1
|
Weng X, Wang M, Sui X, Frey B, Liu Y, Zhang R, Ni H, Li M. High Ammonium Addition Changes the Diversity and Structure of Bacterial Communities in Temperate Wetland Soils of Northeastern China. Microorganisms 2023; 11:2033. [PMID: 37630593 PMCID: PMC10459003 DOI: 10.3390/microorganisms11082033] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/05/2023] [Accepted: 08/06/2023] [Indexed: 08/27/2023] Open
Abstract
The soil microbiome is an important component of wetland ecosystems and plays a pivotal role in nutrient cycling and climate regulation. Nitrogen (N) addition influences the soil's microbial diversity, composition, and function by affecting the soil's nutrient status. The change in soil bacterial diversity and composition in temperate wetland ecosystems in response to high ammonium nitrogen additions remains unclear. In this study, we used high-throughput sequencing technology to study the changes of soil bacterial diversity and community structure with increasing ammonium concentrations [CK (control, 0 kg ha-1 a-1), LN (low nitrogen addition, 40 kg ha-1 a-1), and HN (high nitrogen addition, 80 kg ha-1 a-1)] at a field experimental site in the Sanjiang Plain wetland, China. Our results showed that except for soil organic carbon (SOC), other soil physicochemical parameters, i.e., soil moisture content (SMC), dissolved organic nitrogen (DON), total nitrogen (TN), pH, ammonium nitrogen (NH4+), and dissolved organic carbon (DOC), changed significantly among three ammonium nitrogen addition concentrations (p < 0.05). Compared to CK, LN did not change soil bacterial α-diversity (p > 0.05), and HN only decreased the Shannon (p < 0.05) and did not change the Chao (p > 0.05) indices of soil bacterial community. Ammonium nitrogen addition did not significantly affect the soil's bacterial community structure based on non-metric multidimensional scaling (NMDS) and PERMANOVA (ADONIS) analyses. Acidobacteriota (24.96-31.11%), Proteobacteria (16.82-26.78%), Chloroflexi (10.34-18.09%), Verrucomicrobiota (5.23-11.56%), and Actinobacteriota (5.63-8.75%) were the most abundant bacterial phyla in the soils. Nitrogen addition changed the complexity and stability of the bacterial network. SMC, NO3-, and pH were the main drivers of the bacterial community structure. These findings indicate that enhanced atmospheric nitrogen addition may have an impact on bacterial communities in soil, and this study will allow us to better understand the response of the soil microbiome in wetland ecosystems in the framework of increasing nitrogen deposition.
Collapse
Affiliation(s)
- Xiaohong Weng
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.W.); (M.W.)
| | - Mingyu Wang
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.W.); (M.W.)
| | - Xin Sui
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education & Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region & Key Laboratory of Microbiology, College of Heilongjiang Province & School of Life Sciences, Heilongjiang University, Harbin 150080, China; (X.W.); (M.W.)
| | - Beat Frey
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland;
| | - Yingnan Liu
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin 150001, China; (Y.L.); (R.Z.)
| | - Rongtao Zhang
- Institute of Nature and Ecology, Heilongjiang Academy of Sciences, Harbin 150001, China; (Y.L.); (R.Z.)
| | - Hongwei Ni
- Heilongjiang Academy of Forestry, Harbin 150022, China;
| | - Maihe Li
- Swiss Federal Institute for Forest, Snow and Landscape Research WSL, 8903 Birmensdorf, Switzerland;
- Key Laboratory of Geographical Processes and Ecological Security in Changbai Mountains, Ministry of Education, School of Geographical Sciences, Northeast Normal University, Changchun 130024, China
- School of Life Science, Hebei University, Baoding 071002, China
| |
Collapse
|
2
|
Liu Y, Wan Y, Ma Z, Dong W, Su X, Shen X, Yi X, Chen Y. Effects of magnetite on microbially driven nitrate reduction processes in groundwater. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 855:158956. [PMID: 36150598 DOI: 10.1016/j.scitotenv.2022.158956] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/30/2022] [Accepted: 09/19/2022] [Indexed: 06/16/2023]
Abstract
Nitrate is a common pollutant in the aquatic environment. Denitrification and dissimilatory nitrate reduction to ammonium (DNRA) are the main reduction processes of nitrate. In the relatively closed sediment environment, the competitive interaction of these two nitrate reduction determines whether the ecosystem removes or retains nitrogen. In the process of NO3--N bioreduction, Magnetite, which is a common mineral present in soil and other sediments can play a crucial role. However, it is still not clear whether magnetite promotes or inhibits NO3--N bioreduction. In this paper, the effect of magnetite on NO3--N bioreduction was studied by batch experiments. The results show that magnetite can increase the NO3--N reduction rate by 1.48 %, and can inhibit the DNRA process at the beginning of the reaction and then promote the DNRA process. Magnetite changed the microbial community structure in our experiment systems. The relative abundance of Sphingomonas, which mainly exists in a high carbon and low nitrogen environment, increased under sufficient carbon source conditions. The relative abundance of Fe-oxidizing and NO3--N reducing bacteria, such as Flavobacterium, increased in the absence of carbon sources but in the presence of magnetite. In addition, magnetite can significantly increase activity of the microbial electron transport system (ETS). the added microbial electronic activity of magnetite increased nearly two-fold under the same experiment conditions. The acid produced by the metabolisms of Pseudomonas and Acinetobacter further promotes the dissolution of magnetite, thus increasing the concentration of Fe (II) in the system, which is beneficial to autotrophic denitrifying bacteria and promote the reduction of NO3--N. These findings can enhance our understanding of the interaction mechanism between iron minerals and nitrate reducing bacteria during nitrate reduction under natural conditions.
Collapse
Affiliation(s)
- Yu Liu
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yuyu Wan
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Zhe Ma
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Weihong Dong
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China.
| | - Xiaosi Su
- Key Laboratory of Groundwater Resources and Environments, Ministry of Education, Jilin University, Changchun, Jilin 130021, China; Jilin Provincial Key Laboratory of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Xiaofang Shen
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Xiaokun Yi
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| | - Yaoxuan Chen
- College of New Energy and Environment, Jilin University, Changchun, Jilin 130021, China; Institute of Water Resources and Environment, Jilin University, Changchun, Jilin 130021, China
| |
Collapse
|
3
|
Chakrawal A, Calabrese S, Herrmann AM, Manzoni S. Interacting Bioenergetic and Stoichiometric Controls on Microbial Growth. Front Microbiol 2022; 13:859063. [PMID: 35656001 PMCID: PMC9152356 DOI: 10.3389/fmicb.2022.859063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/07/2022] [Indexed: 11/13/2022] Open
Abstract
Microorganisms function as open systems that exchange matter and energy with their surrounding environment. Even though mass (carbon and nutrients) and energy exchanges are tightly linked, there is a lack of integrated approaches that combine these fluxes and explore how they jointly impact microbial growth. Such links are essential to predicting how the growth rate of microorganisms varies, especially when the stoichiometry of carbon- (C) and nitrogen (N)-uptake is not balanced. Here, we present a theoretical framework to quantify the microbial growth rate for conditions of C-, N-, and energy-(co-) limitations. We use this framework to show how the C:N ratio and the degree of reduction of the organic matter (OM), which is also the electron donor, availability of electron acceptors (EAs), and the different sources of N together control the microbial growth rate under C, nutrient, and energy-limited conditions. We show that the growth rate peaks at intermediate values of the degree of reduction of OM under oxic and C-limited conditions, but not under N-limited conditions. Under oxic conditions and with N-poor OM, the growth rate is higher when the inorganic N (NInorg)-source is ammonium compared to nitrate due to the additional energetic cost involved in nitrate reduction. Under anoxic conditions, when nitrate is both EA and NInorg-source, the growth rates of denitrifiers and microbes performing the dissimilatory nitrate reduction to ammonia (DNRA) are determined by both OM degree of reduction and nitrate-availability. Consistent with the data, DNRA is predicted to foster growth under extreme nitrate-limitation and with a reduced OM, whereas denitrifiers are favored as nitrate becomes more available and in the presence of oxidized OM. Furthermore, the growth rate is reduced when catabolism is coupled to low energy yielding EAs (e.g., sulfate) because of the low carbon use efficiency (CUE). However, the low CUE also decreases the nutrient demand for growth, thereby reducing N-limitation. We conclude that bioenergetics provides a useful conceptual framework for explaining growth rates under different metabolisms and multiple resource-limitations.
Collapse
Affiliation(s)
- Arjun Chakrawal
- Department of Physical Geography, Stockholm University, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| | - Salvatore Calabrese
- Department of Biological and Agricultural Engineering, Texas A&M University, College Station, TX, United States
| | - Anke M Herrmann
- Department of Soil and Environment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Stefano Manzoni
- Department of Physical Geography, Stockholm University, Stockholm, Sweden.,Bolin Centre for Climate Research, Stockholm University, Stockholm, Sweden
| |
Collapse
|
4
|
Zhang J, Liu GH, Wei Q, Liu S, Shao Y, Zhang J, Qi L, Wang H. Regional discrepancy of microbial community structure in activated sludge system from Chinese WWTPs based on high-throughput 16S rDNA sequencing. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 818:151751. [PMID: 34843777 DOI: 10.1016/j.scitotenv.2021.151751] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/01/2021] [Accepted: 11/13/2021] [Indexed: 05/13/2023]
Abstract
Overall understanding of microbial community structure in activated sludge (AS) system at regional level is of great significance for operation regulation of wastewater treatment plants (WWTPs). In this study, 110 AS samples from 21 cities in different Chinese regions were analyzed based on high-throughput 16S ribosomal DNA (rDNA) sequencing to explore effects of different regions on microbial community structure. Results showed that the regions with different characteristics (south and north, coastal and inland, high GDP and low GDP) had great impact on AS bacterial community in China. Core bacterial communities (101 OTUs) in south China were more abundant than those in north China (49 OTUs), and many core species in south China were associated with nutrient removal. Coastal WWTPs possessed unique bacterial communities due to the influence of marine bacteria. Phyla Chloroflexi and Acidobacteria were observed to be main biomarkers in coastal WWTPs. Compared with low GDP regions, more diverse microbial community and effective wastewater treatment were discovered in high GDP regions, and environmental factor analysis suggested that they were mainly correlated with high capacity and influent TP in the WWTPs. β nearest taxon index (βNTI) analysis showed that microbial community assembly in the analyzed AS samples was dominated by deterministic factors (70.67%) and influent quality was observed to be main factor.
Collapse
Affiliation(s)
- Jinsen Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Qi Wei
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Shuai Liu
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Yuting Shao
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Jingbing Zhang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Lu Qi
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China
| | - Hongchen Wang
- Research Center for Low Carbon Technology of Water Environment, School of Environment and Natural Resource, Renmin University of China, Beijing 100872, China.
| |
Collapse
|
5
|
Nitrate Removal by a Novel Lithoautotrophic Nitrate-Reducing, Iron(II)-Oxidizing Culture Enriched from a Pyrite-Rich Limestone Aquifer. Appl Environ Microbiol 2021; 87:e0046021. [PMID: 34085863 DOI: 10.1128/aem.00460-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Nitrate removal in oligotrophic environments is often limited by the availability of suitable organic electron donors. Chemolithoautotrophic bacteria may play a key role in denitrification in aquifers depleted in organic carbon. Under anoxic and circumneutral pH conditions, iron(II) was hypothesized to serve as an electron donor for microbially mediated nitrate reduction by Fe(II)-oxidizing (NRFeOx) microorganisms. However, lithoautotrophic NRFeOx cultures have never been enriched from any aquifer, and as such, there are no model cultures available to study the physiology and geochemistry of this potentially environmentally relevant process. Using iron(II) as an electron donor, we enriched a lithoautotrophic NRFeOx culture from nitrate-containing groundwater of a pyrite-rich limestone aquifer. In the enriched NRFeOx culture that does not require additional organic cosubstrates for growth, within 7 to 11 days, 0.3 to 0.5 mM nitrate was reduced and 1.3 to 2 mM iron(II) was oxidized, leading to a stoichiometric NO3-/Fe(II) ratio of 0.2, with N2 and N2O identified as the main nitrate reduction products. Short-range ordered Fe(III) (oxyhydr)oxides were the product of iron(II) oxidation. Microorganisms were observed to be closely associated with formed minerals, but only few cells were encrusted, suggesting that most of the bacteria were able to avoid mineral precipitation at their surface. Analysis of the microbial community by long-read 16S rRNA gene sequencing revealed that the culture is dominated by members of the Gallionellaceae family that are known as autotrophic, neutrophilic, and microaerophilic iron(II) oxidizers. In summary, our study suggests that NRFeOx mediated by lithoautotrophic bacteria can lead to nitrate removal in anthropogenically affected aquifers. IMPORTANCE Removal of nitrate by microbial denitrification in groundwater is often limited by low concentrations of organic carbon. In these carbon-poor ecosystems, nitrate-reducing bacteria that can use inorganic compounds such as Fe(II) (NRFeOx) as electron donors could play a major role in nitrate removal. However, no lithoautotrophic NRFeOx culture has been successfully isolated or enriched from this type of environment, and as such, there are no model cultures available to study the rate-limiting factors of this potentially important process. Here, we present the physiology and microbial community composition of a novel lithoautotrophic NRFeOx culture enriched from a fractured aquifer in southern Germany. The culture is dominated by a putative Fe(II) oxidizer affiliated with the Gallionellaceae family and performs nitrate reduction coupled to Fe(II) oxidation leading to N2O and N2 formation without the addition of organic substrates. Our analyses demonstrate that lithoautotrophic NRFeOx can potentially lead to nitrate removal in nitrate-contaminated aquifers.
Collapse
|
6
|
Wang S, Wang X, Jiang Y, Han C, Jetten MSM, Schwark L, Zhu G. Abundance and Functional Importance of Complete Ammonia Oxidizers and Other Nitrifiers in a Riparian Ecosystem. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:4573-4584. [PMID: 33733744 DOI: 10.1021/acs.est.0c00915] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The discovery of complete ammonia oxidation (comammox) has altered our understanding of nitrification, which is the rate-limiting process in the global nitrogen cycle. However, understanding the ecological role of comammox or its contribution to nitrification in both natural and artificial ecosystems is still in its infancy. Here, we investigated the community distribution and function of comammox bacteria in riparian ecosystems and analyzed interactions between comammox and other nitrogen cycling microorganisms. The comammox bacterial abundance and rate were higher in summer than in winter and higher in nonrhizosphere soils than in the rhizosphere. Fringe soils in the riparian zone comprise a comammox hotspot, where the abundance (2.58 × 108 copies g-1) and rate (0.86 mg N kg-1 d-1) of comammox were not only higher than at other sampling sites but also higher than those of other ammonia oxidation processes. The comammox rate correlated significantly positively with relative abundance of the comammox species Candidatus Nitrospira nitrificans but not with that of the species Candidatus Nitrospira nitrosa. Analysis of comammox interaction with other ammonia-oxidizing processes revealed ammonia-oxidizing archaea to dominate interface soils, comammox to dominate in fringe soils, and anaerobic ammonium oxidation (anammox) to dominate in interface sediments of the riparian zone. These results indicate that comammox may constitute an important and currently underestimated process of microbial nitrification in riparian zone ecosystems.
Collapse
Affiliation(s)
- Shanyun Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Xiaomin Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yingying Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chang Han
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Mike S M Jetten
- Department of Microbiology, Radboud University Nijmegen, Nijmegen 3, Nijmegen 6525 AJ, The Netherlands
| | - Lorenz Schwark
- Institute for Geosciences, University of Kiel, Kiel D-24098, Germany
| | - Guibing Zhu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
7
|
Zhao X, Yang Y, Feng K, Wang X, Liu B, Xie G, Xing D. Self-regulating microbiome networks ensure functional resilience of biofilms in sand biofilters during manganese load fluctuations. WATER RESEARCH 2021; 188:116473. [PMID: 33038718 DOI: 10.1016/j.watres.2020.116473] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 09/20/2020] [Accepted: 09/27/2020] [Indexed: 06/11/2023]
Abstract
Sand biofilters (SBFs) are commonly used to remove manganese (Mn(II)) from drinking water. Mn(II) load variation frequently occurs in SBFs due to fluctuating influent Mn(II) concentrations or flow rates. Therefore, it is important to understand the responses of microbial biofilms in SBFs to environmental disturbances and how they affect Mn(II) oxidation efficiency. Here, the responses of microbial ecological networks and Mn(II) removal in SBFs to increasing Mn(II) load were investigated. The Mn(II) removal efficiency in two SBFs remained at 99.8% despite an increase in influent Mn(II) from 2 mg/L to 4 mg/L, but significantly deteriorated (50.1-58.5%) upon increasing the filtration rate. A canonical correlation analysis of the microbial communities indicated that the local Mn(II) concentration and biofilter depth impacted community compositions of biofilms. The dominant species within the biofilms exhibited clear stratification, with simple associations in the upper layer of the SBFs and more complex interspecies interactions in the bottom layers. Putative manganese-oxidizing bacteria Hyphomicrobium and Pedomicrobium dominated the microbiomes in different layers of SBFs, and changed relatively little in abundance when Mn(II) and filtration rate increased. The community networks showed that biofilm microbiomes in SBFs were resilient to the disturbance of Mn(II) load, primarily via regulating microbial interactions. High manganese loads negatively affected the functional modules for Mn(II) removal. Furthermore, the relatively rare species Candidatus Entotheonella palauensis was identified as a module hub, implying taxa with low abundances can have important roles in ecosystem function. These results shed new light on the ecological rules guiding responses of microbiomes in sand biofilters to environmental stress.
Collapse
Affiliation(s)
- Xin Zhao
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Yang Yang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Kun Feng
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Xiuheng Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Bingfeng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Guojun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Nangang District, Harbin, Heilongjiang Province 150090, China.
| |
Collapse
|
8
|
Wang X, Wang S, Jiang Y, Zhou J, Han C, Zhu G. Comammox bacterial abundance, activity, and contribution in agricultural rhizosphere soils. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138563. [PMID: 32334221 DOI: 10.1016/j.scitotenv.2020.138563] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/22/2020] [Accepted: 04/07/2020] [Indexed: 05/27/2023]
Abstract
The newly identified complete ammonia oxidation (comammox), which is capable of oxidizing ammonia directly to nitrate, has complemented our knowledge of nitrification in the global nitrogen (N) cycle. However, understanding the contribution and ecological roles of comammox in complex soil environments is still in its infancy. Here, the community structure and function of comammox and the interactions with other ammonia oxidation processes in rhizosphere and non-rhizosphere soils of four different crop fields (maize, cotton, soybean, and millet) were investigated in summer and winter. The only identified comammox species Candidatus Nitrospira nitrificans was widely distributed in all sampled soils. Comammox bacterial abundance was lower than that of ammonia-oxidizing archaea (AOA) and ammonia-oxidizing bacteria (AOB). The measured comammox potential rate ranged from 0.01 ± 0.002 to 0.40 ± 0.02 mg N kg-1 d-1, contributing <19.2 and 22.1% to ammonia oxidation in summer and winter, the remainder being due to AOA and AOB. The potential rate and community composition of comammox bacteria were significantly different on a temporal scale, while crop species and soil types (rhizosphere and non-rhizosphere) showed no obvious influences. In terms of oxidation rates, AOA (1.2 ± 0.7 mg N kg-1 d-1) dominated the ammonia oxidation in agricultural soils over AOB (0.31 ± 0.1 mg N kg-1 d-1) and comammox (0.2 ± 0.1 mg N kg-1 d-1). Both anammox bacterial abundance and activity were below the detection limits, indicating a negligible contribution of anammox in agricultural rhizosphere soils. The identification of comammox bacterial abundance and activity in situ enriches our knowledge of nitrification in agricultural systems.
Collapse
Affiliation(s)
- Xiaomin Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shanyun Wang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yingying Jiang
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Jiemin Zhou
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Chang Han
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guibing Zhu
- Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
9
|
Zhou S, Zhang Y, Huang T, Liu Y, Fang K, Zhang C. Microbial aerobic denitrification dominates nitrogen losses from reservoir ecosystem in the spring of Zhoucun reservoir. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:998-1010. [PMID: 30266057 DOI: 10.1016/j.scitotenv.2018.09.160] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 09/11/2018] [Accepted: 09/12/2018] [Indexed: 06/08/2023]
Abstract
The mechanism and factors influencing nitrogen loss in the Zhoucun reservoir were explored during the spring. The results showed that the nitrate and total nitrogen concentration decreased from 1.84 ± 0.01 mg/L and 2.34 ± 0.06 mg/L to 0.06 ± 0.01 mg/L and 0.48 ± 0.09 mg/L, respectively. Meanwhile, the nitrate and total nitrogen removal rate reached 97.02% ± 0.25 and 79.38% ± 3.32, respectively. Moreover, the abundance of nirS gene and aerobic denitrification bacteria increased from 1.04-3.38 × 103 copies/mL and 0.71 ± 0.22 × 102 cfu/mL to 5.36-5.81 × 103 copies/mL and 8.64 ± 2.08 × 103 cfu/mL, respectively. The low MW fractions of DOM (<5 kDa) increased from 0.94 ± 0.02 mg/L in February to 1.51 ± 0.09 mg/L in April. E3/E4 and absorption spectral slope ratio (SR) showed that fulvic acid accounted for the main proportion with autochthonous characteristics. These findings were consistent with the fluorescence components and fluorescence characteristic indices based on EEM-PARAFAC. Meanwhile, the microbial metabolism activity increased significantly from February to April, which contributed to the cycle of nutrients within the reservoir water system. Moreover, the abundance of the bacterial species involved in denitrification (Exiguobacterium, Brevundimonas, Deinococcus, Paracoccus, and Pseudomonas) increased significantly. The relative abundance of KOs related to nitrogen metabolism, were initially increased and then decreased. Specifically, K02567 (napA) represented the main proportion of KOs related to denitrification. The abundance of napA-type denitrifying bacteria (Dechloromonas, Pseudomonas, Azospira, Rhodopseudomonas, Aeromonas, Zobellella, Sulfuritalea, Bradyrhizobium, Achromobacter, Enterobacter, Thauera, and Magnetospirillum) increased significantly during the period of nitrogen loss. Furthermore, the levels of nitrate, T, DO, and AWCD were the most important factors affecting the N-functional bacteria composition. The systematic investigation of the nitrogen loss would provide a theoretical foundation for the remediation of the water reservoir via aerobic denitrification in the future.
Collapse
Affiliation(s)
- Shilei Zhou
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yiran Zhang
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Tinglin Huang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China.
| | - Yanfang Liu
- Pollution Prevention Biotechnology Laboratory of Hebei Province, School of Environmental Science and Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Kaikai Fang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| | - Chunhua Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Xi'an University of Architecture & Technology, Xi'an 710055, China
| |
Collapse
|
10
|
Cao X, Diao M, Zhang B, Liu H, Wang S, Yang M. Spatial distribution of vanadium and microbial community responses in surface soil of Panzhihua mining and smelting area, China. CHEMOSPHERE 2017; 183:9-17. [PMID: 28527917 DOI: 10.1016/j.chemosphere.2017.05.092] [Citation(s) in RCA: 84] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2017] [Revised: 04/21/2017] [Accepted: 05/15/2017] [Indexed: 05/13/2023]
Abstract
Spatial distribution of vanadium in surface soils from different processing stages of vanadium-bearing titanomagnetite in Panzhihua mining and smelting area (China) as well as responses of microbial communities including bacteria and fungi to vanadium were investigated by fieldwork and laboratory incubation experiment. The vanadium contents in this region ranged from 149.3 to 4793.6 mg kg-1, exceeding the soil background value of vanadium in China (82 mg kg-1) largely. High-throughput DNA sequencing results showed bacterial communities from different manufacturing locations were quite diverse, but Bacteroidetes and Proteobacteria were abundant in all samples. The contents of organic matter, available P, available S and vanadium had great influences on the structures of bacterial communities in soils. Bacterial communities converged to similar structure after long-term (240 d) cultivation with vanadium containing medium, dominating by bacteria which can tolerate or reduce toxicities of heavy metals. Fungal diversities decreased after cultivation, but Ascomycota and Ciliophora were still the most abundant phyla as in the original soil samples. Results in this study emphasize the urgency of investigating vanadium contaminations in soils and provide valuable information on how vanadium contamination influences bacterial and fungal communities.
Collapse
Affiliation(s)
- Xuelong Cao
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Muhe Diao
- Department of Aquatic Microbiology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, 1090 GE, Amsterdam, The Netherlands
| | - Baogang Zhang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China.
| | - Hui Liu
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Song Wang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| | - Meng Yang
- School of Water Resources and Environment, China University of Geosciences Beijing, Key Laboratory of Groundwater Circulation and Evolution (China University of Geosciences Beijing), Ministry of Education, Beijing, 100083, China
| |
Collapse
|
11
|
Comparative Analysis of Denitrifying Activities of Hyphomicrobium nitrativorans, Hyphomicrobium denitrificans, and Hyphomicrobium zavarzinii. Appl Environ Microbiol 2015; 81:5003-14. [PMID: 25979892 DOI: 10.1128/aem.00848-15] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/12/2015] [Indexed: 12/22/2022] Open
Abstract
Hyphomicrobium spp. are commonly identified as major players in denitrification systems supplied with methanol as a carbon source. However, denitrifying Hyphomicrobium species are poorly characterized, and very few studies have provided information on the genetic and physiological aspects of denitrification in pure cultures of these bacteria. This is a comparative study of three denitrifying Hyphomicrobium species, H. denitrificans ATCC 51888, H. zavarzinii ZV622, and a newly described species, H. nitrativorans NL23, which was isolated from a denitrification system treating seawater. Whole-genome sequence analyses revealed that although they share numerous orthologous genes, these three species differ greatly in their nitrate reductases, with gene clusters encoding a periplasmic nitrate reductase (Nap) in H. nitrativorans, a membrane-bound nitrate reductase (Nar) in H. denitrificans, and one Nap and two Nar enzymes in H. zavarzinii. Concurrently with these differences observed at the genetic level, important differences in the denitrification capacities of these Hyphomicrobium species were determined. H. nitrativorans grew and denitrified at higher nitrate and NaCl concentrations than did the two other species, without significant nitrite accumulation. Significant increases in the relative gene expression levels of the nitrate (napA) and nitrite (nirK) reductase genes were also noted for H. nitrativorans at higher nitrate and NaCl concentrations. Oxygen was also found to be a strong regulator of denitrification gene expression in both H. nitrativorans and H. zavarzinii, although individual genes responded differently in these two species. Taken together, the results presented in this study highlight the potential of H. nitrativorans as an efficient and adaptable bacterium that is able to perform complete denitrification under various conditions.
Collapse
|
12
|
Laranjo M, Alexandre A, Oliveira S. Legume growth-promoting rhizobia: An overview on the Mesorhizobium genus. Microbiol Res 2014; 169:2-17. [DOI: 10.1016/j.micres.2013.09.012] [Citation(s) in RCA: 167] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Revised: 09/16/2013] [Accepted: 09/21/2013] [Indexed: 11/24/2022]
|
13
|
Haghighi M. The effect of humic and glutamic acids in nutrient solution on the N metabolism in lettuce. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2012; 92:3023-8. [PMID: 22619108 DOI: 10.1002/jsfa.5718] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 02/28/2012] [Accepted: 03/30/2012] [Indexed: 05/16/2023]
Abstract
BACKGROUND This paper reports for the first time the influence of partially replacing the nitrogen (N) source of a nutrient solution with amino acids and humic acid on the physiological and antioxidant activities and N metabolism in lettuce. A hydroponic experiment was designed to replace 25 and 50% of the N in nutrient solutions (NSs) with glutamic acid (GA) and humic acid (HA) and evaluate the effects on growth, nitrate (NO(3)) assimilation, protein content, nitrate reductase (NR) activity and antioxidant changes in lettuce. RESULTS The results showed that, when a portion of the N was replaced with GA and HA, the fresh and dry weights of lettuce shoots did not change significantly compared with the full NO(3) treatment. The titratable acidity was not affected by adding HA and/or GA to the NS. The nitrite concentration and NR activity decreased with reductions in the N concentration of the NS and improved with the addition of GA and HA. GA enhanced the NO(3) uptake and protein content more than HA. Changes in the superoxide dismutase (SOD) and peroxidase (POD) activities and malondialdehyde content were inconclusive: SOD and POD activities decreased with decreasing N content of the NS, and HA addition improved the SOD and POD activities. CONCLUSION When HA and GA were substituted for NO(3) in an NS, the acids effectively adjusted the N metabolism and growth in lettuce and decreased the N consumption of the NS.
Collapse
Affiliation(s)
- Maryam Haghighi
- Department of Horticultural Science, College of Agriculture, Isfahan University of Technology, Isfahan, Iran.
| |
Collapse
|
14
|
Ferroni FM, Rivas MG, Rizzi AC, Lucca ME, Perotti NI, Brondino CD. Nitrate reduction associated with respiration in Sinorhizobium meliloti 2011 is performed by a membrane-bound molybdoenzyme. Biometals 2011; 24:891-902. [PMID: 21432624 DOI: 10.1007/s10534-011-9442-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2010] [Accepted: 03/15/2011] [Indexed: 10/18/2022]
Abstract
The purification and biochemical characterization of the respiratory membrane-bound nitrate reductase from Sinorhizobium meliloti 2011 (Sm NR) is reported together with the optimal conditions for cell growth and enzyme production. The best biomass yield was obtained under aerobic conditions in a fed-batch system using Luria-Bertani medium with glucose as carbon source. The highest level of Sm NR production was achieved using microaerobic conditions with the medium supplemented with both nitrate and nitrite. Sm NR is a mononuclear Mo-protein belonging to the DMSO reductase family isolated as a heterodimeric enzyme containing two subunits of 118 and 45 kDa. Protein characterization by mass spectrometry showed homology with respiratory nitrate reductases. UV-Vis spectra of as-isolated and dithionite reduced Sm NR showed characteristic absorption bands of iron-sulfur and heme centers. Kinetic studies indicate that Sm NR follows a Michaelis-Menten mechanism (K (m) = 97 ± 11 μM, V = 9.4 ± 0.5 μM min(-1), and k (cat) = 12.1 ± 0.6 s(-1)) and is inhibited by azide, chlorate, and cyanide with mixed inhibition patterns. Physiological and kinetic studies indicate that molybdenum is essential for NR activity and that replacement of this metal for tungsten inhibits the enzyme. Although no narGHI gene cluster has been annotated in the genome of rhizobia, the biochemical characterization indicates that Sm NR is a Mo-containing NR enzyme with molecular organization similar to NarGHI.
Collapse
Affiliation(s)
- Felix M Ferroni
- Departamento de Física, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria, S3000ZAA Santa Fe, Argentina
| | | | | | | | | | | |
Collapse
|
15
|
Polcyn W, Podeszwa J. Coordinate induction of dissimilatory ammonification and fermentative pathways in rhizobia. Antonie van Leeuwenhoek 2009; 96:79-87. [DOI: 10.1007/s10482-009-9338-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Accepted: 03/25/2009] [Indexed: 11/28/2022]
|
16
|
Polcyn W, Luciński R. Effect of N oxyanions on anaerobic induction of nitrate reductase in subcellular fractions of Bradyrhizobium sp. (Lupinus). Antonie van Leeuwenhoek 2009; 95:159-64. [PMID: 19116769 DOI: 10.1007/s10482-008-9299-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Accepted: 12/15/2008] [Indexed: 10/21/2022]
Abstract
Anaerobic induction of nitrate reductase in subcellular fractions of Bradyrhizobium sp. strain USDA 3045 showed fivefold increase of the enzyme activity in spheroplasts, considered as the source of intact-membrane-bound nitrate reductase, within a 3 h time frame after nitrate addition. Such a dynamics was confirmed at the protein level, with antibodies specific to membrane-bound nitrate reductase. Nitrate reductase activity in the periplasm was one order of magnitude lower and significant only at initial 3 h of induction, within a narrow range of nitrate added. Nitrite induced the membrane-bound nitrate reductase at least 70% as effectively as nitrate, as judged from its activity pattern and Western blot analysis. The limited ability of Bradyrhizobium sp. to dissimilate > or =5 mM nitrate is not due to direct inhibition of respiratory nitrate reductase by accumulated nitrite. Moreover, a synergistic induction of membrane-bound nitrate reductase by nitrate and nitrite was indicated due to a twofold higher protein synthesis after simultaneous addition of these N oxyanions than when they were given separately.
Collapse
Affiliation(s)
- Władysław Polcyn
- Institute of Experimental Biology, A. Mickiewicz University, Umultowska 89, 61-614 Poznan, Poland.
| | | |
Collapse
|
17
|
Sarma AD, Emerich DW. A comparative proteomic evaluation of culture grownvs nodule isolatedBradyrhizobium japonicum. Proteomics 2006; 6:3008-28. [PMID: 16688787 DOI: 10.1002/pmic.200500783] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Total protein extract of Bradyrhizobium japonicum cultivated in HM media were resolved by 2-D PAGE using narrow range IPG strips. More than 1200 proteins were detected, of which nearly 500 proteins were analysed by MALDI-TOF and 310 spots were tentatively identified. The present study describes at the proteome level a significant number of metabolic pathways related to important cellular events in free-living B. japonicum. A comparative analysis of proteomes of free-living and nodule residing bacteria revealed major differences and similarities between the two states. Proteins related to fatty acid, nucleic acid and cell surface synthesis were significantly higher in cultured cells. Nitrogen metabolism was more pronounced in bacteroids whereas carbon metabolism was similar in both states. Relative percentage of proteins related to global functions like protein synthesis, maturation & degradation and membrane transporters were similar in both forms, however, different proteins provided these functions in the two states.
Collapse
Affiliation(s)
- Annamraju D Sarma
- Department of Biochemistry, University of Missouri, Columbia, MO 65211, USA
| | | |
Collapse
|
18
|
Prell J, Poole P. Metabolic changes of rhizobia in legume nodules. Trends Microbiol 2006; 14:161-8. [PMID: 16520035 DOI: 10.1016/j.tim.2006.02.005] [Citation(s) in RCA: 145] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2005] [Revised: 02/06/2006] [Accepted: 02/21/2006] [Indexed: 12/01/2022]
Abstract
Bacteria have evolved a wide variety of metabolic strategies to cope with varied environments. Some are specialists and only able to survive in restricted environments; others are generalists and able to cope with diverse environmental conditions. Rhizobia (e.g. Rhizobium, Sinorhizobium, Bradyrhizobium, Mesorhizobium and Azorhizobium species) can survive and compete for nutrients in soil and the plant rhizosphere but can also form a beneficial symbiosis with legumes in a highly specialized plant cell environment. Inside the legume-root nodule, the bacteria (bacteroids) reduce dinitrogen to ammonium, which is secreted to the plant in exchange for a carbon and energy source. A new and challenging aspect of nodule physiology is that nitrogen fixation requires the cycling of amino acids between the bacteroid and plant. This review aims to summarize the metabolic plasticity of rhizobia and the importance of amino acid cycling.
Collapse
Affiliation(s)
- Juergen Prell
- School of Biological Sciences, University of Reading, UK, RG6 6AJ
| | | |
Collapse
|
19
|
Polcyn W, Luciński R. Dissimilatory nitrate reductase from Bradyrhizobium sp. (Lupinus): subcellular location, catalytic properties, and characterization of the active enzyme forms. Curr Microbiol 2006; 52:231-7. [PMID: 16479356 DOI: 10.1007/s00284-005-0265-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2005] [Accepted: 10/24/2005] [Indexed: 10/25/2022]
Abstract
Subcellular location, chlorate specificity, and sensitivity to micromolar concentrations of azide suggest that most of the anaerobically induced nitrate reductase (NR) activity in Bradyrhizobium sp. (Lupinus) could be ascribed to the membrane type of bacterial dissimilatory NRs. Two active complexes of the enzyme, NR(I) of 140 kDa and NR(II) of 190 kDa, were detected in membranes of the nitrate-respiring USDA strain 3045. Both enzyme forms were purified to homogeneity. Obtained specific antibodies showed that these native species were immunologically closely related and composed of largely similar 126-kDa, 65-kDa, and 25-kDa subunits. The finding that NR(I) and NR(II) share common epitopes suggests that they may not be different species, but rather two forms of the same enzyme.
Collapse
Affiliation(s)
- Władysław Polcyn
- Department of Plant Physiology, Faculty of Biology, A. Mickiewicz University, Al. Niepodległości 14, 61-713, Poznań, Poland.
| | | |
Collapse
|
20
|
Okada N, Nomura N, Nakajima-Kambe T, Uchiyama H. Characterization of the Aerobic Denitrification in Mesorhizobium sp. Strain NH-14 in Comparison with that in Related Rhizobia. Microbes Environ 2005. [DOI: 10.1264/jsme2.20.208] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
- Norihisa Okada
- Graduate School of Life and Environmental Science, University of Tsukuba
| | - Nobuhiko Nomura
- Graduate School of Life and Environmental Science, University of Tsukuba
| | | | - Hiroo Uchiyama
- Graduate School of Life and Environmental Science, University of Tsukuba
| |
Collapse
|