1
|
Ganeva V, Kranz A. Selective extraction of recombinant membrane proteins from Hansenula polymorpha by pulsed electric field and lytic enzyme pretreatment. Microb Cell Fact 2023; 22:251. [PMID: 38066481 PMCID: PMC10704748 DOI: 10.1186/s12934-023-02259-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Accepted: 11/25/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND In yeast, recombinant membrane proteins including viral scaffold proteins used for the formation of enveloped Virus-like particles (eVLPs) typically accumulate intracellularly. Their recovery is carried out by mechanical disruption of the cells, often in combination with detergent treatment. Cell permeabilization is an attractive alternative to mechanical lysis because it allows for milder and more selective recovery of different intracellular products. RESULTS Here, we present a novel approach for extraction of integral membrane proteins from yeast based on cell envelope permeabilization through a combination of pulsed electric field and lytic enzyme pretreatment of the cells. Our primary experiments focused on Hansenula polymorpha strain #25-5 co-expressing the integral membrane small surface protein (dS) of the duck hepatitis B virus and a fusion protein of dS with a trimer of a Human papillomavirus (HPV) L2-peptide (3xL2-dS). Irreversible plasma membrane permeabilization was induced by treating the cell suspension with monopolar rectangular pulses using a continuous flow system. The permeabilized cells were incubated with lyticase and dithiothreitol. This treatment increased the cell wall permeability, resulting in the release of over 50% of the soluble host proteins without causing significant cell lysis. The subsequent incubation with Triton X-100 resulted in the solubilization and release of a significant portion of 3xL2-dS and dS from the cells. By applying two steps: (i) brief heating of the cells before detergent treatment, and (ii) incubation of the extracts with KSCN, an 80% purity on the protein level has been achieved. Experiments performed with H. polymorpha strain T#3-3, co-expressing dS and the fusion protein EDIIIWNV-dS consisting of dS and the antigen from the West Nile virus (WSV), confirmed the applicability of this approach for recovering dS. The treatment, optimal for solubilization of 3xL2-dS and a significant part of dS, was not effective in isolating the fused protein EDIIIWNV-dS from the membranes, resulting in its retention within the cells. CONCLUSIONS This study presents an alternative approach for the recovery and partial purification of viral membrane proteins expressed in H. polymorpha. The factors influencing the effectiveness of this procedure and its potential use for the recovery of other integral membrane proteins are discussed.
Collapse
Affiliation(s)
- Valentina Ganeva
- Biological Faculty, Department of Biophysics & Radiobiology, Sofia University, 8 Dragan Tzankov blvd, Sofia, 1164, Bulgaria.
| | - Andreas Kranz
- ARTES Biotechnology GmbH, Elizabeth Selbert str. 9, 40764, Langenfeld, Germany
| |
Collapse
|
2
|
Aza P, Camarero S. Fungal Laccases: Fundamentals, Engineering and Classification Update. Biomolecules 2023; 13:1716. [PMID: 38136587 PMCID: PMC10741624 DOI: 10.3390/biom13121716] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 12/24/2023] Open
Abstract
Multicopper oxidases (MCOs) share a common catalytic mechanism of activation by oxygen and cupredoxin-like folding, along with some common structural determinants. Laccases constitute the largest group of MCOs, with fungal laccases having the greatest biotechnological applicability due to their superior ability to oxidize a wide range of aromatic compounds and lignin, which is enhanced in the presence of redox mediators. The adaptation of these versatile enzymes to specific application processes can be achieved through the directed evolution of the recombinant enzymes. On the other hand, their substrate versatility and the low sequence homology among laccases make their exact classification difficult. Many of the ever-increasing amounts of MCO entries from fungal genomes are automatically (and often wrongly) annotated as laccases. In a recent comparative genomic study of 52 basidiomycete fungi, MCO classification was revised based on their phylogeny. The enzymes clustered according to common structural motifs and theoretical activities, revealing three novel groups of laccase-like enzymes. This review provides an overview of the structure, catalytic activity, and oxidative mechanism of fungal laccases and how their biotechnological potential as biocatalysts in industry can be greatly enhanced by protein engineering. Finally, recent information on newly identified MCOs with laccase-like activity is included.
Collapse
Affiliation(s)
| | - Susana Camarero
- Margarita Salas Center for Biological Research, Consejo Superior de Investigaciones Científicas (CSIC), 28040 Madrid, Spain;
| |
Collapse
|
3
|
Popova LG, Khramov DE, Nedelyaeva OI, Volkov VS. Yeast Heterologous Expression Systems for the Study of Plant Membrane Proteins. Int J Mol Sci 2023; 24:10768. [PMID: 37445944 DOI: 10.3390/ijms241310768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/23/2023] [Accepted: 06/26/2023] [Indexed: 07/15/2023] Open
Abstract
Researchers are often interested in proteins that are present in cells in small ratios compared to the total amount of proteins. These proteins include transcription factors, hormones and specific membrane proteins. However, sufficient amounts of well-purified protein preparations are required for functional and structural studies of these proteins, including the creation of artificial proteoliposomes and the growth of protein 2D and 3D crystals. This aim can be achieved by the expression of the target protein in a heterologous system. This review describes the applications of yeast heterologous expression systems in studies of plant membrane proteins. An initial brief description introduces the widely used heterologous expression systems of the baker's yeast Saccharomyces cerevisiae and the methylotrophic yeast Pichia pastoris. S. cerevisiae is further considered a convenient model system for functional studies of heterologously expressed proteins, while P. pastoris has the advantage of using these yeast cells as factories for producing large quantities of proteins of interest. The application of both expression systems is described for functional and structural studies of membrane proteins from plants, namely, K+- and Na+-transporters, various ATPases and anion transporters, and other transport proteins.
Collapse
Affiliation(s)
- Larissa G Popova
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Dmitrii E Khramov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Olga I Nedelyaeva
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| | - Vadim S Volkov
- K.A. Timiryazev Institute of Plant Physiology RAS, 127276 Moscow, Russia
| |
Collapse
|
4
|
Khatami SH, Vakili O, Movahedpour A, Ghesmati Z, Ghasemi H, Taheri-Anganeh M. Laccase: Various types and applications. Biotechnol Appl Biochem 2022; 69:2658-2672. [PMID: 34997643 DOI: 10.1002/bab.2313] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 01/03/2022] [Indexed: 12/27/2022]
Abstract
Laccase belongs to the polyphenol oxidase family and is very important in removing environmental pollutants due to its structural and functional properties. Recently, the ability of laccase to oxidize phenolic and nonphenolic substances has been considered by many researchers. This enzyme's application scope includes a broad range of chemical processes and industrial usages, such as bioremediation, nanobiotechnology, woodworking industries, bleaching of paper pulp, dyeing in the textile industry, biotechnological uses in food industries, biorefining, detoxification from wastewater, production of organic matter from phenolic and amine substrates, and biofuels. Although filamentous fungi produce large amounts of laccase, high-yield industrial-scale production of laccase is still faced with many problems. At present, researchers are trying to increase the efficiency and productivity and reduce the final price of laccase by finding suitable microorganisms and improving the process of production and purification of laccase. This article reviews the introduction of laccase, its properties, production processes, and the effect of various factors on the enzyme's stability and activity, and some of its applications in various industries.
Collapse
Affiliation(s)
- Seyyed Hossein Khatami
- Department of Clinical Biochemistry, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Omid Vakili
- Department of Clinical Biochemistry, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Zeinab Ghesmati
- Department of Medical Biotechnology, School of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Mortaza Taheri-Anganeh
- Department of Medical Biotechnology, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
5
|
Online 2D Fluorescence Monitoring in Microtiter Plates Allows Prediction of Cultivation Parameters and Considerable Reduction in Sampling Efforts for Parallel Cultivations of Hansenula polymorpha. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9090438. [PMID: 36134983 PMCID: PMC9495725 DOI: 10.3390/bioengineering9090438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/23/2022]
Abstract
Multi-wavelength (2D) fluorescence spectroscopy represents an important step towards exploiting the monitoring potential of microtiter plates (MTPs) during early-stage bioprocess development. In combination with multivariate data analysis (MVDA), important process information can be obtained, while repetitive, cost-intensive sample analytics can be reduced. This study provides a comprehensive experimental dataset of online and offline measurements for batch cultures of Hansenula polymorpha. In the first step, principal component analysis (PCA) was used to assess spectral data quality. Secondly, partial least-squares (PLS) regression models were generated, based on spectral data of two cultivation conditions and offline samples for glycerol, cell dry weight, and pH value. Thereby, the time-wise resolution increased 12-fold compared to the offline sampling interval of 6 h. The PLS models were validated using offline samples of a shorter sampling interval. Very good model transferability was shown during the PLS model application to the spectral data of cultures with six varying initial cultivation conditions. For all the predicted variables, a relative root-mean-square error (RMSE) below 6% was obtained. Based on the findings, the initial experimental strategy was re-evaluated and a more practical approach with minimised sampling effort and elevated experimental throughput was proposed. In conclusion, the study underlines the high potential of multi-wavelength (2D) fluorescence spectroscopy and provides an evaluation workflow for PLS modelling in microtiter plates.
Collapse
|
6
|
Yan C, Yu W, Zhai X, Yao L, Guo X, Gao J, Zhou YJ. Characterizing and engineering promoters for metabolic engineering of Ogataea polymorpha. Synth Syst Biotechnol 2022; 7:498-505. [PMID: 34977394 PMCID: PMC8685918 DOI: 10.1016/j.synbio.2021.12.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 12/04/2021] [Accepted: 12/06/2021] [Indexed: 12/18/2022] Open
Abstract
Bio-manufacturing via microbial cell factory requires large promoter library for fine-tuned metabolic engineering. Ogataea polymorpha, one of the methylotrophic yeasts, possesses advantages in broad substrate spectrum, thermal-tolerance, and capacity to achieve high-density fermentation. However, a limited number of available promoters hinders the engineering of O. polymorpha for bio-productions. Here, we systematically characterized native promoters in O. polymorpha by both GFP fluorescence and fatty alcohol biosynthesis. Ten constitutive promoters (PPDH, PPYK, PFBA, PPGM, PGLK, PTRI, PGPI, PADH1, PTEF1 and PGCW14) were obtained with the activity range of 13%–130% of the common promoter PGAP (the promoter of glyceraldehyde-3-phosphate dehydrogenase), among which PPDH and PGCW14 were further verified by biosynthesis of fatty alcohol. Furthermore, the inducible promoters, including ethanol-induced PICL1, rhamnose-induced PLRA3 and PLRA4, and a bidirectional promoter (PMal-PPer) that is strongly induced by sucrose, further expanded the promoter toolbox in O. polymorpha. Finally, a series of hybrid promoters were constructed via engineering upstream activation sequence (UAS), which increased the activity of native promoter PLRA3 by 4.7–10.4 times without obvious leakage expression. Therefore, this study provided a group of constitutive, inducible, and hybrid promoters for metabolic engineering of O. polymorpha, and also a feasible strategy for rationally regulating the promoter strength.
Collapse
Affiliation(s)
- Chunxiao Yan
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, PR China.,Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Wei Yu
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxin Zhai
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Lun Yao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Xiaoyu Guo
- School of Biological Engineering, Dalian Polytechnic University, Dalian, 116034, PR China
| | - Jiaoqi Gao
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| | - Yongjin J Zhou
- Division of Biotechnology, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian, 116023, PR China.,CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, PR China.,Dalian Key Laboratory of Energy Biotechnology, Dalian Institute of Chemical Physics, CAS, 457 Zhongshan Road, Dalian, 116023, PR China
| |
Collapse
|
7
|
Pirahmadi S, Afzali S, Zargar M, Zakeri S, Mehrizi AA. How can we develop an effective subunit vaccine to achieve successful malaria eradication? Microb Pathog 2021; 160:105203. [PMID: 34547408 DOI: 10.1016/j.micpath.2021.105203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 08/05/2021] [Accepted: 09/17/2021] [Indexed: 12/16/2022]
Abstract
Malaria, a mosquito-borne infection, is the most widespread parasitic disease. Despite numerous efforts to eradicate malaria, this disease is still a health concern worldwide. Owing to insecticide-resistant vectors and drug-resistant parasites, available controlling measures are insufficient to achieve a malaria-free world. Thus, there is an urgent need for new intervention tools such as efficient malaria vaccines. Subunit vaccines are the most promising malaria vaccines under development. However, one of the major drawbacks of subunit vaccines is the lack of efficient and durable immune responses including antigen-specific antibody, CD4+, and CD8+ T-cell responses, long-lived plasma cells, memory cells, and functional antibodies for parasite neutralization or inhibition of parasite invasion. These types of responses could be induced by whole organism vaccines, but eliciting these responses with subunit vaccines has been proven to be more challenging. Consequently, subunit vaccines require several policies to overcome these challenges. In this review, we address common approaches that can improve the efficacy of subunit vaccines against malaria.
Collapse
Affiliation(s)
- Sakineh Pirahmadi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Shima Afzali
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Mostafa Zargar
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| |
Collapse
|
8
|
Carbon source requirements for mating and mating‐type switching in the methylotrophic yeasts
Ogataea (Hansenula) polymorpha
and
Komagataella phaffii (Pichia pastoris). Yeast 2020; 37:237-245. [DOI: 10.1002/yea.3446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 10/08/2019] [Accepted: 10/12/2019] [Indexed: 12/20/2022] Open
|
9
|
Wetzel D, Chan JA, Suckow M, Barbian A, Weniger M, Jenzelewski V, Reiling L, Richards JS, Anderson DA, Kouskousis B, Palmer C, Hanssen E, Schembecker G, Merz J, Beeson JG, Piontek M. Display of malaria transmission-blocking antigens on chimeric duck hepatitis B virus-derived virus-like particles produced in Hansenula polymorpha. PLoS One 2019; 14:e0221394. [PMID: 31483818 PMCID: PMC6726142 DOI: 10.1371/journal.pone.0221394] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2018] [Accepted: 08/07/2019] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Malaria caused by Plasmodium falciparum is one of the major threats to human health globally. Despite huge efforts in malaria control and eradication, highly effective vaccines are urgently needed, including vaccines that can block malaria transmission. Chimeric virus-like particles (VLP) have emerged as a promising strategy to develop new malaria vaccine candidates. METHODS We developed yeast cell lines and processes for the expression of malaria transmission-blocking vaccine candidates Pfs25 and Pfs230 as VLP and VLP were analyzed for purity, size, protein incorporation rate and expression of malaria antigens. RESULTS In this study, a novel platform for the display of Plasmodium falciparum antigens on chimeric VLP is presented. Leading transmission-blocking vaccine candidates Pfs25 and Pfs230 were genetically fused to the small surface protein (dS) of the duck hepatitis B virus (DHBV). The resulting fusion proteins were co-expressed in recombinant Hansenula polymorpha (syn. Pichia angusta, Ogataea polymorpha) strains along with the wild-type dS as the VLP scaffold protein. Through this strategy, chimeric VLP containing Pfs25 or the Pfs230-derived fragments Pfs230c or Pfs230D1M were purified. Up to 100 mg chimeric VLP were isolated from 100 g dry cell weight with a maximum protein purity of 90% on the protein level. Expression of the Pfs230D1M construct was more efficient than Pfs230c and enabled VLP with higher purity. VLP showed reactivity with transmission-blocking antibodies and supported the surface display of the malaria antigens on the native VLP. CONCLUSION The incorporation of leading Plasmodium falciparum transmission-blocking antigens into the dS-based VLP scaffold is a promising novel strategy for their display on nano-scaled particles. Competitive processes for efficient production and purification were established in this study.
Collapse
Affiliation(s)
- David Wetzel
- ARTES Biotechnology GmbH, Langenfeld, Germany
- Laboratory of Plant and Process Design, Technical University of Dortmund, Dortmund, Germany
| | - Jo-Anne Chan
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | | | - Andreas Barbian
- Düsseldorf University Hospital, Institute for Anatomy I, Düsseldorf, Germany
| | | | | | - Linda Reiling
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Jack S. Richards
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - David A. Anderson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Betty Kouskousis
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Catherine Palmer
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
| | - Eric Hanssen
- The Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria, Australia
| | - Gerhard Schembecker
- Laboratory of Plant and Process Design, Technical University of Dortmund, Dortmund, Germany
| | - Juliane Merz
- Evonik Technology & Infrastructure GmbH, Hanau, Germany
| | - James G. Beeson
- Burnet Institute for Medical Research and Public Health, Melbourne, Victoria, Australia
- Central Clinical School and Department of Microbiology, Monash University, Melbourne, Victoria, Australia
- Department of Medicine, Royal Melbourne Hospital, University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
10
|
Kumar R, Kumar P. Yeast-based vaccines: New perspective in vaccine development and application. FEMS Yeast Res 2019; 19:5298404. [PMID: 30668686 DOI: 10.1093/femsyr/foz007] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 01/18/2019] [Indexed: 12/11/2022] Open
Abstract
In presently licensed vaccines, killed or attenuated organisms act as a source of immunogens except for peptide-based vaccines. These conventional vaccines required a mass culture of associated or related organisms and long incubation periods. Special requirements during storage and transportation further adds to the cost of vaccine preparations. Availability of complete genome sequence, well-established genetic, inherent natural adjuvant and non-pathogenic nature of yeast species viz. Saccharomyces cerevisiae, Pichia pastoris makes them an ideal model system for the development of vaccines both for public health and for on-farm consumption. In this review, we compile the work in this emerging field during last two decades with major emphases on S. cerevisiae and P. pastoris which are routinely used worldwide for expression of heterologous proteins with therapeutic value against infectious diseases along with possible use in cancer therapy. We also pointed towards the developments in use of whole recombinant yeast, yeast surface display and virus-like particles as a novel strategy in the fight against infectious diseases and cancer along with other aspects including suitability of yeast in vaccines preparations, yeast cell wall component as an immune stimulator or modulator and present status of yeast-based vaccines in clinical trials.
Collapse
Affiliation(s)
- Ravinder Kumar
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, CA 92093, USA
| | - Piyush Kumar
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Powai, Mumbai 400 076, Maharashtra, India
| |
Collapse
|
11
|
Baghban R, Farajnia S, Rajabibazl M, Ghasemi Y, Mafi A, Hoseinpoor R, Rahbarnia L, Aria M. Yeast Expression Systems: Overview and Recent Advances. Mol Biotechnol 2019; 61:365-384. [PMID: 30805909 DOI: 10.1007/s12033-019-00164-8] [Citation(s) in RCA: 124] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Yeasts are outstanding hosts for the production of functional recombinant proteins with industrial or medical applications. Great attention has been emerged on yeast due to the inherent advantages and new developments in this host cell. For the production of each specific product, the most appropriate expression system should be identified and optimized both on the genetic and fermentation levels, considering the features of the host, vector and expression strategies. Currently, several new systems are commercially available; some of them are private and need licensing. The potential for secretory expression of heterologous proteins in yeast proposed this system as a candidate for the production of complex eukaryotic proteins. The common yeast expression hosts used for recombinant proteins' expression include Saccharomyces cerevisiae, Pichia pastoris, Hansenula polymorpha, Yarrowia lipolytica, Arxula adeninivorans, Kluyveromyces lactis, and Schizosaccharomyces pombe. This review is dedicated to discuss on significant characteristics of the most common methylotrophic and non-methylotrophic yeast expression systems with an emphasis on their advantages and new developments.
Collapse
Affiliation(s)
- Roghayyeh Baghban
- Medical Biotechnology Department, Faculty of Advanced Medical Science, Tabriz University of Medical Sciences, Tabriz, Iran.,Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran.,Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| | - Safar Farajnia
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran. .,Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Masoumeh Rajabibazl
- Department of Clinical Biochemistry, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Velenjak, Arabi Ave, Tehran, Iran. .,Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Younes Ghasemi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy and Pharmaceutical Sciences Research Center, Shiraz University of Medical Science, Shiraz, Iran
| | - AmirAli Mafi
- Anesthesiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reyhaneh Hoseinpoor
- Department of Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Leila Rahbarnia
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Aria
- Biotechnology Research Center, Tabriz University of Medical Sciences, Daneshgah Ave, Tabriz, Iran
| |
Collapse
|
12
|
Kumar R. Investigating the long-term stability of protein immunogen(s) for whole recombinant yeast-based vaccines. FEMS Yeast Res 2019; 18:5049006. [PMID: 29982546 DOI: 10.1093/femsyr/foy071] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2018] [Accepted: 06/30/2018] [Indexed: 12/13/2022] Open
Abstract
Even today vaccine(s) remains a mainstay in combating infectious diseases. Many yeast-based vaccines are currently in different phases of clinical trials. Despite the encouraging results of whole recombinant yeast and yeast display, the systematic study assessing the long-term stability of protein antigen(s) in yeast cells is still missing. Therefore, in the present study, I investigate the stability of heterologous protein antigen in the cellular environment of Saccharomyces cerevisiae through Escherichia coli surface protein (major curlin or CsgA). Present biochemical data showed that the stationary-phase yeast cells were able to keep the antigen stable for almost 1 year when stored at 2°C-8°C and 23°C-25°C. Further, iTRAQ-based quantitative proteomics of yeast whole cell lysate showed that the level of heterologous fusion protein was low in cells stored at 23°C-25°C compared to those at 2°C-8°C. In the end, I also proposed a workable strategy to test the integrity or completeness of heterologous protein in the yeast cell. I believe that the observations made in the present study will be really encouraging for those interested in the development of a whole recombinant yeast-based vaccine(s).
Collapse
Affiliation(s)
- Ravinder Kumar
- Section of Molecular Biology, Division of Biological Sciences, University of California San Diego, 9500 Gilman Drive, La Jolla, San Diego, CA 92093, USA
| |
Collapse
|
13
|
Joseph JA, Akkermans S, Nimmegeers P, Van Impe JFM. Bioproduction of the Recombinant Sweet Protein Thaumatin: Current State of the Art and Perspectives. Front Microbiol 2019; 10:695. [PMID: 31024485 PMCID: PMC6463758 DOI: 10.3389/fmicb.2019.00695] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 03/19/2019] [Indexed: 12/12/2022] Open
Abstract
There is currently a worldwide trend to reduce sugar consumption. This trend is mostly met by the use of artificial non-nutritive sweeteners. However, these sweeteners have also been proven to have adverse health effects such as dizziness, headaches, gastrointestinal issues, and mood changes for aspartame. One of the solutions lies in the commercialization of sweet proteins, which are not associated with adverse health effects. Of these proteins, thaumatin is one of the most studied and most promising alternatives for sugars and artificial sweeteners. Since the natural production of these proteins is often too expensive, biochemical production methods are currently under investigation. With these methods, recombinant DNA technology is used for the production of sweet proteins in a host organism. The most promising host known today is the methylotrophic yeast, Pichia pastoris. This yeast has a tightly regulated methanol-induced promotor, allowing a good control over the recombinant protein production. Great efforts have been undertaken for improving the yields and purities of thaumatin productions, but a further optimization is still desired. This review focuses on (i) the motivation for using and producing sweet proteins, (ii) the properties and history of thaumatin, (iii) the production of recombinant sweet proteins, and (iv) future possibilities for process optimization based on a systems biology approach.
Collapse
Affiliation(s)
- Jewel Ann Joseph
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Simen Akkermans
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Philippe Nimmegeers
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| | - Jan F. M. Van Impe
- BioTeC+, Chemical and Biochemical Process Technology and Control, Department of Chemical Engineering, KU Leuven, Leuven, Belgium
- Optimization in Engineering Center-of-Excellence, KU Leuven, Leuven, Belgium
- CPMF, Flemish Cluster Predictive Microbiology in Foods, Leuven, Belgium
| |
Collapse
|
14
|
Bischoff F, Giersberg M, Matthes F, Schwalenberg T, Worch S, Kunze G. Selection of the Optimal Yeast Host for the Synthesis of Recombinant Enzymes. Methods Mol Biol 2019; 1923:113-132. [PMID: 30737737 DOI: 10.1007/978-1-4939-9024-5_4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeasts, like Arxula adeninivorans, Hansenula polymorpha, Pichia pastoris, Debaryomyces hansenii, Debaryomyces polymorphus, Schwanniomyces occidentalis, Yarrowia lipolytica, and Saccharomyces cerevisiae are frequently used producers of recombinant enzymes, particularly when posttranslational modifications are mandatory to obtain full functionality. The wide-range transformation/expression platform presented in this chapter can be used to select the optimal yeast host for high-level synthesis of the desired enzyme with favorable biochemical properties. This platform is composed of a selection marker and up to four expression modules in a linearized cassette. Here we describe the protocols for the assembly as well as the transformation of yeast strains with the respective cassettes, screening of transformants, the isolation and biochemical characterization of the enzymes, and finally a simple fermentation strategy to achieve maximal yields of the chosen recombinant enzyme.
Collapse
Affiliation(s)
- Felix Bischoff
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Martin Giersberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Falko Matthes
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Tobias Schwalenberg
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Sebastian Worch
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany
| | - Gotthard Kunze
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK), Gatersleben, Germany.
| |
Collapse
|
15
|
Gündüz Ergün B, Hüccetoğulları D, Öztürk S, Çelik E, Çalık P. Established and Upcoming Yeast Expression Systems. Methods Mol Biol 2019; 1923:1-74. [PMID: 30737734 DOI: 10.1007/978-1-4939-9024-5_1] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Yeast was the first microorganism used by mankind for biotransformation of feedstock that laid the foundations of industrial biotechnology. Long historical use, vast amount of data, and experience paved the way for Saccharomyces cerevisiae as a first yeast cell factory, and still it is an important expression platform as being the production host for several large volume products. Continuing special needs of each targeted product and different requirements of bioprocess operations have led to identification of different yeast expression systems. Modern bioprocess engineering and advances in omics technology, i.e., genomics, transcriptomics, proteomics, secretomics, and interactomics, allow the design of novel genetic tools with fine-tuned characteristics to be used for research and industrial applications. This chapter focuses on established and upcoming yeast expression platforms that have exceptional characteristics, such as the ability to utilize a broad range of carbon sources or remarkable resistance to various stress conditions. Besides the conventional yeast S. cerevisiae, established yeast expression systems including the methylotrophic yeasts Pichia pastoris and Hansenula polymorpha, the dimorphic yeasts Arxula adeninivorans and Yarrowia lipolytica, the lactose-utilizing yeast Kluyveromyces lactis, the fission yeast Schizosaccharomyces pombe, and upcoming yeast platforms, namely, Kluyveromyces marxianus, Candida utilis, and Zygosaccharomyces bailii, are compiled with special emphasis on their genetic toolbox for recombinant protein production.
Collapse
Affiliation(s)
- Burcu Gündüz Ergün
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Damla Hüccetoğulları
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Sibel Öztürk
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey
| | - Eda Çelik
- Department of Chemical Engineering, Hacettepe University, Ankara, Turkey
- Bioengineering Division, Institute of Science, Hacettepe University, Ankara, Turkey
| | - Pınar Çalık
- Biochemical Reaction Engineering Laboratory, Department of Chemical Engineering, Middle East Technical University, Ankara, Turkey.
- Industrial Biotechnology and Metabolic Engineering Laboratory, Department of Biotechnology, Graduate School of Natural and Applied Sciences, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
16
|
He Y, Wang B, Chen W, Cox RJ, He J, Chen F. Recent advances in reconstructing microbial secondary metabolites biosynthesis in Aspergillus spp. Biotechnol Adv 2018; 36:739-783. [DOI: 10.1016/j.biotechadv.2018.02.001] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 01/30/2018] [Accepted: 02/01/2018] [Indexed: 11/28/2022]
|
17
|
Zhang C, Wang Y, Ma S, Li L, Chen L, Yan H, Peng T. Human Enterovirus 71 Protein Displayed on the Surface of Saccharomyces cerevisiae as an Oral Vaccine. Viral Immunol 2017; 29:288-95. [PMID: 27259043 DOI: 10.1089/vim.2015.0110] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Human enterovirus 71 (EV-A71), a major agent of hand, foot, and mouth disease, has become an important public health issue in recent years. No effective antiviral or vaccines against EV-A71 infection are currently available. EV-A71 infection intrudes bodies through the gastric mucosal surface and it is necessary to enhance mucosal immune response to protect children from these pathogens. Recently, the majority of EV-A71 vaccine candidates have been developed for parenteral immunization. However, parenteral vaccine candidates often induce poor mucosal responses. On the other hand, oral vaccines could induce effective mucosal and systemic immunity, and could be easily and safely administered. Thus, proper oral vaccines have attached more interest compared with parenteral vaccine. In this study, the major immunogenic capsid protein of EV-A71 was displayed on the surface of Saccharomyces cerevisiae. Oral immunization of mice with surface-displayed VP1 S. cerevisiae induced systemic humoral and mucosal immune responses, including virus-neutralizing titers, VP1-specific antibody, and the induction of Th1 immune responses in the spleen. Furthermore, oral immunization of mother mice with surface-displayed VP1 S. cerevisiae conferred protection to neonatal mice against the lethal EV-A71 infection. Furthermore, we observed that multiple boost immunization as well as higher immunization dosage could induce higher EV-A71-specific immune response. Our results demonstrated that surface-displayed VP1 S. cerevisiae could be used as potential oral vaccine against EV-A71 infection.
Collapse
Affiliation(s)
- Congdang Zhang
- 1 School of Life Sciences, Anhui University , Hefei, China .,2 Southern China United Vaccine Institute , Guangzhou, China
| | - Yi Wang
- 2 Southern China United Vaccine Institute , Guangzhou, China
| | - Shuzhi Ma
- 2 Southern China United Vaccine Institute , Guangzhou, China
| | - Leike Li
- 3 State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University , Guangzhou, China
| | - Liyun Chen
- 2 Southern China United Vaccine Institute , Guangzhou, China
| | - Huimin Yan
- 4 The State Key Laboratory of Virology, Wuhan Institute of Virology , Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Tao Peng
- 2 Southern China United Vaccine Institute , Guangzhou, China .,3 State Key Laboratory of Respiratory Disease, Sino-French Hoffmann Institute, Guangzhou Medical University , Guangzhou, China
| |
Collapse
|
18
|
Ganeva V, Galutzov B, Angelova B, Suckow M. Electroinduced Extraction of Human Ferritin Heavy Chain Expressed in Hansenula polymorpha. Appl Biochem Biotechnol 2017; 184:1286-1307. [PMID: 29019009 DOI: 10.1007/s12010-017-2627-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/02/2017] [Indexed: 11/24/2022]
Abstract
А protocol for the efficient and selective recovery of human ferritin heavy chain (FTH1) expressed intracellularly in Hansenula polymorpha was developed. It was based on electropermeabilisation and an increase in the cell wall porosity by pulsed electric field (PEF) treatment and subsequent incubation with a low concentration of a lytic enzyme. Irreversible plasma membrane permeabilisation was induced by applying rectangular electric pulses in the flow mode. The electrical treatment itself did not cause the release of the recombinant protein but induced the sensitisation of H. polymorpha cells to the lytic enzyme. Consequently, the subsequent incubation of the permeabilised cells with lyticase led to the recovery of approximately 90% of the recombinant protein, with a purification factor of 1.8. A similar efficiency was obtained by using the industrial lytic enzyme Glucanex. The released FTH1 appears in the form of an oligomer with a molecular mass of approximately 480 kDa, which is able to bind iron. The possibility for scaling the proposed protocol is discussed.
Collapse
Affiliation(s)
- Valentina Ganeva
- Department Biophysics & Radiobiology, Biological Faculty, Sofia University, 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria.
| | - Bojidar Galutzov
- Department Biophysics & Radiobiology, Biological Faculty, Sofia University, 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
| | - Boyana Angelova
- Department Biophysics & Radiobiology, Biological Faculty, Sofia University, 8 Dragan Tzankov Blvd., 1164, Sofia, Bulgaria
| | - Manfred Suckow
- ARTES Biotechnology GmbH, Elizabeth Selbert Str. 9, 40764, Langenfeld, Germany
| |
Collapse
|
19
|
Ansarypour Z, Shahpiri A. Heterologous expression of a rice metallothionein isoform (OsMTI-1b) in Saccharomyces cerevisiae enhances cadmium, hydrogen peroxide and ethanol tolerance. Braz J Microbiol 2017; 48:537-543. [PMID: 28223030 PMCID: PMC5498412 DOI: 10.1016/j.bjm.2016.10.024] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2016] [Revised: 10/12/2016] [Accepted: 10/25/2016] [Indexed: 11/02/2022] Open
Abstract
Metallothioneins are a superfamily of low-molecular-weight, cysteine (Cys)-rich proteins that are believed to play important roles in protection against metal toxicity and oxidative stress. The main purpose of this study was to investigate the effect of heterologous expression of a rice metallothionein isoform (OsMTI-1b) on the tolerance of Saccharomyces cerevisiae to Cd2+, H2O2 and ethanol stress. The gene encoding OsMTI-1b was cloned into p426GPD as a yeast expression vector. The new construct was transformed to competent cells of S. cerevisiae. After verification of heterologous expression of OsMTI-1b, the new strain and control were grown under stress conditions. In comparison to control strain, the transformed S. cerevisiae cells expressing OsMTI-1b showed more tolerance to Cd2+ and accumulated more Cd2+ ions when they were grown in the medium containing CdCl2. In addition, the heterologous expression of GST-OsMTI-1b conferred H2O2 and ethanol tolerance to S. cerevisiae cells. The results indicate that heterologous expression of plant MT isoforms can enhance the tolerance of S. cerevisiae to multiple stresses.
Collapse
Affiliation(s)
- Zahra Ansarypour
- Isfahan University of Technology, College of Agriculture, Department of Biotechnology, Isfahan, Iran
| | - Azar Shahpiri
- Isfahan University of Technology, College of Agriculture, Department of Biotechnology, Isfahan, Iran.
| |
Collapse
|
20
|
Wellenbeck W, Mampel J, Naumer C, Knepper A, Neubauer P. Fast-track development of a lactase production process with Kluyveromyces lactis by a progressive parameter-control workflow. Eng Life Sci 2016; 17:1185-1194. [PMID: 32624746 DOI: 10.1002/elsc.201600031] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2016] [Revised: 08/12/2016] [Accepted: 09/07/2016] [Indexed: 11/12/2022] Open
Abstract
The time-to-market challenge is key to success for consumer goods affiliated industries. In recent years, the dairy industry faces a fast and constantly growing demand for enzymatically produced lactose-free milk products, mainly driven by emerging markets in South America and Asia. In order to take advantage of this opportunity, we developed a fermentation process for lactase (β-galactosidase) from Kluyveromyces lactis within short time. Here, we describe the process of stepwise increasing the level of control over relevant process parameters during scale-up that established a highly efficient and stable production system. Process development started with evolutionary engineering to generate catabolite-derepressed variants of the K. lactis wild-type strain. A high-throughput screening mimicking fed-batch cultivation identified a constitutive lactase overproducer with 260-fold improved activity of 4.4 U per milligram dry cell weight when cultivated in glucose minimal medium. During scale-up, process control was progressively increased up to the level of conventional, fully controlled fed-batch cultivations by simulating glucose feed, applying pH- and dissolved oxygen tension (DOT)-sensor technology to small scale, and by the use of a milliliter stirred tank bioreactor. Additionally, process development was assisted by design-of-experiments optimization of the growth medium employing the response surface methodology.
Collapse
Affiliation(s)
- Wenzel Wellenbeck
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| | - Jörg Mampel
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| | - Christian Naumer
- BRAIN AG (Biotechnology Research and Information Network) Zwingenberg Germany
| | - Andreas Knepper
- Bioprocess Engineering Department of Biotechnology Technische Universität Berlin Berlin Germany
| | - Peter Neubauer
- Bioprocess Engineering Department of Biotechnology Technische Universität Berlin Berlin Germany
| |
Collapse
|
21
|
Golberg A, Sack M, Teissie J, Pataro G, Pliquett U, Saulis G, Stefan T, Miklavcic D, Vorobiev E, Frey W. Energy-efficient biomass processing with pulsed electric fields for bioeconomy and sustainable development. BIOTECHNOLOGY FOR BIOFUELS 2016; 9:94. [PMID: 27127539 PMCID: PMC4848877 DOI: 10.1186/s13068-016-0508-z] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 04/13/2016] [Indexed: 05/24/2023]
Abstract
Fossil resources-free sustainable development can be achieved through a transition to bioeconomy, an economy based on sustainable biomass-derived food, feed, chemicals, materials, and fuels. However, the transition to bioeconomy requires development of new energy-efficient technologies and processes to manipulate biomass feed stocks and their conversion into useful products, a collective term for which is biorefinery. One of the technological platforms that will enable various pathways of biomass conversion is based on pulsed electric fields applications (PEF). Energy efficiency of PEF treatment is achieved by specific increase of cell membrane permeability, a phenomenon known as membrane electroporation. Here, we review the opportunities that PEF and electroporation provide for the development of sustainable biorefineries. We describe the use of PEF treatment in biomass engineering, drying, deconstruction, extraction of phytochemicals, improvement of fermentations, and biogas production. These applications show the potential of PEF and consequent membrane electroporation to enable the bioeconomy and sustainable development.
Collapse
Affiliation(s)
- Alexander Golberg
- />Porter School of Environmental Studies, Tel Aviv University, Tel Aviv, Israel
| | - Martin Sack
- />Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Justin Teissie
- />CNRS, Institut de Pharmacologie et de Biologie Structurale Université de Toulouse, Toulouse, France
| | - Gianpiero Pataro
- />Department of Industrial Engineering, University of Salerno, via Giovanni Paolo II 132, 84084 Fisciano, SA Italy
| | - Uwe Pliquett
- />Institut für Bioprozeβ- und Analysenmeβtechnik e.V., Heilbad Heiligenstadt, Germany
| | - Gintautas Saulis
- />Department of Biology, Faculty of Natural Sciences, Vytautas Magnus University, Kaunas, Lithuania
| | - Töpfl Stefan
- />German Institute of Food Technologies, Quakenbrück, Germany
| | - Damijan Miklavcic
- />Faculty of Electrical Engineering, University of Ljubljana, Ljubljana, Slovenia
| | - Eugene Vorobiev
- />Departement de Genie Chimique, Centre de Recherche de Royallieu, Universite de Technologie de Compiegne, Compiegne, France
| | - Wolfgang Frey
- />Institute for Pulsed Power and Microwave Technology, Karlsruhe Institute of Technology, Karlsruhe, Germany
| |
Collapse
|
22
|
Synthetic biology and molecular genetics in non-conventional yeasts: Current tools and future advances. Fungal Genet Biol 2016; 89:126-136. [DOI: 10.1016/j.fgb.2015.12.001] [Citation(s) in RCA: 135] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2015] [Revised: 11/18/2015] [Accepted: 12/05/2015] [Indexed: 12/16/2022]
|
23
|
Gomes E, de Souza AR, Orjuela GL, Da Silva R, de Oliveira TB, Rodrigues A. Applications and Benefits of Thermophilic Microorganisms and Their Enzymes for Industrial Biotechnology. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_21] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
24
|
Fungal Biotechnology for Industrial Enzyme Production: Focus on (Hemi)cellulase Production Strategies, Advances and Challenges. Fungal Biol 2016. [DOI: 10.1007/978-3-319-27951-0_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
25
|
Yoo SJ, Chung SY, Lee DJ, Kim H, Cheon SA, Kang HA. Use of the cysteine-repressible HpMET3 promoter as a novel tool to regulate gene expression in Hansenula polymorpha. Biotechnol Lett 2015; 37:2237-45. [PMID: 26169200 DOI: 10.1007/s10529-015-1902-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Accepted: 06/29/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVES The promoter of HpMET3, encoding an ATP sulfurylase, was evaluated for its potential as a repressible promoter to downregulate the expression of target genes in the thermotolerant, methylotrophic yeast Hansenula polymorpha. RESULTS The expression of lacZ under the control of the 0.6 kb HpMET3 promoter was efficiently downregulated by cysteine, but not by methionine or sulfate. The HpMET3 promoter was used to generate a conditional mutant of the HpPMT2 gene encoding an O-mannosyltransferase, which is involved in post-translational protein modification. The addition of 0.5 mM cysteine adversely affected the growth of the conditional HpMET3(p)-Hppmt2 mutant strain by downregulating transcription of HpPMT2 to approx. 40 % of the normal levels, indicating that the HpPMT2 gene is essential for cell viability. However, the HpMET3 promoter was neither induced nor repressed in the heterologous host Saccharomyces cerevisiae. CONCLUSION Our results reveal that the cysteine-repressible HpMET3 promoter is a useful tool that downregulates the expression of various genes in H. polymorpha.
Collapse
Affiliation(s)
- Su Jin Yoo
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Seung Yeon Chung
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Dong-Jik Lee
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Hyunah Kim
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Seon Ah Cheon
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea
| | - Hyun Ah Kang
- Department of Life Science, College of Natural Science, Chung-Ang University, Seoul, 156-756, Korea.
| |
Collapse
|
26
|
Morka K, Pietruszka J, Meyer zu Berstenhorst S. Comparative expression of lipase CAL-A in the yeasts Saccharomyces cerevisiae, Kluyveromyces lactis and Hansenula polymorpha to investigate a possible host influence. J Biotechnol 2014; 191:176-86. [DOI: 10.1016/j.jbiotec.2014.08.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 08/13/2014] [Accepted: 08/19/2014] [Indexed: 11/16/2022]
|
27
|
Baeshen NA, Baeshen MN, Sheikh A, Bora RS, Ahmed MMM, Ramadan HAI, Saini KS, Redwan EM. Cell factories for insulin production. Microb Cell Fact 2014; 13:141. [PMID: 25270715 PMCID: PMC4203937 DOI: 10.1186/s12934-014-0141-0] [Citation(s) in RCA: 149] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Accepted: 09/16/2014] [Indexed: 12/17/2022] Open
Abstract
The rapid increase in the number of diabetic patients globally and exploration of alternate insulin delivery methods such as inhalation or oral route that rely on higher doses, is bound to escalate the demand for recombinant insulin in near future. Current manufacturing technologies would be unable to meet the growing demand of affordable insulin due to limitation in production capacity and high production cost. Manufacturing of therapeutic recombinant proteins require an appropriate host organism with efficient machinery for posttranslational modifications and protein refolding. Recombinant human insulin has been produced predominantly using E. coli and Saccharomyces cerevisiae for therapeutic use in human. We would focus in this review, on various approaches that can be exploited to increase the production of a biologically active insulin and its analogues in E. coli and yeast. Transgenic plants are also very attractive expression system, which can be exploited to produce insulin in large quantities for therapeutic use in human. Plant-based expression system hold tremendous potential for high-capacity production of insulin in very cost-effective manner. Very high level of expression of biologically active proinsulin in seeds or leaves with long-term stability, offers a low-cost technology for both injectable as well as oral delivery of proinsulin.
Collapse
Affiliation(s)
- Nabih A Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Mohammed N Baeshen
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Abdullah Sheikh
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Roop S Bora
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Mohamed Morsi M Ahmed
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Nucleic Acids Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City for Scientific Research and Technology Applications, Alexandria, Egypt.
| | - Hassan A I Ramadan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Cell Biology Department, Genetic Engineering and Biotechnology Division, National Research Centre, Tahrir St. Dokki, Cairo, 12311, Egypt.
| | - Kulvinder Singh Saini
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia.
| | - Elrashdy M Redwan
- Department of Biological Sciences, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah, 21589, Saudi Arabia. .,Protein Research Department, Genetic Engineering and Biotechnology Research Institute, City for Scientific Research and Applied Technology, New Borg AL-Arab, Alexandria, Egypt.
| |
Collapse
|
28
|
Silva JG, Coimbra EC, Jesus AL, Mariz FC, Silva KM, Lobato ZI, Campos AC, Coutinho LC, Castro RS, Freitas AC. Secretory expression of Porcine Circovirus Type 2 capsid protein in Pichia pastoris. J Virol Methods 2014; 207:226-31. [DOI: 10.1016/j.jviromet.2014.07.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Revised: 04/23/2014] [Accepted: 07/15/2014] [Indexed: 01/17/2023]
|
29
|
Madhavan A, Sukumaran RK. Promoter and signal sequence from filamentous fungus can drive recombinant protein production in the yeast Kluyveromyces lactis. BIORESOURCE TECHNOLOGY 2014; 165:302-308. [PMID: 24661814 DOI: 10.1016/j.biortech.2014.03.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2013] [Revised: 02/26/2014] [Accepted: 03/01/2014] [Indexed: 06/03/2023]
Abstract
Cross-recognition of promoters from filamentous fungi in yeast can have important consequences towards developing fungal expression systems, especially for the rapid evaluation of their efficacy. A truncated 510bp inducible Trichoderma reesei cellobiohydrolase I (cbh1) promoter was tested for the expression of green fluorescent protein (GFP) in Kluyveromyces lactis after disrupting its native β-galactosidase (lac4) promoter. The efficiency of the CBH1 secretion signal was also evaluated by fusing it to the lac4 promoter of the yeast, which significantly increased the secretion of recombinant protein in K. lactis compared to the native α-mating factor secretion signal. The fungal promoter is demonstrated to have potential to drive heterologous protein production in K. lactis; and the small sized T. reesei cbh1 secretion signal can mediate the protein secretion in K. lactis with high efficiency.
Collapse
Affiliation(s)
- Aravind Madhavan
- Centre for Biofuels, Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695 019, India
| | - Rajeev K Sukumaran
- Centre for Biofuels, Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Industrial Estate PO, Trivandrum 695 019, India.
| |
Collapse
|
30
|
Physical methods for genetic transformation of fungi and yeast. Phys Life Rev 2014; 11:184-203. [DOI: 10.1016/j.plrev.2014.01.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 01/21/2014] [Indexed: 01/27/2023]
|
31
|
Shin MK, Yoo HS. Animal vaccines based on orally presented yeast recombinants. Vaccine 2013; 31:4287-92. [DOI: 10.1016/j.vaccine.2013.07.029] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 07/08/2013] [Accepted: 07/13/2013] [Indexed: 11/29/2022]
|
32
|
Rodicio R, Heinisch JJ. Yeast on the milky way: genetics, physiology and biotechnology of Kluyveromyces lactis. Yeast 2013; 30:165-77. [PMID: 23576126 DOI: 10.1002/yea.2954] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 03/08/2013] [Accepted: 03/12/2013] [Indexed: 11/08/2022] Open
Abstract
The milk yeast Kluyveromyces lactis has a life cycle similar to that of Saccharomyces cerevisiae and can be employed as a model eukaryote using classical genetics, such as the combination of desired traits, by crossing and tetrad analysis. Likewise, a growing set of vectors, marker cassettes and tags for fluorescence microscopy are available for manipulation by genetic engineering and investigating its basic cell biology. We here summarize these applications, as well as the current knowledge regarding its central metabolism, glucose and extracellular stress signalling pathways. A short overview on the biotechnological potential of K. lactis concludes this review.
Collapse
Affiliation(s)
- Rosaura Rodicio
- Departamento de Bioquímica y Biología Molecular and Instituto Universitario de Biotecnología de Asturias, Universidad de Oviedo, Spain
| | | |
Collapse
|
33
|
Eilert E, Kranz A, Hollenberg CP, Piontek M, Suckow M. Synthesis and release of the bacterial compatible solute 5-hydroxyectoine in Hansenula polymorpha. J Biotechnol 2013; 167:85-93. [PMID: 23467000 DOI: 10.1016/j.jbiotec.2013.02.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2012] [Revised: 02/07/2013] [Accepted: 02/11/2013] [Indexed: 11/30/2022]
Abstract
Ectoine and 5-hydroxyectoine belong to the family of compatible solutes which are known to mainly contribute to the adaptation of the cell to osmotic stress by mediation of a constant turgor. In addition the cell's essential functions are maintained under stress conditions like high salinity, heat or aridity stress. Hansenula polymorpha was engineered to catalyze the transformation of monomeric substrates to 5-hydroxyectoine. For this purpose four genes encoding the enzymes of the 5-hydroxyectoine biosynthesis pathway of Halomonas elongata, EctA, EctB, EctC, and EctD, were inserted into the genome of H. polymorpha. Subsequently the syntheses of ectoine and 5-hydroxyectoine were analyzed and optimized. We showed that H. polymorpha is a suitable system for recombinant 5-hydroxyectoine synthesis in gram per liter scale (2.8 g L⁻¹ culture supernatant, 365 μmol/g dcw) in which almost 100% conversion of ectoine to 5-hydroxyectoine without necessity of high salinity were achieved.
Collapse
Affiliation(s)
- Eva Eilert
- ARTES Biotechnology GmbH, Elisabeth-Selbert-Str. 9, 40764 Langenfeld-Rheinland, Germany.
| | | | | | | | | |
Collapse
|
34
|
Madzak C, Beckerich JM. Heterologous Protein Expression and Secretion in Yarrowia lipolytica. YARROWIA LIPOLYTICA 2013. [DOI: 10.1007/978-3-642-38583-4_1] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
35
|
Stock J, Sarkari P, Kreibich S, Brefort T, Feldbrügge M, Schipper K. Applying unconventional secretion of the endochitinase Cts1 to export heterologous proteins in Ustilago maydis. J Biotechnol 2012; 161:80-91. [DOI: 10.1016/j.jbiotec.2012.03.004] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 02/17/2012] [Accepted: 03/08/2012] [Indexed: 01/30/2023]
|
36
|
Protective vaccination against infectious bursal disease virus with whole recombinant Kluyveromyces lactis yeast expressing the viral VP2 subunit. PLoS One 2012; 7:e42870. [PMID: 23024743 PMCID: PMC3443089 DOI: 10.1371/journal.pone.0042870] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Accepted: 07/12/2012] [Indexed: 01/09/2023] Open
Abstract
Here we report on vaccination approaches against infectious bursal disease (IBD) of poultry that were performed with complete yeast of the species Kluyveromyces lactis (K. lactis). Employing a genetic system that enables the rapid production of stably transfected recombinant K. lactis, we generated yeast strains that expressed defined quantities of the virus capsid forming protein VP2 of infectious bursal disease virus (IBDV). Both, subcutaneous as well as oral vaccination regiments with the heat-inactivated but otherwise untreated yeast induced IBDV-neutralizing antibodies in mice and chickens. A full protection against a subsequent IBDV infection was achieved by subcutaneous inoculation of only milligram amounts of yeast per chicken. Oral vaccination also generated protection: while mortality was observed in control animals after virus challenge, none of the vaccinees died and ca. one-tenth were protected as indicated by the absence of lesions in the bursa of Fabricius. Recombinant K. lactis was thus indicated as a potent tool for the induction of a protective immune response by different applications. Subcutaneously applied K. lactis that expresses the IBDV VP2 was shown to function as an efficacious anti-IBD subunit vaccine.
Collapse
|
37
|
Krijger JJ, Baumann J, Wagner M, Schulze K, Reinsch C, Klose T, Onuma OF, Simon C, Behrens SE, Breunig KD. A novel, lactase-based selection and strain improvement strategy for recombinant protein expression in Kluyveromyces lactis. Microb Cell Fact 2012; 11:112. [PMID: 22905717 PMCID: PMC3520740 DOI: 10.1186/1475-2859-11-112] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 05/17/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The Crabtree-negative yeast species Kluyveromyces lactis has been established as an attractive microbial expression system for recombinant proteins at industrial scale. Its LAC genes allow for utilization of the inexpensive sugar lactose as a sole source of carbon and energy. Lactose efficiently induces the LAC4 promoter, which can be used to drive regulated expression of heterologous genes. So far, strain manipulation of K. lactis by homologous recombination was hampered by the high rate of non-homologous end-joining. RESULTS Selection for growth on lactose was applied to target the insertion of heterologous genes downstream of the LAC4 promoter into the K. lactis genome and found to yield high numbers of positive transformants. Concurrent reconstitution of the β-galactosidase gene indicated the desired integration event of the expression cassette, and β-galactosidase activity measurements were used to monitor gene expression for strain improvement and fermentation optimization. The system was particularly improved by usage of a cell lysis resistant strain, VAK367-D4, which allowed for protein accumulation in long-term fermentation. Further optimization was achieved by increased gene dosage of KlGAL4 encoding the activator of lactose and galactose metabolic genes that led to elevated transcription rates. Pilot experiments were performed with strains expressing a single-chain antibody fragment (scFvox) and a viral envelope protein (BVDV-E2), respectively. scFvox was shown to be secreted into the culture medium in an active, epitope-binding form indicating correct processing and protein folding; the E2 protein could be expressed intracellularly. Further data on the influence of protein toxicity on batch fermentation and potential post-transcriptional bottlenecks in protein accumulation were obtained. CONCLUSIONS A novel Kluyveromyces lactis host-vector system was developed that places heterologous genes under the control of the chromosomal LAC4 promoter and that allows monitoring of its transcription rates by β-galactosidase measurement. The procedure is rapid and efficient, and the resulting recombinant strains contain no foreign genes other than the gene of interest. The recombinant strains can be grown non-selectively in rich medium and stably maintained even when the gene product exerts protein toxicity.
Collapse
Affiliation(s)
- Jorrit-Jan Krijger
- Institute of Biology, Martin-Luther University Halle-Wittenberg, Halle, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Abstract
The production of heterologous lipases is one of the most promising strategies to increase the productivity of the bioprocesses and to reduce costs, with the final objective that more industrial lipase applications could be implemented. In this chapter, an overview of the most common microbial expression systems for the overproduction of microbial lipases is presented. Prokaryotic system as Escherichia coli and eukaryotic systems as Saccharomyces cerevisiae and Pichia pastoris are analyzed and compared in terms of productivity, operational, and downstream processing facilities. Finally, an overview of heterologous Candida rugosa and Rhizopus oryzae lipases, two of the most common lipases used in biocatalysis, is presented. In both cases, P. pastoris has been shown as the most promising host system.
Collapse
Affiliation(s)
- Francisco Valero
- Departament d'Enginyeria Química, EE. Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
39
|
|
40
|
Bazan SB, Geginat G, Breinig T, Schmitt MJ, Breinig F. Uptake of various yeast genera by antigen-presenting cells and influence of subcellular antigen localization on the activation of ovalbumin-specific CD8 T lymphocytes. Vaccine 2011; 29:8165-73. [DOI: 10.1016/j.vaccine.2011.07.141] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2011] [Revised: 07/21/2011] [Accepted: 07/25/2011] [Indexed: 02/08/2023]
|
41
|
Piscitelli A, Pezzella C, Giardina P, Faraco V, Giovanni S. Heterologous laccase production and its role in industrial applications. Bioeng Bugs 2011; 1:252-62. [PMID: 21327057 DOI: 10.4161/bbug.1.4.11438] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Revised: 01/25/2010] [Accepted: 01/27/2010] [Indexed: 02/04/2023] Open
Abstract
Laccases are blue multicopper oxidases, catalyzing the oxidation of an array of aromatic substrates concomitantly with the reduction of molecular oxygen to water. These enzymes are implicated in a variety of biological activities. Most of the laccases studied thus far are of fungal origin. The large range of substrates oxidized by laccases has raised interest in using them within different industrial fields, such as pulp delignification, textile dye bleaching, and bioremediation. Laccases secreted from native sources are usually not suitable for large-scale purposes, mainly due to low production yields and high cost of preparation/purification procedures. Heterologous expression may provide higher enzyme yields and may permit to produce laccases with desired properties (such as different substrate specificities, or improved stabilities) for industrial applications. This review surveys researches on heterologous laccase expression focusing on the pivotal role played by recombinant systems towards the development of robust tools for greening modern industry.
Collapse
Affiliation(s)
- Alessandra Piscitelli
- Dipartimento di Chimica Organica e Biochimica, Complesso Universitario Monte S. Angelo, Napoli, Italy.
| | | | | | | | | |
Collapse
|
42
|
Van Den Berg M, Gidijala L, Kiela J, Bovenberg R, Vander Keli I. Biosynthesis of active pharmaceuticals: β-lactam biosynthesis in filamentous fungi. Biotechnol Genet Eng Rev 2011; 27:1-32. [PMID: 21415891 DOI: 10.1080/02648725.2010.10648143] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
β-lactam antibiotics (e.g. penicillins, cephalosporins) are of major clinical importance and contribute to over 40% of the total antibiotic market. These compounds are produced as secondary metabolites by certain actinomycetes and filamentous fungi (e.g. Penicillium, Aspergillus and Acremonium species). The industrial producer of penicillin is the fungus Penicillium chrysogenum. The enzymes of the penicillin biosynthetic pathway are well characterized and most of them are encoded by genes that are organized in a cluster in the genome. Remarkably, the penicillin biosynthetic pathway is compartmentalized: the initial steps of penicillin biosynthesis are catalyzed by cytosolic enzymes, whereas the two final steps involve peroxisomal enzymes. Here, we describe the biochemical properties of the enzymes of β-lactam biosynthesis in P. chrysogenum and the role of peroxisomes in this process. An overview is given on strain improvement programs via classical mutagenesis and, more recently, genetic engineering, leading to more productive strains. Also, the potential of using heterologous hosts for the development of novel ß-lactam antibiotics and non-ribosomal peptide synthetase-based peptides is discussed.
Collapse
Affiliation(s)
- Marco Van Den Berg
- Molecular Cell Biology, Groningen Biomolecular Sciences and Biotechnology Institute (GBB), Kluyver Center for Genomics of Industrial Fermentation, University of Groningen, The Netherlands.
| | | | | | | | | |
Collapse
|
43
|
Anders A, Breunig KD. Evolutionary aspects of a genetic network: studying the lactose/galactose regulon of Kluyveromyces lactis. Methods Mol Biol 2011; 734:259-277. [PMID: 21468994 DOI: 10.1007/978-1-61779-086-7_13] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
The budding yeast Kluyveromyces lactis has diverged from the Saccharomyces lineage before the whole-genome duplication and its genome sequence reveals lower redundancy of many genes. Moreover, it shows lower preference for fermentative carbon metabolism and a broader substrate spectrum making it a particularly rewarding system for comparative and evolutionary studies of carbon-regulated genetic networks. The lactose/galactose regulon of K. lactis, which is regulated by the prototypic transcription activator Gal4 exemplifies important aspects of network evolution when compared with the model GAL regulon of Saccharomyces cerevisiae. Differences in physiology relate to different subcellular compartmentation of regulatory components and, importantly, to quantitative differences in protein-protein interactions rather than major differences in network architecture. Here, we introduce genetic and biochemical tools to study K. lactis in general and the lactose/galactose regulon in particular. We present methods to quantify relevant protein-protein interactions in that network and to visualize such differences in simple plate assays allowing for genetic approaches in further studies.
Collapse
Affiliation(s)
- Alexander Anders
- Institut für Biologie, Martin-Luther-Universität Halle-Wittenberg, Halle, Germany
| | | |
Collapse
|
44
|
Elimination of glycerol and replacement with alternative products in ethanol fermentation by Saccharomyces cerevisiae. J Ind Microbiol Biotechnol 2010; 38:1427-35. [PMID: 21188613 DOI: 10.1007/s10295-010-0928-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2010] [Accepted: 12/06/2010] [Indexed: 10/18/2022]
Abstract
Glycerol is a major by-product of ethanol fermentation by Saccharomyces cerevisiae and typically 2-3% of the sugar fermented is converted to glycerol. Replacing the NAD(+)-regenerating glycerol pathway in S. cerevisiae with alternative NADH reoxidation pathways may be useful to produce metabolites of biotechnological relevance. Under fermentative conditions yeast reoxidizes excess NADH through glycerol production which involves NADH-dependent glycerol-3-phosphate dehydrogenases (Gpd1p and Gpd2p). Deletion of these two genes limits fermentative activity under anaerobic conditions due to accumulation of NADH. We investigated the possibility of converting this excess NADH to NAD(+) by transforming a double mutant (gpd1∆gpd2∆) with alternative oxidoreductase genes that might restore the redox balance and produce either sorbitol or propane-1,2-diol. All of the modifications improved fermentative ability and/or growth of the double mutant strain in a self-generated anaerobic high sugar medium. However, these strain properties were not restored to the level of the parental wild-type strain. The results indicate an apparent partial NAD(+) regeneration ability and formation of significant amounts of the commodity chemicals like sorbitol or propane-1,2-diol. The ethanol yields were maintained between 46 and 48% of the sugar mixture. Other factors apart from the maintenance of the redox balance appeared to influence the growth and production of the alternative products by the genetically manipulated strains.
Collapse
|
45
|
High-throughput screening and selection of yeast cell lines expressing monoclonal antibodies. J Ind Microbiol Biotechnol 2010; 37:961-71. [DOI: 10.1007/s10295-010-0746-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2010] [Accepted: 05/06/2010] [Indexed: 12/27/2022]
|
46
|
Pérez AJ, Rodríguez A, Trelles O, Thode G. A computational strategy for protein function assignment which addresses the multidomain problem. Comp Funct Genomics 2010; 3:423-40. [PMID: 18629055 PMCID: PMC2447339 DOI: 10.1002/cfg.208] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2002] [Accepted: 08/12/2002] [Indexed: 11/25/2022] Open
Abstract
A method for assigning functions to unknown sequences based on finding correlations between short signals and functional annotations in a protein database is presented.
This approach is based on keyword (KW) and feature (FT) information stored in
the SWISS-PROT database. The former refers to particular protein characteristics
and the latter locates these characteristics at a specific sequence position. In this way,
a certain keyword is only assigned to a sequence if sequence similarity is found in
the position described by the FT field. Exhaustive tests performed over sequences
with homologues (cluster set) and without homologues (singleton set) in the database
show that assigning functions is much ’cleaner’ when information about domains (FT
field) is used, than when only the keywords are used.
Collapse
Affiliation(s)
- A J Pérez
- Genetics Department, University of Málaga, Málaga 29071, Spain.
| | | | | | | |
Collapse
|
47
|
Application of simple fed-batch technique to high-level secretory production of insulin precursor using Pichia pastoris with subsequent purification and conversion to human insulin. Microb Cell Fact 2010; 9:31. [PMID: 20462406 PMCID: PMC2882349 DOI: 10.1186/1475-2859-9-31] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2010] [Accepted: 05/12/2010] [Indexed: 12/22/2022] Open
Abstract
Background The prevalence of diabetes is predicted to rise significantly in the coming decades. A recent analysis projects that by the year 2030 there will be ~366 million diabetics around the world, leading to an increased demand for inexpensive insulin to make this life-saving drug also affordable for resource poor countries. Results A synthetic insulin precursor (IP)-encoding gene, codon-optimized for expression in P. pastoris, was cloned in frame with the Saccharomyces cerevisiae α-factor secretory signal and integrated into the genome of P. pastoris strain X-33. The strain was grown to high-cell density in a batch procedure using a defined medium with low salt and high glycerol concentrations. Following batch growth, production of IP was carried out at methanol concentrations of 2 g L-1, which were kept constant throughout the remaining production phase. This robust feeding strategy led to the secretion of ~3 gram IP per liter of culture broth (corresponding to almost 4 gram IP per liter of cell-free culture supernatant). Using immobilized metal ion affinity chromatography (IMAC) as a novel approach for IP purification, 95% of the secreted product was recovered with a purity of 96% from the clarified culture supernatant. Finally, the purified IP was trypsin digested, transpeptidated, deprotected and further purified leading to ~1.5 g of 99% pure recombinant human insulin per liter of culture broth. Conclusions A simple two-phase cultivation process composed of a glycerol batch and a constant methanol fed-batch phase recently developed for the intracellular production of the Hepatitis B surface antigen was adapted to secretory IP production. Compared to the highest previously reported value, this approach resulted in an ~2 fold enhancement of IP production using Pichia based expression systems, thus significantly increasing the efficiency of insulin manufacture.
Collapse
|
48
|
Idiris A, Tohda H, Kumagai H, Takegawa K. Engineering of protein secretion in yeast: strategies and impact on protein production. Appl Microbiol Biotechnol 2010; 86:403-17. [DOI: 10.1007/s00253-010-2447-0] [Citation(s) in RCA: 195] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2009] [Revised: 01/07/2010] [Accepted: 01/09/2010] [Indexed: 01/08/2023]
|
49
|
Steinle A, Witthoff S, Krause JP, Steinbüchel A. Establishment of cyanophycin biosynthesis in Pichia pastoris and optimization by use of engineered cyanophycin synthetases. Appl Environ Microbiol 2010; 76:1062-70. [PMID: 20038708 PMCID: PMC2820970 DOI: 10.1128/aem.01659-09] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2009] [Accepted: 12/12/2009] [Indexed: 11/20/2022] Open
Abstract
Two strains of the methylotrophic yeast Pichia pastoris were used to establish cyanophycin (multi-L-arginyl-poly-L-aspartic acid [CGP]) synthesis and to explore the applicability of this industrially widely used microorganism for the production of this polyamide. Therefore, the CGP synthetase gene from the cyanobacterium Synechocystis sp. strain PCC 6308 (cphA(6308)) was expressed under the control of the alcohol oxidase 1 promoter, yielding CGP contents of up to 10.4% (wt/wt), with the main fraction consisting of the soluble form of the polymer. To increase the polymer contents and to obtain further insights into the structural or catalytic properties of the enzyme, site-directed mutagenesis was applied to cphA(6308) and the mutated gene products were analyzed after expression in P. pastoris and Escherichia coli, respectively. CphA(6308)Delta1, which was truncated by one amino acid at the C terminus; point mutated CphA(6308)C595S; and the combined double-mutant CphA(6308)Delta1C595S protein were purified. They exhibited up to 2.5-fold higher enzyme activities of 4.95 U/mg, 3.20 U/mg, and 4.17 U/mg, respectively, than wild-type CphA(6308) (2.01 U/mg). On the other hand, CphA proteins truncated by two (CphA(6308)Delta2) or three (CphA(6308)Delta3) amino acids at the C terminus showed similar or reduced CphA enzyme activity in comparison to CphA(6308). In flask experiments, a maximum of 14.3% (wt/wt) CGP was detected after the expression of CphA(6308)Delta1 in P. pastoris. For stabilization of the expression plasmid, the his4 gene from Saccharomyces cerevisiae was cloned into the expression vector used and the constructs were transferred to histidine auxotrophic P. pastoris strain GS115. Parallel fermentations at a one-to-one scale revealed 26 degrees C and 6.0 as the optimal temperature and pH, respectively, for CGP synthesis. After optimization of fermentation parameters, medium composition, and the length of the cultivation period, CGP contents could be increased from 3.2 to 13.0% (wt/wt) in cells of P. pastoris GS115 expressing CphA(6308) and up to even 23.3% (wt/wt) in cells of P. pastoris GS115 expressing CphA(6308)Delta1.
Collapse
Affiliation(s)
- Anna Steinle
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Sabrina Witthoff
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Jens P. Krause
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| | - Alexander Steinbüchel
- Institut für Molekulare Mikrobiologie und Biotechnologie, Westfälische Wilhelms-Universität, Münster, Germany
| |
Collapse
|
50
|
Paciello L, de Alteriis E, Mazzoni C, Palermo V, Zueco J, Parascandola P. Performance of the auxotrophic Saccharomyces cerevisiae BY4741 as host for the production of IL-1beta in aerated fed-batch reactor: role of ACA supplementation, strain viability, and maintenance energy. Microb Cell Fact 2009; 8:70. [PMID: 20042083 PMCID: PMC2806294 DOI: 10.1186/1475-2859-8-70] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2009] [Accepted: 12/30/2009] [Indexed: 11/23/2022] Open
Abstract
Background Saccharomyces cerevisiae BY4741 is an auxotrophic commonly used strain. In this work it has been used as host for the expression and secretion of human interleukin-1β (IL1β), using the cell wall protein Pir4 as fusion partner. To achieve high cell density and, consequently, high product yield, BY4741 [PIR4-IL1β] was cultured in an aerated fed-batch reactor, using a defined mineral medium supplemented with casamino acids as ACA (auxotrophy-complementing amino acid) source. Also the S. cerevisiae mutant BY4741 Δyca1 [PIR4-IL1β], carrying the deletion of the YCA1 gene coding for a caspase-like protein involved in the apoptotic response, was cultured in aerated fed-batch reactor and compared to the parental strain, to test the effect of this mutation on strain robustness. Viability of the producer strains was examined during the runs and a mathematical model, which took into consideration the viable biomass present in the reactor and the glucose consumption for both growth and maintenance, was developed to describe and explain the time-course evolution of the process for both, the BY4741 parental and the BY4741 Δyca1 mutant strain. Results Our results show that the concentrations of ACA in the feeding solution, corresponding to those routinely used in the literature, are limiting for the growth of S. cerevisiae BY4741 [PIR4-IL1β] in fed-batch reactor. Even in the presence of a proper ACA supplementation, S. cerevisiae BY4741 [PIR4-IL1β] did not achieve a high cell density. The Δyca1 deletion did not have a beneficial effect on the overall performance of the strain, but it had a clear effect on its viability, which was not impaired during fed-batch operations, as shown by the kd value (0.0045 h-1), negligible if compared to that of the parental strain (0.028 h-1). However, independently of their robustness, both the parental and the Δyca1 mutant ceased to grow early during fed-batch runs, both strains using most of the available carbon source for maintenance, rather than for further proliferation. The mathematical model used evidenced that the energy demand for maintenance was even higher in the case of the Δyca1 mutant, accounting for the growth arrest observed despite the fact that cell viability remained comparatively high. Conclusions The paper points out the relevance of a proper ACA formulation for the outcome of a fed-batch reactor growth carried out with S. cerevisiae BY4741 [PIR4-IL1β] strain and shows the sensitivity of this commonly used auxotrophic strain to aerated fed-batch operations. A Δyca1 disruption was able to reduce the loss of viability, but not to improve the overall performance of the process. A mathematical model has been developed that is able to describe the behaviour of both the parental and mutant producer strain during fed-batch runs, and evidence the role played by the energy demand for maintenance in the outcome of the process.
Collapse
Affiliation(s)
- Lucia Paciello
- Dip to Ingegneria Chimica e Alimentare, Università di Salerno, Via Ponte Don Melillo, 84084 Fisciano, Salerno, Italy.
| | | | | | | | | | | |
Collapse
|