1
|
Aranda-Anzaldo A, Dent MAR, Segura-Anaya E, Martínez-Gómez A. Protein folding, cellular stress and cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 191:40-57. [PMID: 38969306 DOI: 10.1016/j.pbiomolbio.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/07/2024]
Abstract
Proteins are acknowledged as the phenotypical manifestation of the genotype, because protein-coding genes carry the information for the strings of amino acids that constitute the proteins. It is widely accepted that protein function depends on the corresponding "native" structure or folding achieved within the cell, and that native protein folding corresponds to the lowest free energy minimum for a given protein. However, protein folding within the cell is a non-deterministic dissipative process that from the same input may produce different outcomes, thus conformational heterogeneity of folded proteins is the rule and not the exception. Local changes in the intracellular environment promote variation in protein folding. Hence protein folding requires "supervision" by a host of chaperones and co-chaperones that help their client proteins to achieve the folding that is most stable according to the local environment. Such environmental influence on protein folding is continuously transduced with the help of the cellular stress responses (CSRs) and this may lead to changes in the rules of engagement between proteins, so that the corresponding protein interactome could be modified by the environment leading to an alternative cellular phenotype. This allows for a phenotypic plasticity useful for adapting to sudden and/or transient environmental changes at the cellular level. Starting from this perspective, hereunder we develop the argument that the presence of sustained cellular stress coupled to efficient CSRs may lead to the selection of an aberrant phenotype as the resulting adaptation of the cellular proteome (and the corresponding interactome) to such stressful conditions, and this can be a common epigenetic pathway to cancer.
Collapse
Affiliation(s)
- Armando Aranda-Anzaldo
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico.
| | - Myrna A R Dent
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Edith Segura-Anaya
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| | - Alejandro Martínez-Gómez
- Laboratorio de Biología Molecular y Neurociencias, Facultad de Medicina, Universidad Autónoma del Estado de México, Paseo Tollocan y Jesús Carranza s/n, Toluca, 50180, Edo. Méx., Mexico
| |
Collapse
|
2
|
Knox A, Zerna G, Beddoe T. Current and Future Advances in the Detection and Surveillance of Biosecurity-Relevant Equine Bacterial Diseases Using Loop-Mediated Isothermal Amplification (LAMP). Animals (Basel) 2023; 13:2663. [PMID: 37627456 PMCID: PMC10451754 DOI: 10.3390/ani13162663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/27/2023] Open
Abstract
Horses play an important role throughout the world, whether for work, culture, or leisure, providing an ever-growing significant contribution to the economy. The increase in importation and movement of horses, both nationally and internationally, has inevitably allowed for the global equine industry to grow. Subsequently, however, the potential for transmission of fatal equine bacterial diseases has also escalated, and devasting outbreaks continue to occur. To prevent such events, disease surveillance and diagnosis must be heightened throughout the industry. Current common, or "gold-standard" techniques, have shown to be inadequate at times, thus requiring newer technology to impede outbreaks. Loop-mediated isothermal amplification (LAMP) has proven to be a reliable, rapid, and accessible tool in both diagnostics and surveillance. This review will discuss equine bacterial diseases of biosecurity relevance and their current diagnostic approaches, as well as their respective LAMP assay developments. Additionally, we will provide insight regarding newer technology and advancements associated with this technique and their potential use for the outlined diseases.
Collapse
Affiliation(s)
| | | | - Travis Beddoe
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Bundoora, VIC 3082, Australia; (A.K.); (G.Z.)
| |
Collapse
|
3
|
Li Y, Yang X, Gao R. Thermophilic Inorganic Pyrophosphatase Ton1914 from Thermococcus onnurineus NA1 Removes the Inhibitory Effect of Pyrophosphate. Int J Mol Sci 2022; 23:ijms232112735. [PMID: 36361526 PMCID: PMC9653972 DOI: 10.3390/ijms232112735] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/10/2022] [Accepted: 10/21/2022] [Indexed: 01/25/2023] Open
Abstract
Pyrophosphate (PPi) is a byproduct of over 120 biosynthetic reactions, and an overabundance of PPi can inhibit industrial synthesis. Pyrophosphatases (PPases) can effectively hydrolyze pyrophosphate to remove the inhibitory effect of pyrophosphate. In the present work, a thermophilic alkaline inorganic pyrophosphatase from Thermococcus onnurineus NA1 was studied. The optimum pH and temperature of Ton1914 were 9.0 and 80 °C, respectively, and the half-life was 52 h at 70 °C and 2.5 h at 90 °C. Ton1914 showed excellent thermal stability, and its relative enzyme activity, when incubated in Tris-HCl 9.0 containing 1.6 mM Mg2+ at 90 °C for 5 h, was still 100%, which was much higher than the control, whose relative activity was only 37%. Real-time quantitative PCR (qPCR) results showed that the promotion of Ton1914 on long-chain DNA was more efficient than that on short-chain DNA when the same concentration of templates was supplemented. The yield of long-chain products was increased by 32-41%, while that of short-chain DNA was only improved by 9.5-15%. Ton1914 also increased the yields of UDP-glucose and UDP-galactose enzymatic synthesis from 40.1% to 84.8% and 20.9% to 35.4%, respectively. These findings suggested that Ton1914 has considerable potential for industrial applications.
Collapse
Affiliation(s)
| | | | - Renjun Gao
- Correspondence: ; Tel.: +86-186-0431-3058
| |
Collapse
|
4
|
Heydarzadeh S, Kia SK, Boroomand S, Hedayati M. Recent Developments in Cell Shipping Methods. Biotechnol Bioeng 2022; 119:2985-3006. [PMID: 35898166 DOI: 10.1002/bit.28197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 06/09/2022] [Accepted: 07/17/2022] [Indexed: 11/11/2022]
Abstract
As opposed to remarkable advances in the cell therapy industry, researches reveal inexplicable difficulties associated with preserving and post-thawing cell death. Post cryopreservation apoptosis is a common occurrence that has attracted the attention of scientists to use apoptosis inhibitors. Transporting cells without compromising their survival and function is crucial for any experimental cell-based therapy. Preservation of cells allows the safe transportation of cells between distances and improves quality control testing in clinical and research applications. The vitality of transported cells is used to evaluate the efficacy of transportation strategies. For many decades, the conventional global methods of cell transfer were not only expensive but also challenging and had adverse effects. The first determination of some projects is optimizing cell survival after cryopreservation. The new generation of cryopreservation science wishes to find appropriate and alternative methods for cell transportation to ship viable cells at an ambient temperature without dry ice or in media-filled flasks. The diversity of cell therapies demands new cell shipping methodologies and cryoprotectants. In this review, we tried to summarize novel improved cryopreservation methods and alternatives to cryopreservation with safe and viable cell shipping at ambient temperature, including dry preservation, hypothermic preservation, gel-based methods, encapsulation methods, fibrin microbeads, and osmolyte solution compositions. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Shabnam Heydarzadeh
- Department of Biochemistry, School of Biological Sciences, Falavarjan Branch Islamic Azad University, Isfahan, Iran.,Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Sima Kheradmand Kia
- Laboratory for Red Blood Cell Diagnostics, Sanquin, Amsterdam, The Netherlands
| | - Seti Boroomand
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehdi Hedayati
- Djavad Mowafaghian Centre for Brain Health, Faculty of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
5
|
Sarlak Z, Shojaee-Aliabadi S, Rezvani N, Hosseini H, Rouhi M, Dastafkan Z. Development and validation of TaqMan real-time PCR assays for quantification of chicken adulteration in hamburgers. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2021.104302] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
6
|
Tariq N, Kume T, Luo L, Cai Z, Dong S, Macgregor RB. Dimethyl sulfoxide (DMSO) as a stabilizing co-solvent for G-quadruplex DNA. Biophys Chem 2022; 282:106741. [DOI: 10.1016/j.bpc.2021.106741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/05/2021] [Accepted: 12/09/2021] [Indexed: 11/16/2022]
|
7
|
Magnetic ionic liquids as microRNA extraction solvents and additives for the exponential amplification reaction. Anal Chim Acta 2021; 1181:338900. [PMID: 34556230 DOI: 10.1016/j.aca.2021.338900] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/28/2021] [Accepted: 07/30/2021] [Indexed: 12/24/2022]
Abstract
The detection of microRNAs (miRNAs) from highly complex matrices has become an area of immense interest as their characterization in biological samples has been utilized for disease diagnosis and body fluid identification. However, conventional northern blotting miRNA detection lacks the sensitivity required to detect circulating miRNAs. Additionally, polymerase chain reaction-based methods for miRNA detection require modified oligonucleotides that are difficult to design. Exponential amplification reaction (EXPAR) is an isothermal amplification method used for miRNA detection that is simple to design but suffers from non-specific amplification that masks low concentration miRNAs. Previous studies have shown that magnetic ionic liquids (MILs) are a promising alternative to traditional nucleic acid extraction methods capable of preconcentrating DNA from complex matrices. In this study, three hydrophobic magnetic ionic liquids (MILs) were investigated as EXPAR additives and miRNA extraction solvents. The addition of MIL to the EXPAR buffer decreased the background signal from non-specific amplification and increased the reaction rate. Reactions containing MIL could detect miRNA at concentration levels down to 10 aM. In comparison, reactions that did not contain MIL could not discriminate 10 fM lethal-7a (let-7a) standards from the no trigger control (NTC). All three MILs extracted miRNA from 2-fold diluted plasma, artificial urine, and artificial saliva with only a 1 min dispersion step. By integrating the miRNA-enriched MIL into the EXPAR buffer, the extraction and detection of femtomolar concentrations of miRNA required only 10 min. In contrast, conventional spin column kits require at least 20 min to isolate miRNA, indicating that a dispersive MIL-based extraction is ideal for high throughput analysis of miRNA.
Collapse
|
8
|
Sakhabutdinova AR, Chemeris AV, Garafutdinov RR. Enhancement of PCR efficiency using mono- and disaccharides. Anal Biochem 2020; 606:113858. [DOI: 10.1016/j.ab.2020.113858] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/26/2020] [Accepted: 06/29/2020] [Indexed: 10/23/2022]
|
9
|
Functional Genomic Identification of Cadmium Resistance Genes from a High GC Clone Library by Coupling the Sanger and PacBio Sequencing Strategies. Genes (Basel) 2019; 11:genes11010007. [PMID: 31861815 PMCID: PMC7016576 DOI: 10.3390/genes11010007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/14/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023] Open
Abstract
Functional (meta) genomics allows the high-throughput identification of functional genes in a premise-free way. However, it is still difficult to perform Sanger sequencing for high GC DNA templates, which hinders the functional genomic exploration of a high GC genomic library. Here, we developed a procedure to resolve this problem by coupling the Sanger and PacBio sequencing strategies. Identification of cadmium (Cd) resistance genes from a small-insert high GC genomic library was performed to test the procedure. The library was generated from a high GC (75.35%) bacterial genome. Nineteen clones that conferred Cd resistance to Escherichia coli subject to Sanger sequencing directly. The positive clones were in parallel subject to in vivo amplification in host cells, from which recombinant plasmids were extracted and linearized by selected restriction endonucleases. PacBio sequencing was performed to obtain the full-length sequences. As the identities, partial sequences from Sanger sequencing were aligned to the full-length sequences from PacBio sequencing, which led to the identification of seven unique full-length sequences. The unique sequences were further aligned to the full genome sequence of the source strain. Functional screening showed that the identified positive clones were all able to improve Cd resistance of the host cells. The functional genomic procedure developed here couples the Sanger and PacBio sequencing methods and overcomes the difficulties in PCR approaches for high GC DNA. The procedure can be a promising option for the high-throughput sequencing of functional genomic libraries, and realize a cost-effective and time-efficient identification of the positive clones, particularly for high GC genetic materials.
Collapse
|
10
|
Filipenko ML, Oscorbin IP, Khrapov EA, Shamovskaya DA, Cherednichenko AG, Shvartz Y. Detection of Ser450Leu mutation in rpoB gene of Mycobacterium tuberculosis by allele-specific loop-mediated isothermal DNA amplification method. BULLETIN OF RUSSIAN STATE MEDICAL UNIVERSITY 2019. [DOI: 10.24075/brsmu.2019.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
To identify genetic mutations a rather time-consuming and expensive method of polymerase chain reaction (PCR) is widely used. The aim of the present work was to evaluate the possibility of using the two schemes of the method of allele-specific isothermal loop amplification (LAMP) to detect the TCG/TTG (S450L) mutation in the rpoB gene of Mycobacterium tuberculosis. 48 clinical isolates of M. tuberculosis and 11 samples of sputum were used, randomized and obtained in the microbiological laboratory of the city of Novosibirsk from incident patients. It is shown that the use of an analysis scheme using the allele-specific primer FIP compared to F3 has the best resolution: the difference between the amplification time of the mutation and the wild type allele was 22 ± 2,4 versus 13 ± 4,1 minutes (p = 0,0011). When using 100 DNA genomic equivalents a true positive signal (amplification of the rpoB gene with a mutation using the corresponding allele-specific primer) was detected after 29,4 ± 3,4 minutes. A positive signal was visualized after adding SYBR Green I to the reaction, both when illuminated with daylight and when using a UV transilluminator. Using the developed method the DNA sample of 20 RIFR isolates from M. tuberculosis was analyzed containing the Ser450Leu mutation in the rpoB gene, 10 RIFR isolates containing other mutations in the rpoB gene and 18 RIFs isolates without any mutations; the presence of mutations in the samples was determined using classical Sanger sequencing. The sensitivity and specificity of LAMP for detecting a Ser450Leu mutation in the rpoB gene was 100%. This approach allows the use of crude lysates of mycobacteria as DNA, which reduces the total analysis time to 1,5 hour.
Collapse
Affiliation(s)
- ML Filipenko
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - IP Oscorbin
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - EA Khrapov
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | - DA Shamovskaya
- Institute of Chemical Biology and Fundamental Medicine, Novosibirsk, Russia
| | | | - YaSh Shvartz
- Novosibirsk Tuberculosis Research Institute, Novosibirsk, Russia
| |
Collapse
|
11
|
Pullulan reduces the non-specific amplification of loop-mediated isothermal amplification (LAMP). Anal Bioanal Chem 2019; 411:1211-1218. [DOI: 10.1007/s00216-018-1552-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Revised: 11/23/2018] [Accepted: 12/14/2018] [Indexed: 01/12/2023]
|
12
|
|
13
|
Burbulis IE, Wierman MB, Wolpert M, Haakenson M, Lopes MB, Schiff D, Hicks J, Loe J, Ratan A, McConnell MJ. Improved molecular karyotyping in glioblastoma. Mutat Res 2018; 811:16-26. [PMID: 30055482 DOI: 10.1016/j.mrfmmm.2018.06.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/22/2018] [Accepted: 06/24/2018] [Indexed: 06/08/2023]
Abstract
Uneven replication creates artifacts during whole genome amplification (WGA) that confound molecular karyotype assignment in single cells. Here, we present an improved WGA recipe that increased coverage and detection of copy number variants (CNVs) in single cells. We examined serial resections of glioblastoma (GBM) tumor from the same patient and found low-abundance clones containing CNVs in clinically relevant loci that were not observable using bulk DNA sequencing. We discovered extensive genomic variability in this class of tumor and provide a practical approach for investigating somatic mosaicism.
Collapse
Affiliation(s)
- Ian E Burbulis
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Escuela de Medicina, Universidad San Sebastian, Puerto Montt, Chile
| | - Margaret B Wierman
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Matt Wolpert
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Mark Haakenson
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Maria-Beatriz Lopes
- Department of Pathology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - David Schiff
- Department of Neurology, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - James Hicks
- Michelson Center, University of Southern California, Los Angeles, CA, United States; Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, United States
| | - Justin Loe
- Full Genomes Corp, Inc., Rockville, MD, United States
| | - Aakrosh Ratan
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States
| | - Michael J McConnell
- Department of Biochemistry and Molecular Genetics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Department of Neuroscience, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Public Health Genomics, University of Virginia, School of Medicine, Charlottesville, VA, United States; Center for Brain Immunology and Glia, University of Virginia, School of Medicine, Charlottesville, VA, United States.
| |
Collapse
|
14
|
Molecular identification of Candida auris by PCR amplification of species-specific GPI protein-encoding genes. Int J Med Microbiol 2018; 308:812-818. [PMID: 30025998 DOI: 10.1016/j.ijmm.2018.06.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/21/2018] [Accepted: 06/28/2018] [Indexed: 11/24/2022] Open
Abstract
The emerging multidrug-resistant pathogenic yeast Candida auris causes life-threatening invasive infections and shows a capacity for hospital transmission that is uncommon in other Candida species. Rapid and accurate diagnosis of C. auris infections is crucial; however, the fungus is frequently misidentified. Here, we present a rapid and easily applicable PCR assay for reliable identification of C. auris by designing primers from unique GPI protein-encoding genes. Specificity of the used primers for C. auris was verified with a panel of 19 different Candida species including the clinically most relevant and phylogenetically closely related species. Efficacy of the PCR approach was validated by correctly identifying 112 C. auris isolates from an outbreak in a Spanish hospital, 20% of which were not reliably identified by MALDI-TOF MS, and 27 genotypically diverse C. auris isolates originating from hospitals in various countries, in a test that included (blind) negative controls. By employing two GPI protein primer pairs in a single PCR, a double screening can be performed, which enhances the robustness of the PCR assay and avoids potential false negatives due to recent evolutionary events, as was observed for two isolates. Our PCR method, which is based on the uniqueness of selected GPI protein-encoding genes, is useful for easy, low-cost, and accurate identification of C. auris infections in a clinical setting.
Collapse
|
15
|
Stratigopoulos G, De Rosa MC, LeDuc CA, Leibel RL, Doege CA. DMSO increases efficiency of genome editing at two non-coding loci. PLoS One 2018; 13:e0198637. [PMID: 29864154 PMCID: PMC5986138 DOI: 10.1371/journal.pone.0198637] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Accepted: 05/22/2018] [Indexed: 11/19/2022] Open
Abstract
Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR)/CRISPR-associated protein-9 (Cas9) has become the tool of choice for genome editing. Despite the fact that it has evolved as a highly efficient means to edit/replace coding sequence, CRISPR/Cas9 efficiency for “clean” editing of non-coding DNA remains low. We set out to introduce a single base-pair substitution in two intronic SNPs at the FTO locus without altering nearby non-coding sequence. Substitution efficiency increased up to 10-fold by treatment of human embryonic stem cells (ESC) with non-toxic levels of DMSO (1%) before CRISPR/Cas9 delivery. Treatment with DMSO did not result in CRISPR/Cas9 off-target effects or compromise the chromosomal stability of the ESC. Twenty-four hour treatment of human ESC with DMSO before CRISPR/Cas9 delivery may prove a simple means to increase editing efficiency of non-coding DNA without incorporation of undesirable mutations.
Collapse
Affiliation(s)
- George Stratigopoulos
- Department of Pediatrics, Columbia University, New York, NY, United States of America
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- * E-mail:
| | - Maria Caterina De Rosa
- Department of Pediatrics, Columbia University, New York, NY, United States of America
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, United States of America
| | - Charles A. LeDuc
- Department of Pediatrics, Columbia University, New York, NY, United States of America
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- New York Obesity Nutrition Research Center, Columbia University, New York, NY, United States of America
| | - Rudolph L. Leibel
- Department of Pediatrics, Columbia University, New York, NY, United States of America
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- New York Obesity Nutrition Research Center, Columbia University, New York, NY, United States of America
- Institute of Human Nutrition, Columbia University, New York, NY, United States of America
| | - Claudia A. Doege
- Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY, United States of America
- Columbia Stem Cell Initiative, Columbia University Medical Center, New York, NY, United States of America
- New York Obesity Nutrition Research Center, Columbia University, New York, NY, United States of America
- Department of Pathology and Cell Biology, Columbia University, New York, NY, United States of America
| |
Collapse
|
16
|
Llerena JPP, Araújo P, Mazzafera P. Optimization of RT-PCR reactions in studies with genes of lignin biosynthetic route in Saccharum spontaneum. AN ACAD BRAS CIENC 2018; 90:509-519. [PMID: 29641770 DOI: 10.1590/0001-3765201820170250] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 05/19/2017] [Indexed: 11/22/2022] Open
Abstract
Saccharum spontaneum has been used for the development of energy cane a crop aimed to be used for the production of second-generation ethanol, or lignocellulosic ethanol. Lignin is a main challenge in the conversion of cell wall sugars into ethanol. In our studies to isolate the genes the lignin biosynthesis in S. spontaneum we have had great difficulty in RT-PCR reactions. Thus, we evaluated the effectiveness of different additives in the amplification of these genes. While COMT and CCoAOMT genes did not need any additives for other genes there was no amplification (HCT, F5H, 4CL and CCR) or the yield was very low (CAD and C4H). The application of supplementary cDNA was enough to overcome the non-specificity and low yield for C4H and C3H, while the addition of 0.04% BSA + 2% formamide was effective to amplify 4CL, CCR, F5H and CCR. HCT was amplified only by addition of 0.04% BSA + 2% formamide + 0.1 M trehalose and amplification of PAL was possible with addition of 2% of DMSO. Besides optimization of expression assays, the results show that additives can act independently or synergistically.
Collapse
Affiliation(s)
- Juan P P Llerena
- Universidade Estadual de Campinas, Laboratório de Fisiologia Molecular das Plantas, Departamento de Biologia Vegetal, Instituto de Biologia, Rua Monteiro Lobato, 255, Caixa Postal 6109, 13083-862 Campinas, SP, Brazil
| | - Pedro Araújo
- Universidade Estadual de Campinas, Laboratório de Genoma Funcional, Departamento de Genética, Evolução e Bioagentes, Instituto de Biologia, Rua Monteiro Lobato, 255, 13083-862 Campinas, SP, Brazil
| | - Paulo Mazzafera
- Universidade Estadual de Campinas, Laboratório de Fisiologia Molecular das Plantas, Departamento de Biologia Vegetal, Instituto de Biologia, Rua Monteiro Lobato, 255, Caixa Postal 6109, 13083-862 Campinas, SP, Brazil.,Universidade de São Paulo, Escola Superior de Agricultura Luiz de Queiroz, Departamento de Produção Vegetal, Av. Pádua Dias, 11, Caixa Postal 9, 34294-100 Piracicaba, SP, Brazil
| |
Collapse
|
17
|
Johansson S, Kuhlmann C, Weber J, Paululat T, Engelhard C, Schmedt auf der Günne J. Decomposition of P4O10 in DMSO. Chem Commun (Camb) 2018; 54:7605-7608. [DOI: 10.1039/c8cc03000f] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Intermediate states of degradation of phosphorus pentoxide in dimethyl sulfoxide (DMSO), also known as Onodera reagent, are studied.
Collapse
Affiliation(s)
- Sebastian Johansson
- Inorganic Materials Chemistry
- Department of Chemistry and Biology
- University of Siegen
- Siegen 57076
- Germany
| | | | - Johannes Weber
- Inorganic Materials Chemistry
- Department of Chemistry and Biology
- University of Siegen
- Siegen 57076
- Germany
| | - Thomas Paululat
- Department of Chemistry and Biology
- University of Siegen
- Siegen 57076
- Germany
| | - Carsten Engelhard
- Department of Chemistry and Biology
- University of Siegen
- Siegen 57076
- Germany
| | | |
Collapse
|
18
|
Multicomponent High-throughput Drug Screening via Inkjet Printing to Verify the Effect of Immunosuppressive Drugs on Immune T Lymphocytes. Sci Rep 2017; 7:6318. [PMID: 28740226 PMCID: PMC5524941 DOI: 10.1038/s41598-017-06690-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 06/16/2017] [Indexed: 02/01/2023] Open
Abstract
High-throughput drug screening based on a multi-component array can be used to identify a variety of interaction between cells and drugs for suitable purposes. The signaling of immune cells is affected by specific proteins, diverse drug combinations, and certain immunosuppressive drugs. The effect of a drug on an organism is usually complex and involves interactions at multiple levels. Herein, we developed a multilayer fabricating system through the high-throughput assembly of nanofilms with inkjet printing to investigate the effects of immunosuppressive drugs. Immunosuppressive drugs or agents occasionally cause side effects depending on drug combinations or a patient’s condition. By incorporating various drug combinations for understanding interaction between drugs and immune cells, we were able to develop an immunological drug screening kit with immunosuppressive drugs. Moreover, the ability to control the combination of drugs, as well as their potential for high-throughput preparation should be of great benefit to the biomedical and bioanalytical field.
Collapse
|
19
|
Novel Multiplex Fluorescent PCR-Based Method for HLA Typing and Preimplantational Genetic Diagnosis of β-Thalassemia. Arch Med Res 2017; 47:293-8. [PMID: 27664489 DOI: 10.1016/j.arcmed.2016.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Accepted: 07/06/2016] [Indexed: 11/22/2022]
Abstract
BACKGROUND AND AIMS Thalassemia is curable by bone marrow transplantation; however, finding suitable donors with defined HLA combination remains a major challenge. Cord blood stem cells with preselected HLA system through preimplantation genetic diagnosis (PGD) proved very useful for resolving scarce HLA-matched bone marrow donors. METHODS A thalassemia trait couple with an affected child was included in this study. We used informative STR markers at the HLA and beta globin loci to develop a single cell multiplex fluorescent PCR protocol. The protocol was extensively optimized on single lymphocytes isolated from the couple's peripheral blood. The optimized protocol was applied on single blastomeres biopsied from day 3 cleavage stage IVF embryos of the couple. RESULTS Four IVF embryos biopsied on day 3 and a single blastomere of each were provided for genetic diagnosis of combined β-thalassemia mutations and HLA typing. Of these, one embryo was diagnosed as homozygous normal for the thalassemia mutation and HLA matched with the existing affected sibling. CONCLUSION The optimized protocol worked well in PGD clinical cycle for selection of thalassemia-unaffected embryos with the desired HLA system.
Collapse
|
20
|
Turumtay H, Midilli A, Turumtay EA, Demir A, Selvi EK, Budak EE, Er H, Kocaimamoglu F, Baykal H, Belduz AO, Atamov V, Sandallı C. Gram (−) microorganisms DNA polymerase inhibition, antibacterial and chemical properties of fruit and leaf extracts ofSorbus acupariaandSorbus caucasica var. yaltirikii. Biomed Chromatogr 2017; 31. [DOI: 10.1002/bmc.3901] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2016] [Revised: 11/07/2016] [Accepted: 11/16/2016] [Indexed: 11/06/2022]
Affiliation(s)
- Halbay Turumtay
- Department of Energy System Engineering; Karadeniz Technical University; Trabzon Turkey
| | - Ahmet Midilli
- Department of Biology; Recep Tayyip Erdogan University; Rize Turkey
| | | | - Adem Demir
- Department of Chemistry; Recep Tayyip Erdogan University; Rize Turkey
| | | | - Emine Esra Budak
- Department of Biology; Recep Tayyip Erdogan University; Rize Turkey
| | - Havva Er
- Department of Chemistry; Recep Tayyip Erdogan University; Rize Turkey
| | | | - Hüseyin Baykal
- Department of Medicinal & Aromatic Plants; Recep Tayyip Erdogan University; Rize Turkey
| | - Ali Osman Belduz
- Department of Biology; Karadeniz Technical University; Trabzon Turkey
| | - Vagif Atamov
- Department of Biology; Recep Tayyip Erdogan University; Rize Turkey
| | - Cemal Sandallı
- Department of Biology; Recep Tayyip Erdogan University; Rize Turkey
| |
Collapse
|
21
|
Zhong Y, Huang L, Zhang Z, Xiong Y, Sun L, Weng J. Enhancing the specificity of polymerase chain reaction by graphene oxide through surface modification: zwitterionic polymer is superior to other polymers with different charges. Int J Nanomedicine 2016; 11:5989-6002. [PMID: 27956830 PMCID: PMC5113928 DOI: 10.2147/ijn.s120659] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Graphene oxides (GOs) with different surface characteristics, such as size, reduction degree and charge, are prepared, and their effects on the specificity of polymerase chain reaction (PCR) are investigated. In this study, we demonstrate that GO with a large size and high reduction degree is superior to small and nonreduced GO in enhancing the specificity of PCR. Negatively charged polyacrylic acid (PAA), positively charged polyacrylamide (PAM), neutral polyethylene glycol (PEG) and zwitterionic polymer poly(sulfobetaine) (pSB) are used to modify GO. The PCR specificity-enhancing ability increases in the following order: GO-PAA < GO-PAM < GO-PEG < GO-pSB. Thus, zwitterionic polymer-modified GO is superior to other GO derivatives with different charges in enhancing the specificity of PCR. GO derivatives are also successfully used to enhance the specificity of PCR for the amplification of human mitochondrial DNA using blood genomic DNA as template. Molecular dynamics simulations and molecular docking are performed to elucidate the interaction between the polymers and Pfu DNA polymerase. Our data demonstrate that the size, reduction degree and surface charge of GO affect the specificity of PCR. Based on our results, zwitterionic polymer-modified GO may be used as an efficient additive for enhancing the specificity of PCR.
Collapse
Affiliation(s)
- Yong Zhong
- Department of Biomaterials, College of Materials
| | - Lihong Huang
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences
| | - Zhisen Zhang
- Department of Physics, Research Institute for Biomimetics and Soft Matter, Xiamen University, Xiamen, People’s Republic of China
| | | | - Liping Sun
- Department of Biomaterials, College of Materials
| | - Jian Weng
- Department of Biomaterials, College of Materials
| |
Collapse
|
22
|
Fábián B, Idrissi A, Marekha B, Jedlovszky P. Local lateral environment of the molecules at the surface of DMSO-water mixtures. JOURNAL OF PHYSICS. CONDENSED MATTER : AN INSTITUTE OF PHYSICS JOURNAL 2016; 28:404002. [PMID: 27506283 DOI: 10.1088/0953-8984/28/40/404002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Molecular dynamics simulations of the liquid-vapour interface of dimethyl sulphoxide (DMSO)-water mixtures of 11 different compositions, including two neat systems are performed on the canonical (N, V, T) ensemble at 298 K. The molecules constituting the surface layer of these systems are selected by means of the identification of the truly interfacial molecules (ITIM) method, and their local lateral environment at the liquid surface is investigated by performing Voronoi analysis. The obtained results reveal that both molecules prefer to be in a mixed local environment, consisting of both kinds of molecules, at the liquid surface, and this preference is even stronger here than in the bulk liquid phase. Neat-like patches, in which a molecule is surrounded by like neighbours, are not found. However, vacancies that are surrounded solely by water molecules are observed at the liquid surface. Our results show that strongly hydrogen bonded DMSO·H2O complexes, known to exist in the bulk phase of these mixtures, are absent from the liquid surface.
Collapse
Affiliation(s)
- Balázs Fábián
- Department of Inorganic and Analytical Chemistry, Budapest University of Technology and Economics, Szt. Gellért tér 4, H-1111 Budapest, Hungary. Institut UTINAM (CNRS UMR 6213), Université Bourgogne Franche-Comté, 16 route de Gray, F-25030 Besançon, France
| | | | | | | |
Collapse
|
23
|
Guido N, Starostina E, Leake D, Saaem I. Improved PCR Amplification of Broad Spectrum GC DNA Templates. PLoS One 2016; 11:e0156478. [PMID: 27271574 PMCID: PMC4896431 DOI: 10.1371/journal.pone.0156478] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 05/16/2016] [Indexed: 11/28/2022] Open
Abstract
Many applications in molecular biology can benefit from improved PCR amplification of DNA segments containing a wide range of GC content. Conventional PCR amplification of DNA sequences with regions of GC less than 30%, or higher than 70%, is complex due to secondary structures that block the DNA polymerase as well as mispriming and mis-annealing of the DNA. This complexity will often generate incomplete or nonspecific products that hamper downstream applications. In this study, we address multiplexed PCR amplification of DNA segments containing a wide range of GC content. In order to mitigate amplification complications due to high or low GC regions, we tested a combination of different PCR cycling conditions and chemical additives. To assess the fate of specific oligonucleotide (oligo) species with varying GC content in a multiplexed PCR, we developed a novel method of sequence analysis. Here we show that subcycling during the amplification process significantly improved amplification of short template pools (~200 bp), particularly when the template contained a low percent of GC. Furthermore, the combination of subcycling and 7-deaza-dGTP achieved efficient amplification of short templates ranging from 10-90% GC composition. Moreover, we found that 7-deaza-dGTP improved the amplification of longer products (~1000 bp). These methods provide an updated approach for PCR amplification of DNA segments containing a broad range of GC content.
Collapse
Affiliation(s)
- Nicholas Guido
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Elena Starostina
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Devin Leake
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| | - Ishtiaq Saaem
- Research & Development, Gen9 Inc, Cambridge, Massachusetts, United States of America
| |
Collapse
|
24
|
Mi HY, Jing X, Salick MR, Cordie TM, Turng LS. Carbon nanotube (CNT) and nanofibrillated cellulose (NFC) reinforcement effect on thermoplastic polyurethane (TPU) scaffolds fabricated via phase separation using dimethyl sulfoxide (DMSO) as solvent. J Mech Behav Biomed Mater 2016; 62:417-427. [PMID: 27266475 DOI: 10.1016/j.jmbbm.2016.05.026] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 05/18/2016] [Accepted: 05/23/2016] [Indexed: 12/15/2022]
Abstract
Although phase separation is a simple method of preparing tissue engineering scaffolds, it suffers from organic solvent residual in the scaffold. Searching for nontoxic solvents and developing effective solvent removal methods are current challenges in scaffold fabrication. In this study, thermoplastic polyurethane (TPU) scaffolds containing carbon nanotubes (CNTs) or nanofibrillated cellulose fibers (NFCs) were prepared using low toxicity dimethyl sulfoxide (DMSO) as a solvent. The effects of two solvent removal approaches on the final scaffold morphology were studied. The freeze drying method caused large pores, with small pores on the pore walls, which created connections between the pores. Meanwhile, the leaching and freeze drying method led to interconnected fine pores with smaller pore diameters. The nucleation effect of CNTs and the phase separation behavior of NFCs in the TPU solution resulted in significant differences in the microstructures of the resulting scaffolds. The mechanical performance of the nanocomposite scaffolds with different morphologies was investigated. Generally, the scaffolds with a fine pore structure showed higher compressive properties, and both the CNTs and NFCs improved the compressive properties of the scaffolds, with greater enhancement found in TPU/NFC nanocomposite scaffolds. In addition, all scaffolds showed good sustainability under cyclical load bearing, and the biocompatibility of the scaffolds was verified via 3T3 fibroblast cell culture.
Collapse
Affiliation(s)
- Hao-Yang Mi
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou 510640, China; Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xin Jing
- Department of Industrial Equipment and Control Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Max R Salick
- Department of Engineering Physics, University of Wisconsin-Madison, WI 53706, USA
| | - Travis M Cordie
- Department of Biomedical, University of Wisconsin-Madison, WI 53706, USA
| | - Lih-Sheng Turng
- Department of Mechanical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
25
|
ALPER M, TOKAY E, KÖÇKAR F. Amplification of GC-rich ADAMTS-2 and URG4/URGCP promoter regions with optimized combination of PCR enhancers. Turk J Biol 2016. [DOI: 10.3906/biy-1502-37] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
|
26
|
Marimuthu K, Jing C, Chakrabarti R. Sequence-dependent biophysical modeling of DNA amplification. Biophys J 2015; 107:1731-43. [PMID: 25296327 DOI: 10.1016/j.bpj.2014.08.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 07/10/2014] [Accepted: 08/21/2014] [Indexed: 10/24/2022] Open
Abstract
A theoretical framework for prediction of the dynamic evolution of chemical species in DNA amplification reactions, for any specified sequence and operating conditions, is reported. Using the polymerase chain reaction (PCR) as an example, we developed a sequence- and temperature-dependent kinetic model for DNA amplification using first-principles biophysical modeling of DNA hybridization and polymerization. We compare this kinetic model with prior PCR models and discuss the features of our model that are essential for quantitative prediction of DNA amplification efficiency for arbitrary sequences and operating conditions. Using this model, the kinetics of PCR is analyzed. The ability of the model to distinguish between the dynamic evolution of distinct DNA sequences in DNA amplification reactions is demonstrated. The kinetic model is solved for a typical PCR temperature protocol to motivate the need for optimization of the dynamic operating conditions of DNA amplification reactions. It is shown that amplification efficiency is affected by dynamic processes that are not accurately represented in the simplified models of DNA amplification that form the basis of conventional temperature cycling protocols. Based on this analysis, a modified temperature protocol that improves PCR efficiency is suggested. Use of this sequence-dependent kinetic model in a control theoretic framework to determine the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is discussed.
Collapse
Affiliation(s)
- Karthikeyan Marimuthu
- Department of Chemical Engineering and Center for Advanced Process Decision-making, Carnegie Mellon University, Pittsburgh, Pennsylvania
| | - Chaoran Jing
- Division of Fundamental Research, PMC Advanced Technology, Mt. Laurel, New Jersey
| | - Raj Chakrabarti
- Department of Chemical Engineering and Center for Advanced Process Decision-making, Carnegie Mellon University, Pittsburgh, Pennsylvania; Division of Fundamental Research, PMC Advanced Technology, Mt. Laurel, New Jersey.
| |
Collapse
|
27
|
Castro C, Hernandez A, Alvarado L, Flores D. DNA Barcodes in Fig Cultivars (Ficus carica L.) Using ITS Regions of Ribosomal DNA, the psbA-trnH Spacer and the matK Coding Sequence. ACTA ACUST UNITED AC 2015. [DOI: 10.4236/ajps.2015.61011] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
28
|
Marimuthu K, Chakrabarti R. Dynamics and control of DNA sequence amplification. J Chem Phys 2014; 141:164119. [PMID: 25362284 DOI: 10.1063/1.4899053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
DNA amplification is the process of replication of a specified DNA sequence in vitro through time-dependent manipulation of its external environment. A theoretical framework for determination of the optimal dynamic operating conditions of DNA amplification reactions, for any specified amplification objective, is presented based on first-principles biophysical modeling and control theory. Amplification of DNA is formulated as a problem in control theory with optimal solutions that can differ considerably from strategies typically used in practice. Using the Polymerase Chain Reaction as an example, sequence-dependent biophysical models for DNA amplification are cast as control systems, wherein the dynamics of the reaction are controlled by a manipulated input variable. Using these control systems, we demonstrate that there exists an optimal temperature cycling strategy for geometric amplification of any DNA sequence and formulate optimal control problems that can be used to derive the optimal temperature profile. Strategies for the optimal synthesis of the DNA amplification control trajectory are proposed. Analogous methods can be used to formulate control problems for more advanced amplification objectives corresponding to the design of new types of DNA amplification reactions.
Collapse
Affiliation(s)
- Karthikeyan Marimuthu
- Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Raj Chakrabarti
- Department of Chemical Engineering and Center for Advanced Process Decision-Making, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
29
|
Rapid detection of Shigella and enteroinvasive Escherichia coli in produce enrichments by a conventional multiplex PCR assay. Food Microbiol 2014; 40:48-54. [DOI: 10.1016/j.fm.2013.12.001] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2013] [Revised: 12/03/2013] [Accepted: 12/10/2013] [Indexed: 11/21/2022]
|
30
|
Detection and quantitation of Agrotis baculoviruses in mixed infections. J Virol Methods 2014; 197:39-46. [DOI: 10.1016/j.jviromet.2013.11.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 11/14/2013] [Accepted: 11/19/2013] [Indexed: 10/26/2022]
|
31
|
Kok SD, Stanton LH, Slaby T, Durot M, Holmes VF, Patel KG, Platt D, Shapland EB, Serber Z, Dean J, Newman JD, Chandran SS. Rapid and reliable DNA assembly via ligase cycling reaction. ACS Synth Biol 2014; 3:97-106. [PMID: 24932563 DOI: 10.1021/sb4001992] [Citation(s) in RCA: 176] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Assembly of DNA parts into DNA constructs is a foundational technology in the emerging field of synthetic biology. An efficient DNA assembly method is particularly important for high-throughput, automated DNA assembly in biofabrication facilities and therefore we investigated one-step, scarless DNA assembly via ligase cycling reaction (LCR). LCR assembly uses single-stranded bridging oligos complementary to the ends of neighboring DNA parts, a thermostable ligase to join DNA backbones, and multiple denaturation-annealing-ligation temperature cycles to assemble complex DNA constructs. The efficiency of LCR assembly was improved ca. 4-fold using designed optimization experiments and response surface methodology. Under these optimized conditions, LCR enabled one-step assembly of up to 20 DNA parts and up to 20 kb DNA constructs with very few single-nucleotide polymorphisms (<1 per 25 kb) and insertions/deletions (<1 per 50 kb). Experimental comparison of various sequence-independent DNA assembly methods showed that circular polymerase extension cloning (CPEC) and Gibson isothermal assembly did not enable assembly of more than four DNA parts with more than 50% of clones being correct. Yeast homologous recombination and LCR both enabled reliable assembly of up to 12 DNA parts with 60-100% of individual clones being correct, but LCR assembly provides a much faster and easier workflow than yeast homologous recombination. LCR combines reliable assembly of many DNA parts via a cheap, rapid, and convenient workflow and thereby outperforms existing DNA assembly methods. LCR assembly is expected to become the method of choice for both manual and automated high-throughput assembly of DNA parts into DNA constructs.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Sunil S. Chandran
- Amyris, Inc., 5885 Hollis
Street, Suite 100, Emeryville, California 94608, United States
| |
Collapse
|
32
|
Tan MH, Gécz J, Shoubridge C. PCR amplification and sequence analysis of GC-rich sequences: Aristaless-related homeobox example. Methods Mol Biol 2014; 1017:105-20. [PMID: 23719911 DOI: 10.1007/978-1-62703-438-8_8] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
PCR amplification (followed by mutation scanning or direct sequencing) is a technique widely used in mutation detection and molecular studies of disease-causing genes, such as ARX. PCR amplification of high GC-rich regions encounters difficulties using conventional PCR procedures. Here, we present the strategies to amplify and sequence these GC-rich regions for the purposes of mutation screening and other molecular analyses.
Collapse
Affiliation(s)
- May H Tan
- Department of Paediatrics, University of Adelaide, Adelaide, SA, Australia
| | | | | |
Collapse
|
33
|
Lin TY, Borketey LS, Prasad G, Waters SA, Schnarr NA. Sequence, cloning, and analysis of the fluvirucin B1 polyketide synthase from Actinomadura vulgaris. ACS Synth Biol 2013; 2:635-42. [PMID: 23654262 DOI: 10.1021/sb4000355] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Fluvirucin B1 , produced by Actinomadura vulgaris, is a 14-membered macrolactam active against a variety of infectious fungi as well as influenza A. Despite considerable interest from the synthetic community, very little information is available regarding the biosynthetic origins of the fluvirucins. Herein, we report the identification and initial characterization of the fluvirucin B1 polyketide synthase and related enzymes. The cluster consists of five extender modules flanked by an N-terminal acyl carrier protein and C-terminal thioesterase domain. All but one of the synthase modules contain the full complement of tailoring domains (ketoreductase, dehydratase, and enoyl reductase) as determined by sequence homology with known polyketide synthases. Acitve site analyses of several key components of the cluster are performed to further verify that this gene cluster is associated with production of fluvirucin B1 . This work will both open doors toward a better understanding of macrolactam formation and provide an avenue to genetics-based diversification of fluvirucin structure.
Collapse
Affiliation(s)
- Tsung-Yi Lin
- Department of Chemistry, University of Massachusetts, 710 N. Pleasant Street,
Amherst, Massachusetts 01003, United States
| | - Lawrence S. Borketey
- Department of Chemistry, University of Massachusetts, 710 N. Pleasant Street,
Amherst, Massachusetts 01003, United States
| | - Gitanjeli Prasad
- Department of Chemistry, University of Massachusetts, 710 N. Pleasant Street,
Amherst, Massachusetts 01003, United States
| | - Stephanie A. Waters
- Department of Chemistry, University of Massachusetts, 710 N. Pleasant Street,
Amherst, Massachusetts 01003, United States
| | - Nathan A. Schnarr
- Department of Chemistry, University of Massachusetts, 710 N. Pleasant Street,
Amherst, Massachusetts 01003, United States
| |
Collapse
|
34
|
Strien J, Sanft J, Mall G. Enhancement of PCR amplification of moderate GC-containing and highly GC-rich DNA sequences. Mol Biotechnol 2013; 54:1048-54. [PMID: 23568183 DOI: 10.1007/s12033-013-9660-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PCR is a commonly used and highly efficient technique in biomolecular laboratories for specific amplification of DNA. However, successful DNA amplification can be very time consuming and troublesome because many factors influence PCR efficiency. Especially GC-rich DNA complicates amplification because of generation of secondary structures that hinder denaturation and primer annealing. We investigated the impact of previously recommended additives such as dimethylsulfoxide (DMSO), magnesium chloride (MgCl2), bovine serum albumin (BSA), or formamide. Furthermore, we tested company-specific substances as Q-Solution, High GC Enhancer, and Hi-Spec; various actively promoted polymerases as well as different PCR conditions for their positive effects on DNA amplification of templates with moderate and extremely high CG-content. We found considerable differences of specificity and quantity of product between different terms. In this article, we introduce conditions for optimized PCR to help resolve problems amplifying moderate to high GC-rich templates.
Collapse
Affiliation(s)
- Juliane Strien
- Institute of Legal Medicine, Jena University Hospital-Friedrich Schiller University Jena, Fürstengraben 23, 07743 Jena, Germany.
| | | | | |
Collapse
|
35
|
Hassanajili S, Abdollahi E. Influence of various reaction media on the thermal and rheological properties of poly(acrylamide-co-N-hexadecylacrylamide). J Appl Polym Sci 2013. [DOI: 10.1002/app.39939] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Shadi Hassanajili
- Chemical and Petroleum Engineering School, Shiraz University; 71348-51154 Shiraz Iran
| | - Elaheh Abdollahi
- Department of Chemical Engineering; Islamic Azad University of Fars Science and Research Branch; Iran
| |
Collapse
|
36
|
Chen B, Wright B, Sahoo R, Connon CJ. A Novel Alternative to Cryopreservation for the Short-Term Storage of Stem Cells for Use in Cell Therapy Using Alginate Encapsulation. Tissue Eng Part C Methods 2013. [DOI: 10.1089/ten.tec.2012.0489] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Affiliation(s)
- Bo Chen
- Stem Cells and Nanomaterials Laboratory, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Bernice Wright
- Stem Cells and Nanomaterials Laboratory, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Rashmita Sahoo
- Stem Cells and Nanomaterials Laboratory, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| | - Che J. Connon
- Stem Cells and Nanomaterials Laboratory, School of Chemistry, Food and Pharmacy, University of Reading, Reading, United Kingdom
| |
Collapse
|
37
|
Veal CD, Freeman PJ, Jacobs K, Lancaster O, Jamain S, Leboyer M, Albanes D, Vaghela RR, Gut I, Chanock SJ, Brookes AJ. A mechanistic basis for amplification differences between samples and between genome regions. BMC Genomics 2012; 13:455. [PMID: 22950736 PMCID: PMC3469336 DOI: 10.1186/1471-2164-13-455] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 08/28/2012] [Indexed: 11/22/2022] Open
Abstract
Background For many analytical methods the efficiency of DNA amplification varies across the genome and between samples. The most affected genome regions tend to correlate with high C + G content, however this relationship is complex and does not explain why the direction and magnitude of effects varies considerably between samples. Results Here, we provide evidence that sequence elements that are particularly high in C + G content can remain annealed even when aggressive melting conditions are applied. In turn, this behavior creates broader ‘Thermodynamically Ultra-Fastened’ (TUF) regions characterized by incomplete denaturation of the two DNA strands, so reducing amplification efficiency throughout these domains. Conclusions This model provides a mechanistic explanation for why some genome regions are particularly difficult to amplify and assay in many procedures, and importantly it also explains inter-sample variability of this behavior. That is, DNA samples of varying quality will carry more or fewer nicks and breaks, and hence their intact TUF regions will have different lengths and so be differentially affected by this amplification suppression mechanism – with ‘higher’ quality DNAs being the most vulnerable. A major practical consequence of this is that inter-region and inter-sample variability can be largely overcome by employing routine fragmentation methods (e.g. sonication or restriction enzyme digestion) prior to sample amplification.
Collapse
Affiliation(s)
- Colin D Veal
- Department of Genetics, University of Leicester, Leicester LE1 7RH, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abd Aziz AG, Sedelnikova SE, Ruzheinikov SN, Thorpe S, Mohamed R, Nathan S, Rafferty JB, Baker PJ, Rice DW. Crystallization and preliminary X-ray analysis of the receiver domain of a putative response regulator, BPSL0128, from Burkholderia pseudomallei. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:917-22. [PMID: 22869122 PMCID: PMC3412773 DOI: 10.1107/s1744309112025791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2012] [Accepted: 06/06/2012] [Indexed: 11/10/2022]
Abstract
bpsl0128, a gene encoding a putative response regulator from Burkholderia pseudomallei strain D286, has been cloned into a pETBLUE-1 vector system, overexpressed in Escherichia coli and purified. The full-length protein is degraded during purification to leave a fragment corresponding to the putative receiver domain, and crystals of this protein that diffracted to beyond 1.75 Å resolution have been grown by the hanging-drop vapour-diffusion technique using PEG 6000 as the precipitant. The crystals belonged to one of the enantiomorphic pair of space groups P3(1)21 and P3(2)21, with unit-cell parameters a = b = 65.69, c = 105.01 Å and either one or two molecules in the asymmetric unit.
Collapse
Affiliation(s)
- Abd Ghani Abd Aziz
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - Svetlana E. Sedelnikova
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - Sergey N. Ruzheinikov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - Simon Thorpe
- Department of Chemistry, The University of Sheffield, Sheffield S3 7HF, England
| | - Rahmah Mohamed
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
- Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
- Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia
| | - John B. Rafferty
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - Patrick J. Baker
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| | - David W. Rice
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, The University of Sheffield, Sheffield S10 2TN, England
| |
Collapse
|
39
|
Pratyush DD, Tiwari S, Kumar A, Singh SK. A new approach to touch down method using betaine as co-solvent for increased specificity and intensity of GC rich gene amplification. Gene 2012; 497:269-72. [DOI: 10.1016/j.gene.2012.01.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2011] [Accepted: 01/18/2012] [Indexed: 11/27/2022]
|
40
|
Abd Aziz AG, Ruzheinikov SN, Sedelnikova SE, Mohamed R, Nathan S, Baker PJ, Rice DW. Cloning, purification, crystallization and preliminary X-ray analysis of the Burkholderia pseudomallei L1 ribosomal protein. Acta Crystallogr Sect F Struct Biol Cryst Commun 2012; 68:347-50. [PMID: 22442241 PMCID: PMC3310549 DOI: 10.1107/s1744309112004800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2012] [Accepted: 02/03/2012] [Indexed: 11/10/2022]
Abstract
The gene encoding the L1 ribosomal protein from Burkholderia pseudomallei strain D286 has been cloned into the pETBLUE-1 vector system, overexpressed in Escherichia coli and purified. Crystals of the native protein were grown by the hanging-drop vapour-diffusion technique using PEG 3350 as a precipitant and diffracted to beyond 1.65 Å resolution. The crystals belonged to space group P2(1)2(1)2, with unit-cell parameters a = 53.6, b = 127.1, c = 31.8 Å and with a single molecule in the asymmetric unit.
Collapse
Affiliation(s)
- Abd Ghani Abd Aziz
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| | - Sergey N. Ruzheinikov
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| | - Svetlana E. Sedelnikova
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| | - Rahmah Mohamed
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
- Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia
| | - Sheila Nathan
- School of Biosciences and Biotechnology, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor D.E., Malaysia
- Malaysia Genome Institute, Jalan Bangi, 43000 Kajang, Selangor D.E., Malaysia
| | - Patrick J. Baker
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| | - David W. Rice
- Krebs Institute for Biomolecular Research, Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, England
| |
Collapse
|
41
|
Shi Y, Liu YL, Lai PY, Tseng MC, Tseng MJ, Li Y, Chu YH. Ionic liquids promote PCR amplification of DNA. Chem Commun (Camb) 2012; 48:5325-7. [DOI: 10.1039/c2cc31740k] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
42
|
Tay BY, Wang C, Stubbs LP, Jacob C, van Meurs M. Deuterated dimethyl sulfoxide as a good NMR solvent for the characterization of alkali metal cyclopentadienides, amides, alkoxides and phenoxides. J Organomet Chem 2011. [DOI: 10.1016/j.jorganchem.2011.07.038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
43
|
Induced temperature-dependent DNA degradation by C60 without photoactivation. CHINESE SCIENCE BULLETIN-CHINESE 2011. [DOI: 10.1007/s11434-011-4694-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
44
|
Shao Y, Zhu S, Jin C, Chen F. Development of multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) to detect Salmonella spp. and Shigella spp. in milk. Int J Food Microbiol 2011; 148:75-9. [PMID: 21652102 DOI: 10.1016/j.ijfoodmicro.2011.05.004] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2010] [Revised: 04/08/2011] [Accepted: 05/06/2011] [Indexed: 01/10/2023]
Abstract
A multiplex loop-mediated isothermal amplification-RFLP (mLAMP-RFLP) was developed and validated for simultaneous detection of Salmonella strains and Shigella strains in milk. In this system, two sets of LAMP primers were designed to specifically target invA of Salmonella spp. and ipaH of Shigella spp. Under isothermal conditions at 63 °C, ladder pattern of DNA bands could be amplified within 60 min in the presence of genomic DNAs of Salmonella strains and Shigella strains, which could be distinguished between Salmonella spp. and Shigella spp. simultaneously based on the different ladder pattern of DNA bands and subsequent restriction enzyme analysis. The overall analysis time was approximately 20 h including the enrichment of the bacterial cells, which greatly saved detection time. The sensitivity of mLAMP was found to be 100 fg DNA/tube with genomic DNAs of Salmonella strains and Shigella strains, comparatively, multiplex PCR was 1 pg DNA/tube. The mLAMP allowed the detection of milk sample artificially contaminated by Salmonella strains and Shigella strains at initial inoculation levels of approximate 5CFU/10 mL. In conclusion, the mLAMP described here can potentially facilitate simultaneous monitoring of Salmonella and Shigella in a large number of food samples, which could be used as a primary screening method and as a supplement to classical detection method.
Collapse
Affiliation(s)
- Yanchun Shao
- Department of Food Safety and Microbiology, College of Food Science and Technology, Huazhong Agricultural University, Wuhan 430070, PR China
| | | | | | | |
Collapse
|
45
|
Ingram R, Riggs A, Bonifer C. PAP-LMPCR: an improved, sequence-selective method for the in vivo analysis of transcription factor occupancy and chromatin fine structure. Methods Mol Biol 2011; 687:177-92. [PMID: 20967608 DOI: 10.1007/978-1-60761-944-4_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/19/2023]
Abstract
In vivo footprinting and ligation-mediated PCR (LMPCR) are well-established methods for the examination of the chromatin structure of eukaryotic genes. Here, we describe an improved method (pyrophosphorolysis activated polymerization LMPCR or PAP-LMPCR) that overcomes the shortfalls of previous methods by being capable of reading through sequences that up to now were refractory to this type of analysis. This includes dinucleotide repeat sequences or GC-rich regions. We also describe conditions capable of distinguishing between different alleles, thus enabling the simultaneous analysis of monoallelically expressed genes without having to employ interspecies hybrids.
Collapse
Affiliation(s)
- Richard Ingram
- Section of Experimental Haematology, University of Leeds, St James's Hospital, Leeds, UK
| | | | | |
Collapse
|
46
|
Więckowicz M, Schmidt M, Sip A, Grajek W. Development of a PCR-based assay for rapid detection of class IIa bacteriocin genes. Lett Appl Microbiol 2011; 52:281-9. [PMID: 21241342 DOI: 10.1111/j.1472-765x.2010.02999.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
AIMS We have developed a PCR-based assay using custom designed panel of primers which allows rapid detection of class IIa bacteriocin-coding genes. To demonstrate the applicability of the developed assay, the method was applied on 40 metagenomic DNA preparations isolated from native microbiota of Polish artisanal cheeses produced in the Tatra Mountains. METHODS AND RESULTS The developed assay was designed on the basis of a large scale alignment of class IIa bacteriocin-coding genes. A panel of seven primer pairs with confirmed ability to detect class IIa bacteriocin-coding sequences was obtained. The following study has revealed a superb bacteriocinogenic potential of all forty analysed cheese samples. CONCLUSIONS The majority of obtained sequences were lactic acid bacteria (LAB) related, although some sequences showed significant similarity to bacteriocin-coding sequences present in non-LAB bacteriocin producers. The results suggest that several potentially new bacteriocin-coding sequences were found. SIGNIFICANCE AND IMPACT OF THE STUDY The developed assay can be extremely helpful in establishing whether isolates from the environment of interest have a potential of synthesizing antilisterial class IIa bacteriocins. Application of the approach may represent a useful tool contributing to ecological studies looking for valuable probiotic, bacteriocinogenic microbiota developing in foods.
Collapse
Affiliation(s)
- Michał Więckowicz
- Department of Biotechnology and Food Microbiology, Poznań University of Life Sciences, Wojska Polskiego 48, Poznań, Poland.
| | | | | | | |
Collapse
|
47
|
Winter J, Diederichs S. MicroRNA Northern blotting, precursor cloning, and Ago2-improved RNA interference. Methods Mol Biol 2011; 676:85-100. [PMID: 20931392 DOI: 10.1007/978-1-60761-863-8_7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Aberrant expression of microRNAs (miRNAs) and processing defects in their biogenesis pathway are a widespread phenomenon in tumors, conveying great importance to the analysis of miRNA expression, regulation, and biogenesis to gain knowledge about their role in cancer. Besides Drosha and Dicer, Argonaute proteins are key players in miRNA processing. In addition to their role as components of the RNA-induced silencing complex (RISC) executing target silencing, Argonautes mediate posttranscriptional regulation of miRNA maturation by creating an additional intermediate processing step, the Ago2-cleaved precursor miRNA (ac-pre-miRNA), and enhancing the production or stability of mature miRNAs. Here, we describe the detection of miRNA levels by Northern blotting and the identification of the 3' end of miRNAs by precursor cloning to accentuate two of the many roles of Argonaute proteins. In addition, we describe a method to optimize RNAi experiments by increasing the efficacy and specificity of target silencing via Ago2 cotransfection.
Collapse
Affiliation(s)
- Julia Winter
- Helmholtz-University-Group "Molecular RNA Biology & Cancer," German Cancer Research Center (DKFZ), Institute of Pathology, University of Heidelberg, Heidelberg, Germany
| | | |
Collapse
|
48
|
Wei M, Deng J, Feng K, Yu B, Chen Y. Universal method facilitating the amplification of extremely GC-rich DNA fragments from genomic DNA. Anal Chem 2010; 82:6303-7. [PMID: 20565067 DOI: 10.1021/ac100797t] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Polymerase chain reaction (PCR) is a basic technique with wide applications in molecular biology. Despite the development of different methods with various modifications, the amplification of GC-rich DNA fragments is frequently troublesome due to the formation of complex secondary structure and poor denaturation. Given the fact that GC-rich genes are closely related to transcriptional regulation, transcriptional silencing, and disease progression, we developed a PCR method combining a stepwise procedure and a mixture of additives in the present work. Our study demonstrated that the PCR method could successfully amplify targeted DNA fragments up to 1.2 Kb with GC content as high as 83.5% from different species. Compared to all currently available methods, our work showed satisfactory, adaptable, fast and efficient (SAFE) results on the amplification of GC-rich targets, which provides a versatile and valuable tool for the diagnosis of genetic disorders and for the study of functions and regulations of various genes.
Collapse
Affiliation(s)
- Maochen Wei
- Laboratory of Chemical Biology, China Pharmaceutical University, Nanjing, People's Republic of China
| | | | | | | | | |
Collapse
|
49
|
Zou X, Gao Y, Ruvolo VR, Gardner TL, Ruvolo PP, Brown RE. Human glycolipid transfer protein gene (GLTP) expression is regulated by Sp1 and Sp3: involvement of the bioactive sphingolipid ceramide. J Biol Chem 2010; 286:1301-11. [PMID: 20974858 DOI: 10.1074/jbc.m110.127837] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Glycolipid transfer protein (GLTP) accelerates glycolipid intermembrane transfer via a unique lipid transfer/binding fold (GLTP fold) that defines the GLTP superfamily and is the prototype for functional GLTP-like domains in larger proteins, i.e. FAPP2. Human GLTP is encoded by the single-copy GLTP gene on chromosome 12 (12q24.11 locus), but regulation of GLTP gene expression remains completely unexplored. Herein, the ability of glycosphingolipids (and their sphingolipid metabolites) to regulate the transcriptional expression of GLTP via its promoter has been evaluated. Using luciferase and GFP reporters in concert with deletion mutants, the constitutive and basal (225 bp; ∼78% G+C) human GLTP promoters have been defined along with adjacent regulatory elements. Despite high G+C content, translational regulation was not evident by the mammalian target of rapamycin pathway. Four GC-boxes were shown to be functional Sp1/Sp3 transcription factor binding sites. Mutation of one GC-box was particularly detrimental to GLTP transcriptional activity. Sp1/Sp3 RNA silencing and mithramycin A treatment significantly inhibited GLTP promoter activity. Among tested sphingolipid analogs of glucosylceramide, sulfatide, ganglioside GM1, ceramide 1-phosphate, sphingosine 1-phosphate, dihydroceramide, sphingosine, only ceramide, a nonglycosylated precursor metabolite unable to bind to GLTP protein, induced GLTP promoter activity and raised transcript levels in vivo. Ceramide treatment partially blocked promoter activity decreases induced by Sp1/Sp3 knockdown. Ceramide treatment also altered the in vivo binding affinity of Sp1 and Sp3 for the GLTP promoter and decreased Sp3 acetylation. This study represents the first characterization of any Gltp gene promoter and links human GLTP expression to sphingolipid homeostasis through ceramide.
Collapse
Affiliation(s)
- Xianqiong Zou
- The Hormel Institute, University of Minnesota, Austin, Minnesota 55912, USA
| | | | | | | | | | | |
Collapse
|
50
|
Abdul Khaliq R, Sonawane PJ, Sasi BK, Sahu BS, Pradeep T, Das SK, Mahapatra NR. Enhancement in the efficiency of polymerase chain reaction by TiO2 nanoparticles: crucial role of enhanced thermal conductivity. NANOTECHNOLOGY 2010; 21:255704. [PMID: 20516586 DOI: 10.1088/0957-4484/21/25/255704] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Improvement of the specificity and efficiency of the polymerase chain reaction (PCR) by nanoparticles is an emerging area of research. We observed that TiO(2) nanoparticles of approximately 25 nm diameter caused significant enhancement of PCR efficiency for various types of templates (namely plasmid DNA, genomic DNA and complementary DNA). By a series of experiments, the optimal TiO(2) concentration was determined to be 0.4 nM, which resulted in up to a seven-fold increase in the amount of PCR product. As much as 50% reduction in overall reaction time (by reduction of the number of cycles and the time periods of cycles) was also achieved by utilizing TiO(2) nanoparticles without compromising the PCR yield. Investigations of the mechanism of such PCR enhancement by simulations using the 'Fluent K epsilon turbulent model' provided evidence of faster heat transfer in the presence of TiO(2) nanoparticles. Consistent with these findings, TiO(2) nanoparticles were observed to augment the denaturation of genomic DNA, indicating more efficient thermal conductivity through the reaction buffer. TiO(2) nanoparticle-assisted PCR may be useful for profound reduction of the overall PCR reaction period and for enhanced amplification of DNA amplicons from a variety of samples, including GC-rich templates that are often observed to yield unsatisfactory results.
Collapse
Affiliation(s)
- R Abdul Khaliq
- Department of Biotechnology, Indian Institute of Technology Madras, Chennai, India
| | | | | | | | | | | | | |
Collapse
|