1
|
|
2
|
Abstract
The olfactory system allows animals to navigate in their environment to feed, mate, and escape predators. It is well established that odorant exposure or electrical stimulation of the olfactory system induces stereotyped motor responses in fishes. However, the neural circuitry responsible for the olfactomotor transformations is only beginning to be unraveled. A neural substrate eliciting motor responses to olfactory inputs was identified in the lamprey, a basal vertebrate used extensively to examine the neural mechanisms underlying sensorimotor transformations. Two pathways were discovered from the olfactory organ in the periphery to the brainstem motor nuclei responsible for controlling swimming. The first pathway originates from sensory neurons located in the accessory olfactory organ and reaches a single population of projection neurons in the medial olfactory bulb, which, in turn, transmit the olfactory signals to the posterior tuberculum and then to downstream brainstem locomotor centers. A second pathway originates from the main olfactory epithelium and reaches the main olfactory bulb, the neurons of which project to the pallium/cortex. The olfactory signals are then conveyed to the posterior tuberculum and then to brainstem locomotor centers. Olfactomotor behavior can adapt, and studies were aimed at defining the underlying neural mechanisms. Modulation of bulbar neural activity by GABAergic, dopaminergic, and serotoninergic inputs is likely to provide strong control over the hardwired circuits to produce appropriate motor behavior in response to olfactory cues. This review summarizes current knowledge relative to the neural circuitry producing olfactomotor behavior in lampreys and their modulatory mechanisms.
Collapse
|
3
|
Dieris M, Kowatschew D, Korsching SI. Olfactory function in the trace amine-associated receptor family (TAARs) evolved twice independently. Sci Rep 2021; 11:7807. [PMID: 33833329 PMCID: PMC8032801 DOI: 10.1038/s41598-021-87236-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/18/2021] [Indexed: 11/23/2022] Open
Abstract
Olfactory receptor families have arisen independently several times during evolution. The origin of taar genes, one of the four major vertebrate olfactory receptor families, is disputed. We performed a phylogenetic analysis making use of 96 recently available genomes, and report that olfactory functionality has arisen twice independently within the TAAR family, once in jawed and once in jawless fish. In lamprey, an ancestral gene expanded to generate a large family of olfactory receptors, while the sister gene in jawed vertebrates did not expand and is not expressed in olfactory sensory neurons. Both clades do not exhibit the defining TAAR motif, and we suggest naming them taar-like receptors (tarl). We have identified the evolutionary origin of both taar and tarl genes in a duplication of the serotonergic receptor 4 that occurred in the most recent common ancestor of vertebrates. We infer two ancestral genes in bony fish (TAAR12, TAAR13) which gave rise to the complete repertoire of mammalian olfactory taar genes and to class II of the taar repertoire of teleost fish. We follow their evolution in seventy-one bony fish genomes and report a high evolutionary dynamic, with many late gene birth events and both early and late gene death events.
Collapse
Affiliation(s)
- Milan Dieris
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Daniel Kowatschew
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany
| | - Sigrun I Korsching
- Institute for Genetics, University At Cologne, Zülpicher Str. 47A, 50674, Cologne, Germany.
| |
Collapse
|
4
|
Olfactory encoding within the insect antennal lobe: The emergence and role of higher order temporal correlations in the dynamics of antennal lobe spiking activity. J Theor Biol 2021; 522:110700. [PMID: 33819477 DOI: 10.1016/j.jtbi.2021.110700] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/20/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
In this review, we focus on the antennal lobe (AL) of three insect species - the fruit fly, sphinx moth, and locust. We first review the experimentally elucidated anatomy and physiology of the early olfactory system of each species; empirical studies of AL activity, however, often focus on assessing firing rates (averaged over time scales of about 100 ms), and hence the AL odor code is often analyzed in terms of a temporally evolving vector of firing rates. However, such a perspective necessarily misses the possibility of higher order temporal correlations in spiking activity within a single cell and across multiple cells over shorter time scales (of about 10 ms). Hence, we then review our prior theoretical work, where we constructed biophysically detailed, species-specific AL models within the fly, moth, and locust, finding that in each case higher order temporal correlations in spiking naturally emerge from model dynamics (i.e., without a prioriincorporation of elements designed to produce correlated activity). We therefore use our theoretical work to argue the perspective that temporal correlations in spiking over short time scales, which have received little experimental attention to-date, may provide valuable coding dimensions (complementing the coding dimensions provided by the vector of firing rates) that nature has exploited in the encoding of odors within the AL. We further argue that, if the AL does indeed utilize temporally correlated activity to represent odor information, such an odor code could be naturally and easily deciphered within the Mushroom Body.
Collapse
|
5
|
Abstract
Amniotes originated on land, but aquatic/amphibious groups emerged multiple times independently in amniotes. On becoming aquatic, species with different phylogenetic backgrounds and body plans have to adapt themselves to handle similar problems inflicted by their new environment, and this makes aquatic adaptation of amniotes one of the greatest natural experiments. Particularly, evolution of the sense of smell upon aquatic adaptation is of great interest because receptors required for underwater olfaction differ remarkably from those for terrestrial olfaction. Here, I review the olfactory capabilities of aquatic/amphibious amniotes, especially those of cetaceans and sea snakes. Most aquatic/amphibious amniotes show reduced olfactory organs, receptor gene repertoires, and olfactory capabilities. Remarkably, cetaceans and sea snakes show extreme examples: cetaceans have lost the vomeronasal system, and furthermore, toothed whales have lost all of their olfactory nervous systems. Baleen whales can smell in the air, but their olfactory capability is limited. Fully aquatic sea snakes have lost the main olfactory system but they retain the vomeronasal system for sensing underwater. Amphibious species show an intermediate status between terrestrial and aquatic species, implying their importance on understanding the process of aquatic adaptation. The olfactory capabilities of aquatic amniotes are diverse, reflecting their diverse phylogenetic backgrounds and ecology.
Collapse
|
6
|
Abstract
Vertebrates develop an olfactory system that detects odorants and pheromones through their interaction with specialized cell surface receptors on olfactory sensory neurons. During development, the olfactory system forms from the olfactory placodes, specialized areas of the anterior ectoderm that share cellular and molecular properties with placodes involved in the development of other cranial senses. The early-diverging chordate lineages amphioxus, tunicates, lampreys and hagfishes give insight into how this system evolved. Here, we review olfactory system development and cell types in these lineages alongside chemosensory receptor gene evolution, integrating these data into a description of how the vertebrate olfactory system evolved. Some olfactory system cell types predate the vertebrates, as do some of the mechanisms specifying placodes, and it is likely these two were already connected in the common ancestor of vertebrates and tunicates. In stem vertebrates, this evolved into an organ system integrating additional tissues and morphogenetic processes defining distinct olfactory and adenohypophyseal components, followed by splitting of the ancestral placode to produce the characteristic paired olfactory organs of most modern vertebrates.
Collapse
Affiliation(s)
- Guillaume Poncelet
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| | - Sebastian M Shimeld
- Department of Zoology, University of Oxford, 11a Mansfield Road, Oxford OX1 3SZ, UK
| |
Collapse
|
7
|
C Silva M, Chibucos M, Munro JB, Daugherty S, Coelho MM, C Silva J. Signature of adaptive evolution in olfactory receptor genes in Cory's Shearwater supports molecular basis for smell in procellariiform seabirds. Sci Rep 2020; 10:543. [PMID: 31953474 PMCID: PMC6969042 DOI: 10.1038/s41598-019-56950-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2018] [Accepted: 12/12/2019] [Indexed: 11/17/2022] Open
Abstract
Olfactory receptors (ORs), encoded by the largest vertebrate multigene family, enable the detection of thousands of unique odorants in the environment and consequently play a critical role in species survival. Here, we advance our knowledge of OR gene evolution in procellariiform seabirds, an avian group which relies on the sense of olfaction for critical ecological functions. We built a cosmid library of Cory's Shearwater (Calonectris borealis) genomic DNA, a model species for the study of olfaction-based navigation, and sequence OR gene-positive cosmid clones with a combination of sequencing technologies. We identified 220 OR open reading frames, 20 of which are full length, intact OR genes, and found a large ratio of partial and pseudogenes to intact OR genes (2:1), suggestive of a dynamic mode of evolution. Phylogenetic analyses revealed that while a few genes cluster with those of other sauropsid species in a γ (gamma) clade that predates the divergence of different avian lineages, most genes belong to an avian-specific γ-c clade, within which sequences cluster by species, suggesting frequent duplication and/or gene conversion events. We identified evidence of positive selection on full length γ-c clade genes. These patterns are consistent with a key role of adaptation in the functional diversification of olfactory receptor genes in a bird lineage that relies extensively on olfaction.
Collapse
Affiliation(s)
- Mónica C Silva
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal.
| | - Marcus Chibucos
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - James B Munro
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - Sean Daugherty
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
| | - M Manuela Coelho
- cE3c - Centre for Ecology, Evolution and Environmental Changes, Faculdade de Ciências, Universidade de Lisboa, 1749-016, Lisboa, Portugal
| | - Joana C Silva
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, USA
- Department of Microbiology and Immunology, University of Maryland School of Medicine, Baltimore, USA
| |
Collapse
|
8
|
Cho SW, Park TH. Comparative Evaluation of Sensitivity to Hexanal Between Human and Canine Olfactory Receptors. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0265-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
9
|
Khan I, Yang Z, Maldonado E, Li C, Zhang G, Gilbert MTP, Jarvis ED, O’Brien SJ, Johnson WE, Antunes A. Olfactory Receptor Subgenomes Linked with Broad Ecological Adaptations in Sauropsida. Mol Biol Evol 2015. [DOI: 10.1093/molbev/msv155] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
10
|
Hayden S, Teeling EC. The molecular biology of vertebrate olfaction. Anat Rec (Hoboken) 2015; 297:2216-26. [PMID: 25312375 DOI: 10.1002/ar.23031] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 06/25/2014] [Indexed: 01/16/2023]
Abstract
The importance of chemosensation for vertebrates is reflected in the vast and variable nature of their chemosensory tissues, neurons, and genes, which we explore in this review. Immense progress has been made in elucidating the molecular biology of olfaction since the discovery of the olfactory receptor genes by Buck and Axel, which eventually won the authors the Nobel Prize. In particular, research linking odor ligands to olfactory receptors (ORs) is truly revolutionizing our understanding of how a large but limited number of chemosensory receptors can allow us to perceive the massive diversity of odors in our habitat. This research is providing insight into the evolution of genomes and providing the raw data needed to explore links between genotype and phenotype, still a grand challenge in biology. Research into olfaction is still developing and will no doubt continue until we have a clear understanding of how all odors are detected and the evolutionary forces that have molded the chemosensory subgenome in vertebrates. This knowledge will not only be a huge step in elucidating olfactory function, advancing scientific knowledge and techniques, but there are also commercial applications for this research. This review focuses on the molecular basis of chemosensation, particularly olfaction, its evolution across vertebrates and the recent molecular advances linking odors to their cognate receptors.
Collapse
Affiliation(s)
- Sara Hayden
- Department of Biochemistry, University of Washington, Seattle, Washington
| | | |
Collapse
|
11
|
Pause BM. Processing of Body Odor Signals by the Human Brain. CHEMOSENS PERCEPT 2011; 5:55-63. [PMID: 22448299 PMCID: PMC3309140 DOI: 10.1007/s12078-011-9108-2] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Accepted: 11/25/2011] [Indexed: 12/30/2022]
Abstract
Brain development in mammals has been proposed to be promoted by successful adaptations to the social complexity as well as to the social and non-social chemical environment. Therefore, the communication via chemosensory signals might have been and might still be a phylogenetically ancient communication channel transmitting evolutionary significant information. In humans, the neuronal underpinnings of the processing of social chemosignals have been investigated in relation to kin recognition, mate choice, the reproductive state and emotional contagion. These studies reveal that human chemosignals are probably not processed within olfactory brain areas but through neuronal relays responsible for the processing of social information. It is concluded that the processing of human social chemosignals resembles the processing of social signals originating from other modalities, except that human social chemosignals are usually communicated without the allocation of attentional resources, that is below the threshold of consciousness. Deviances in the processing of human social chemosignals might be related to the development and maintenance of mental disorders.
Collapse
Affiliation(s)
- Bettina M Pause
- Department of Experimental Psychology, University of Duesseldorf, Universitaetsstraße 1, 40225 Duesseldorf, Germany
| |
Collapse
|
12
|
Chen M, Peng Z, He S. Olfactory receptor gene family evolution in stickleback and medaka fishes. SCIENCE CHINA-LIFE SCIENCES 2010; 53:257-66. [PMID: 20596836 DOI: 10.1007/s11427-010-0025-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 08/20/2009] [Indexed: 11/27/2022]
Abstract
Interaction of olfactory receptor (OR) genes with environmental odors is regarded as the first step of olfaction. In this study, OR genes of two fish, medaka (Oryzias latipes) and stickleback (Gasterosteus aculeatus), were identified and an evolutional analysis was conducted. The selection pressure of different TM regions and complete coding region were compared. Three TM regions (TM4, TM5 and TM6) were found to have higher average Ka/Ks values, which might be partly caused by positive selection as suggested by subsequent positive selection analysis. Further analysis showed that many PTSs overlap, or are adjacent to previously deduced binding sites in mammals. These results support the hypothesis that binding sites of fish OR genes may evolved under positive selection.
Collapse
Affiliation(s)
- Ming Chen
- Laboratory of Fish Phylogenetics and Biogeography, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | | | | |
Collapse
|
13
|
Ferrando S, Gambardella C, Ravera S, Bottero S, Ferrando T, Gallus L, Manno V, Salati AP, Ramoino P, Tagliafierro G. Immunolocalization of G-protein alpha subunits in the olfactory system of the cartilaginous fish Scyliorhinus canicula. Anat Rec (Hoboken) 2010; 292:1771-9. [PMID: 19768751 DOI: 10.1002/ar.21003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
In the olfactory and vomeronasal systems of vertebrates, the morphology of the receptor neurons, the receptor gene family they express, the G-protein coupled with the receptor (in particular the G-protein alpha subunit), and their projection to the olfactory bulb are correlated. Much information about this complicated system have been collected in different groups, but nothing is known about Chondrichthyes. In this work, the presence and distribution of immunoreactivity for different types of G-protein alpha subunit (Galpha(o), Galpha(q) and Galpha(s/olf)) were investigated in the olfactory mucosa and olfactory bulb of the shark Scyliorhinus canicula. Only Galpha(o)-like immunoreactivity was detected in the olfactory mucosa and bulb, both in tissues and homogenates. Its distribution was partially similar to that found in other vertebrates: it was localized in the microvillous receptor neurons, in numerous axon bundles of the fila olfactoria, in the stratum nervosum and in the most of glomeruli in the stratum glomerulosum. No immunoreactivity was instead observed in the crypt neurons, the second type of olfactory neurons present in cartilaginous fish. The projections of crypt neurons to olfactory bulb probably correspond to the few ventrally-located glomeruli which were negative to the antiserum against Galpha(o). These data suggest, in S. canicula, different olfactory neuron types send projections to the olfactory bulb with a segregated distribution, as observed in other vertebrates.
Collapse
Affiliation(s)
- Sara Ferrando
- Department of Biology, University of Genoa, Genoa, Italy.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Amphioxus (Branchiostoma floridae) has orthologs of vertebrate odorant receptors. BMC Evol Biol 2009; 9:242. [PMID: 19804645 PMCID: PMC2764704 DOI: 10.1186/1471-2148-9-242] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 10/05/2009] [Indexed: 12/29/2022] Open
Abstract
Background A common feature of chemosensory systems is the involvement of G protein-coupled receptors (GPCRs) in the detection of environmental stimuli. Several lineages of GPCRs are involved in vertebrate olfaction, including trace amine-associated receptors, type 1 and 2 vomeronasal receptors and odorant receptors (ORs). Gene duplication and gene loss in different vertebrate lineages have lead to an enormous amount of variation in OR gene repertoire among species; some fish have fewer than 100 OR genes, while some mammals possess more than 1000. Fascinating features of the vertebrate olfactory system include allelic exclusion, where each olfactory neuron expresses only a single OR gene, and axonal guidance where neurons expressing the same receptor project axons to common glomerulae. By identifying homologous ORs in vertebrate and in non-vertebrate chordates, we hope to expose ancestral features of the chordate olfactory system that will help us to better understand the evolution of the receptors themselves and of the cellular components of the olfactory system. Results We have identified 50 full-length and 11 partial ORs in Branchiostoma floridae. No ORs were identified in Ciona intestinalis. Phylogenetic analysis places the B. floridae OR genes in a monophyletic clade with the vertebrate ORs. The majority of OR genes in amphioxus are intronless and many are also tandemly arrayed in the genome. By exposing conserved amino acid motifs and testing the ability of those motifs to discriminate between ORs and non-OR GPCRs, we identified three OR-specific amino acid motifs common in cephalochordate, fish and mammalian and ORs. Conclusion Here, we show that amphioxus has orthologs of vertebrate ORs. This conclusion demonstrates that the receptors, and perhaps other components of vertebrate olfaction, evolved at least 550 million years ago. We have also identified highly conserved amino acid motifs that may be important for maintaining receptor conformation or regulating receptor activity. We anticipate that the identification of vertebrate OR orthologs in amphioxus will lead to an improved understanding of OR gene family evolution, OR gene function, and the mechanisms that control cell-specific expression, axonal guidance, signal transduction and signal integration.
Collapse
|
15
|
Hino H, Miles NG, Bandoh H, Ueda H. Molecular biological research on olfactory chemoreception in fishes. JOURNAL OF FISH BIOLOGY 2009; 75:945-959. [PMID: 20738593 DOI: 10.1111/j.1095-8649.2009.02341.x] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
This review describes recent molecular biological research on olfactory chemoreception in fishes. The recent rapid development of molecular biological techniques has provided new valuable information on the main and vomeronasal olfactory receptor (OR) genes, the axonal projection from ciliated, microvillous and crypt-olfactory receptor cells to the olfactory bulb, properties of odorant substances and olfactory imprinting and homing in salmon. Many important questions, however, remain unanswered on functional differences among OR genes, on ligand binding to each OR and on the molecular biological mechanisms underlying olfactory imprinting and homing in salmon. Olfactory chemoreception is believed to be the oldest sensory cue for both animal survival and adaptation to various different environments. Further intensive molecular biological research on olfactory memory formation and remembrance should be carried out to clarify the fundamental process of olfactory chemoreception in fishes.
Collapse
Affiliation(s)
- H Hino
- Laboratory of Aquatic Bioresources and Ecosystem, Field Science Center for Northern Biosphere, Hokkaido University, Sapporo, Hokkaido 060-0809, Japan
| | | | | | | |
Collapse
|
16
|
Libants S, Carr K, Wu H, Teeter JH, Chung-Davidson YW, Zhang Z, Wilkerson C, Li W. The sea lamprey Petromyzon marinus genome reveals the early origin of several chemosensory receptor families in the vertebrate lineage. BMC Evol Biol 2009; 9:180. [PMID: 19646260 PMCID: PMC2728731 DOI: 10.1186/1471-2148-9-180] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 07/31/2009] [Indexed: 01/26/2023] Open
Abstract
Background In gnathostomes, chemosensory receptors (CR) expressed in olfactory epithelia are encoded by evolutionarily dynamic gene families encoding odorant receptors (OR), trace amine-associated receptors (TAAR), V1Rs and V2Rs. A limited number of OR-like sequences have been found in invertebrate chordate genomes. Whether these gene families arose in basal or advanced vertebrates has not been resolved because these families have not been examined systematically in agnathan genomes. Results Petromyzon is the only extant jawless vertebrate whose genome has been sequenced. Known to be exquisitely sensitive to several classes of odorants, lampreys detect fewer amino acids and steroids than teleosts. This reduced number of detectable odorants is indicative of reduced numbers of CR gene families or a reduced number of genes within CR families, or both, in the sea lamprey. In the lamprey genome we identified a repertoire of 59 intact single-exon CR genes, including 27 OR, 28 TAAR, and four V1R-like genes. These three CR families were expressed in the olfactory organ of both parasitic and adult life stages. Conclusion An extensive search in the lamprey genome failed to identify potential orthologs or pseudogenes of the multi-exon V2R family that is greatly expanded in teleost genomes, but did find intact calcium-sensing receptors (CASR) and intact metabotropic glutamate receptors (MGR). We conclude that OR and V1R arose in chordates after the cephalochordate-urochordate split, but before the diversification of jawed and jawless vertebrates. The advent and diversification of V2R genes from glutamate receptor-family G protein-coupled receptors, most likely the CASR, occurred after the agnathan-gnathostome divergence.
Collapse
Affiliation(s)
- Scot Libants
- Department of Fisheries and Wildlife, Michigan State University, East Lansing, MI 48824, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Klaschka U. A new challenge-development of test systems for the infochemical effect. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2009; 16:370-388. [PMID: 19189145 DOI: 10.1007/s11356-008-0093-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2008] [Accepted: 11/25/2008] [Indexed: 05/27/2023]
Abstract
BACKGROUND, AIM, AND SCOPE Many-if not all-organisms depend on so-called infochemicals, chemical substances in their surroundings which inform the receivers about their biotic and abiotic environment and which allow them to react adequately to these signals. Anthropogenic substances can interfere with this complex chemical communication system. This finding is called infochemical effect. So far, it is not known to what extent anthropogenic discharges act as infochemicals and influence life and reproduction of organisms in the environment because adequate testing methods to identify chemicals which show the infochemical effect and to quantify their effects have not been developed yet. The purpose of this article is to help and find suitable test designs. MAIN FEATURES Test systems used in basic research to elucidate the olfactory cascade and the communication of environmental organisms by infochemicals are plentiful. Some of them might be the basis for a quantified ecotoxicological analysis of the infochemical effect. In principle, test systems for the infochemical effect could be developed at each step of the chemosensory signal transduction and processing cascade. RESULTS Experimental set-ups were compiled systematically under the aspect whether they might be usable for testing the infochemical effect of single chemicals in standardized quantifying laboratory experiments. For an appropriate ecotoxicological assessment of the infochemical effect, experimental studies of many disciplines, such as molecular biology, neurobiology, physiology, chemical ecology, and population dynamics, should be evaluated in detail before a decision can be made which test system, respectively which test battery, might be suited best. The test systems presented here are based on the knowledge of the genetic sequences for olfactory receptors, binding studies of odorants, signal transmission, and reactions of the receivers on the level of the organisms or the populations. The following basic approaches are conceivable to identify the role of an infochemical: binding studies to the odorant-binding protein or to the odorant receptor binding protein (e.g., by in situ hybridization and immunohistochemical studies), measurement of electrical signals of the receptor cells in the tissue (e.g., electroolfactograms, electroantennograms), registration of phenotypic changes (e.g., observation under the microscope), behavioral tests (e.g., in situ online biomonitoring, use of T-shaped olfactometers, tests of avoidance responses), measurement of population changes (e.g., cell density or turbidity measurements), and multispecies tests with observation of community structure and community function. The main focus of this study is on aquatic organisms. DISCUSSION It is evident that the infochemical effect is a very complex sublethal endpoint, and it needs further studies with standardized quantitative methods to elucidate whether and to what extent the ecosystem is affected. The collection of approaches presented here is far from being complete but should serve as a point of depart for further experimental research. CONCLUSIONS This article is the first to compare various approaches for testing the infochemical effect. The development of a suitable test system will not be easy as there are a multitude of relevant chemicals, a multitude of relevant receptors, and a multitude of relevant reactions, and it must be expected that the effective concentrations are very low. The chemical communication is of utmost importance for the ecosystem and justifies great endeavors to find solutions to these technical problems. RECOMMENDATIONS AND PERSPECTIVES The infochemical effect is a new chapter in ecotoxicology. Will a new endpoint, the so-called infochemical effect, be required in addition to the actual standard test battery of Annex 5 to Commission Directive 92/69/EEC (EC 1992)? Finding the answer to this question is a big challenge that could be met by a comprehensive research project.
Collapse
Affiliation(s)
- Ursula Klaschka
- University of Applied Sciences Ulm, Prittwitzstr. 10, 89075, Ulm, Germany.
| |
Collapse
|
18
|
Steiger SS, Fidler AE, Kempenaers B. Evidence for increased olfactory receptor gene repertoire size in two nocturnal bird species with well-developed olfactory ability. BMC Evol Biol 2009; 9:117. [PMID: 19467156 PMCID: PMC2701422 DOI: 10.1186/1471-2148-9-117] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 05/25/2009] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vertebrates, the molecular basis of the sense of smell is encoded by members of a large gene family, namely olfactory receptor (OR) genes. Both the total number of OR genes and the proportion of intact OR genes in a genome may indicate the importance of the sense of smell for an animal. There is behavioral, physiological, and anatomical evidence that some bird species, in particular nocturnal birds, have a well developed sense of smell. Therefore, we hypothesized that nocturnal birds with good olfactory abilities have evolved (i) more OR genes and (ii) more intact OR genes than closely related and presumably less 'olfaction-dependent' day-active avian taxa. RESULTS We used both non-radioactive Southern hybridization and PCR with degenerate primers to investigate whether two nocturnal bird species that are known to rely on olfactory cues, the brown kiwi (Apteryx australis) and the kakapo (Strigops habroptilus), have evolved a larger OR gene repertoire than their day-active, closest living relatives (for kiwi the emu Dromaius novaehollandiae, rhea Rhea americana, and ostrich Struthio camelus and for kakapo the kaka Nestor meridionalis and kea Nestor notabilis). We show that the nocturnal birds did not have a significantly higher proportion of intact OR genes. However, the estimated total number of OR genes was larger in the two nocturnal birds than in their relatives. CONCLUSION Our results suggest that ecological niche adaptations such as daily activity patterns may have shaped avian OR gene repertoires.
Collapse
Affiliation(s)
- Silke S Steiger
- Department of Behavioural Ecology and Evolutionary Genetics, Max-Planck Institute for Ornithology, Eberhard-Gwinner Strasse, 82319 Seewiesen, Germany
| | - Andrew E Fidler
- Cawthron Institute, 98 Halifax Street East, Private Bag 2, Nelson 7042, New Zealand
| | - Bart Kempenaers
- Department of Behavioural Ecology and Evolutionary Genetics, Max-Planck Institute for Ornithology, Eberhard-Gwinner Strasse, 82319 Seewiesen, Germany
| |
Collapse
|
19
|
Niimura Y. On the origin and evolution of vertebrate olfactory receptor genes: comparative genome analysis among 23 chordate species. Genome Biol Evol 2009; 1:34-44. [PMID: 20333175 PMCID: PMC2817399 DOI: 10.1093/gbe/evp003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2009] [Indexed: 12/27/2022] Open
Abstract
Olfaction is a primitive sense in organisms. Both vertebrates and insects have
receptors for detecting odor molecules in the environment, but the evolutionary
origins of these genes are different. Among studied vertebrates, mammals have
∼1,000 olfactory receptor (OR) genes, whereas teleost fishes have much
smaller (∼100) numbers of OR genes. To investigate the origin and
evolution of vertebrate OR genes, I attempted to determine near-complete OR gene
repertoires by searching whole-genome sequences of 14 nonmammalian chordates,
including cephalochordates (amphioxus), urochordates (ascidian and larvacean),
and vertebrates (sea lamprey, elephant shark, five teleost fishes, frog, lizard,
and chicken), followed by a large-scale phylogenetic analysis in conjunction
with mammalian OR genes identified from nine species. This analysis showed that
the amphioxus has >30 vertebrate-type OR genes though it lacks
distinctive olfactory organs, whereas all OR genes appear to have been lost in
the urochordate lineage. Some groups of genes (θ, κ, and
λ) that are phylogenetically nested within vertebrate OR genes showed
few gene gains and losses, which is in sharp contrast to the evolutionary
pattern of OR genes, suggesting that they are actually non-OR genes. Moreover,
the analysis demonstrated a great difference in OR gene repertoires between
aquatic and terrestrial vertebrates, reflecting the necessity for the detection
of water-soluble and airborne odorants, respectively. However, a minor group
(β) of genes that are atypically present in both aquatic and
terrestrial vertebrates was also found. These findings should provide a critical
foundation for further physiological, behavioral, and evolutionary studies of
olfaction in various organisms.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
20
|
Abstract
Sensing the chemical environment is critical for all organisms. Diverse animals from insects to mammals utilize highly organized olfactory system to detect, encode, and process chemostimuli that may carry important information critical for health, survival, social interactions and reproduction. Therefore, for animals to properly interpret and react to their environment it is imperative that the olfactory system recognizes chemical stimuli with appropriate selectivity and sensitivity. Because olfactory receptor proteins play such an essential role in the specific recognition of diverse stimuli, understanding how they interact with and transduce their cognate ligands is a high priority. In the nearly two decades since the discovery that the mammalian odorant receptor gene family constitutes the largest group of G protein-coupled receptor (GPCR) genes, much attention has been focused on the roles of GPCRs in vertebrate and invertebrate olfaction. However, is has become clear that the 'family' of olfactory receptors is highly diverse, with roles for enzymes and ligand-gated ion channels as well as GPCRs in the primary detection of olfactory stimuli.
Collapse
Affiliation(s)
- Marc Spehr
- Department of Chemosensation, Institute for Biology II, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
21
|
Korsching S. The molecular evolution of teleost olfactory receptor gene families. Results Probl Cell Differ 2009; 47:37-55. [PMID: 18956167 DOI: 10.1007/400_2008_11] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Four olfactory receptor gene families, all of them G protein-coupled receptors, have been identified and characterized in mammals--the odorant (OR), vomeronasal (V1R and V2R) and trace amine-associated (TAARs) receptors. Much less attention has been directed towards non-mammalian members of these families. Since a hallmark of mammalian olfactory receptors is their remarkable species specificity, an evaluation of the non-mammalian olfactory receptors is instructive both for comparative purposes and in its own right. In this review I have compiled the results currently available for all four olfactory gene families and discuss their phylogenomic properties in relation to their mammalian counterparts. Representatives of all four families are found in cartilaginous fish and/or jawless fish, allowing a minimal estimate for the evolutionary origin as preceding the segregation between cartilaginous and bony fish or cartilaginous and jawless fish, respectively. Gene repertoires of teleost olfactory receptors are smaller in size (OR, ORA), comparable (olfC), or even larger (TAAR) than the corresponding mammalian gene repertoires. Despite their smaller repertoire size, the teleost OR and ORA families show much larger divergence than their mammalian counterparts. Evolutionary rates vary greatly between families, with evidence for positive selection in teleost OR genes, whereas the ora genes are subject to strong negative selection, and in fact are being conserved among all teleost species investigated. With one exception, ligands are unknown for any of the four teleost olfactory receptor gene families, and so the considerable knowledge about the odor responses of the olfactory epithelium and the olfactory bulb can only be linked indirectly to the receptor repertoires.
Collapse
|
22
|
The evolution of animal chemosensory receptor gene repertoires: roles of chance and necessity. Nat Rev Genet 2008; 9:951-63. [PMID: 19002141 DOI: 10.1038/nrg2480] [Citation(s) in RCA: 394] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Chemosensory receptors are essential for the survival of organisms that range from bacteria to mammals. Recent studies have shown that the numbers of functional chemosensory receptor genes and pseudogenes vary enormously among the genomes of different animal species. Although much of the variation can be explained by the adaptation of organisms to different environments, it has become clear that a substantial portion is generated by genomic drift, a random process of gene duplication and deletion. Genomic drift also generates a substantial amount of copy-number variation in chemosensory receptor genes within species. It seems that mutation by gene duplication and inactivation has important roles in both the adaptive and non-adaptive evolution of chemosensation.
Collapse
|
23
|
Grus WE, Zhang J. Origin of the genetic components of the vomeronasal system in the common ancestor of all extant vertebrates. Mol Biol Evol 2008; 26:407-19. [PMID: 19008528 DOI: 10.1093/molbev/msn262] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Comparative genomics provides a valuable tool for inferring the evolutionary history of physiological systems, particularly when this information is difficult to ascertain by morphological traits. One such example is the vomeronasal system (VNS), a vertebrate nasal chemosensory system that is responsible for detecting intraspecific pheromonal cues as well as environmental odorants. The morphological components of the VNS are found only in tetrapods, but the genetic components of the system have been found in teleost fish, in addition to tetrapods. To determine when the genetic components of the VNS originated, we searched for the VNS-specific genes in the genomes of two early diverging vertebrate lineages: the sea lamprey from jawless fishes and the elephant shark from cartilaginous fishes. Genes encoding vomeronasal type 1 receptors (V1Rs) and Trpc2, two components of the vomeronasal signaling pathway, are present in the sea lamprey genome, and both are expressed in the olfactory organ, revealing that the genetic components of the present-day VNS existed in the common ancestor of all extant vertebrates. Additionally, all three VNS genes, Trpc2, V1Rs, and vomeronasal type 2 receptors (V2Rs), are found in the elephant shark genome. Because V1Rs and V2Rs are related to two families of taste receptors, we also searched the early diverging vertebrate genomes for taste system genes and found them in the shark genome but not in the lamprey. Coupled with known distributions of the genetic components of the vertebrate main olfactory system, our results suggest staggered origins of vertebrate sensory systems. These findings are important for understanding the evolution of vertebrate sensory systems and illustrate the utility of the genome sequences of early diverging vertebrates for uncovering the evolution of vertebrate-specific traits.
Collapse
Affiliation(s)
- Wendy E Grus
- Department of Ecology and Evolutionary Biology, University of Michigan, USA
| | | |
Collapse
|
24
|
Steiger SS, Fidler AE, Valcu M, Kempenaers B. Avian olfactory receptor gene repertoires: evidence for a well-developed sense of smell in birds? Proc Biol Sci 2008; 275:2309-17. [PMID: 18628122 PMCID: PMC2495045 DOI: 10.1098/rspb.2008.0607] [Citation(s) in RCA: 115] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Revised: 06/20/2008] [Accepted: 06/20/2008] [Indexed: 11/20/2022] Open
Abstract
Among vertebrates, the sense of smell is mediated by olfactory receptors (ORs) expressed in sensory neurons within the olfactory epithelium. Comparative genomic studies suggest that the olfactory acuity of mammalian species correlates positively with both the total number and the proportion of functional OR genes encoded in their genomes. In contrast to mammals, avian olfaction is poorly understood, with birds widely regarded as relying primarily on visual and auditory inputs. Here, we show that in nine bird species from seven orders (blue tit, Cyanistes caeruleus; black coucal, Centropus grillii; brown kiwi, Apteryx australis; canary, Serinus canaria; galah, Eolophus roseicapillus; red jungle fowl, Gallus gallus; kakapo, Strigops habroptilus; mallard, Anas platyrhynchos; snow petrel, Pagodroma nivea), the majority of amplified OR sequences are predicted to be from potentially functional genes. This finding is somewhat surprising as one previous report suggested that the majority of OR genes in an avian (red jungle fowl) genomic sequence are non-functional pseudogenes. We also show that it is not the estimated proportion of potentially functional OR genes, but rather the estimated total number of OR genes that correlates positively with relative olfactory bulb size, an anatomical correlate of olfactory capability. We further demonstrate that all the nine bird genomes examined encode OR genes belonging to a large gene clade, termed gamma-c, the expansion of which appears to be a shared characteristic of class Aves. In summary, our findings suggest that olfaction in birds may be a more important sense than generally believed.
Collapse
Affiliation(s)
- Silke S Steiger
- Department of Behavioural Ecology and Evolutionary Genetics, Max-Planck Institute for Ornithology, PO Box 1564, 82319 Starnberg, Germany.
| | | | | | | |
Collapse
|
25
|
Sato K, Touhara K. Insect olfaction: receptors, signal transduction, and behavior. Results Probl Cell Differ 2008; 47:121-38. [PMID: 19083129 DOI: 10.1007/400_2008_10] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The insect olfactory system is a suitable model for exploring molecular function of odorant receptors, axonal projection of olfactory receptor neurons onto secondary neurons, and the neural circuit for odor perception. Recent progress in the study of insect olfaction revealed that the heteromeric insect olfactory receptor complex forms a cation nonselective ion channel directly gated by odor or pheromone ligands independent of known G-protein signaling pathways. Despite fundamental differences in transduction machineries between insects and vertebrates, the anatomical and functional features of insect odor-coding strategy are similar and thus justify any consideration of mammalian olfaction in the study of insects. The understanding of the molecular mechanism of insect olfaction will help in the development of insect repellents for controlling insect pest and vector populations for a wide range of pathogens.
Collapse
Affiliation(s)
- K Sato
- Department of Integrated Biosciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8562, Japan
| | | |
Collapse
|
26
|
Grus WE, Zhang J. Origin and evolution of the vertebrate vomeronasal system viewed through system-specific genes. Bioessays 2006; 28:709-18. [PMID: 16850401 DOI: 10.1002/bies.20432] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Tetrapods have two distinct nasal chemosensory systems, the main olfactory system and the vomeronasal system (VNS). Defined by certain morphological components, the main olfactory system is present in all groups of vertebrates, while the VNS is found only in tetrapods. Previous attempts to identify a VNS precursor in teleost fish were limited by functional and morphological characters that could not clearly distinguish between homologous and analogous systems. In the past decade, several genes that specifically function in the VNS have been discovered. Here we first describe recent evolutionary studies of mammalian VNS-specific genes. We then review evidence showing the presence and tissue-specific expression of the VNS-specific genes in teleosts, as well as co-expression patterns of these genes in specific regions of the teleost olfactory epithelium. We propose that a VNS precursor exists in teleosts and that its evolutionary origin predated the separation between teleosts and tetrapods.
Collapse
Affiliation(s)
- Wendy E Grus
- Department of Ecology and Evolutionary Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
27
|
Khafizov K, Anselmi C, Menini A, Carloni P. Ligand specificity of odorant receptors. J Mol Model 2006; 13:401-9. [PMID: 17120078 DOI: 10.1007/s00894-006-0160-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2006] [Accepted: 09/12/2006] [Indexed: 10/23/2022]
Abstract
Odorant receptors belong to class A of the G protein-coupled receptors (GPCRs) and detect a large number of structurally diverse odorant molecules. A recent structural bioinformatic analysis suggests that structural features are conserved across class A of GPCRs in spite of their low sequence identity. Based on this work, we have aligned the sequences of 29 ORs for which ligand binding data are available. Recent site-directed mutagenesis experiments on one such receptor (MOR174-9) provide information that helped to identify nine amino-acid residues involved in ligand binding. Our modeling provides a rationale for amino acids in equivalent positions in most of the odorant receptors considered and helps to identify other amino acids that could be important for ligand binding. Our findings are consistent with most of the previous models and allow predictions for site-directed mutagenesis experiments, which could also validate our model.
Collapse
Affiliation(s)
- Kamil Khafizov
- International School for Advanced Studies, via Beirut 4, I-34014, Trieste, Italy
| | | | | | | |
Collapse
|
28
|
Satoh G. Exploring developmental, functional, and evolutionary aspects of amphioxus sensory cells. Int J Biol Sci 2006; 2:142-8. [PMID: 16763674 PMCID: PMC1474149 DOI: 10.7150/ijbs.2.142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2006] [Accepted: 04/14/2006] [Indexed: 11/15/2022] Open
Abstract
Amphioxus has neither elaborated brains nor definitive sensory organs, so that the two may have evolved in a mutually affecting manner and given rise to the forms seen in extant vertebrates. Clarifying the developmental and functional aspects of the amphioxus sensory system is thus pivotal for inferring the early evolution of vertebrates. Morphological studies have identified and classified amphioxus sensory cells; however, it is completely unknown whether the morphological classification makes sense in functional and evolutionary terms. Molecular markers, such as gene expression, are therefore indispensable for investigating the developmental and functional aspects of amphioxus sensory cells. This article reviews recent molecular studies on amphioxus sensory cells. Increasing evidence shows that the non-neural ectoderm of amphioxus can be subdivided into molecularly distinct subdomains by the combinatorial code of developmental cues involving the RA-dependent Hox code, suggesting that amphioxus epithelial sensory cells developed along positional information. This study focuses particularly on research involving the molecular phylogeny and expression of the seven-transmembrane, G protein-coupled receptor (GPCR) genes and discusses the usefulness of this information for characterizing the sensory cells of amphioxus.
Collapse
Affiliation(s)
- Gouki Satoh
- Graduate School of Life and Environmental Sciences, University of Tsukuba, Japan.
| |
Collapse
|
29
|
Niimura Y, Nei M. Evolutionary dynamics of olfactory and other chemosensory receptor genes in vertebrates. J Hum Genet 2006; 51:505-517. [PMID: 16607462 PMCID: PMC1850483 DOI: 10.1007/s10038-006-0391-8] [Citation(s) in RCA: 133] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2006] [Accepted: 02/02/2006] [Indexed: 10/24/2022]
Abstract
The numbers of functional olfactory receptor (OR) genes in humans and mice are about 400 and 1,000 respectively. In both humans and mice, these genes exist as genomic clusters and are scattered over almost all chromosomes. The difference in the number of genes between the two species is apparently caused by massive inactivation of OR genes in the human lineage and a substantial increase of OR genes in the mouse lineage after the human-mouse divergence. Compared with mammals, fishes have a much smaller number of OR genes. However, the OR gene family in fishes is much more divergent than that in mammals. Fishes have many different groups of genes that are absent in mammals, suggesting that the mammalian OR gene family is characterized by the loss of many group genes that existed in the ancestor of vertebrates and the subsequent expansion of specific groups of genes. Therefore, this gene family apparently changed dynamically depending on the evolutionary lineage and evolved under the birth-and-death model of evolution. Study of the evolutionary changes of two gene families for vomeronasal receptors and two gene families for taste receptors, which are structurally similar, but remotely related to OR genes, showed that some of the gene families evolved in the same fashion as the OR gene family. It appears that the number and types of genes in chemosensory receptor gene families have evolved in response to environmental needs, but they are also affected by fortuitous factors.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Department of Bioinformatics, Medical Research Institute, Tokyo Medical and Dental University, 1-5-45 Yushima, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Masatoshi Nei
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA, 16802, USA.
| |
Collapse
|
30
|
Alioto TS, Ngai J. The odorant receptor repertoire of teleost fish. BMC Genomics 2005; 6:173. [PMID: 16332259 PMCID: PMC1325023 DOI: 10.1186/1471-2164-6-173] [Citation(s) in RCA: 131] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2005] [Accepted: 12/06/2005] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Vertebrate odorant receptors comprise three types of G protein-coupled receptors: the OR, V1R and V2R receptors. The OR superfamily contains over 1,000 genes in some mammalian species, representing the largest gene superfamily in the mammalian genome. RESULTS To facilitate an informed analysis of OR gene phylogeny, we identified the complete set of 143 OR genes in the zebrafish genome, as well as the OR repertoires in two pufferfish species, fugu (44 genes) and tetraodon (42 genes). Although the genomes analyzed here contain fewer genes than in mammalian species, the teleost OR genes can be grouped into a larger number of major clades, representing greater overall OR diversity in the fish. CONCLUSION Based on the phylogeny of fish and mammalian repertoires, we propose a model for OR gene evolution in which different ancestral OR genes or gene families were selectively lost or expanded in different vertebrate lineages. In addition, our calculations of the ratios of non-synonymous to synonymous codon substitutions among more recently expanding OR subgroups in zebrafish implicate residues that may be involved in odorant binding.
Collapse
Affiliation(s)
- Tyler S Alioto
- Department of Molecular and Cell Biology, Functional Genomics Laboratory, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
- Grup de Recerca en Informàtica Biomèdica, Institut Municipal d'Investigació Mèdica, Universitat Pompeu Fabra, Centre de Regulació Genòmica, Psg. Marítim 37-49, 08003 Barcelona, Spain
| | - John Ngai
- Department of Molecular and Cell Biology, Functional Genomics Laboratory, Helen Wills Neuroscience Institute, University of California, Berkeley, California 94720, USA
| |
Collapse
|
31
|
Satoh G. Characterization of novel GPCR gene coding locus in amphioxus genome: gene structure, expression, and phylogenetic analysis with implications for its involvement in chemoreception. Genesis 2005; 41:47-57. [PMID: 15682401 DOI: 10.1002/gene.20082] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Chemosensation is the primary sensory modality in almost all metazoans. The vertebrate olfactory receptor genes exist as tandem clusters in the genome, so that identifying their evolutionary origin would be useful for understanding the expansion of the sensory world in relation to a large-scale genomic duplication event in a lineage leading to the vertebrates. In this study, I characterized a novel GPCR (G-protein-coupled receptor) gene-coding locus from the amphioxus genome. The genomic DNA contains an intronless ORF whose deduced amino acid sequence encodes a seven-transmembrane protein with some amino acid residues characteristic of vertebrate olfactory receptors (ORs). Surveying counterparts in the Ciona intestinalis (Asidiacea, Urochordata) genome by querying BLAST programs against the Ciona genomic DNA sequence database resulted in the identification of a remotely related gene. In situ hybridization analysis labeled primary sensory neurons in the rostral epithelium of amphioxus adults. Based on these findings, together with comparison of the developmental gene expression between amphioxus and vertebrates, I postulate that chemoreceptive primary sensory neurons in the rostrum are an ancient cell population traceable at least as far back in phylogeny as the common ancestor of amphioxus and vertebrates.
Collapse
Affiliation(s)
- Gouki Satoh
- Department of Zoology, Graduate School of Science, Kyoto University, Kyoto, Japan.
| |
Collapse
|
32
|
Niimura Y, Nei M. Evolutionary dynamics of olfactory receptor genes in fishes and tetrapods. Proc Natl Acad Sci U S A 2005; 102:6039-44. [PMID: 15824306 PMCID: PMC1087945 DOI: 10.1073/pnas.0501922102] [Citation(s) in RCA: 215] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfaction, which is an important physiological function for the survival of mammals, is controlled by a large multigene family of olfactory receptor (OR) genes. Fishes also have this gene family, but the number of genes is known to be substantially smaller than in mammals. To understand the evolutionary dynamics of OR genes, we conducted a phylogenetic analysis of all functional genes identified from the genome sequences of zebrafish, pufferfish, frogs, chickens, humans, and mice. The results suggested that the most recent common ancestor between fishes and tetrapods had at least nine ancestral OR genes, and all OR genes identified were classified into nine groups, each of which originated from one ancestral gene. Eight of the nine group genes are still observed in current fish species, whereas only two group genes were found from mammalian genomes, showing that the OR gene family in fishes is much more diverse than in mammals. In mammals, however, one group of genes, gamma, expanded enormously, containing approximately 90% of the entire gene family. Interestingly, the gene groups observed in mammals or birds are nearly absent in fishes. The OR gene repertoire in frogs is as diverse as that in fishes, but the expansion of group gamma genes also occurred, indicating that the frog OR gene family has both mammal- and fish-like characters. All of these observations can be explained by the environmental change that organisms have experienced from the time of the common ancestor of all vertebrates to the present.
Collapse
Affiliation(s)
- Yoshihito Niimura
- Institute of Molecular Evolutionary Genetics and Department of Biology, Pennsylvania State University, 328 Mueller Laboratory, University Park, PA 16802, USA.
| | | |
Collapse
|
33
|
Eisthen HL. The goldfish knows: olfactory receptor cell morphology predicts receptor gene expression. J Comp Neurol 2004; 477:341-6. [PMID: 15329884 DOI: 10.1002/cne.20258] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Heather L Eisthen
- Department of Zoology, Michigan State University, East Lansing, Michigan 48824, USA.
| |
Collapse
|
34
|
von Buchholtz L, Elischer A, Tareilus E, Gouka R, Kaiser C, Breer H, Conzelmann S. RGS21 is a novel regulator of G protein signalling selectively expressed in subpopulations of taste bud cells. Eur J Neurosci 2004; 19:1535-44. [PMID: 15066150 DOI: 10.1111/j.1460-9568.2004.03257.x] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Abstract G-protein-mediated signalling processes are involved in sweet and bitter taste transduction. In particular, the G protein alpha-subunit gustducin has been implicated in these processes. One of the limiting factors for the time-course of cellular responses induced by tastants is therefore the intrinsic GTPase activity of alpha-gustducin, which determines the lifetime of the active G protein complex. In several signalling systems specific 'regulator of G protein signalling' (RGS) proteins accelerate the GTPase activity of G protein alpha-subunits. Using differential screening approaches, we have identified a novel RGS protein termed RGS21, which represents the smallest known member of this protein family. Reverse transcription polymerase chain reaction and in situ hybridization experiments demonstrated that RGS21 is expressed selectively in taste tissue where it is found in a subpopulation of sensory cells. Furthermore, it is coexpressed in individual taste cells with bitter and sweet transduction components including alpha-gustducin, phospholipase Cbeta2, T1R2/T1R3 sweet taste receptors and T2R bitter taste receptors. In vitro binding assays demonstrate that RGS21 binds alpha-gustducin in a conformation-dependent manner and has the potential to interact with the same Galpha subtypes as T1R receptors. These results suggest that RGS21 could play a regulatory role in bitter as well as sweet taste transduction processes.
Collapse
Affiliation(s)
- Lars von Buchholtz
- Institute of Physiology, University of Hohenheim, Garbenstr. 30, 70599 Stuttgart, Germany.
| | | | | | | | | | | | | |
Collapse
|
35
|
Irie-Kushiyama S, Asano-Miyoshi M, Suda T, Abe K, Emori Y. Identification of 24 genes and two pseudogenes coding for olfactory receptors in Japanese loach, classified into four subfamilies: a putative evolutionary process for fish olfactory receptor genes by comprehensive phylogenetic analysis. Gene 2004; 325:123-35. [PMID: 14697517 DOI: 10.1016/j.gene.2003.10.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Twenty-four olfactory receptor (OR) genes and two pseudogenes have been identified in the genome of Japanese loach (Misgurnus anguillicaudatus). The genes were classified into four subfamilies according to the similarity of the amino acid sequences. In each subfamily, members showed high sequence similarity not only to each other but also to orthologues of other fish species. The number of members in each OR subfamily was roughly estimated to be from 3 to 10 by genomic Southern blot analysis. The genes of all four OR subfamilies were shown to express on olfactory neurons of the olfactory epithelium by in situ hybridization analysis. Two major features of fish OR genes were found by comprehensive and comparative analyses on OR genes of Japanese loach and other fish species including catfish, zebrafish and pufferfish. First, the phylogenetic tree comprising of representative subfamily members suggests the existence of several prototype genes common to the genomes of many fish species. Second, when all members of orthologous subfamilies identified in each clade of the tree are integrated, the members of a single species comprise a monophyletic group. This means that 'intraspecies' sequence homology, that is, homology among paralogous genes of the same subfamily in a species, is higher than 'interspecies' homology, that is, homology between orthologous genes of different species. This suggests that the subfamily members of a species have evolved recently. Taken together, fish OR genes have evolved from a limited number of prototype genes common to most fish species, and several genes in a subfamily have diversely evolved in each species from each prototype.
Collapse
Affiliation(s)
- Sakura Irie-Kushiyama
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-0033, Japan
| | | | | | | | | |
Collapse
|
36
|
Quignon P, Kirkness E, Cadieu E, Touleimat N, Guyon R, Renier C, Hitte C, André C, Fraser C, Galibert F. Comparison of the canine and human olfactory receptor gene repertoires. Genome Biol 2003; 4:R80. [PMID: 14659017 PMCID: PMC329419 DOI: 10.1186/gb-2003-4-12-r80] [Citation(s) in RCA: 80] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2003] [Revised: 10/01/2003] [Accepted: 11/03/2003] [Indexed: 11/25/2022] Open
Abstract
In this study, 817 novel canine olfactory receptor (OR) sequences were identified, and 640 have been characterized. Of the 661 characterized OR sequences, representing half of the canine repertoire, 18% are predicted to be pseudogenes, compared with 63% in human and 20% in mouse. Background Olfactory receptors (ORs), the first dedicated molecules with which odorants physically interact to arouse an olfactory sensation, constitute the largest gene family in vertebrates, including around 900 genes in human and 1,500 in the mouse. Whereas dogs, like many other mammals, have a much keener olfactory potential than humans, only 21 canine OR genes have been described to date. Results In this study, 817 novel canine OR sequences were identified, and 640 have been characterized. Of the 661 characterized OR sequences, representing half of the canine repertoire, 18% are predicted to be pseudogenes, compared with 63% in human and 20% in mouse. Phylogenetic analysis of 403 canine OR sequences identified 51 families, and radiation-hybrid mapping of 562 showed that they are distributed on 24 dog chromosomes, in 37 distinct regions. Most of these regions constitute clusters of 2 to 124 closely linked genes. The two largest clusters (124 and 109 OR genes) are located on canine chromosomes 18 and 21. They are orthologous to human clusters located on human chromosomes 11q11-q13 and HSA11p15, containing 174 and 115 ORs respectively. Conclusions This study shows a strongly conserved genomic distribution of OR genes between dog and human, suggesting that OR genes evolved from a common mammalian ancestral repertoire by successive duplications. In addition, the dog repertoire appears to have expanded relative to that of humans, leading to the emergence of specific canine OR genes.
Collapse
Affiliation(s)
- Pascale Quignon
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Ewen Kirkness
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Edouard Cadieu
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Nizar Touleimat
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Richard Guyon
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Corinne Renier
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
- Current address: Stanford University School of Medicine, Center for Narcolepsy, 701B Welch Road, Palo Alto, CA 94305-5742, USA
| | - Christophe Hitte
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Catherine André
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| | - Claire Fraser
- The Institute for Genomic Research, 9712 Medical Center Drive, Rockville, MD 20850, USA
| | - Francis Galibert
- UMR 6061 CNRS Génétique et Développement, Faculté de Médecine, 2 Avenue du Professeur Léon Bernard, 35043 Rennes Cedex, France
| |
Collapse
|
37
|
Frontini A, Zaidi AU, Hua H, Wolak TP, Greer CA, Kafitz KW, Li W, Zielinski BS. Glomerular territories in the olfactory bulb from the larval stage of the sea lamprey Petromyzon marinus. J Comp Neurol 2003; 465:27-37. [PMID: 12926014 DOI: 10.1002/cne.10811] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
The goal of this study was to investigate the spatial organization of olfactory glomeruli and of substances relevant to olfactory sensory neuron activity in the developing agnathan, the sea lamprey Petromyzon marinus. A 45-kD protein immunoreactive to G(olf), a cAMP-dependent olfactory G protein, was present in the ciliary fraction of sea lamprey olfactory epithelium and in olfactory sensory neurons of larval and adult sea lampreys. This result implies that G(olf) expression was present during early vertebrate evolution or evolved in parallel in gnathostome and agnathostome vertebrates. Serial sectioning of the olfactory bulb revealed a consistent pattern of olfactory glomeruli stained by GS1B(4) lectin and by anterograde labeling with fluorescent dextran. These glomerular territories included the dorsal cluster, dorsal ring, anterior plexus, lateral chain, medial glomeruli, ventral ring, and ventral cluster. The dorsal, anterior, lateral, and ventral glomeruli contained olfactory sensory axon terminals that were G(olf)-immunoreactive. However, a specific subset, the medial glomeruli, did not display this immunoreactivity. Olfactory glomeruli in the dorsal hemisphere of the olfactory bulb, the dorsal cluster, dorsal ring, anterior plexus, lateral chain, and medial glomeruli, were seen adjacent to 5HT-immunoreactive fibers. However, glomeruli in the ventral hemisphere, the ventral ring, and ventral cluster did not display this association. The presence of specific glomerular territories and discrete glomerular subsets with substances relevant to olfactory sensory neuron activity suggest a spatial organization of information flow in the lamprey olfactory pathway.
Collapse
Affiliation(s)
- Andrea Frontini
- Department of Biological Sciences, University of Windsor, Windsor, Ontario N9B 3P4, Canada
| | | | | | | | | | | | | | | |
Collapse
|
38
|
Salaneck E, Fredriksson R, Larson ET, Conlon JM, Larhammar D. A neuropeptide Y receptor Y1-subfamily gene from an agnathan, the European river lamprey. A potential ancestral gene. EUROPEAN JOURNAL OF BIOCHEMISTRY 2001; 268:6146-54. [PMID: 11733009 DOI: 10.1046/j.0014-2956.2001.02561.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
We report here the isolation and functional expression of a neuropeptide Y (NPY) receptor from the river lamprey, Lampetra fluviatilis. The receptor displays approximately 50% amino-acid sequence identity to all previously cloned Y1-subfamily receptors including Y1, Y4, and y6 and the teleost subtypes Ya, Yb and Yc. Phylogenetic analyses point to a closer relationship with Y4 and Ya/b/c suggesting that the lamprey receptor could possibly represent a pro-orthologue of some or all of those gnathostome receptors. Our results support the notion that the Y1 subfamily increased in number by genome or large-scale chromosome duplications, one of which may have taken place prior to the divergence of lampreys and gnathostomes whereas the second duplication probably occurred in the gnathostome lineage after this split. Functional expression of the lamprey receptor in a cell line facilitated specific binding of the three endogenous lamprey peptides NPY, peptide YY and peptide MY with picomolar affinities. Binding studies with a large panel of NPY analogues revealed indiscriminate binding properties similar to those of another nonselective Y1-subfamily receptor, zebrafish Ya. RT-PCR detected receptor mRNA in the central nervous system as well as in several peripheral organs suggesting diverse functions. This lamprey receptor is evolutionarily the most distant NPY receptor that clearly belongs to the Y1 subfamily as defined in mammals, which shows that subtypes Y2 and Y5 arose even earlier in evolution.
Collapse
Affiliation(s)
- E Salaneck
- Unit of Pharmacology, Department of Neuroscience, Uppsala University, Uppsala, Sweden
| | | | | | | | | |
Collapse
|
39
|
Mezler M, Fleischer J, Breer H. Characteristic features and ligand specificity of the two olfactory receptor classes from Xenopus laevis. J Exp Biol 2001; 204:2987-97. [PMID: 11551987 DOI: 10.1242/jeb.204.17.2987] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARY
Amphibia have two classes of olfactory receptors (ORs), class I (fish-like receptors) and class II (mammalian-like receptors). These two receptor classes correspond to the two classes identified in other vertebrates, and amphibians thus provide a unique opportunity to compare olfactory receptors of both classes in one animal species, without the constraints of evolutionary distance between different vertebrate orders, such as fish and mammals. We therefore identified the complete open reading frames of class I and class II ORs in Xenopus laevis. In addition to allowing a representative comparison of the deduced amino acid sequences between both receptor classes, we were also able to perform differential functional analysis. These studies revealed distinct class-specific motifs, particularly in the extracellular loops 2 and 3, which might be of importance for the interaction with odorants, as well as in the intracellular loops 2 and 3, which might be responsible for interactions with specific G-proteins. The results of functional expression studies in Xenopus oocytes, comparing distinct receptor types, support the idea that class I receptors are activated by water-soluble odorants, whereas class II receptors are activated by volatile compounds.
Collapse
Affiliation(s)
- M Mezler
- University of Hohenheim, Institute of Physiology, 70593 Stuttgart, Germany
| | | | | |
Collapse
|
40
|
Abstract
Odorant receptors (ORs) located in the nasal epithelium, at the ciliated surface of olfactory sensory neurons, represent the initial step of a transduction cascade that leads to odor detection. ORs form the largest and most diverse family of G-protein-coupled receptors (GPCRs). They are encoded by a multigene family that has been partially characterized in cyclostomes, teleosts, amphibia, birds and mammals, as well as in Drosophila melanogaster and the nematode Caenorhabditis elegans. As new sequence data emerge, it is increasingly clear that OR primary structure can vary dramatically across phyla. Some chemoreceptors are encoded by genes with little sequence similarity to the prototypical ORs originally isolated in mammals. A large number of sequences are now available allowing a detailed study of the evolutionary implications of OR diversity across species. This review discusses the evolutionary implications of the divergent primary structures of chemoreceptors with identical functions.
Collapse
Affiliation(s)
- L Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA.
| |
Collapse
|
41
|
Zielinski BS, Moretti N, Hua HN, Zaidi AU, Bisaillon AD. Serotonergic nerve fibers in the primary olfactory pathway of the larval sea lamprey,Petromyzon marinus. J Comp Neurol 2000. [DOI: 10.1002/(sici)1096-9861(20000508)420:3<324::aid-cne4>3.0.co;2-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
42
|
Rouquier S, Blancher A, Giorgi D. The olfactory receptor gene repertoire in primates and mouse: evidence for reduction of the functional fraction in primates. Proc Natl Acad Sci U S A 2000; 97:2870-4. [PMID: 10706615 PMCID: PMC16022 DOI: 10.1073/pnas.040580197] [Citation(s) in RCA: 163] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Olfactory receptors (ORs) located in the cell membrane of olfactory sensory neurons of the nasal epithelium are responsible for odor detection by binding specific odorant ligands. Primates are thought to have a reduced sense of smell (microsmatic) with respect to other mammals such as dogs or rodents. We have previously demonstrated that over 70% of the human OR genes have become nonfunctional pseudogenes, leading us to hypothesize that the reduced sense of smell could correlate with the loss of functional genes. To extend these results, we sampled the OR gene repertoire of 10 primate species, from prosimian lemur to human, in addition to mouse. About 221 previously unidentified primate sequences and 33 mouse sequences were analyzed. These sequences encode ORs distributed in seven families and 56 subfamilies. Analysis showed a high fraction ( approximately 50% on average) of pseudogenes in hominoids. In contrast, only approximately 27% of OR genes are pseudogenes in Old World monkeys, and New World monkeys are almost free of pseudogenes. The prosimian branch seems to have evolved differently from the other primates and has approximately 37% pseudogene content. No pseudogenes were found in mouse. With the exception of New World monkeys, we demonstrate that primates have a high fraction of OR pseudogenes compared with mouse. We hypothesize that under relaxed selective constraints, primates would have progressively accumulated pseudogenes with the highest level seen in hominoids. The fraction of pseudogenes in the OR gene repertoire could parallel the evolution of the olfactory sensory function.
Collapse
Affiliation(s)
- S Rouquier
- Institut de Génétique Humaine, Centre National de la Recherche Scientifique Unité Propre de Recherche 1142, 141 rue de la Cardonille, 34396 Montpellier cédex 5, France
| | | | | |
Collapse
|
43
|
Abstract
The olfactory systems of various species solve the challenging problem of general molecular recognition in widely differing ways. Despite this variety, the molecular receptors are invariably G protein-coupled seven-transmembrane proteins, and are encoded by the largest gene families known to exist in a given animal genome. Receptor gene families have been identified in vertebrates and two invertebrate species, the nematode Caenorhabditis elegans and the fruit fly Drosophila melanogaster. The complexity of the odorant receptor repertoire is estimated in mouse and rat at 1000 genes, or 1 percent of the genome, surpassing that of the immunoglobulin and T cell receptor genes combined. Two distinct seven-transmembrane gene families may encode in rodents the chemosensory receptors of the vomeronasal organ, which is specialized in the detection of pheromones. Remarkably, these five receptor families have practically no sequence homology among them. Genetic manipulation experiments in mice imply that vertebrate odorant receptors may fulfill a dual role, also serving as address molecules that guide axons of olfactory sensory neurons to their precise target in the brain.
Collapse
Affiliation(s)
- P Mombaerts
- The Rockefeller University, 1230 York Avenue, New York, NY 10021, USA.
| |
Collapse
|
44
|
Abstract
In both vertebrates and invertebrates, odorant molecules reach the dendrites of olfactory receptor cells through an aqueous medium, which reflects the evolutionary origin of these systems in a marine environment. Important recent advances, however, have demonstrated striking interphyletic differences between the structure of vertebrate and invertebrate olfactory receptor proteins, as well as the organization of the genes encoding them. While these disparities support independent origins for odor-processing systems in craniates and protostomes (and even between the nasal and vomeronasal systems of craniates), olfactory neuropils share close neuroanatomical and physiological characters. Whereas there is a case to be made for homology among members of the two great protostome clades (the ecdysozoans and lophotrochozoans), the position of the craniates remains ambiguous.
Collapse
Affiliation(s)
- N J Strausfeld
- Arizona Research Laboratories (ARL) Division of Neurobiology University of Arizona PO Box 210077, Tucson, Arizona, 85721-0077, USA.
| | | |
Collapse
|
45
|
Abstract
Odorant receptors (ORs) comprise the largest family of G-protein-coupled receptors (GPCRs). They are located in the nasal epithelium, at the ciliated surface of olfactory sensory neurones, where the initial steps of the olfactory transduction cascade occur. ORs are encoded by a large and diverse multi-gene family, which has been characterized in cyclostomes, teleosts, amphibia, birds and mammals, as well as in Drosophila and Caenorhabditis elegans. Here, the range of diversity in OR and chemoreceptor structure is examined, noting that their functions are fundamentally similar to those of many neurotransmitter or neurohormone receptors. It is argued that ORs have emerged directly from other GPCRs independently in many species. According to this view, there is no structural prerequisite for OR identity and any GPCR has the potential to be or become an OR at a given point in evolution.
Collapse
Affiliation(s)
- L Dryer
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA.
| | | |
Collapse
|
46
|
Strotmann J, Hoppe R, Conzelmann S, Feinstein P, Mombaerts P, Breer H. Small subfamily of olfactory receptor genes: structural features, expression pattern and genomic organization. Gene 1999; 236:281-91. [PMID: 10452948 DOI: 10.1016/s0378-1119(99)00275-9] [Citation(s) in RCA: 45] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Olfactory receptors of the OR37 subfamily are characterized by distinct sequence features and are expressed in neurons segregated in a restricted area of the olfactory epithelium. In the present study, we have characterized the complement of OR37-like genes in the mouse. Five OR37-like genes were identified. They reside within only 60kb of DNA on chromosome 4. About 70kb distant from this cluster, two additional olfactory receptor genes are located, which are members of distinct receptor subfamilies. Phylogenetic analysis demonstrated that the two physically linked receptors are closely related to the OR37 subfamily. Studies of gene expression showed that both genes are also expressed in clustered neuron populations located in the typical OR37 region of the epithelium. These data suggest the involvement of locus-dependent mechanisms for the spatial control of OR gene expression.
Collapse
Affiliation(s)
- J Strotmann
- Institute of Physiology, University Stuttgart-Hohenheim, Garbenstrasse 30, D-70593, Stuttgart, Germany
| | | | | | | | | | | |
Collapse
|