analytical theory for the unconfined creep behavior of a cylindrical inclusion (simulating a soft tissue tumor) embedded in a cylindrical background sample (simulating normal tissue) is presented and analyzed in this paper. Both the inclusion and the background are considered as fluid-filled, porous materials, each of them being characterized by a set of mechanical properties. Specifically, in this paper, the inclusion is considered to be less permeable than the background. The cylindrical sample is compressed using a constant pressure within two frictionless plates and is allowed to expand in an unconfined way along the radial direction. Analytical expressions for the effective Poisson's ratio (EPR) and fluid pressure inside and outside the inclusion are derived and analyzed. The theoretical results are validated using finite element models (FEM). Statistical analysis shows excellent agreement between the results obtained from the developed model and the results from FEM. Thus the developed theoretical model can be used in medical imaging modalities such as ultrasound poroelastography to extract the mechanical parameters of tissues and/or to better understand the impact of the different mechanical parameters on the estimated displacements, strains, stresses and fluid pressure inside a tumor and in the surrounding tissue.
Collapse
Affiliation(s)
- Md Tauhidul Islam
- Graduate Research Assistant, Ultrasound and Elasticity Imaging Laboratory, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - J N Reddy
- Professor, Department of Mechanical Engineering, Texas A&M University, College Station, Texas, USA-77840
| | - Raffaella Righetti
- Associate Professor, Department of Electrical & Computer Engineering, Texas A&M University, College Station, Texas, USA-77840
| |
Collapse
|
22
|
Rofstad EK, Huang R, Galappathi K, Andersen LMK, Wegner CS, Hauge A, Gaustad JV, Simonsen TG. Functional intratumoral lymphatics in patient-derived xenograft models of squamous cell carcinoma of the uterine cervix: implications for lymph node metastasis. Oncotarget 2018; 7:56986-56997. [PMID: 27486768 PMCID: PMC5302967 DOI: 10.18632/oncotarget.10931] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 07/19/2016] [Indexed: 02/06/2023] Open
Abstract
Studies of cell line-derived human tumor xenografts have suggested that the lymphatics seen in immunohistochemical preparations from non-peripheral regions of tumors are nonfunctional. In this investigation, lymphangiogenesis, hemangiogenesis, and lymph node metastasis were studied in patient-derived xenograft (PDX) models of carcinoma of the uterine cervix. Lymph vessel density (LVD) and blood vessel density (BVD) were measured in immunohistochemical preparations. The expression of angiogenesis-related genes was investigated by quantitative PCR. Lymphatic functionality was assessed with the ferritin assay, and tumor interstitial fluid pressure (IFP) was measured with a Millar catheter. The PDX models mirrored the angiogenesis and aggressiveness of the donor patients' tumors, and two highly aggressive models developed functional lymphatics within the tumor mass. Tumors with functional intratumoral lymphatics showed low IFP, high LVD, high BVD, high expression of a large number of angiogenesis-related genes, and high incidence of lymph node metastases. LVD correlated with BVD, and lymph node metastasis was associated with high LVD and high BVD. Nine angiogenesis-related genes associated with the development of functional intratumoral lymhatics were identified. High expression of these genes, high LVD, and high BVD may be important biomarkers for poor outcome in cervix carcinoma.
Collapse
Affiliation(s)
- Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ruixia Huang
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kanthi Galappathi
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
23
|
Islam MT, Chaudhry A, Unnikrishnan G, Reddy JN, Righetti R. An analytical poroelastic model for ultrasound elastography imaging of tumors. ACTA ACUST UNITED AC 2018; 63:025031. [DOI: 10.1088/1361-6560/aa9631] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
24
|
Huang R, Andersen LMK, Rofstad EK. Metastatic pathway and the microvascular and physicochemical microenvironments of human melanoma xenografts. J Transl Med 2017; 15:203. [PMID: 29017512 PMCID: PMC5634823 DOI: 10.1186/s12967-017-1307-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Accepted: 09/26/2017] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Malignant melanoma of the skin can metastasize through blood vessels and lymphatics. The primary tumor develops a vascular microenvironment characterized by abnormal blood vessels and lymphatics and a physicochemical microenvironment characterized by low oxygen tension, regions with hypoxic tissue, and high interstitial fluid pressure (IFP). This study aimed at identifying relationships between the metastatic route of melanomas and characteristic features of the microvascular and physicochemical microenvironments of the primary tumor. METHODS Two patient-derived xenograft (PDX) models (E-13, N-15) and four cell line-derived xenografts (CDX) models (C-10, D-12, R-18, T-22) of human melanoma were included in the study. Tumors were transplanted to an orthotopic site in BALB/c-nu/nu mice, and when the tumors had grown to a volume of 500-600 mm3, the IFP of the primary tumor was measured and the hypoxia marker pimonidazole was administered before the host mouse was euthanized. The primary tumor, lungs, and six pairs of lymph nodes were evaluated by examining hematoxylin/eosin-stained and immunostained histological preparations. The expression of angiogenesis-related genes was assessed by quantitative PCR. RESULTS C-10, D-12, and E-13 tumors disseminated primarily by the hematogenous route and developed pulmonary metastases. These tumors showed high angiogenic activity and high expression of the F3 gene as well as ANGPT2 and TIE1, genes encoding proteins of the angiopoietin-tie system. N-15, R-18, and T-22 tumors disseminated mainly by the lymphogenous route and developed metastases in draining lymph nodes. These tumors had highly elevated IFP and showed high expression of NRP2, a gene encoding neuropilin-2. CONCLUSION The primary metastatic route of orthotopic human melanoma xenografts and the development of lung and lymph node metastases are influenced significantly by the microvascular and physicochemical microenvironments of the primary tumor.
Collapse
Affiliation(s)
- Ruixia Huang
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Lise Mari K. Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K. Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
- Department of Radiation Biology, Institute for Cancer Research, Norwegian Radium Hospital, Box 4953, Nydalen, 0424 Oslo, Norway
| |
Collapse
|
25
|
Andersen LMK, Wegner CS, Simonsen TG, Huang R, Gaustad JV, Hauge A, Galappathi K, Rofstad EK. Lymph node metastasis and the physicochemical micro-environment of pancreatic ductal adenocarcinoma xenografts. Oncotarget 2017; 8:48060-48074. [PMID: 28624797 PMCID: PMC5564626 DOI: 10.18632/oncotarget.18231] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 05/01/2017] [Indexed: 12/18/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) patients develop lymph node metastases early and have a particularly poor prognosis. The poor prognosis has been shown to be associated with the physicochemical microenvironment of the tumor tissue, which is characterized by desmoplasia, abnormal microvasculature, extensive hypoxia, and highly elevated interstitial fluid pressure (IFP). In this study, we searched for associations between lymph node metastasis and features of the physicochemical microenvironment in an attempt to identify mechanisms leading to metastatic dissemination and growth. BxPC-3 and Capan-2 PDAC xenografts were used as preclinical models of human PDAC. In both models, lymph node metastasis was associated with high IFP rather than high fraction of hypoxic tissue or high microvascular density. Seven angiogenesis-related genes associated with high IFP-associated lymph node metastasis were detected by quantitative PCR in each of the models, and these genes were all up-regulated in high IFP/highly metastatic tumors. Three genes were mutual for the BxPC-3 and Capan-2 models: transforming growth factor beta, angiogenin, and insulin-like growth factor 1. Further comprehensive studies are needed to determine whether there is a causal relationship between the up-regulation of these genes and high IFP and/or high propensity for lymph node metastasis in PDAC.
Collapse
Affiliation(s)
- Lise Mari K. Andersen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Catherine S. Wegner
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Trude G. Simonsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Ruixia Huang
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Jon-Vidar Gaustad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Anette Hauge
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Kanthi Galappathi
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Einar K. Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
26
|
Sun Q, Zhou Z, Qiu N, Shen Y. Rational Design of Cancer Nanomedicine: Nanoproperty Integration and Synchronization. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2017; 29:1606628. [PMID: 28234430 DOI: 10.1002/adma.201606628] [Citation(s) in RCA: 681] [Impact Index Per Article: 97.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Revised: 01/24/2017] [Indexed: 05/21/2023]
Abstract
Current cancer nanomedicines can only mitigate adverse effects but fail to enhance therapeutic efficacies of anticancer drugs. Rational design of next-generation cancer nanomedicines should aim to enhance their therapeutic efficacies. Taking this into account, this review first analyzes the typical cancer-drug-delivery process of an intravenously administered nanomedicine and concludes that the delivery involves a five-step CAPIR cascade and that high efficiency at every step is critical to guarantee high overall therapeutic efficiency. Further analysis shows that the nanoproperties needed in each step for a nanomedicine to maximize its efficiency are different and even opposing in different steps, particularly what the authors call the PEG, surface-charge, size and stability dilemmas. To resolve those dilemmas in order to integrate all needed nanoproperties into one nanomedicine, stability, surface and size nanoproperty transitions (3S transitions for short) are proposed and the reported strategies to realize these transitions are comprehensively summarized. Examples of nanomedicines capable of the 3S transitions are discussed, as are future research directions to design high-performance cancer nanomedicines and their clinical translations.
Collapse
Affiliation(s)
- Qihang Sun
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Zhuxian Zhou
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Nasha Qiu
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| | - Youqing Shen
- Center for Bionanoengineering and Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Zheda Road 38, 310027, Hangzhou, China
| |
Collapse
|
27
|
Abstract
Near infrared spectroscopy (NIRS) utilizes intrinsic optical absorption signals of blood, water, and lipid concentration available in the NIR window (600–1000 nm) as well as a developing array of extrinsic organic compounds to detect and localize cancer. This paper reviews optical cancer detection made possible through high tumor-tissue signal-to-noise ratio (SNR) and providing biochemical and physiological data in addition to those obtained via other methods. NIRS detects cancers in vivo through a combination of blood volume and oxygenation from measurements of oxy- and deoxy-hemoglobin giving signals of tumor angiogenesis and hypermetabolism. The Chance lab tends towards CW breast cancer systems using manually scannable detectors with calibrated low pressure tissue contact. These systems calculate angiogenesis and hypermetabolism by using a pair of wavelengths and referencing the mirror image position of the contralateral breast to achieve high ROC/AUC. Time domain and frequency domain spectroscopy were also used to study similar intrinsic breast tumor characteristics such as high blood volume. Other NIRS metrics are water-fat ratio and the optical scattering coefficient. An extrinsic FDA approved dye, ICG, has been used to measure blood pooling with extravasation, similar to Gadolinium in MRI. A key future development in NIRS will be new Molecular Beacons targeting cancers and fluorescing in the NIR window to enhance in vivo tumor-tissue ratios and to afford biochemical specificity with the potential for effective photodynamic anti-cancer therapies.
Collapse
Affiliation(s)
- S Nioka
- University of Pennsylvania, Department of Biochemistry and Biophysics, 250 Anatomy-Chemistry Bldg., Philadelphia, PA 19104-6059, USA
| | | |
Collapse
|
28
|
McClatchey PM, Schafer M, Hunter KS, Reusch JEB. The endothelial glycocalyx promotes homogenous blood flow distribution within the microvasculature. Am J Physiol Heart Circ Physiol 2016; 311:H168-76. [PMID: 27199117 DOI: 10.1152/ajpheart.00132.2016] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Accepted: 05/03/2016] [Indexed: 02/02/2023]
Abstract
Many common diseases involve impaired tissue perfusion, and heterogeneous distribution of blood flow in the microvasculature contributes to this pathology. The physiological mechanisms regulating homogeneity/heterogeneity of microvascular perfusion are presently unknown. Using established empirical formulations for blood viscosity modeling in vivo (blood vessels) and in vitro (glass tubes), we showed that the in vivo formulation predicts more homogenous perfusion of microvascular networks at the arteriolar and capillary levels. Next, we showed that the more homogeneous blood flow under simulated in vivo conditions can be explained by changes in red blood cell interactions with the vessel wall. Finally, we demonstrated that the presence of a space-filling, semipermeable layer (such as the endothelial glycocalyx) at the vessel wall can account for the changes of red blood cell interactions with the vessel wall that promote homogenous microvascular perfusion. Collectively, our results indicate that the mechanical properties of the endothelial glycocalyx promote homogeneous microvascular perfusion. Preservation or restoration of normal glycocalyx properties may be a viable strategy for improving tissue perfusion in a variety of diseases.
Collapse
Affiliation(s)
- P Mason McClatchey
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, Colorado; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado
| | - Michal Schafer
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Cardiology, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado; and
| | - Kendall S Hunter
- Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Division of Cardiology, Department of Pediatrics, Children's Hospital Colorado, Aurora, Colorado; and
| | - Jane E B Reusch
- Division of Endocrinology, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Department of Medicine, Denver Veterans Affairs Medical Center, Denver, Colorado; Department of Bioengineering, University of Colorado Anschutz Medical Campus, Aurora, Colorado; Center for Women's Health Research, University of Colorado School of Medicine, Aurora, Colorado
| |
Collapse
|
29
|
Stapleton S, Milosevic M, Tannock IF, Allen C, Jaffray DA. The intra-tumoral relationship between microcirculation, interstitial fluid pressure and liposome accumulation. J Control Release 2015; 211:163-70. [DOI: 10.1016/j.jconrel.2015.06.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Revised: 05/25/2015] [Accepted: 06/07/2015] [Indexed: 10/23/2022]
|
30
|
Tissue-Engineered Autologous Breast Regeneration with Brava®-Assisted Fat Grafting. Clin Plast Surg 2015; 42:325-37, viii. [DOI: 10.1016/j.cps.2015.03.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
31
|
Rofstad EK, Galappathi K, Mathiesen BS. Tumor interstitial fluid pressure-a link between tumor hypoxia, microvascular density, and lymph node metastasis. Neoplasia 2015; 16:586-94. [PMID: 25117980 PMCID: PMC4198829 DOI: 10.1016/j.neo.2014.07.003] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Revised: 07/08/2014] [Accepted: 07/11/2014] [Indexed: 11/21/2022] Open
Abstract
High microvascular density (MVD) in the primary tumor has been shown to be associated with increased incidence of lymph node metastases and poor clinical outcome. Other investigations have revealed that a large fraction of hypoxic tissue in the primary tumor is associated with metastatic disease and impaired survival. These data are apparently incompatible because tumor hypoxia is primarily a consequence of poor oxygen supply caused by an inadequate vasculature with increased intervessel distances. Here, we provide an explanation of these observations. Human melanoma xenografts were used as preclinical cancer models. Tumors that metastasized to lymph nodes showed higher interstitial fluid pressure (IFP) than those that did not metastasize, and compared with tumors with low IFP, tumors with high IFP showed large hypoxic fractions centrally, high MVD in the periphery, high peritumoral density of lymphatics, and elevated expression of vascular endothelial growth factor A (VEGF-A) and VEGF-C. Significant correlations were found between peripheral MVD and central hypoxia, and lymph node metastasis was associated with high values of both parameters. These findings suggest that the outcome of cancer may be associated with both high MVD and extensive hypoxia in the primary tumor. We propose that proangiogenic factors are upregulated in the tumor center and that the outward interstitial fluid flow caused by the elevated IFP transports these factors to the tumor surface where they evoke hemangiogenesis and lymphangiogenesis, and consequently, that the IFP serves as a link between tumor hypoxia, peripheral tumor hemangiogenesis, peritumoral lymphangiogenesis, and lymph node metastasis.
Collapse
Affiliation(s)
- Einar K Rofstad
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway.
| | - Kanthi Galappathi
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| | - Berit S Mathiesen
- Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
32
|
Jacobs I, Strijkers GJ, Keizer HM, Janssen HM, Nicolay K, Schabel MC. A novel approach to tracer-kinetic modeling for (macromolecular) dynamic contrast-enhanced MRI. Magn Reson Med 2015; 75:1142-53. [PMID: 25846802 DOI: 10.1002/mrm.25704] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Revised: 02/26/2015] [Accepted: 02/26/2015] [Indexed: 12/21/2022]
Abstract
PURPOSE To develop a novel tracer-kinetic modeling approach for multi-agent dynamic contrast-enhanced MRI (DCE-MRI) that facilitates separate estimation of parameters characterizing blood flow and microvascular permeability within one individual. METHODS Monte Carlo simulations were performed to investigate the performance of the constrained multi-agent model. Subsequently, multi-agent DCE-MRI was performed on tumor-bearing mice (n = 5) on a 7T Bruker scanner on three measurement days, in which two dendrimer-based contrast agents having high and intermediate molecular weight, respectively, along with gadoterate meglumine, were sequentially injected within one imaging session. Multi-agent data were simultaneously fit with the gamma capillary transit time model. Blood flow, mean capillary transit time, and bolus arrival time were constrained to be identical between the boluses, while extraction fractions and washout rate constants were separately determined for each agent. RESULTS Simulations showed that constrained multi-agent model regressions led to less uncertainty and bias in estimated tracer-kinetic parameters compared with single-bolus modeling. The approach was successfully applied in vivo, and significant differences in the extraction fraction and washout rate constant between the agents, dependent on their molecular weight, were consistently observed. CONCLUSION A novel multi-agent tracer-kinetic modeling approach that enforces self-consistency of model parameters and can robustly characterize tumor vascular status was demonstrated.
Collapse
Affiliation(s)
- Igor Jacobs
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Gustav J Strijkers
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands.,Biomedical Engineering and Physics, Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | | | | | - Klaas Nicolay
- Biomedical NMR, Department of Biomedical Engineering, Eindhoven University of Technology, Eindhoven, Netherlands
| | - Matthias C Schabel
- Advanced Imaging Research Center, Oregon Health & Science University, Portland, Oregon, USA.,Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah, USA
| |
Collapse
|
33
|
|
34
|
Han S, Song TK. In vivo fluorescence spectroscopic monitoring of radiotherapy in cancer treatment. INTERNATIONAL JOURNAL OF CANCER THERAPY AND ONCOLOGY 2014. [DOI: 10.14319/ijcto.0301.3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
35
|
Baguley BC, Ding Q, Richardson E. Preliminary Evidence That High-Dose Vitamin C has a Vascular Disrupting Action in Mice. Front Oncol 2014; 4:310. [PMID: 25414833 PMCID: PMC4220656 DOI: 10.3389/fonc.2014.00310] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 10/18/2014] [Indexed: 12/20/2022] Open
Abstract
High intravenous doses of vitamin C (ascorbic acid) have been reported to benefit cancer patients, but the data are controversial and there is incomplete knowledge of what physiological mechanisms might be involved in any response. Vitamin C is taken up efficiently by cells expressing SVCT2 transporters and since vascular endothelial cells express SVCT2, we explored the hypothesis that administration of high-dose vitamin C (up to 5 g/kg) to mice might affect vascular endothelial function. A single administration of vitamin C to mice induced time- and dose-dependent increases in plasma concentrations of the serotonin metabolite 5-hydroxyindole acetic acid (5-HIAA), a marker for vascular disrupting effects. Responses were comparable to those for the tumor vascular disrupting agents, vadimezan and fosbretabulin. High-dose vitamin C administration decreased tumor serotonin concentrations, consistent with the release of serotonin from platelets and its metabolism to 5-HIAA. High-dose vitamin C also significantly increased the degree of hemorrhagic necrosis in tumors removed after 24 h, and significantly decreased tumor volume after 2 days. However, the effect on tumor growth was temporary. The results support the concept that vitamin C at high dose increases endothelial permeability, allowing platelets to escape and release serotonin. Plasma 5-HIAA concentrations could provide a pharmacodynamic biomarker for vitamin C effects in clinical studies.
Collapse
Affiliation(s)
- Bruce C Baguley
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Auckland , New Zealand
| | - Qi Ding
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Auckland , New Zealand
| | - Emma Richardson
- Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, The University of Auckland , Auckland , New Zealand
| |
Collapse
|
36
|
Using the Lessons Learned From the Clinic to Improve the Preclinical Development of Antibody Drug Conjugates. Pharm Res 2014; 32:3458-69. [PMID: 25339341 PMCID: PMC4596896 DOI: 10.1007/s11095-014-1536-7] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2014] [Accepted: 09/29/2014] [Indexed: 12/22/2022]
Abstract
The treatment options for cancer patients include surgery, chemotherapeutics, radiation therapy, antibody therapy and various combinations of these therapies. The challenge with each therapy is finding the balance between maximizing the anti-tumor efficacy while minimizing the dose limiting toxicities. Antibodies, unlike small molecule chemotherapeutics, selectively bind to cell surface tumor antigens and can be used to deliver radionucleotides or small molecule chemotherapeutic drugs directly to the tumor. Advances in antibody engineering, linker chemistry and the identification of potent cytotoxic drugs led to the recent approval of two antibody drug conjugates to treat breast cancer and lymphoma patients. We will discuss how the observations from the clinical development of antibody drug conjugates can guide the preclinical development of the next generation of antibody drug conjugates.
Collapse
|
37
|
Khouri RK, Khouri RER, Lujan-Hernandez JR, Khouri KR, Lancerotto L, Orgill DP. Diffusion and perfusion: the keys to fat grafting. Plast Reconstr Surg Glob Open 2014; 2:e220. [PMID: 25426403 PMCID: PMC4229279 DOI: 10.1097/gox.0000000000000183] [Citation(s) in RCA: 116] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Accepted: 07/22/2014] [Indexed: 01/06/2023]
Abstract
BACKGROUND Fat grafting is now widely used in plastic surgery. Long-term graft retention can be unpredictable. Fat grafts must obtain oxygen via diffusion until neovascularization occurs, so oxygen delivery may be the overarching variable in graft retention. METHODS We studied the peer-reviewed literature to determine which aspects of a fat graft and the microenvironment surrounding a fat graft affect oxygen delivery and created 3 models relating distinct variables to oxygen delivery and graft retention. RESULTS Our models confirm that thin microribbons of fat maximize oxygen transport when injected into a large, compliant, well-vascularized recipient site. The "Microribbon Model" predicts that, in a typical human, fat injections larger than 0.16 cm in radius will have a region of central necrosis. Our "Fluid Accommodation Model" predicts that once grafted tissues approach a critical interstitial fluid pressure of 9 mm Hg, any additional fluid will drastically increase interstitial fluid pressure and reduce capillary perfusion and oxygen delivery. Our "External Volume Expansion Effect Model" predicts the effect of vascular changes induced by preoperative external volume expansion that allow for greater volumes of fat to be successfully grafted. CONCLUSIONS These models confirm that initial fat grafting survival is limited by oxygen diffusion. Preoperative expansion increases oxygen diffusion capacity allowing for additional graft retention. These models provide a scientific framework for testing the current fat grafting theories.
Collapse
Affiliation(s)
- Roger K Khouri
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Mass.; University of Michigan Medical School, Ann Arbor, Mich.; Gulliver Preparatory School, Pinecrest, Fla.; College of Engineering, Boston University, Boston, Mass.; Institute of Plastic Reconstructive and Aesthetic Surgery, University of Padova, Padova, Italy; and Harvard Medical School, Boston, Mass
| | - Raoul-Emil R Khouri
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Mass.; University of Michigan Medical School, Ann Arbor, Mich.; Gulliver Preparatory School, Pinecrest, Fla.; College of Engineering, Boston University, Boston, Mass.; Institute of Plastic Reconstructive and Aesthetic Surgery, University of Padova, Padova, Italy; and Harvard Medical School, Boston, Mass
| | - Jorge R Lujan-Hernandez
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Mass.; University of Michigan Medical School, Ann Arbor, Mich.; Gulliver Preparatory School, Pinecrest, Fla.; College of Engineering, Boston University, Boston, Mass.; Institute of Plastic Reconstructive and Aesthetic Surgery, University of Padova, Padova, Italy; and Harvard Medical School, Boston, Mass
| | - Khalil R Khouri
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Mass.; University of Michigan Medical School, Ann Arbor, Mich.; Gulliver Preparatory School, Pinecrest, Fla.; College of Engineering, Boston University, Boston, Mass.; Institute of Plastic Reconstructive and Aesthetic Surgery, University of Padova, Padova, Italy; and Harvard Medical School, Boston, Mass
| | - Luca Lancerotto
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Mass.; University of Michigan Medical School, Ann Arbor, Mich.; Gulliver Preparatory School, Pinecrest, Fla.; College of Engineering, Boston University, Boston, Mass.; Institute of Plastic Reconstructive and Aesthetic Surgery, University of Padova, Padova, Italy; and Harvard Medical School, Boston, Mass
| | - Dennis P Orgill
- Division of Plastic Surgery, Brigham and Women's Hospital, Boston, Mass.; University of Michigan Medical School, Ann Arbor, Mich.; Gulliver Preparatory School, Pinecrest, Fla.; College of Engineering, Boston University, Boston, Mass.; Institute of Plastic Reconstructive and Aesthetic Surgery, University of Padova, Padova, Italy; and Harvard Medical School, Boston, Mass
| |
Collapse
|
38
|
Aesthetic Applications of Brava-Assisted Megavolume Fat Grafting to the Breasts. Plast Reconstr Surg 2014; 133:796-807. [DOI: 10.1097/prs.0000000000000053] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
39
|
|
40
|
Hompland T, Ellingsen C, Galappathi K, Rofstad EK. DW-MRI in assessment of the hypoxic fraction, interstitial fluid pressure, and metastatic propensity of melanoma xenografts. BMC Cancer 2014; 14:92. [PMID: 24528854 PMCID: PMC3930534 DOI: 10.1186/1471-2407-14-92] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 02/12/2014] [Indexed: 01/28/2023] Open
Abstract
Background Cancer patients with primary tumors showing extensive hypoxia and highly elevated interstitial fluid pressure (IFP) have poor prognosis. The potential of diffusion-weighted magnetic resonance imaging (DW-MRI) in assessing the hypoxic fraction, IFP, and metastatic propensity of tumors was investigated in this study. Methods A-07 and R-18 melanoma xenografts were used as general models of human cancer. DW-MRI was performed at 1.5 T, and maps of the apparent diffusion coefficient (ADC) were produced with in-house-made software developed in Matlab. Pimonidazole was used as a hypoxia marker. Tumor cell density and hypoxic fraction were assessed by quantitative analysis of histological sections. IFP was measured with a Millar catheter. Metastatic propensity was determined by examining tumor-bearing mice for pulmonary micrometastases post mortem. Results ADC decreased with increasing tumor cell density, independent of whether the A-07 and R-18 data were analyzed separately or together. In the A-07 line, ADC decreased with increasing hypoxic fraction and increasing IFP and was lower in metastatic than in nonmetastatic tumors, and in the R-18 line, ADC decreased with increasing hypoxic fraction. There was a strong inverse correlation between ADC and hypoxic fraction as well as between ADC and IFP across the two tumor lines, primarily because low ADC as well as high hypoxic fraction and high IFP were associated with high cell density. Conclusion Low ADC is a potentially useful biomarker of poor prognosis in cancer, since low ADC is mainly a consequence of high cell density, and high cell density may lead to increased hypoxia and interstitial hypertension and, therefore, increased microenvironment-associated metastasis.
Collapse
Affiliation(s)
| | | | | | - Einar K Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Nydalen, Box 4953, Oslo N-0424, Norway.
| |
Collapse
|
41
|
A combination of radiosurgery and soluble tissue factor enhances vascular targeting for experimental glioblastoma. BIOMED RESEARCH INTERNATIONAL 2013; 2013:390714. [PMID: 24307995 PMCID: PMC3838847 DOI: 10.1155/2013/390714] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2013] [Accepted: 09/25/2013] [Indexed: 11/17/2022]
Abstract
Radiosurgery for glioblastoma is limited to the development of resistance, allowing tumor cells to survive and initiate tumor recurrence. Based on our previous work that coadministration of tissue factor and lipopolysaccharide following radiosurgery selectively induced thrombosis in cerebral arteriovenous malformations, achieving thrombosis of 69% of the capillaries and 39% of medium sized vessels, we hypothesized that a rapid and selective shutdown of the capillaries in glioblastoma vasculature would decrease the delivery of oxygen and nutrients, reducing tumor growth, preventing intracranial hypertension, and improving life expectancy. Glioblastoma was formed by implantation of GL261 cells into C57Bl/6 mouse brain. Mice were intravenously injected tissue factor, lipopolysaccharide, a combination of both, or placebo 24 hours after radiosurgery. Control mice received both agents after sham irradiation. Coadministration of tissue factor and lipopolysaccharide led to the formation of thrombi in up to 87 ± 8% of the capillaries and 46 ± 4% of medium sized vessels within glioblastoma. The survival rate of mice in this group was 80% versus no survivor in placebo controls 30 days after irradiation. Animal body weight increased with time in this group (r = 0.88, P = 0.0001). Thus, radiosurgery enhanced treatment with tissue factor, and lipopolysaccharide selectively induces thrombosis in glioblastoma vasculature, improving life expectancy.
Collapse
|
42
|
Magdoom KN, Pishko GL, Kim JH, Sarntinoranont M. Evaluation of a voxelized model based on DCE-MRI for tracer transport in tumor. J Biomech Eng 2013; 134:091004. [PMID: 22938371 DOI: 10.1115/1.4007096] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recent advances in the treatment of cancer involving therapeutic agents have shown promising results. However, treatment efficacy can be limited due to inadequate and uneven uptake in solid tumors, thereby making the prediction of drug transport important for developing effective therapeutic strategies. In this study, a patient-specific computational porous media model (voxelized model) was developed for predicting the interstitial flow field and distribution of a systemically delivered magnetic resonance (MR) visible tracer in a tumor. The benefits of a voxel approach include less labor and less computational time (approximately an order of magnitude reduction compared to the traditional computational fluid dynamics (CFD) approach developed earlier by our group). The model results were compared with that obtained from a previous approach based on unstructured meshes along with MR-measured tracer concentration data within tumors, using statistical analysis and qualitative representations. The statistical analysis indicated the similarity between the structured and unstructured models' results with a low root mean square error (RMS) and a high correlation coefficient. The voxelized model captured features of the flow field and tracer distribution such as high interstitial fluid pressure inside the tumor and the heterogeneous distribution of the tracer. Predictions of tracer distribution by the voxelized approach also resulted in low RMS error when compared with MR-measured data over a 1 h time course. The similarity in the voxelized model results with experiment and the nonvoxelized model predictions were maintained across three different tumors. Overall, the voxelized model serves as a reliable and swift alternative to approaches using unstructured meshes in predicting extracellular transport within tumors.
Collapse
Affiliation(s)
- K N Magdoom
- University of Florida, Department of Mechanical and Aerospace Engineering, Gainesville, FL 32611, USA.
| | | | | | | |
Collapse
|
43
|
Hompland T, Gulliksrud K, Ellingsen C, Rofstad EK. Assessment of the interstitial fluid pressure of tumors by dynamic contrast-enhanced magnetic resonance imaging with contrast agents of different molecular weights. Acta Oncol 2013; 52:627-35. [PMID: 23126523 DOI: 10.3109/0284186x.2012.737931] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Cancer patients showing highly elevated interstitial fluid pressure (IFP) in the primary tumor may benefit from particularly aggressive treatment. There is some evidence that gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA)-based dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) may be a useful non-invasive method for providing information on the IFP of tumors. The purpose of this preclinical study was to investigate whether any association between DCE-MRI-derived parametric images and tumor IFP can be strengthened by using MR contrast agents with higher molecular weights than that of Gd-DTPA. MATERIAL AND METHODS A-07 human melanoma xenografts were used as preclinical models of human cancer. Three contrast agents were compared: Gd-DTPA (0.55 kDa), P846 (3.5 kDa), and gadomelitol (6.5 kDa). A total of 46 tumors were subjected to DCE-MRI and subsequent measurement of IFP. Parametric images of K(trans) (the volume transfer constant of the contrast agent) and v(e) (the fractional distribution volume of the contrast agent) were produced by pharmacokinetic analysis of the DCE-MRI series. RESULTS Significant inverse correlations were found between median K(trans) and IFP for Gd-DTPA (p = 0.0076; R(2) = 0.46; n = 14) and P846 (p = 0.0042; R(2) = 0.45; n = 16), whereas there was no correlation between median K(trans) and IFP for gadomelitol (p > 0.05; n = 16). Significant correlation between median v(e) and IFP was not found for any of the contrast agents (p > 0.05 for Gd-DTPA, P846, and gadomelitol). CONCLUSION K(trans) images, but not v(e) images, derived by pharmacokinetic analysis of DCE-MRI data for low-molecular-weight contrast agents may provide information on the IFP of tumors. Any association between K(trans) and IFP cannot be expected to be improved by using contrast agents with higher molecular weights than those of Gd-DTPA and P846.
Collapse
Affiliation(s)
- Tord Hompland
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital,
Oslo, Norway
| | - Kristine Gulliksrud
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital,
Oslo, Norway
| | - Christine Ellingsen
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital,
Oslo, Norway
| | - Einar K. Rofstad
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital,
Oslo, Norway
| |
Collapse
|
44
|
Guo P, Fu BM. Effect of wall compliance and permeability on blood-flow rate in counter-current microvessels formed from anastomosis during tumor-induced angiogenesis. J Biomech Eng 2012; 134:041003. [PMID: 22667678 DOI: 10.1115/1.4006338] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Tumor blood-flow is inhomogeneous because of heterogeneity in tumor vasculature, vessel-wall leakiness, and compliance. Experimental studies have shown that normalization of tumor vasculature by antiangiogenic therapy can improve tumor microcirculation and enhance the delivery of therapeutic agents to tumors. To elucidate the quantitative relationship between the vessel-wall compliance and permeability and the blood-flow rate in the microvessels of the tumor tissue, the tumor tissue with the normalized vasculature, and the normal tissue, we developed a transport model to simultaneously predict the interstitial fluid pressure (IFP), interstitial fluid velocity (IFV) and the blood-flow rate in a counter-current microvessel loop, which occurs from anastomosis in tumor-induced angiogenesis during tumor growth. Our model predicts that although the vessel-wall leakiness greatly affects the IFP and IFV, it has a negligible effect on the intravascular driving force (pressure gradient) for both rigid and compliant vessels, and thus a negligible effect on the blood-flow rate if the vessel wall is rigid. In contrast, the wall compliance contributes moderately to the IFP and IFV, but significantly to the vessel radius and to the blood-flow rate. However, the combined effects of vessel leakiness and compliance can increase IFP, which leads to a partial collapse in the blood vessels and an increase in the flow resistance. Furthermore, our model predictions speculate a new approach for enhancing drug delivery to tumor by modulating the vessel-wall compliance in addition to reducing the vessel-wall leakiness and normalizing the vessel density.
Collapse
Affiliation(s)
- Peng Guo
- Department of Biomedical Engineering, The City College of the City University of New York, 160 Convent Avenue, New York, NY 10031, USA
| | | |
Collapse
|
45
|
Hompland T, Ellingsen C, Rofstad EK. Preclinical evaluation of Gd-DTPA and gadomelitol as contrast agents in DCE-MRI of cervical carcinoma interstitial fluid pressure. BMC Cancer 2012; 12:544. [PMID: 23173554 PMCID: PMC3559248 DOI: 10.1186/1471-2407-12-544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 11/20/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND High interstitial fluid pressure (IFP) in the primary tumor is associated with poor disease-free survival in locally advanced cervical carcinoma. A noninvasive assay is needed to identify cervical cancer patients with highly elevated tumor IFP because these patients may benefit from particularly aggressive treatment. It has been suggested that dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) with gadolinium diethylene-triamine penta-acetic acid (Gd-DTPA) as contrast agent may provide useful information on the IFP of cervical carcinomas. In this preclinical study, we investigated whether DCE-MRI with contrast agents with higher molecular weights (MW) than Gd-DTPA would be superior to Gd-DTPA-based DCE-MRI. METHODS CK-160 human cervical carcinoma xenografts were subjected to DCE-MRI with Gd-DTPA (MW of 0.55 kDa) or gadomelitol (MW of 6.5 kDa) as contrast agent before tumor IFP was measured invasively with a Millar SPC 320 catheter. The DCE-MRI was carried out at a spatial resolution of 0.23 × 0.23 × 2.0 mm³ and a time resolution of 14 s by using a 1.5-T whole-body scanner and a slotted tube resonator transceiver coil constructed for mice. Parametric images were derived from the DCE-MRI recordings by using the Tofts iso-directional transport model and the Patlak uni-directional transport model. RESULTS When gadomelitol was used as contrast agent, significant positive correlations were found between the parameters of both pharmacokinetic models and tumor IFP. On the other hand, significant correlations between DCE-MRI-derived parameters and IFP could not be detected with Gd-DTPA as contrast agent. CONCLUSION Gadomelitol is a superior contrast agent to Gd-DTPA in DCE-MRI of the IFP of CK-160 cervical carcinoma xenografts. Clinical studies attempting to develop DCE-MRI-based assays of the IFP of cervical carcinomas should involve contrast agents with higher MW than Gd-DTPA.
Collapse
Affiliation(s)
- Tord Hompland
- Group of Radiation Biology and Tumor Physiology, Department of Radiation Biology, Institute for Cancer Research, Oslo University Hospital, Nydalen, Box 4953, Oslo N-0424, Norway
| | | | | |
Collapse
|
46
|
Kim S, Decarlo L, Cho GY, Jensen JH, Sodickson DK, Moy L, Formenti S, Schneider RJ, Goldberg JD, Sigmund EE. Interstitial fluid pressure correlates with intravoxel incoherent motion imaging metrics in a mouse mammary carcinoma model. NMR IN BIOMEDICINE 2012; 25:787-794. [PMID: 22072561 PMCID: PMC3883504 DOI: 10.1002/nbm.1793] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 08/25/2011] [Accepted: 08/27/2011] [Indexed: 05/31/2023]
Abstract
The effective delivery of a therapeutic drug to the core of a tumor is often impeded by physiological barriers, such as the interstitial fluid pressure (IFP). There are a number of therapies that can decrease IFP and induce tumor vascular normalization. However, a lack of a noninvasive means to measure IFP hinders the utilization of such a window of opportunity for the maximization of the treatment response. Thus, the purpose of this study was to investigate the feasibility of using intravoxel incoherent motion (IVIM) diffusion parameters as noninvasive imaging biomarkers for IFP. Mice bearing the 4T1 mammary carcinoma model were studied using diffusion-weighted imaging (DWI), immediately followed by wick-in-needle IFP measurement. Voxelwise analysis was conducted with a conventional monoexponential diffusion model, as well as a biexponential model taking IVIM into account. There was no significant correlation of IFP with either the median apparent diffusion coefficient from the monoexponential model (r = 0.11, p = 0.78) or the median tissue diffusivity from the biexponential model (r = 0.30, p = 0.44). However, IFP was correlated with the median pseudo-diffusivity (D(p)) of apparent vascular voxels (r = 0.76, p = 0.02) and with the median product of the perfusion fraction and pseudo-diffusivity (f(p)D(p)) of apparent vascular voxels (r = 0.77, p = 0.02). Although the effect of IVIM in tumors has been reported previously, to our knowledge, this study represents the first direct comparison of IVIM metrics with IFP, with the results supporting the feasibility of the use of IVIM DWI metrics as noninvasive biomarkers for tumor IFP.
Collapse
Affiliation(s)
- Sungheon Kim
- Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Abstract
Head and neck imaging has benefited from 1.5 T magnetic resonance (MR) imaging, providing faster sequences, better soft tissue evaluation, and 3-axis imaging, with less radiation and iodine-based contrast injection. The US Food and Drug Administration has approved human MR imaging at high-field strength up to 4 T in clinical practice. 3 T MR imaging has become widely available, with the hope of significant advance in the evaluation of the head and neck region. This article reviews the benefits, disadvantages, and challenges of high-field imaging of the head and neck region, focusing on the imaging of head and neck cancer.
Collapse
|
48
|
|
49
|
Pishko GL, Astary GW, Mareci TH, Sarntinoranont M. Sensitivity analysis of an image-based solid tumor computational model with heterogeneous vasculature and porosity. Ann Biomed Eng 2011; 39:2360-73. [PMID: 21751070 PMCID: PMC3373181 DOI: 10.1007/s10439-011-0349-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 06/29/2011] [Indexed: 01/13/2023]
Abstract
An MR image-based computational model of a murine KHT sarcoma is presented that allows the calculation of plasma fluid and solute transport within tissue. Such image-based models of solid tumors may be used to optimize patient-specific therapies. This model incorporates heterogeneous vasculature and tissue porosity to account for nonuniform perfusion of an MR-visible tracer, gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA). Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) was conducted following intravenous infusion of Gd-DTPA to provide 1 h of tracer-concentration distribution data within tissue. Early time points (19 min) were used to construct 3D K(trans) and porosity maps using a two-compartment model; tracer transport was predicted at later time points using a 3D porous media model. Model development involved selecting an arterial input function (AIF) and conducting a sensitivity analysis of model parameters (tissue, vascular, and initial estimation of solute concentration in plasma) to investigate the effects on transport for a specific tumor. The developed model was then used to predict transport in two additional tumors. The sensitivity analysis suggests that plasma fluid transport is more sensitive to parameter changes than solute transport due to the dominance of transvascular exchange. Gd-DTPA distribution was similar to experimental patterns, but differences in Gd-DTPA magnitude at later time points may result from inaccurate selection of AIF. Thus, accurate AIF estimation is important for later time point prediction of low molecular weight tracer or drug transport in smaller tumors.
Collapse
Affiliation(s)
- Gregory L Pishko
- Department of Mechanical and Aerospace Engineering, University of Florida, Gainesville, FL 32611-6250, USA
| | | | | | | |
Collapse
|
50
|
Baguley BC, Siemann DW. Temporal aspects of the action of ASA404 (vadimezan; DMXAA). Expert Opin Investig Drugs 2011; 19:1413-25. [PMID: 20964495 DOI: 10.1517/13543784.2010.529128] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
IMPORTANCE OF THE FIELD Tumor vascular disrupting agents (tumor VDAs) act by selective induction of tumor vascular failure. While their action is distinct from that of antiangiogenic agents, their clinical potential is likely to reside in improving the efficacy of combination therapy. AREAS COVERED IN THIS REVIEW This review describes the preclinical development, clinical trial and mode of action of ASA404, a flavonoid class tumor VDA. This class has a unique dual action, simultaneously disrupting vascular endothelial function and stimulating innate tumor immunity. This review covers the early development of ASA404, through to Phase III trial. WHAT THE READER WILL GAIN The reader will gain insight into the sequence of ASA404-induced changes in tumor tissue. Early events include increased vascular permeability, increased endothelial apoptosis and decreased blood flow, while later effects include the induction of serotonin, tumor necrosis factor, other cytokines and chemokines, and nitric oxide. This cascade of events induces sustained reduction of tumor blood flow, induction of tumor hypoxia and increased inflammatory responses. The reader will also gain an appreciation of how the potentiation of radiation and chemotherapeutic effects by ASA404 in murine tumors shaped the development of combination clinical trials. TAKE HOME MESSAGE Although there are species differences in ASA404 activity, many features of its action in mice translate to human studies. The future of ASA404 as an effective clinical agent will rely on the development of an appreciation of its ability to optimize the complex interaction between tumor vasculature and tumor immunity during therapy.
Collapse
Affiliation(s)
- Bruce C Baguley
- The University of Auckland, Auckland Cancer Society Research Centre, Faculty of Medical and Health Sciences, Private Bag 92019, Auckland, New Zealand.
| | | |
Collapse
|