1
|
Kocaman AY, Asfuroğlu K. The genotoxic effects of perchloroethylene in human peripheral blood lymphocytes and the possible ameliorative role of α-tocopherol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:39576-39586. [PMID: 33763835 DOI: 10.1007/s11356-021-13523-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 03/15/2021] [Indexed: 06/12/2023]
Abstract
Perchloroethylene (PCE), also known as tetrachloroethylene, is a commercially important chlorinated solvent commonly used in dry cleaning, textile processing, and metal degreasing industries. According to the available studies, the potential genotoxic impacts of this chlorinated solvent on human beings are still controversial. The present work was carried out to determine the genotoxic effects of PCE on human peripheral blood lymphocytes (PBLs) using chromosome aberrations (CAs) and cytokinesis-block micronucleus (CBMN) tests. Additionally, the antigenotoxic potential of α-tocopherol (α-Toc), a well-known antioxidant agent, on human lymphocytes treated with PCE in vitro was assessed. The cells were exposed for 48 h to PCE (25, 50, 100, and 150 μg/mL) alone as well as in combination with α-Toc (100 μg/mL). The findings of the study suggested that, relative to solvent control, PCE significantly increased the structural CA and MN formation for all concentrations. However, simultaneous treatment of PCE and α-Toc caused a significant reduction of CAs and MNi as compared to cultures treated with PCE alone. Besides, the results showed that PCE has cytotoxic effects on human PBLs as indicated by the significant decrease in mitotic index (MI) and nuclear division index (NDI). Nevertheless, the co-treatment of α-Toc with PCE did not reduce the cytotoxicity of PCE at a significant level. In conclusion, it can be suggested that PCE is genotoxic and cytotoxic in human PBLs, and α-Toc has an antigenotoxic effect on PCE-induced genotoxicity but has no significant effect on the cytotoxicity triggered by PCE.
Collapse
Affiliation(s)
- Ayşe Yavuz Kocaman
- Department of Biology, Faculty of Sciences and Letters, Hatay Mustafa Kemal University, 31000, Antakya, Hatay, Turkey.
| | - Kübra Asfuroğlu
- Basic and Applied Sciences Institute, Hatay Mustafa Kemal University, Antakya, Hatay, Turkey
| |
Collapse
|
2
|
The Multifarious Link between Cytochrome P450s and Cancer. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:3028387. [PMID: 31998435 PMCID: PMC6964729 DOI: 10.1155/2020/3028387] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2019] [Revised: 12/08/2019] [Accepted: 12/18/2019] [Indexed: 02/07/2023]
Abstract
Cancer is a leading cause of death worldwide. Cytochrome P450s (P450s) play an important role in the metabolism of endogenous as well as exogenous substances, especially drugs. Moreover, many P450s can serve as targets for disease therapy. Increasing reports of epidemiological, diagnostic, and clinical research indicate that P450s are enzymes that play a major part in the formation of cancer, prevention, and metastasis. The purposes of this review are to shed light on the current state of knowledge about the cancer molecular mechanism involving P450s and to summarize the link between the cancer effects and the participation of P450s.
Collapse
|
3
|
Fang Y, Wang T, Guo YY, Zhang HF, Wen Q, Xing YR, Gao N, Qiao HL. From Genotype to Phenotype: Content and Activities of Cytochromes P450 2A6 in Human Liver In Vitro and Predicted In Vivo. J Pharmacol Exp Ther 2019; 372:320-330. [DOI: 10.1124/jpet.119.263152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/23/2019] [Indexed: 12/19/2022] Open
|
4
|
Cichocki JA, Furuya S, Venkatratnam A, McDonald TJ, Knap AH, Wade T, Sweet S, Chiu WA, Threadgill DW, Rusyn I. Characterization of Variability in Toxicokinetics and Toxicodynamics of Tetrachloroethylene Using the Collaborative Cross Mouse Population. ENVIRONMENTAL HEALTH PERSPECTIVES 2017; 125:057006. [PMID: 28572074 PMCID: PMC5726344 DOI: 10.1289/ehp788] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Revised: 09/26/2016] [Accepted: 10/25/2016] [Indexed: 05/27/2023]
Abstract
BACKGROUND Evaluation of interindividual variability is a challenging step in risk assessment. For most environmental pollutants, including perchloroethylene (PERC), experimental data are lacking, resulting in default assumptions being used to account for variability in toxicokinetics and toxicodynamics. OBJECTIVE We quantitatively examined the relationship between PERC toxicokinetics and toxicodynamics at the population level to test whether individuals with increased oxidative metabolism are be more sensitive to hepatotoxicity following PERC exposure. METHODS Male mice from 45 strains of the Collaborative Cross (CC) were orally administered a single dose of PERC (1,000 mg/kg) or vehicle (Alkamuls-EL620) and euthanized at various time points (n = 1/strain/time). Concentration–time profiles were generated for PERC and its primary oxidative metabolite trichloroacetate (TCA) in multiple tissues. Toxicodynamic phenotyping was also performed. RESULTS Significant variability among strains was observed in toxicokinetics of PERC and TCA in every tissue examined. Based on area under the curve (AUC), the range of liver TCA levels spanned nearly an order of magnitude (~8-fold). Expression of liver cytochrome P4502E1 did not correlate with TCA levels. Toxicodynamic phenotyping revealed an effect of PERC on bodyweight loss, induction of peroxisome proliferator activated receptor-alpha (PPARα)-regulated genes, and dysregulation of hepatic lipid homeostasis. Clustering was observed among a) liver levels of PERC, TCA, and triglycerides; b) TCA levels in liver and kidney; and c) TCA levels in serum, brain, fat, and lung. CONCLUSIONS Using the CC mouse population model, we have demonstrated a complex and highly variable relationship between PERC and TCA toxicokinetics and toxicodynamics at the population level. https://doi.org/10.1289/EHP788.
Collapse
Affiliation(s)
| | | | | | | | | | - Terry Wade
- Geochemical and Environmental Research Group
| | | | | | - David W Threadgill
- Department of Molecular and Cellular Medicine, Texas A&M University , College Station, Texas, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences
| |
Collapse
|
5
|
Cichocki JA, Furuya S, Konganti K, Luo YS, McDonald TJ, Iwata Y, Chiu WA, Threadgill DW, Pogribny IP, Rusyn I. Impact of Nonalcoholic Fatty Liver Disease on Toxicokinetics of Tetrachloroethylene in Mice. J Pharmacol Exp Ther 2017; 361:17-28. [PMID: 28148637 DOI: 10.1124/jpet.116.238790] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 01/30/2017] [Indexed: 12/19/2022] Open
Abstract
Lifestyle factors and chronic pathologic states are important contributors to interindividual variability in susceptibility to xenobiotic-induced toxicity. Nonalcoholic fatty liver disease (NAFLD) is an increasingly prevalent condition that can dramatically affect chemical metabolism. We examined the effect of NAFLD on toxicokinetics of tetrachloroethylene (PERC), a ubiquitous environmental contaminant that requires metabolic activation to induce adverse health effects. Mice (C57Bl/6J, male) were fed a low-fat diet (LFD), high-fat diet (HFD), or methionine/folate/choline-deficient diet (MCD) to model a healthy liver, steatosis, or nonalcoholic steatohepatitis (NASH), respectively. After 8 weeks, mice were orally administered a single dose of PERC (300 mg/kg) or vehicle (aqueous Alkamuls-EL620) and euthanized at various time points (1-36 hours). Levels of PERC and its metabolites were measured in blood/serum, liver, and fat. Effects of diets on liver gene expression and tissue:air partition coefficients were evaluated. We found that hepatic levels of PERC were 6- and 7.6-fold higher in HFD- and MCD-fed mice compared with LFD-fed mice; this was associated with an increased PERC liver:blood partition coefficient. Liver and serum Cmax for trichloroacetate (TCA) was lower in MCD-fed mice; however, hepatic clearance of TCA was profoundly reduced by HFD or MCD feeding, leading to TCA accumulation. Hepatic mRNA/protein expression and ex vivo activity assays revealed decreased xenobiotic metabolism in HFD- and MCD-, compared with LFD-fed, groups. In conclusion, experimental NAFLD was associated with modulation of xenobiotic disposition and metabolism and increased hepatic exposure to PERC and TCA. Underlying NAFLD may be an important susceptibility factor for PERC-associated hepatotoxicity.
Collapse
Affiliation(s)
- Joseph A Cichocki
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Shinji Furuya
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Kranti Konganti
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Yu-Syuan Luo
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Thomas J McDonald
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Yasuhiro Iwata
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - David W Threadgill
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Igor P Pogribny
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences (J.A.C; S.F; Y.S.L; Y.I; W.C; I.R), Texas A&M Institute for Genome Sciences and Society (K.K; D.W.T; I.R), Department of Environmental and Occupational Health (T.J.M), and Department of Molecular and Cellular Medicine (D.W.T), Texas A&M University, College Station, Texas; and National Center for Toxicological Research, US FDA, Jefferson, Arkansas (I.P)
| |
Collapse
|
6
|
Cichocki JA, Guyton KZ, Guha N, Chiu WA, Rusyn I, Lash LH. Target Organ Metabolism, Toxicity, and Mechanisms of Trichloroethylene and Perchloroethylene: Key Similarities, Differences, and Data Gaps. J Pharmacol Exp Ther 2016; 359:110-23. [PMID: 27511820 PMCID: PMC5034707 DOI: 10.1124/jpet.116.232629] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2016] [Accepted: 08/09/2016] [Indexed: 01/18/2023] Open
Abstract
Trichloroethylene (TCE) and perchloroethylene or tetrachloroethylene (PCE) are high-production volume chemicals with numerous industrial applications. As a consequence of their widespread use, these chemicals are ubiquitous environmental contaminants to which the general population is commonly exposed. It is widely assumed that TCE and PCE are toxicologically similar; both are simple olefins with three (TCE) or four (PCE) chlorines. Nonetheless, despite decades of research on the adverse health effects of TCE or PCE, few studies have directly compared these two toxicants. Although the metabolic pathways are qualitatively similar, quantitative differences in the flux and yield of metabolites exist. Recent human health assessments have uncovered some overlap in target organs that are affected by exposure to TCE or PCE, and divergent species- and sex-specificity with regard to cancer and noncancer hazards. The objective of this minireview is to highlight key similarities, differences, and data gaps in target organ metabolism and mechanism of toxicity. The main anticipated outcome of this review is to encourage research to 1) directly compare the responses to TCE and PCE using more sensitive biochemical techniques and robust statistical comparisons; 2) more closely examine interindividual variability in the relationship between toxicokinetics and toxicodynamics for TCE and PCE; 3) elucidate the effect of coexposure to these two toxicants; and 4) explore new mechanisms for target organ toxicity associated with TCE and/or PCE exposure.
Collapse
Affiliation(s)
- Joseph A Cichocki
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Kathryn Z Guyton
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Neela Guha
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Weihsueh A Chiu
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| | - Lawrence H Lash
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, Texas (J.A.C., W.A.C., I.R.); International Agency for Research on Cancer, Lyon, France (K.Z.G., N.G.); Department of Pharmacology, Wayne State University School of Medicine, Detroit, Michigan (L.H.L.)
| |
Collapse
|
7
|
Abstract
Considerable support exists for the roles of metabolism in modulating the carcinogenic properties of chemicals. In particular, many of these compounds are pro-carcinogens that require activation to electrophilic forms to exert genotoxic effects. We systematically analyzed the existing literature on the metabolism of carcinogens by human enzymes, which has been developed largely in the past 25 years. The metabolism and especially bioactivation of carcinogens are dominated by cytochrome P450 enzymes (66% of bioactivations). Within this group, six P450s--1A1, 1A2, 1B1, 2A6, 2E1, and 3A4--accounted for 77% of the P450 activation reactions. The roles of these P450s can be compared with those estimated for drug metabolism and should be considered in issues involving enzyme induction, chemoprevention, molecular epidemiology, interindividual variations, and risk assessment.
Collapse
|
8
|
Sherlach KS, Gorka AP, Dantzler A, Roepe PD. Quantification of perchloroethylene residues in dry-cleaned fabrics. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2011; 30:2481-2487. [PMID: 21898565 DOI: 10.1002/etc.665] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 07/23/2011] [Accepted: 08/04/2011] [Indexed: 05/31/2023]
Abstract
We have used a novel gas chromatography/mass spectrometry (GC/MS)-based approach to quantify perchloroethylene (PCE) residues in dry-cleaned fabrics. Residual PCE was extracted from fabric samples with methanol and concentration was calculated by the gas chromatographic peak area, standardized using PCE calibration data. Extracts examined were from samples of 100% wool, polyester, cotton, or silk, which were dry cleaned from one to six times in seven different Northern Virginia dry-cleaning establishments. Additional experiments were conducted to investigate the kinetics of PCE release in the extraction solvent and to the open air. We found that polyester, cotton, and wool retained ≥ µM levels of PCE, that these levels increased in successive dry-cleaning cycles, and that PCE is slowly volatilized from these fabrics under ambient room air conditions. We found that silk does not retain appreciable PCE. Measured differences across dry-cleaning establishments and fabric type suggest more vigorous monitoring of PCE residues may be warranted. Environ. Toxicol. Chem. 2011;30:2481-2487. © 2011 SETAC.
Collapse
Affiliation(s)
- Katy S Sherlach
- Department of Chemistry, Georgetown University, Washington, DC, USA
| | | | | | | |
Collapse
|
9
|
Kirkland D, Reeve L, Gatehouse D, Vanparys P. A core in vitro genotoxicity battery comprising the Ames test plus the in vitro micronucleus test is sufficient to detect rodent carcinogens and in vivo genotoxins. Mutat Res 2011; 721:27-73. [PMID: 21238603 DOI: 10.1016/j.mrgentox.2010.12.015] [Citation(s) in RCA: 161] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/12/2010] [Accepted: 12/15/2010] [Indexed: 01/27/2023]
Abstract
In vitro genotoxicity testing needs to include tests in both bacterial and mammalian cells, and be able to detect gene mutations, chromosomal damage and aneuploidy. This may be achieved by a combination of the Ames test (detects gene mutations) and the in vitro micronucleus test (MNvit), since the latter detects both chromosomal aberrations and aneuploidy. In this paper we therefore present an analysis of an existing database of rodent carcinogens and a new database of in vivo genotoxins in terms of the in vitro genotoxicity tests needed to detect their in vivo activity. Published in vitro data from at least one test system (most were from the Ames test) were available for 557 carcinogens and 405 in vivo genotoxins. Because there are fewer publications on the MNvit than for other mammalian cell tests, and because the concordance between the MNvit and the in vitro chromosomal aberration (CAvit) test is so high for clastogenic activity, positive results in the CAvit test were taken as indicative of a positive result in the MNvit where there were no, or only inadequate data for the latter. Also, because Hprt and Tk loci both detect gene-mutation activity, a positive Hprt test was taken as indicative of a mouse-lymphoma Tk assay (MLA)-positive, where there were no data for the latter. Almost all of the 962 rodent carcinogens and in vivo genotoxins were detected by an in vitro battery comprising Ames+MNvit. An additional 11 carcinogens and six in vivo genotoxins would apparently be detected by the MLA, but many of these had not been tested in the MNvit or CAvit tests. Only four chemicals emerge as potentially being more readily detected in MLA than in Ames+MNvit--benzyl acetate, toluene, morphine and thiabendazole--and none of these are convincing cases to argue for the inclusion of the MLA in addition to Ames+MNvit. Thus, there is no convincing evidence that any genotoxic rodent carcinogens or in vivo genotoxins would remain undetected in an in vitro test battery consisting of Ames+MNvit.
Collapse
Affiliation(s)
- David Kirkland
- Kirkland Consulting, PO Box 79, Tadcaster LS24 0AS, United Kingdom.
| | | | | | | |
Collapse
|
10
|
Cai P, König R, Boor PJ, Kondraganti S, Kaphalia BS, Khan MF, Ansari G. Chronic exposure to trichloroethene causes early onset of SLE-like disease in female MRL +/+ mice. Toxicol Appl Pharmacol 2008; 228:68-75. [PMID: 18234256 PMCID: PMC2442272 DOI: 10.1016/j.taap.2007.11.031] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2007] [Revised: 11/28/2007] [Accepted: 11/29/2007] [Indexed: 10/22/2022]
Abstract
Trichloroethene (TCE) exacerbates the development of autoimmune responses in autoimmune-prone MRL +/+ mice. Although TCE-mediated autoimmune responses are associated with an increase in serum immunoglobulins and autoantibodies, the underlying mechanism of autoimmunity is not known. To determine the progression of TCE-mediated immunotoxicity, female MRL +/+ mice were chronically exposed to TCE through the drinking water (0.5 mg/ml of TCE) for various periods of time. Serum concentrations of antinuclear antibodies increased after 36 and 48 weeks of TCE exposure. Histopathological analyses showed lymphocyte infiltration in the livers of MRL +/+ mice exposed to TCE for 36 or 48 weeks. Lymphocyte infiltration was also apparent in the pancreas, lungs, and kidneys of mice exposed to TCE for 48 weeks. Immunoglobulin deposits in kidney glomeruli were found after 48 weeks of exposure to TCE. Our results suggest that chronic exposure to TCE promotes inflammation in the liver, pancreas, lungs, and kidneys, which may lead to SLE-like disease in MRL +/+ mice.
Collapse
Affiliation(s)
- Ping Cai
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Rolf König
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1019, USA
| | - Paul J. Boor
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - Shakuntala Kondraganti
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| | - Bhupendra S. Kaphalia
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - M. Firoze Khan
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
| | - G.A.S. Ansari
- Department of Pathology, University of Texas Medical Branch, Galveston, TX 77555-0609, USA
- Department of Biochemistry and Molecular Biology, University of Texas Medical Branch, Galveston, TX 77555-0647, USA
| |
Collapse
|
11
|
Walgren JL, Jollow DJ, McMillan JM. Induction of peroxisome proliferation in cultured hepatocytes by a series of halogenated acetates. Toxicology 2004; 197:189-97. [PMID: 15033542 DOI: 10.1016/j.tox.2004.01.007] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2003] [Revised: 01/01/2004] [Accepted: 01/05/2004] [Indexed: 11/26/2022]
Abstract
Trichloroacetate (TCA) and dichloroacetate (DCA) are hepatocarcinogenic metabolites of the environmental pollutant trichloroethylene (TCE) and are common water contaminants. Induction of peroxisome proliferation via activation of the peroxisome proliferator-activated receptor alpha (PPARalpha) has been proposed as a mechanism for their hepatocarcinogenic action. However, it is unclear whether these compounds are direct ligands of PPARalpha or whether activation occurs by a ligand-independent process. The present studies were undertaken to determine whether a primary rat hepatocyte model system could be used to examine structure-activity relationships of haloacetates for the induction of peroxisomal palmitoyl-CoA oxidation. The haloacetates tested differed in both type (iodo, bromo, chloro and fluoro) and extent (mono, di and tri) substitution. Significant differences were observed in both potency and efficacy. Potency varied over about two orders of magnitude, in the order of mono > di = tri. Within the monohalo-substituted series, the order of potency was iodo > bromo > chloro, with the fluoro analog being essentially inactive. The monoiodo- and monobromo-derivatives showed significant induction at 50 and 100 microM, respectively, but cytotoxicity precluded obtaining full concentration-response curves. The dihalo- and trihalo-acetates had generally similar potency, and, with the exception of the diflouro- and dibromoacetates, showed a maximal induction of two- to three-fold. Difluoroacetate and dibromoacetate induced palmitoyl-CoA oxidation by nine- and six-fold, respectively, approaching the effectiveness of Wy-14,643 (50 microM) in this system. Of interest, the slopes of the concentration-dependence lines of the difluoro- and dibromo-acetates were markedly dissimilar from the other di- and tri-haloacetates, suggesting either a marked difference in the way they activate the PPARalpha receptor or a substantial difference in the way they are metabolized or transported by the hepatocytes.
Collapse
Affiliation(s)
- Jennie L Walgren
- Department of Cell and Molecular Pharmacology, P.O. Box 250505, 173 Ashley Avenue, Medical University of South Carolina, Charleston, SC 29425, USA
| | | | | |
Collapse
|
12
|
Fisher J, Lumpkin M, Boyd J, Mahle D, Bruckner JV, El-Masri HA. PBPK modeling of the metabolic interactions of carbon tetrachloride and tetrachloroethylene in B6C3F1 mice. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2004; 16:93-105. [PMID: 21782696 DOI: 10.1016/j.etap.2003.10.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2003] [Accepted: 10/10/2003] [Indexed: 05/31/2023]
Abstract
Potential exists for widespread human exposure to low levels of carbon tetrachloride (CT) and tetrachloroethylene (TET). These halocarbons are metabolized by the cytochrome P450 system. CT is known to inhibit its own metabolism (suicide inhibition) and to cause liver injury by generation of metabolically derived free radicals. The objective of this research was to use develop a physiologically based pharmacokinetic (PBPK) model to forcast the metabolic interactions between orally administered CT and TET in male B6C3F1 mice. Trichloroacetic acid (TCA), a stable metabolite of TET, was used as a biomarker to assess inhibition of the cytochrome P450 system by CT. Metabolic constants utilized for CT were 1.0mg/kg/h for Vmaxc_CT and 0.3 for Km_CT (mg/l). Values for TET (based in TCA production), were 6.0mg/kg/h for Vmaxc_TET was 3.0mg/l for Km_TET. The rate of loss of metabolic capacity for CT (suicide inhibition) was describe as: Vmaxloss ( mg / h )=- Kd ( RAM × RAM ) , where Kd (h/kg) is a second-order rate constant, and RAM (mg/h) is the Michaelis-Menten description of the rate of metabolism of CT. For model simplicity, CT was assumed to damage the primary enzymes responsible for metabolism of CT (CYP2E1) and TET (CYP2B2) in an equal fashion. Thus, the calculated fractional loss of TET metabolic capacity was assumed to be equivalent to the calculated loss in metabolic capacity of CT. Use of a Kd value of 400h/kg successfully described serum TCA levels in mice dosed orally with 5-100mg/kg of CT. We report, for the first time, suicide inhibition at a very low dose of CT (1mg/kg). The PBPK model under-predicted the degree of metabolic inhibition in mice administered 1mg/kg of CT. This PBPK model is one of only a few physiological models available to predict the metabolic interactions of chemical mixtures involving suicide inhibition. The success of this PBPK model demonstrates that PBPK models are useful tools for examining the nature of metabolic interactions of chemical mixtures, including suicide inhibition. Further research is required to compare the inhibitory effects of inhaled CT vapors with CT administered by oral bolus dosing and determine the interaction threshold for CT-induced metabolic inhibition.
Collapse
Affiliation(s)
- J Fisher
- Interdisciplinary Toxicology Program, University of Georgia, Athens, GA, USA
| | | | | | | | | | | |
Collapse
|
13
|
Abstract
Human cytochrome P450 2A6 (CYP2A6) has been shown to have large interindividual and interethnic variability in levels of expression and activity. This is thought to be largely due to genetic polymorphisms. In recent years, 13 genetic variants (CYP2A6*1-*11 and the gene duplication, *1 x 2) of CYP2A6 have been identified and a number of these have been shown to result in altered CYP2A6 enzyme activity. For example, there are alleles which result in variants that are in inactive (e.g. due to a gene deletion), have decreased activity (e.g. altered enzyme structure or transcriptional activity) or have increased activity (e.g. due to gene duplications). The resulting interindividual variation in metabolic activity may affect the metabolism of CYP2A6 substrates including nicotine, cotinine (the major metabolite of nicotine), several tobacco-specific procarcinogens, coumarin and many toxins. The frequencies of the CYP2A6 alleles vary considerably among different ethnic populations, which may partially explain the interethnic variability found in CYP2A6-related metabolic activity (e.g. nicotine metabolism), behaviors (i.e. smoking) and disease (i.e. lung cancer). Investigations of the genetic variation of CYP2A6 and its resulting effects on metabolism and health consequences are still fairly early; this review summarizes what is presently known about CYP2A6, its genetic variants and their clinical consequences.
Collapse
Affiliation(s)
- Chun Xu
- Centre for Addiction and Mental Health, University of Toronto, Toronto M5S 1A8, Canada
| | | | | | | |
Collapse
|
14
|
Yoshioka T, Krauser JA, Guengerich FP. Tetrachloroethylene oxide: hydrolytic products and reactions with phosphate and lysine. Chem Res Toxicol 2002; 15:1096-105. [PMID: 12184794 DOI: 10.1021/tx020028j] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Tetrachloroethylene, or perchloroethylene (PCE), has considerable industrial use and is of toxicological interest because of a variety of effects. Most of the existing literature presents PCE oxide as a critical intermediate in the oxidative metabolism of PCE to Cl(3)CCO(2)H, oxalic acid, and products covalently bound to proteins, including trichloroacetyl derivatives of lysine. PCE oxide was synthesized by photochemical oxidation of PCE and characterized. Decomposition at neutral pH (t(1/2) = 7.9 min at 0 degrees C, 5.8 min at 23 degrees C, 2.6 min at 37 degrees C) yielded only trace ( approximately 1%) Cl(3)CCO(2)H; the major products identified were CO (73% yield) and CO(2) (63% yield). In phosphate buffer (0.10 M) a major product was identified as oxalyl phosphate. Oxalyl chloride also reacted to form CO and CO(2) in aqueous solution and to form oxalyl phosphate in neutral phosphate buffer. Oxalyl phosphate decomposed to oxalic acid (t(1/2) = 53 min at 37 degrees C) but did not react with lysine. Reaction of PCE oxide with free lysine yielded the oxalic acid amide derivatives of lysine plus lysine dimers in which cross-linking of the amino groups involved oxalo linkage. The reaction of PCE oxide with albumin yielded mainly N(6)-oxalolysine and some (<5%) N(6)-trichloroacetyllysine. We propose a reaction pathway for PCE oxide based on our previous studies with trichloroethylene oxide, in which C-C bond scission is a major product of reaction in aqueous buffer and yields CO and CO(2). Oxalyl species are proposed as intermediates and prominent acylating species formed in the reactions of the epoxide. The formation of Cl(3)CCO(2)H in cytochrome P450 reactions is postulated to result from intramolecular migration within an enzyme intermediate.
Collapse
Affiliation(s)
- Tadao Yoshioka
- Department of Biochemistry, Center in Molecular Toxicology, Vanderbilt University School of Medicine, Nashville, TN 37232-0146, USA
| | | | | |
Collapse
|
15
|
White IN, De Matteis F. The role of CYP forms in the metabolism and metabolic activation of HCFCs and other halocarbons. Toxicol Lett 2001; 124:121-8. [PMID: 11684364 DOI: 10.1016/s0378-4274(00)00288-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The use of hydrochlorofluorocarbons (HCFCs) such as HCFC-123 (2,2-dichloro-1,1,1-trifluoroethane) and HCFC-141b (1,1-dichloro-1-fluoroethane) is becoming widespread as replacements for the ozone depleting chlorofluorocarbons. Hepatic activation of HCFC-123 or the unsaturated perchloroethylene through oxidative pathways leads to the formation of the electrophiles trifluoroacetyl chloride or trichloroacetyl chloride, respectively. These can react with epsilon-NH(2) functions of lysine in proteins and give rise to neoantigens. In the case of HCFC-123, this reaction is catalysed primarily by CYP2E1 and to a much lesser extent by the constitutive CYP2C19, CYP2B6 and CYP2C8. For perchloroethylene, the extent of activation is less and the reaction is catalysed primarily by the CYP2B family. While acute hepatotoxicity has been seen in humans exposed to HCFC-123 or halothane, little short- or long-term toxicity in rodents is observed. No immunological related toxicity of perchloroethylene has been reported in exposed humans. Long-term exposure of rats can lead to renal tubule carcinomas and in mice, hepatocellular carcinomas. These toxic reactions do not appear to be directly related to the formation of the putative trichloroacetyl chloride intermediate.
Collapse
Affiliation(s)
- I N White
- MRC Toxicology Unit, Hodgkin Building, University of Leicester, Lancaster Road, Leicester LE1 9HN, UK.
| | | |
Collapse
|