1
|
Bräunig J, Dinter J, Höfig CS, Paisdzior S, Szczepek M, Scheerer P, Rosowski M, Mittag J, Kleinau G, Biebermann H. The Trace Amine-Associated Receptor 1 Agonist 3-Iodothyronamine Induces Biased Signaling at the Serotonin 1b Receptor. Front Pharmacol 2018; 9:222. [PMID: 29593543 PMCID: PMC5857711 DOI: 10.3389/fphar.2018.00222] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Accepted: 02/27/2018] [Indexed: 11/13/2022] Open
Abstract
Trace amine-associated receptors (TAARs) belong to the class A G-protein-coupled receptors (GPCR) and are evolutionary related to aminergic receptors. TAARs have been identified to mediate effects of trace amines. TAAR1 signaling is mainly mediated via activation of the Gs/adenylyl cyclase pathway. In addition to classical trace amines, TAAR1 can also be activated by the thyroid hormone derivative 3-iodothyronamine (3-T1AM). Pharmacological doses of 3-T1AM induced metabolic and anapyrexic effects, which might be centrally mediated in the hypothalamus in rodents. However, the observed anapyrexic effect of 3-T1AM persists in Taar1 knock-out mice which raises the question whether further GPCRs are potential targets for 3-T1AM and mediate the observed physiological effect. Anapyrexia has been observed to be related to action on aminergic receptors such as the serotonin receptor 1b (5-HT1b). This receptor primarily activates the Gi/o mediated pathway and PLC signaling through the Gβγ of Gi/o. Since the expression profiles of TAAR1 and 5-HT1b overlap, we questioned whether 3-T1AM may activate 5-HT1b. Finally, we also evaluated heteromerization between these two GPCRs and tested signaling under co-expressed conditions. In this study, we showed, that 3-T1AM can induce Gi/o signaling through 5-HT1b in a concentration of 10 μM. Strikingly, at 5-HT1b the ligand 3-T1AM only activates the Gi/o mediated reduction of cAMP accumulation, but not PLC activation. Co-stimulation of 5-HT1b by both ligands did not lead to additive or synergistic signaling effects. In addition, we confirmed the capacity for heteromerization between TAAR1 and 5-HT1b. Under co-expression of TAAR1 and HTR1b, 3-T1AM action is only mediated via TAAR1 and activation of 5-HT1b is abrogated. In conclusion, we found evidence for 5-HT1b as a new receptor target for 3-T1AM, albeit with a different signaling effect than the endogenous ligand. Altogether, this indicates a complex interrelation of signaling effects between the investigated GPCRs and respective ligands.
Collapse
Affiliation(s)
- Julia Bräunig
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Juliane Dinter
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Carolin S Höfig
- Institute of Experimental Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Sarah Paisdzior
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Michal Szczepek
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Patrick Scheerer
- Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Mark Rosowski
- Center of Brain Behavior and Metabolism, University of Lübeck, Lübeck, Germany
| | - Jens Mittag
- Institute of Biotechnology, Department Medical Biotechnology, Technical University of Berlin, Berlin, Germany
| | - Gunnar Kleinau
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany.,Group Protein X-ray Crystallography and Signal Transduction, Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Heike Biebermann
- Institute of Experimental Pediatric Endocrinology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
2
|
Gardier AM. Antidepressant activity: contribution of brain microdialysis in knock-out mice to the understanding of BDNF/5-HT transporter/5-HT autoreceptor interactions. Front Pharmacol 2013; 4:98. [PMID: 23964240 PMCID: PMC3737470 DOI: 10.3389/fphar.2013.00098] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Accepted: 07/17/2013] [Indexed: 12/31/2022] Open
Abstract
Why antidepressants vary in terms of efficacy is currently unclear. Despite the leadership of selective serotonin reuptake inhibitors (SSRIs) in the treatment of depression, the precise neurobiological mechanisms involved in their therapeutic action are poorly understood. A better knowledge of molecular interactions between monoaminergic system, pre- and post-synaptic partners, brain neuronal circuits and regions involved may help to overcome limitations of current treatments and identify new therapeutic targets. Intracerebral in vivo microdialysis (ICM) already provided important information about the brain mechanism of action of antidepressants first in anesthetized rats in the early 1990s, and since then in conscious wild-type or knock-out mice. The principle of ICM is based on the balance between release of neurotransmitters (e.g., monoamines) and reuptake by selective transporters [e.g., serotonin transporter for serotonin 5-hydroxytryptamine (5-HT)]. Complementary to electrophysiology, this technique reflects pre-synaptic monoamines release and intrasynaptic events corresponding to ≈80% of whole brain tissue content. The inhibitory role of serotonergic autoreceptors infers that they limit somatodendritic and nerve terminal 5-HT release. It has been proposed that activation of 5-HT1A and 5-HT1B receptor sub-types limits the antidepressant-like activity of SSRIs. This hypothesis is based partially on results obtained in ICM experiments performed in naïve, non-stressed rodents. The present review will first remind the principle and methodology of ICM performed in mice. The crucial need of developing animal models that display anxiety and depression-like behaviors, neurochemical and brain morphological phenotypes reminiscent of these mood disorders in humans, will be underlined. Recently developed genetic mouse models have been generated to independently manipulate 5-HT1A auto and heteroreceptors and ICM helped to clarify the role of the pre-synaptic component, i.e., by measuring extracellular levels of neurotransmitters in serotonergic nerve terminal regions and raphe nuclei. Finally, we will summarize main advantages of using ICM in mice through recent examples obtained in knock-outs (drug infusion through the ICM probe allows the search of a correlation between changes in extracellular neurotransmitter levels and antidepressant-like activity) or alternatives (infusion of a small-interfering RNA suppressing receptor functions in the mouse brain). We will also focus this review on post-synaptic components such as brain-derived neurotrophic factor in adult hippocampus that plays a crucial role in the neurogenic and anxiolytic/antidepressant-like activity of chronic SSRI treatment. Limitations of ICM will also be considered.
Collapse
Affiliation(s)
- Alain M Gardier
- EA 3544 "Pharmacologie des troubles anxio-dépressifs et Neurogenèse", Faculté de Pharmacie, Université Paris-Sud Chatenay-Malabry, France
| |
Collapse
|
3
|
Vinkers CH, Groenink L, Pattij T, Olivier B, Bouwknecht JA. 5-HT(1A) receptor sensitivity in 5-HT(1B) receptor KO mice is unaffected by chronic fluvoxamine treatment. Eur J Pharmacol 2011; 667:250-7. [PMID: 21723276 DOI: 10.1016/j.ejphar.2011.06.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Revised: 05/19/2011] [Accepted: 06/14/2011] [Indexed: 10/18/2022]
Abstract
The 5-HT(1B) receptor has been implicated in disorders such as depression, anxiety and obsessive-compulsive disorder. In mice lacking the 5-HT(1B) receptor (5-HT(1B) knockout mice), important changes in physiology and behavior exist. In the absence of presynaptic 5-HT(1B) receptor inhibition, chronic SSRI treatment may differentially affect 5-HT(1A) receptor functionality. The present studies tested the hypothesis that chronically reducing 5-HT transporter (5-HTT) function with selective serotonin reuptake inhibitor (SSRI) treatment would accelerate 5-HT(1A) receptor desensitization in 5-HT(1B) knockout mice. Moreover, as 5-HT(1B) knockout mice have been found to display exaggerated autonomic and locomotor responses to environmental stressors, the effects of chronic SSRI treatment on the hyperreactive phenotype of 5-HT(1B) knockout mice were investigated. The stress-reducing effect of the 5-HT(1A) receptor agonist flesinoxan on increases in body temperature, heart rate and locomotor activity was similar in wild type and 5-HT(1B) knockout mice before and after chronic 21-day treatment with the SSRI fluvoxamine, indicating no apparent alteration of 5-HT(1A) receptor sensitivity in 5-HT(1B) knockout mice. Also, chronic SSRI treatment did not alter the increased stress reactivity to mild environmental stressors in 5-HT(1B) knockout mice. We demonstrate that no apparent differences in 5-HT(1A) receptor sensitivity occur between 5-HT(1B) knockout and wild type mice after chronic fluvoxamine treatment. Also, the hyperreactive phenotype of 5-HT(1B) knockout mice is unresponsive to chronic SSRI treatment. Taken together, these results indicate that constitutive absence of 5-HT(1B) receptors does not result in adaptive changes in 5-HT(1A) receptor functionality and that chronic SSRI treatment does not modify stress reactivity in 5-HT(1B) knockout mice.
Collapse
Affiliation(s)
- Christiaan H Vinkers
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences and Rudolf Magnus Institute of Neuroscience, Utrecht University, Utrecht, The Netherlands.
| | | | | | | | | |
Collapse
|
4
|
Adriaan Bouwknecht J, Olivier B, Paylor RE. The stress-induced hyperthermia paradigm as a physiological animal model for anxiety: A review of pharmacological and genetic studies in the mouse. Neurosci Biobehav Rev 2007; 31:41-59. [PMID: 16618509 DOI: 10.1016/j.neubiorev.2006.02.002] [Citation(s) in RCA: 209] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2005] [Revised: 01/26/2006] [Accepted: 02/15/2006] [Indexed: 11/22/2022]
Abstract
This paper reviews the function, brain mechanisms and pharmacology of stress-induced hyperthermia (SIH) in a broad context. Hyperthermia itself is induced by all stressful stimuli and can be found across numerous species, including humans. As a model for anxiety, the process of insertion of a rectal probe increases temperature ranging from about 0.5-1.5 degrees C in 10-15min is called SIH. This temperature increase can be blocked by anxiolytic drugs. The methodological as well as pharmacological aspects of the group- (G-SIH) and singly housed (SIH) version of the paradigm are described in detail. Also, an overview is presented about studies using the SIH procedure in genetically modified mice together with the potential interference with immunological induction of a febrile response. The paper also presents data that highlight some of the limitations of the SIH procedure for use of drugs like nicotine, which contain particular characteristics such as short in vivo half-life, and/or disturbance of thermoregulation. The advantages and disadvantages of the SIH procedure as a physiological model of anxiety are discussed.
Collapse
Affiliation(s)
- J Adriaan Bouwknecht
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA.
| | | | | |
Collapse
|
5
|
Olivier B, van Bogaert M, van Oorschot R, Oosting R, Groenink L. Stress-induced hyperthermia. HANDBOOK OF STRESS AND THE BRAIN - PART 2: STRESS: INTEGRATIVE AND CLINICAL ASPECTS 2005. [DOI: 10.1016/s0921-0709(05)80053-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
6
|
Urani A, Chourbaji S, Gass P. Mutant mouse models of depression: Candidate genes and current mouse lines. Neurosci Biobehav Rev 2005; 29:805-28. [PMID: 15925701 DOI: 10.1016/j.neubiorev.2005.03.020] [Citation(s) in RCA: 94] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Depression is a multifactorial and multigenetic disease. At present, three main theories try to conceptualize its molecular and biochemical mechanisms, namely the monoamine-, the hypothalamus-pituitary-adrenal- (HPA-) system- and the neurotrophin-hypotheses. One way to explore, validate or falsify these hypotheses is to alter the expression of genes that are involved in these systems and study their respective role in animal behavior and neuroendocrinological parameters. Following an introduction in which we briefly describe each hypothesis, we review here the different mouse lines generated to study the respective molecular pathways. Among the many mutant lines generated, only a few can be regarded as genetic depression models or as models of predisposition for a depressive syndrome after stress exposure. However, this is likely to reflect the human situation where depressive syndromes are complex, can vary to a great extent with respect to their symptomatology, and may be influenced by a variety of environmental factors. Mice with mutations of candidate genes showing depression-like features on behavioral or neurochemical levels may help to define a complex molecular framework underlying depressive syndromes. Because it is conceivable that manipulation of one single genetic function may be necessary but not sufficient to cause complex behavioral alterations, strategies for improving genetic modeling of depression-like syndromes in animals possibly require a simultaneous targeted dysregulation of several genes involved in the pathogenesis of depression. This approach would correspond to the new concept of 'endophenotypes' in human depression research trying to identify behavioral traits which are thought to be encoded by a limited set of genes.
Collapse
Affiliation(s)
- Alexandre Urani
- Central Institute of Mental Health Mannheim, University of Heidelberg, J 5, D-68159 Mannheim, Germany
| | | | | |
Collapse
|
7
|
Cryan JF, Mombereau C. In search of a depressed mouse: utility of models for studying depression-related behavior in genetically modified mice. Mol Psychiatry 2004; 9:326-57. [PMID: 14743184 DOI: 10.1038/sj.mp.4001457] [Citation(s) in RCA: 450] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The ability to modify mice genetically has been one of the major breakthroughs in modern medical science affecting every discipline including psychiatry. It is hoped that the application of such technologies will result in the identification of novel targets for the treatment of diseases such as depression and to gain a better understanding of the molecular pathophysiological mechanisms that are regulated by current clinically effective antidepressant medications. The advent of these tools has resulted in the need to adopt, refine and develop mouse-specific models for analyses of depression-like behavior or behavioral patterns modulated by antidepressants. In this review, we will focus on the utility of current models (eg forced swim test, tail suspension test, olfactory bulbectomy, learned helplessness, chronic mild stress, drug-withdrawal-induced anhedonia) and research strategies aimed at investigating novel targets relevant to depression in the mouse. We will focus on key questions that are considered relevant for examining the utility of such models. Further, we describe other avenues of research that may give clues as to whether indeed a genetically modified animal has alterations relevant to clinical depression. We suggest that it is prudent and most appropriate to use convergent tests that draw on different antidepressant-related endophenotypes, and complimentary physiological analyses in order to provide a program of information concerning whether a given phenotype is functionally relevant to depression-related pathology.
Collapse
Affiliation(s)
- J F Cryan
- Neuroscience Research, The Novartis Institutes for BioMedical Research, Basel, Switzerland.
| | | |
Collapse
|
8
|
Buhot MC, Wolff M, Benhassine N, Costet P, Hen R, Segu L. Spatial Learning in the 5-HT1B Receptor Knockout Mouse: Selective Facilitation/Impairment Depending on the Cognitive Demand. Learn Mem 2003; 10:466-77. [PMID: 14657258 DOI: 10.1101/lm.60203] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Age-related memory decline is associated with a combined dysfunction of the cholinergic and serotonergic systems in the hippocampus and frontal cortex, in particular. The 5-HT1B receptor occupies strategic cellular and subcellular locations in these structures, where it plays a role in the modulation of ACh release. In an attempt to characterize the contribution of this receptor to memory functions, 5-HT1B receptor knockout (KO) mice were submitted to various behavioral paradigms carried out in the same experimental context (water maze), which were aimed at exposing mice to various levels of memory demand. 5-HT1BKO mice exhibited a facilitation in the acquisition of a hippocampal-dependent spatial reference memory task in the Morris water maze. This facilitation was selective of task difficulty, showing thus that the genetic inactivation of the 5-HT1B receptor is associated with facilitation when the complexity of the task is increased, and reveals a protective effect on age-related hippocampal-dependent memory decline. Young-adult and aged KO and wild-type (WT) mice were equally able to learn a delayed spatial matching-to-sample working memory task in a radial-arm water maze with short (0 or 5 min) delays. However, 5-HT1BKO mice, only, exhibited a selective memory impairment at intermediate and long (15, 30, and 60 min) delays. Treatment by scopolamine induced the same pattern of performance in wild type as did the mutation for short (5 min, no impairment) and long (60 min, impairment) delays. Taken together, these studies revealed a beneficial effect of the mutation on the acquisition of a spatial reference memory task, but a deleterious effect on a working memory task for long delays. This 5-HT1BKO mouse story highlights the problem of the potential existence of "global memory enhancers."
Collapse
Affiliation(s)
- Marie-Christine Buhot
- Centre National de la Recherche Scientifique-Unité Mixte de Recherche 5106, Laboratoire de Neurosciences Cognitives, Université de Bordeaux 1, 33405 Talence, France.
| | | | | | | | | | | |
Collapse
|
9
|
Gardier AM, David DJ, Jego G, Przybylski C, Jacquot C, Durier S, Gruwez B, Douvier E, Beauverie P, Poisson N, Hen R, Bourin M. Effects of chronic paroxetine treatment on dialysate serotonin in 5-HT1B receptor knockout mice. J Neurochem 2003; 86:13-24. [PMID: 12807420 DOI: 10.1046/j.1471-4159.2003.01827.x] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The role of serotonin (5-HT)1B receptors in the mechanism of action of selective serotonin re-uptake inhibitors (SSRI) was studied by using intracerebral in vivo microdialysis in conscious, freely moving wild-type and 5-HT1B receptor knockout (KO 5-HT1B) mice in order to compare the effects of chronic administration of paroxetine via osmotic minipumps (1 mg per kg per day for 14 days) on extracellular 5-HT levels ([5-HT]ext) in the medial prefrontal cortex and ventral hippocampus. Basal [5-HT]ext values in the medial prefrontal cortex and ventral hippocampus, approximately 20 h after removing the minipump, were not altered by chronic paroxetine treatment in both genotypes. On day 15, in the ventral hippocampus, an acute paroxetine challenge (1 mg/kg i.p.) induced a larger increase in [5-HT]ext in saline-pretreated mutant than in wild-type mice. This difference between the two genotypes in the effect of the paroxetine challenge persisted following chronic paroxetine treatment. Conversely, in the medial prefrontal cortex, the paroxetine challenge increased [5-HT]ext similarly in saline-pretreated mice of both genotypes. Such a challenge produced a further increase in cortical [5-HT]ext compared with that in saline-pretreated groups of both genotypes, but no differences were found between genotypes following chronic treatment. To avoid the interaction with raphe 5-HT1A autoreceptors, 1 micro m paroxetine was perfused locally through the dialysis probe implanted in the ventral hippocampus; similar increases in hippocampal [5-HT]ext were found in acutely or chronically treated wild-type mice. Systemic administration of the mixed 5-HT1B/1D receptor antagonist GR 127935 (4 mg/kg) in chronically treated wild-type mice potentiated the effect of a paroxetine challenge dose on [5-HT]ext in the ventral hippocampus, whereas systemic administration of the selective 5-HT1A receptor antagonist WAY 100635 did not. By using the zero net flux method of quantitative microdialysis in the medial prefrontal cortex and ventral hippocampus of wild-type and KO 5-HT1B mice, we found that basal [5-HT]ext and the extraction fraction of 5-HT were similar in the medial prefrontal cortex and ventral hippocampus of both genotypes, suggesting that no compensatory response to the constitutive deletion of the 5-HT1B receptor involving changes in 5-HT uptake capacity occurred in vivo. As steady-state brain concentrations of paroxetine at day 14 were similar in both genotypes, it is unlikely that differences in the effects of a paroxetine challenge on hippocampal [5-HT]ext are due to alterations of the drug's pharmacokinetic properties in mutants. These data suggest that there are differences between the ventral hippocampus and medial prefrontal cortex in activation of terminal 5-HT1B autoreceptors and their role in regulating dialysate 5-HT levels. These presynaptic receptors retain their capacity to limit 5-HT release mainly in the ventral hippocampus following chronic paroxetine treatment in mice.
Collapse
Affiliation(s)
- A M Gardier
- Laboratoire de Neuropharmacologie EA3544 MENRT, Faculté de Pharmacie IFR75-ISIT Institut de Signalisation et d'Innovation Thérapeutique, Université Paris-Sud, Châtenay-Malabry, France.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Olivier B, Zethof T, Pattij T, van Boogaert M, van Oorschot R, Leahy C, Oosting R, Bouwknecht A, Veening J, van der Gugten J, Groenink L. Stress-induced hyperthermia and anxiety: pharmacological validation. Eur J Pharmacol 2003; 463:117-32. [PMID: 12600705 DOI: 10.1016/s0014-2999(03)01326-8] [Citation(s) in RCA: 161] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
When mammals, including man, are confronted with a stressful event, their core body temperature rises, stress-induced hyperthermia. In mice, the stress-induced hyperthermia procedure has been developed to measure antistress or anxiolytic-like effects of psychoactive drugs. Group-housed and singly housed versions of the stress-induced hyperthermia generate comparable results. Because the number of animals needed to perform an experiment is much lower in the singly housed versus the group-housed procedure, the former is the test of choice for pharmacological testing. A typical stress-induced hyperthermia test starts with an injection 60 min before the first rectal temperature measurement (T(1)), followed by a second temperature measurement (T(2)) 10-15 min later. The difference DeltaT (=T(2)-T(1)) is the stress-induced hyperthermia. The procedure also measures the intrinsic activity of drugs on the basal body temperature and DeltaT is relatively independent from the intrinsic temperature effects of drugs. Anxiolytic drugs (benzodiazepines, 5-HT(1A) receptor agonists, alcohol) reduce DeltaT suggestive of anxiolytic-like effects. Because the parameter measured for anxiety in the stress-induced hyperthermia procedure is not dependent on locomotor activity, like in almost all other anxiety tests, the stress-induced hyperthermia procedure is an attractive addition to tests in the anxiety field. Because the stress-induced hyperthermia is also present with a comparable pharmacological profile in females, this procedure has a wide species and gender validity. The procedure was applied in various genetically modified mice [5-HT(1A) and 5-HT(1B) receptor knockout (KO) mice and corticotropin-releasing hormone overexpressing (CRH-OE) mice] to study phenotypic influences of the various mutations on aspects of anxiety. The stress-induced hyperthermia test in singly housed male and female mice appears a useful and extremely simple test to measure effects of drugs on certain aspects of anxiety or to help to determine phenotypic differences in mutant mice.
Collapse
Affiliation(s)
- Berend Olivier
- Department of Psychopharmacology, Utrecht Institute of Pharmaceutical Sciences, Utrecht University, Sorbonnelaan 16, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|