1
|
Sarris GG, Abbott DL, Moreno TM, Maychack KJ, Limoges JF. Development and validation of a simple chromatographic method to screen oral fluid samples for drugs in DUID investigations. J Anal Toxicol 2024; 48:528-534. [PMID: 39230975 DOI: 10.1093/jat/bkae068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/29/2024] [Accepted: 08/05/2024] [Indexed: 09/06/2024] Open
Abstract
A simple and rapid qualitative chromatographic method with a unique extraction approach was developed and validated to screen oral fluid samples for 31 compounds in driving under the influence of drugs investigations. The scope and sensitivity of the method meets or exceeds Tier I recommendations established by the National Safety Council's Alcohol, Drugs and Impairment Division. Since this is a targeted chromatographic screen (rather than an immunoassay), cutoffs were set to match the confirmation levels in the recommendations. Sample preparation involved a single-step liquid-liquid extraction procedure, using a mixture of methyl tert-butyl ether, isopropanol, and hexane and was applied to samples collected with the Quantisal™ device. Instrument analysis was conducted by liquid chromatography-tandem mass spectrometry, using a Restek Raptor™ biphenyl column for chromatographic separations and a total run time of 8 min. Validation results met all requirements of ANSI/ASB Standard 036 (1st edition)-Standard Practices for Method Validation in Forensic Toxicology.
Collapse
Affiliation(s)
- Gregory G Sarris
- New York State Police Forensic Investigation Center, Toxicology, 1220 Washington Ave, Bldg 30, Albany, NY 12226, United States
| | - Dustin L Abbott
- New York State Police Forensic Investigation Center, Toxicology, 1220 Washington Ave, Bldg 30, Albany, NY 12226, United States
| | - Tiffany M Moreno
- New York State Police Forensic Investigation Center, Toxicology, 1220 Washington Ave, Bldg 30, Albany, NY 12226, United States
| | - Kelly J Maychack
- New York State Police Forensic Investigation Center, Toxicology, 1220 Washington Ave, Bldg 30, Albany, NY 12226, United States
| | - Jennifer F Limoges
- New York State Police Forensic Investigation Center, Toxicology, 1220 Washington Ave, Bldg 30, Albany, NY 12226, United States
| |
Collapse
|
2
|
Apoorva S, Nguyen NT, Sreejith KR. Recent developments and future perspectives of microfluidics and smart technologies in wearable devices. LAB ON A CHIP 2024; 24:1833-1866. [PMID: 38476112 DOI: 10.1039/d4lc00089g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2024]
Abstract
Wearable devices are gaining popularity in the fields of health monitoring, diagnosis, and drug delivery. Recent advances in wearable technology have enabled real-time analysis of biofluids such as sweat, interstitial fluid, tears, saliva, wound fluid, and urine. The integration of microfluidics and emerging smart technologies, such as artificial intelligence (AI), machine learning (ML), and Internet of Things (IoT), into wearable devices offers great potential for accurate and non-invasive monitoring and diagnosis. This paper provides an overview of current trends and developments in microfluidics and smart technologies in wearable devices for analyzing body fluids. The paper discusses common microfluidic technologies in wearable devices and the challenges associated with analyzing each type of biofluid. The paper emphasizes the importance of combining smart technologies with microfluidics in wearable devices, and how they can aid diagnosis and therapy. Finally, the paper covers recent applications, trends, and future developments in the context of intelligent microfluidic wearable devices.
Collapse
Affiliation(s)
- Sasikala Apoorva
- UKF Centre for Advanced Research and Skill Development(UCARS), UKF College of Engineering and Technology, Kollam, Kerala, India, 691 302
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| | - Kamalalayam Rajan Sreejith
- Queensland Micro and Nanotechnology Centre, Griffith University, 170 Kessels Road, Nathan, 4111, Queensland, Australia.
| |
Collapse
|
3
|
Nguyen TTH, Nguyen CM, Huynh MA, Vu HH, Nguyen TK, Nguyen NT. Field effect transistor based wearable biosensors for healthcare monitoring. J Nanobiotechnology 2023; 21:411. [PMID: 37936115 PMCID: PMC10629051 DOI: 10.1186/s12951-023-02153-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 10/09/2023] [Indexed: 11/09/2023] Open
Abstract
The rapid advancement of wearable biosensors has revolutionized healthcare monitoring by screening in a non-invasive and continuous manner. Among various sensing techniques, field-effect transistor (FET)-based wearable biosensors attract increasing attention due to their advantages such as label-free detection, fast response, easy operation, and capability of integration. This review explores the innovative developments and applications of FET-based wearable biosensors for healthcare monitoring. Beginning with an introduction to the significance of wearable biosensors, the paper gives an overview of structural and operational principles of FETs, providing insights into their diverse classifications. Next, the paper discusses the fabrication methods, semiconductor surface modification techniques and gate surface functionalization strategies. This background lays the foundation for exploring specific FET-based biosensor designs, including enzyme, antibody and nanobody, aptamer, as well as ion-sensitive membrane sensors. Subsequently, the paper investigates the incorporation of FET-based biosensors in monitoring biomarkers present in physiological fluids such as sweat, tears, saliva, and skin interstitial fluid (ISF). Finally, we address challenges, technical issues, and opportunities related to FET-based biosensor applications. This comprehensive review underscores the transformative potential of FET-based wearable biosensors in healthcare monitoring. By offering a multidimensional perspective on device design, fabrication, functionalization and applications, this paper aims to serve as a valuable resource for researchers in the field of biosensing technology and personalized healthcare.
Collapse
Affiliation(s)
- Thi Thanh-Ha Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Cong Minh Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Environment and Science (ESC), Griffith University, Nathan, QLD, 4111, Australia
| | - Minh Anh Huynh
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Hoang Huy Vu
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
- School of Engineering and Built Environment, Griffith University, Nathan, QLD, 4111, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia
| | - Nam-Trung Nguyen
- Queensland Micro- and Nanotechnology Centre, Griffith University, Nathan, QLD, 4111, Australia.
| |
Collapse
|
4
|
Di Giorgi A, Sprega G, Poyatos L, Papaseit E, Pérez-Mañá C, Di Trana A, Varì MR, Busardò FP, Pichini S, Zaami S, Lo Faro AF, Farré M. Sweat Testing for the Detection of Methylone after Controlled Administrations in Humans. Int J Mol Sci 2023; 24:7395. [PMID: 37108557 PMCID: PMC10138602 DOI: 10.3390/ijms24087395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/02/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to determine the excretion of methylone and its metabolites in sweat following the ingestion of increasing controlled doses of 50, 100, 150 and 200 mg of methylone to twelve healthy volunteers involved in a clinical trial. Methylone and its metabolites 4-hydroxy-3-methoxy-N-methylcathinone (HMMC) and 3,4-methylenedioxycathinone (MDC) were analyzed in sweat patches by liquid chromatography-tandem mass spectrometry. Methylone and MDC were detected in sweat at 2 h and reached their highest accumulation (Cmax) at 24 h after the administration of 50, 100, 150 and 200 mg doses. In contrast, HMMC was not detectable at any time interval after each dose. Sweat proved to be a suitable matrix for methylone and its metabolites' determination in clinical and toxicological studies, providing a concentration that reveals recent drug consumption.
Collapse
Affiliation(s)
- Alessandro Di Giorgi
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy; (A.D.G.); (G.S.); (F.P.B.); (A.F.L.F.)
| | - Giorgia Sprega
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy; (A.D.G.); (G.S.); (F.P.B.); (A.F.L.F.)
| | - Lourdes Poyatos
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| | - Esther Papaseit
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| | - Clara Pérez-Mañá
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| | - Annagiulia Di Trana
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.T.); (S.P.)
| | - Maria Rosaria Varì
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.T.); (S.P.)
| | - Francesco Paolo Busardò
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy; (A.D.G.); (G.S.); (F.P.B.); (A.F.L.F.)
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161 Rome, Italy; (A.D.T.); (S.P.)
| | - Simona Zaami
- Department of Anatomical, Histological, Forensic, and Orthopedic Sciences, Università La Sapienza, 00161 Rome, Italy;
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60121 Ancona, Italy; (A.D.G.); (G.S.); (F.P.B.); (A.F.L.F.)
| | - Magí Farré
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain; (L.P.); (E.P.); (C.P.-M.); (M.F.)
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| |
Collapse
|
5
|
Sprega G, Di Giorgi A, Poyatos L, Papaseit E, Pérez-Mañá C, Tini A, Pichini S, Busardò FP, Lo Faro AF, Farré M. Usefulness of Oral Fluid for Measurement of Methylone and Its Metabolites: Correlation with Plasma Drug Concentrations and the Effect of Oral Fluid pH. Metabolites 2023; 13:metabo13040468. [PMID: 37110127 PMCID: PMC10143603 DOI: 10.3390/metabo13040468] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 03/07/2023] [Accepted: 03/22/2023] [Indexed: 04/29/2023] Open
Abstract
The aim of this study was to investigate methylone and its metabolites concentration in oral fluid following controlled increasing doses, focusing on the effect of oral fluid pH. Samples were obtained from a clinical trial where twelve healthy volunteers participated after ingestion of 50, 100, 150 and 200 mg of methylone. Concentration of methylone and its metabolites 4-hydroxy-3-methoxy-N-methylcathinone (HMMC) and 3,4-methylenedioxycathinone in oral fluid were measured using liquid chromatography-tandem mass spectrometry (LC-MS/MS). Pharmacokinetic parameters were estimated, and the oral fluid-to-plasma ratio (OF/P) at each time interval was calculated and correlated with the oral fluid pH using data from our previous study in plasma. Methylone was detected at all time intervals after each dose; MDC and HMMC were not detectable after the lowest dose. Oral fluid concentrations of methylone ranged between 88.3-503.8, 85.5-5002.3, 182.8-13,201.8 and 214.6-22,684.6 ng/mL following 50, 100, 150 and 200 mg doses, respectively, peaked between 1.5 and 2.0 h, and were followed by a progressive decrease. Oral fluid pH was demonstrated to be affected by methylone administration. Oral fluid is a valid alternative to plasma for methylone determination for clinical and toxicological studies, allowing for a simple, easy and non-invasive sample collection.
Collapse
Affiliation(s)
- Giorgia Sprega
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Alessandro Di Giorgi
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Lourdes Poyatos
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| | - Esther Papaseit
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| | - Clara Pérez-Mañá
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| | - Anastasio Tini
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Francesco Paolo Busardò
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Alfredo Fabrizio Lo Faro
- Department of Excellence-Biomedical Sciences and Public Health, Università Politecnica delle Marche, 60126 Ancona, Italy
| | - Magí Farré
- Department of Clinical Pharmacology, Hospital Universitari Germans Trias i Pujol and Institut de Recerca Germans Trias i Pujol (HUGTiP-IGTP), 08916 Badalona, Spain
- Department of Pharmacology, Therapeutics and Toxicology and Department of Psychiatry and Forensic Medicine, Universitat Autònoma de Barcelona (UAB), 08193 Cerdanyola del Vallés, Spain
| |
Collapse
|
6
|
Solin K, Vuoriluoto M, Khakalo A, Tammelin T. Cannabis detection with solid sensors and paper-based immunoassays by conjugating antibodies to nanocellulose. Carbohydr Polym 2023; 304:120517. [PMID: 36641163 DOI: 10.1016/j.carbpol.2022.120517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 12/19/2022] [Accepted: 12/28/2022] [Indexed: 12/31/2022]
Abstract
Highly sensitive and specific diagnostics for cannabis usage are essential for rapid on-site screening for illicit drug usage. To improve the sensitivity of THC immunoassays, a proper immobilization of the sensing elements on the sensor substrate is critical. In this work, we demonstrated the utilization of EDC/NHS coupling chemistry with nanocellulose to obtain efficient anchor layers for the immobilization of anti-immune complex antibodies on surfaces. In our approach, the high surface-to-volume ratio, OH-group-rich surface, and high hygroscopicity of TOCNF enable efficient surface functionalization and enhance water permeation inside the nanocellulose network structure, offering a hydrophilic spacer for the sensing antibodies. THC detection was shown in both SPR (surface plasmon resonance technique) and paper-based sensing systems. In SPR, antibody immobilization and the related interactions with the target molecule complex with 1-10 μg/mL THC were followed in-situ in aqueous environment, revealing robust attachment of the antibody to the nanocellulose layer and preserved bioactivity. Additionally, quantitative THC detection was enabled on paper substrate by colorimetric means by employing labeled anti-THC Fab antibody fragments as detection antibodies. THC detection efficiency of covalently linked biointerface was superior compared to the performance of physically linked biointerface. The chemical conjugation of anti-IC to nanocellulose allowed efficient binding, whereas supramolecular conjugation led to insufficient binding, highlighting the relevance of the developed nanocellulose-based anchor layer.
Collapse
Affiliation(s)
- Katariina Solin
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, FI-02044 Espoo, Finland
| | - Maija Vuoriluoto
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, FI-02044 Espoo, Finland
| | - Alexey Khakalo
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, FI-02044 Espoo, Finland.
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland Ltd., Tietotie 4E, FI-02044 Espoo, Finland
| |
Collapse
|
7
|
Cardoso AG, Viltres H, Ortega GA, Phung V, Grewal R, Mozaffari H, Ahmed SR, Rajabzadeh AR, Srinivasan S. Electrochemical sensing of analytes in saliva: Challenges, progress, and perspectives. Trends Analyt Chem 2023. [DOI: 10.1016/j.trac.2023.116965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
|
8
|
Garzarelli V, Ferrara F, Primiceri E, Chiriacò MS. Biofluids manipulation methods for liquid biopsy in minimally-invasive assays. MethodsX 2022; 9:101759. [PMID: 35774416 PMCID: PMC9237943 DOI: 10.1016/j.mex.2022.101759] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 06/10/2022] [Indexed: 12/05/2022] Open
Abstract
The Liquid Biopsy (LB) is an opportunity for non-invasive diagnosis and prognosis of various diseases. To date, it isn't possible to consider that tissue biopsy can represent a pathology entirety. Then, body fluids are rich in a large number and variety of biomarkers and they can provide information about several diseases.Recently, other biological fluids, easy to be collected are rising for their significant content of biomarkers and for the possibility to collect and manipulate them without the intervention of medical staff. The management of biological fluids requires suitable storage methods. Temperature, storage time and physical stresses due to sample handling can lead to chemical and physical changes that may induce sample degradation and incorrect analysis. The reliability of a diagnostic or screening test depends on its sensitivity and specificity. As the liquid biopsy is a 'snapshot' of a pathophysiological condition, it is crucial that its components do not degrade due to the improper handling of the body fluid. In this review, some handling methods of Saliva, Urine, Stool, Seminal Fluid, Tears and Sweat samples will be described, as well as protocols to facilitate the analysis of metabolites, nucleic acids, proteins and Extracellular Vesicles (EVs) from those unusual body fluids.
Collapse
Affiliation(s)
- Valeria Garzarelli
- University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy.,CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Francesco Ferrara
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.,STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | | |
Collapse
|
9
|
Mastrogianni O, Kevrekidis DP, Brousa E, Orfanidis A, Zagelidou H, Raikos N. Determination of fentanyl and norfentanyl in cerumen in the setting of postmortem investigation. J Forensic Sci 2022; 67:2130-2137. [PMID: 35642729 DOI: 10.1111/1556-4029.15069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/12/2022] [Accepted: 05/16/2022] [Indexed: 11/29/2022]
Abstract
Cerumen is an emerging alternative biological matrix in the field of forensic toxicology. An ultra-high-pressure liquid chromatography-mass spectrometry/mass spectrometry [UHPLC-MS/MS] method for the determination of fentanyl and norfentanyl in cerumen was developed and applied in a mixed drug toxicity fatal case. The method was found to be selective and sensitive (LOQ: 0.05 ng/mg for fentanyl and 0.02 ng/mg for norfentanyl), while validation included recovery, carryover, short-term stability, matrix effect, accuracy, and precision (RSD%). Accuracy ranged from 83.1% to 103.5%, while intra- and inter-day precision ranged from 8.6% to 13.1% and from 8.3% to 15.8%, respectively. Matrix effect experiments showed that matrix did not significantly affect signal intensity (82.3%-96.8%). Short-term stability concerning sample extracts was found satisfactory. Fentanyl and norfentanyl were detected in cerumen at a concentration of 1.17 and 0.36 ng/mg respectively. The findings in cerumen corroborate the cause of death and suggest that cerumen is a potential specimen for detecting drugs of abuse in forensic cases.
Collapse
Affiliation(s)
- Orthodoxia Mastrogianni
- Laboratory of Toxicology, Forensic Service of Thessaloniki, Ministry of Justice, Thessaloniki, Greece.,Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University, Thessaloniki, Greece
| | | | - Evdokia Brousa
- Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University, Thessaloniki, Greece
| | - Amvrosios Orfanidis
- Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University, Thessaloniki, Greece
| | - Heleni Zagelidou
- Laboratory of Toxicology, Forensic Service of Thessaloniki, Ministry of Justice, Thessaloniki, Greece
| | - Nikolaos Raikos
- Laboratory of Forensic Medicine and Toxicology, Medical School, Aristotle University, Thessaloniki, Greece
| |
Collapse
|
10
|
|
11
|
Ferrara F, Zoupanou S, Primiceri E, Ali Z, Chiriacò MS. Beyond liquid biopsy: Toward non-invasive assays for distanced cancer diagnostics in pandemics. Biosens Bioelectron 2021; 196:113698. [PMID: 34688113 PMCID: PMC8527216 DOI: 10.1016/j.bios.2021.113698] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 10/01/2021] [Accepted: 10/07/2021] [Indexed: 12/11/2022]
Abstract
Liquid biopsy technologies have seen a significant improvement in the last decade, offering the possibility of reliable analysis and diagnosis from several biological fluids. The use of these technologies can overcome the limits of standard clinical methods, related to invasiveness and poor patient compliance. Along with this there are now mature examples of lab-on-chips (LOC) which are available and could be an emerging and breakthrough technology for the present and near-future clinical demands that provide sample treatment, reagent addition and analysis in a sample-in/answer-out approach. The possibility of combining non-invasive liquid biopsy and LOC technologies could greatly assist in the current need for minimizing exposure and transmission risks. The recent and ongoing pandemic outbreak of SARS-CoV-2, indeed, has heavily influenced all aspects of life worldwide. Ordinary tasks have been forced to switch from “in presence” to “distanced”, limiting the possibilities for a large number of activities in all fields of life outside of the home. Unfortunately, one of the settings in which physical distancing has assumed noteworthy consequences is the screening, diagnosis and follow-up of diseases. In this review, we analyse biological fluids that are easily collected without the intervention of specialized personnel and the possibility that they may be used -or not-for innovative diagnostic assays. We consider their advantages and limitations, mainly due to stability and storage and their integration into Point-of-Care diagnostics, demonstrating that technologies in some cases are mature enough to meet current clinical needs.
Collapse
Affiliation(s)
- Francesco Ferrara
- STMicroelectronics s.r.l., via per Monteroni, 73100, Lecce, Italy; CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy.
| | - Sofia Zoupanou
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy; University of Salento, Dept. of Mathematics & Physics E. de Giorgi, Via Arnesano, 73100, Lecce, Italy
| | - Elisabetta Primiceri
- CNR NANOTEC - Institute of Nanotechnology, via per Monteroni, 73100, Lecce, Italy
| | - Zulfiqur Ali
- University of Teesside, School of Health & Life Sciences, Healthcare Innovation Centre, Middlesbrough, TS1 3BX, Tees Valley, England, UK
| | | |
Collapse
|
12
|
Bunea AC, Dediu V, Laszlo EA, Pistriţu F, Carp M, Iliescu FS, Ionescu ON, Iliescu C. E-Skin: The Dawn of a New Era of On-Body Monitoring Systems. MICROMACHINES 2021; 12:1091. [PMID: 34577734 PMCID: PMC8470991 DOI: 10.3390/mi12091091] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 09/01/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022]
Abstract
Real-time "on-body" monitoring of human physiological signals through wearable systems developed on flexible substrates (e-skin) is the next target in human health control and prevention, while an alternative to bulky diagnostic devices routinely used in clinics. The present work summarizes the recent trends in the development of e-skin systems. Firstly, we revised the material development for e-skin systems. Secondly, aspects related to fabrication techniques were presented. Next, the main applications of e-skin systems in monitoring, such as temperature, pulse, and other bio-electric signals related to health status, were analyzed. Finally, aspects regarding the power supply and signal processing were discussed. The special features of e-skin as identified contribute clearly to the developing potential as in situ diagnostic tool for further implementation in clinical practice at patient personal levels.
Collapse
Affiliation(s)
- Alina-Cristina Bunea
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Violeta Dediu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Edwin Alexandru Laszlo
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Florian Pistriţu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Mihaela Carp
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Florina Silvia Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
| | - Octavian Narcis Ionescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
- Faculty of Electrical and Mechanical Engineering, Petroleum-Gas University of Ploiesti, 100680 Ploiesti, Romania
| | - Ciprian Iliescu
- National Institute for Research and Development in Microtechnologies—IMT, 077190 Bucharest, Romania; (A.-C.B.); (V.D.); (E.A.L.); (F.P.); (M.C.); (F.S.I.); (O.N.I.)
- Academy of Romanian Scientists, 010071 Bucharest, Romania
- Faculty of Applied Chemistry and Materials Science, University “Politehnica” of Bucharest, 011061 Bucharest, Romania
| |
Collapse
|
13
|
Xu J, Fang Y, Chen J. Wearable Biosensors for Non-Invasive Sweat Diagnostics. BIOSENSORS 2021; 11:245. [PMID: 34436047 PMCID: PMC8391966 DOI: 10.3390/bios11080245] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022]
Abstract
Recent advances in microfluidics, microelectronics, and electrochemical sensing methods have steered the way for the development of novel and potential wearable biosensors for healthcare monitoring. Wearable bioelectronics has received tremendous attention worldwide due to its great a potential for predictive medical modeling and allowing for personalized point-of-care-testing (POCT). They possess many appealing characteristics, for example, lightweight, flexibility, good stretchability, conformability, and low cost. These characteristics make wearable bioelectronics a promising platform for personalized devices. In this paper, we review recent progress in flexible and wearable sensors for non-invasive biomonitoring using sweat as the bio-fluid. Real-time and molecular-level monitoring of personal health states can be achieved with sweat-based or perspiration-based wearable biosensors. The suitability of sweat and its potential in healthcare monitoring, sweat extraction, and the challenges encountered in sweat-based analysis are summarized. The paper also discusses challenges that still hinder the full-fledged development of sweat-based wearables and presents the areas of future research.
Collapse
Affiliation(s)
- Jing Xu
- School of Electrical & Electronic Engineering, North China Electric Power University, Beijing 102206, China;
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA;
| | - Yunsheng Fang
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA;
| | - Jun Chen
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA;
| |
Collapse
|
14
|
Quintana PJE, Lopez-Galvez N, Dodder NG, Hoh E, Matt GE, Zakarian JM, Vyas M, Chu L, Akins B, Padilla S, Anderson KA, Hovell MF. Nicotine, Cotinine, and Tobacco-Specific Nitrosamines Measured in Children's Silicone Wristbands in Relation to Secondhand Smoke and E-cigarette Vapor Exposure. Nicotine Tob Res 2021; 23:592-599. [PMID: 33009807 PMCID: PMC8248526 DOI: 10.1093/ntr/ntaa140] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 07/28/2020] [Indexed: 01/27/2023]
Abstract
INTRODUCTION Simple silicone wristbands (WB) hold promise for exposure assessment in children. We previously reported strong correlations between nicotine in WB worn by children and urinary cotinine (UC). Here, we investigated differences in WB chemical concentrations among children exposed to secondhand smoke from conventional cigarettes (CC) or secondhand vapor from electronic cigarettes (EC), and children living with nonusers of either product (NS). METHODS Children (n = 53) wore three WB and a passive nicotine air sampler for 7 days and one WB for 2 days, and gave a urine sample on day 7. Caregivers reported daily exposures during the 7-day period. We determined nicotine, cotinine, and tobacco-specific nitrosamines (TSNAs) concentrations in WB, nicotine in air samplers, and UC through isotope-dilution liquid chromatography with triple-quadrupole mass spectrometry. RESULTS Nicotine and cotinine levels in WB in children differentiated between groups of children recruited into NS, EC exposed, and CC exposed groups in a similar manner to UC. WB levels were significantly higher in the CC group (WB nicotine median 233.8 ng/g silicone, UC median 3.6 ng/mL, n = 15) than the EC group (WB nicotine median: 28.9 ng/g, UC 0.5 ng/mL, n = 19), and both CC and EC group levels were higher than the NS group (WB nicotine median: 3.7 ng/g, UC 0.1 ng/mL, n = 19). TSNAs, including the known carcinogen NNK, were detected in 39% of WB. CONCLUSIONS Silicone WB show promise for sensitive detection of exposure to tobacco-related contaminants from traditional and electronic cigarettes and have potential for tobacco control efforts. IMPLICATIONS Silicone WB worn by children can absorb nicotine, cotinine, and tobacco-specific nitrosamines, and amounts of these compounds are closely related to the child's urinary cotinine. Levels of tobacco-specific compounds in the silicone WB can distinguish patterns of children's exposure to secondhand smoke and e-cigarette vapor. Silicone WB are simple to use and acceptable to children and, therefore, may be useful for tobacco control activities such as parental awareness and behavior change, and effects of smoke-free policy implementation.
Collapse
Affiliation(s)
| | - Nicolas Lopez-Galvez
- San Diego State University Research Foundation, San Diego State
University, San Diego, CA
| | - Nathan G Dodder
- San Diego State University Research Foundation, San Diego State
University, San Diego, CA
| | - Eunha Hoh
- School of Public Health, San Diego State University, San Diego,
CA
| | - Georg E Matt
- Department of Psychology, San Diego State University, San Diego,
CA
| | - Joy M Zakarian
- San Diego State University Research Foundation, San Diego State
University, San Diego, CA
| | - Mansi Vyas
- School of Public Health, San Diego State University, San Diego,
CA
| | - Linda Chu
- School of Public Health, San Diego State University, San Diego,
CA
| | - Brittany Akins
- School of Public Health, San Diego State University, San Diego,
CA
| | - Samuel Padilla
- San Diego State University Research Foundation, San Diego State
University, San Diego, CA
| | - Kim A Anderson
- Environmental and Molecular Toxicology, Oregon State University College of
Agricultural Sciences, Corvallis, OR
| | | |
Collapse
|
15
|
Teymourian H, Parrilla M, Sempionatto JR, Montiel NF, Barfidokht A, Van Echelpoel R, De Wael K, Wang J. Wearable Electrochemical Sensors for the Monitoring and Screening of Drugs. ACS Sens 2020; 5:2679-2700. [PMID: 32822166 DOI: 10.1021/acssensors.0c01318] [Citation(s) in RCA: 153] [Impact Index Per Article: 38.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Wearable electrochemical sensors capable of noninvasive monitoring of chemical markers represent a rapidly emerging digital-health technology. Recent advances toward wearable continuous glucose monitoring (CGM) systems have ignited tremendous interest in expanding such sensor technology to other important fields. This article reviews for the first time wearable electrochemical sensors for monitoring therapeutic drugs and drugs of abuse. This rapidly emerging class of drug-sensing wearable devices addresses the growing demand for personalized medicine, toward improved therapeutic outcomes while minimizing the side effects of drugs and the related medical expenses. Continuous, noninvasive monitoring of therapeutic drugs within bodily fluids empowers clinicians and patients to correlate the pharmacokinetic properties with optimal outcomes by realizing patient-specific dose regulation and tracking dynamic changes in pharmacokinetics behavior while assuring the medication adherence of patients. Furthermore, wearable electrochemical drug monitoring devices can also serve as powerful screening tools in the hands of law enforcement agents to combat drug trafficking and support on-site forensic investigations. The review covers various wearable form factors developed for noninvasive monitoring of therapeutic drugs in different body fluids and toward on-site screening of drugs of abuse. The future prospects of such wearable drug monitoring devices are presented with the ultimate goals of introducing accurate real-time drug monitoring protocols and autonomous closed-loop platforms toward precise dose regulation and optimal therapeutic outcomes. Finally, current unmet challenges and existing gaps are discussed for motivating future technological innovations regarding personalized therapy. The current pace of developments and the tremendous market opportunities for such wearable drug monitoring platforms are expected to drive intense future research and commercialization efforts.
Collapse
Affiliation(s)
- Hazhir Teymourian
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Marc Parrilla
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Juliane R. Sempionatto
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Noelia Felipe Montiel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Abbas Barfidokht
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| | - Robin Van Echelpoel
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Karolien De Wael
- AXES Research Group, Bioscience Engineering Department, Groenenborgerlaan 171, 2020 Antwerp, Belgium
| | - Joseph Wang
- Department of Nanoengineering, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
16
|
Abdelrahman MS, Fouda MM, Ajarem JS, Maodaa SN, Allam AA, Khattab TA. Development of colorimetric cotton swab using molecular switching hydrazone probe in calcium alginate. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2020.128301] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
17
|
Kapur BM, Aleksa K. What the lab can and cannot do: clinical interpretation of drug testing results. Crit Rev Clin Lab Sci 2020; 57:548-585. [PMID: 32609540 DOI: 10.1080/10408363.2020.1774493] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Urine drug testing is one of the objective tools available to assess adherence. To monitor adherence, quantitative urinary results can assist in differentiating "new" drug use from "previous" (historical) drug use. "Spikes" in urinary concentration can assist in identifying patterns of drug use. Coupled chromatographic-mass spectrometric methods are capable of identifying very small amounts of analyte and can make clinical interpretation rather challenging, specifically for drugs that have a longer half-life. Polypharmacy is common in treatment and rehabilitation programs because of co-morbidities. Medications prescribed for comorbidities can cause drug-drug interaction and phenoconversion of genotypic extensive metabolizers into phenotypic poor metabolizers of the treatment drug. This can have significant impact on both pharmacokinetic (PK) and pharmacodynamic properties of the treatment drug. Therapeutic drug monitoring (TDM) coupled with PKs can assist in interpreting the effects of phenoconversion. TDM-PKs reflects the cumulative effects of pathophysiological changes in the patient as well as drug-drug interactions and should be considered for treatment medications/drugs used to manage pain and treat substance abuse. Since only a few enzyme immunoassays for TDM are available, this is a unique opportunity for clinical laboratory scientists to develop TDM-PK protocols that can have a significant impact on patient care and personalized medicine. Interpretation of drug screening results should be done with caution while considering pharmacological properties and the presence or absence of the parent drug and its metabolites. The objective of this manuscript is to review and address the variables that influence interpretation of different drugs analyzed from a rehabilitation and treatment programs perspective.
Collapse
Affiliation(s)
- Bhushan M Kapur
- Clini Tox Inc., Oakville, Canada.,Seroclinix Corporation, Mississauga, Canada
| | | |
Collapse
|
18
|
THC and CBD concentrations in blood, oral fluid and urine following a single and repeated administration of “light cannabis”. ACTA ACUST UNITED AC 2020; 58:682-689. [DOI: 10.1515/cclm-2019-0119] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 03/12/2019] [Indexed: 01/03/2023]
Abstract
AbstractBackground“Light cannabis” is a product legally sold in Europe with Δ9-tetrahydrocannabinol (THC) concentration lower than 0.2% and variable cannabidiol (CBD) content. We studied THC and CBD excretion profiles in blood, oral fluid (OF) and urine after smoking one or four light cannabis cigarettes.MethodsBlood, OF and urine samples were obtained from six healthy light cannabis consumers after smoking one 1 g cigarette containing 0.16% THC and 5.8% CBD and from six others after smoking four 1 g cigarettes within 4 h. Sample collection began 0.5 and 4.5 h after smoking one or four cigarettes, respectively. Cannabinoid concentrations were quantified by gas chromatography-mass spectrometry (GC-MS).ResultsAt the first collection, the highest THC and CBD concentrations occurred in blood (THC 7.0–10.8 ng/mL; CBD 30.2–56.1 ng/mL) and OF (THC 5.1–15.5 ng/mL; CBD 14.2–28.1 ng/mL); similar results occurred 0.5 h after the last of four cigarettes in blood (THC 14.1–18.2 ng/mL, and CBD 25.6–45.4 ng/mL) and OF (THC 11.2–24.3 ng/mL; CBD 14.4–37.0 ng/mL). The mean OF to blood ratio ranged from 0.6 to 1.2 after one and 0.6 to 1.9 after four light cannabis cigarettes. THC/CBD ratios in blood and OF were never greater than 2. Urinary 11-nor-9-carboxy-THC concentrations peaked 8 h after one and four cigarettes.ConclusionsOF was a valuable alternative to blood in monitoring consumption of light cannabis. Blood and OF THC/CBD concentration ratios, never exceeded 2, possibly providing a useful biomarker to identify light cannabis vs illegal higher THC cannabis use, where THC/CBD ratios are generally greater than 10.
Collapse
|
19
|
Nordeck CD, Gryczynski J, O’Grady KE, Polak K, Svikis DS, McNeely J, Wu LT, Schwartz RP. Comparison of timeline follow-back self-report and oral fluid testing to detect substance use in adult primary care patients. Drug Alcohol Depend 2020; 209:107939. [PMID: 32114329 PMCID: PMC7360056 DOI: 10.1016/j.drugalcdep.2020.107939] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Revised: 01/09/2020] [Accepted: 02/19/2020] [Indexed: 11/17/2022]
Abstract
BACKGROUND Timeline Follow-back (TLFB) interviews using self-report are often used to assess substance use. Oral fluid testing (OFT) offers an objective measure of substance use. There are limited data on the agreement between TLFB and OFT. METHODS In this secondary analysis from a multisite study in five primary care sites, self-reported TLFB and OFT data collected under confidential conditions were compared to assess concordance (N=1799). OFT samples were analyzed for marijuana, heroin, cocaine, and non-medical use of prescription opioids. Demographic differences in discordance relative to TLFB and OFT concordant results for marijuana, the only substance with an adequate sample size in this analysis, were examined using multinomial logistic regression. RESULTS Overall concordance rates between TLFB and OFT were 94.9 % or higher for each substance, driven by large subgroups with no use. Among participants with discordant use, marijuana was the only substance with lower detection on OFT than self-report (27.6 % OFT-positive only vs 32.2 % TLFB-positive only), whereas cocaine (65.6 % vs 8.6 %), prescription opioids (90.4 % vs 6.0 %), and heroin (40.7 % vs 26.0 %) all had higher detection via OFT than TLFB. Participants who reported marijuana use but had a negative OFT were more likely to be younger, Hispanic, and White compared to those with TLFB and OFT concordant positive results. CONCLUSIONS TLFB and OFT show disparate detection of different substances. Researchers should consider the implications of using either self-report or oral fluid testing in isolation, depending on the substance and collection setting. Triangulating multiple sources of information may improve detection of drug use.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Li-Tzy Wu
- Duke University School of Medicine, Durham, NC, USA
| | | |
Collapse
|
20
|
Brandon B, Nicholas M. Using Sesame Seed Oil to Preserve and Preconcentrate Cannabinoids for Paper Spray Mass Spectrometry. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2020; 31:675-684. [PMID: 32013413 PMCID: PMC7322731 DOI: 10.1021/jasms.9b00113] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cannabinoids present a unique set of analytical challenges. An increasing number of states have voted to decriminalize recreational marijuana use, creating a need for new kinds of rapid testing. At the same time, synthetic compounds with activity similar to THC, termed synthetic cannabinoids, have become more prevalent and pose significant health risks. A rapid method capable of detecting both natural and synthetic cannabinoids would be useful in cases of driving under the influence of drugs, where it might not be obvious whether the suspect consumed marijuana, a synthetic cannabinoid, or both. Paper spray mass spectrometry is an ambient ionization technique which allows for the direct ionization of analyte from a biofluid spot on a piece of paper. Natural cannabinoids like THC, however, are labile and rapidly disappear from dried sample spots, making it difficult to detect them at clinically relevant levels. Presented here is a method to concentrate and preserve THC and synthetic cannabinoids in urine and oral fluid on paper for analysis by paper spray mass spectrometry. Sesame seed oil was investigated both as a means of preserving THC and as part of a technique, termed paper strip extraction, wherein urine or oral fluid is flowed through an oil spot on a strip of paper to preconcentrate cannabinoids. This technique preserved THC in dried biofluid samples for at least 27 days at room temperature; paper spray MS/MS analysis of these preserved dried spots was capable of detecting THC and synthetic cannabinoids at low ng/mL concentrations, making it suitable as a rapid screening technique. The technique was adapted to be used with a commercially available autosampler.
Collapse
|
21
|
Sample preparation for the analysis of drugs in biological fluids. HANDBOOK OF ANALYTICAL SEPARATIONS 2020. [DOI: 10.1016/b978-0-444-64066-6.00001-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
22
|
Brunelle E, Thibodeau B, Shoemaker A, Halámek J. Step toward Roadside Sensing: Noninvasive Detection of a THC Metabolite from the Sweat Content of Fingerprints. ACS Sens 2019; 4:3318-3324. [PMID: 31793770 DOI: 10.1021/acssensors.9b02020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The sudden increase in states legalizing marijuana has forced law enforcement into a situation where the use and consumption are legal, but there are no limitations for what is acceptable for driving or operating machinery. Using ultraviolet-visible (UV-vis) spectroscopy, fingerprints from volunteers who had used marijuana were analyzed via a competitive immunoassay for the detection of Δ9-tetrahydrocannabinol (Δ9-THC), the main psychoactive component of marijuana, and 11-nor-9-carboxy-THC (THC-COOH), one of the main metabolites produced in the body following the use/consumption of THC-related products. In this research, the THC-COOH metabolite and the enzyme-labeled conjugate compete against each other as the antigens for the system. The antibody used in this assay has a greater affinity for the metabolite; so, as its concentration increases, the absorbance of the system decreases due to less binding of the enzyme-labeled conjugate.
Collapse
Affiliation(s)
- Erica Brunelle
- Dept. of Chemistry, University at Albany State University of New York, 1400 Washington Ave., Albany, New York 12222, United States
| | - Brenna Thibodeau
- Dept. of Chemistry, University at Albany State University of New York, 1400 Washington Ave., Albany, New York 12222, United States
| | - Alyssa Shoemaker
- Dept. of Chemistry, University at Albany State University of New York, 1400 Washington Ave., Albany, New York 12222, United States
| | - Jan Halámek
- Dept. of Chemistry, University at Albany State University of New York, 1400 Washington Ave., Albany, New York 12222, United States
| |
Collapse
|
23
|
Hudson M, Stuchinskaya T, Ramma S, Patel J, Sievers C, Goetz S, Hines S, Menzies E, Russell DA. Drug screening using the sweat of a fingerprint: lateral flow detection of Δ9-tetrahydrocannabinol, cocaine, opiates and amphetamine. J Anal Toxicol 2019; 43:88-95. [PMID: 30272189 PMCID: PMC6380464 DOI: 10.1093/jat/bky068] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Revised: 07/29/2018] [Accepted: 09/07/2018] [Indexed: 01/10/2023] Open
Abstract
Here, we describe the use of a fluorescence based lateral flow competition assay for the screening of four classes of drugs, viz, Δ9-tetrahydrocannabinol (THC), cocaine (through the detection of benzoylecgonine, BZE), opiates (through the detection of morphine, MOR) and amphetamine (AMP) present in the sweat of a fingerprint. The Drug Screening Cartridge was specifically developed for fingerprint sample collection and analysis. For this study, the cut-offs were set at: 190, 90, 68 and 80 pg/fingerprint for THC, BZE, MOR and AMP, respectively. Working with three UK coroners, the Drug Screening Cartridge, together with its fluorescence reader, was applied to the detection of drugs in the sweat of a fingerprint from deceased individuals. The study shows that there was sufficient sweat present on the fingertips to enable analysis and that the Drug Screening Cartridge could detect the presence, or absence, of each drug. The presence of the drugs was confirmed using LC-MS-MS analysis of a second fingerprint sample collected simultaneously. Excellent correlation was achieved between the results obtained from the Drug Screening Cartridge and the LC-MS-MS analysis of the fingerprint samples obtained from 75 individuals. The accuracy of the results was: 99% for THC; 95% for BZE; 96% for MOR and 93% for AMP. The results obtained using the Drug Screening Cartridge were also compared to toxicological analysis of blood and urine samples with good correlation. The accuracy of the results between the Drug Screening Cartridge and blood was: 96%, 92%, 88% and 97% for THC, BZE, MOR and AMP, respectively. The comparison with urine showed an accuracy ranging between 86% and 92%. This fingerprint sample method has a collection time of just 5 s and a total analysis time of <10 mins. These results show that the lateral flow Drug Screening Cartridge is an excellent screening test to provide information on drug use from the sweat in a single fingerprint sample.
Collapse
Affiliation(s)
- Mark Hudson
- Intelligent Fingerprinting Ltd., 14-17 Evolution Business Park, Milton Road, Impington, Cambridge, UK
| | - Tanya Stuchinskaya
- Intelligent Fingerprinting Ltd., 14-17 Evolution Business Park, Milton Road, Impington, Cambridge, UK
| | - Smita Ramma
- Intelligent Fingerprinting Ltd., 14-17 Evolution Business Park, Milton Road, Impington, Cambridge, UK
| | - Jalpa Patel
- Intelligent Fingerprinting Ltd., 14-17 Evolution Business Park, Milton Road, Impington, Cambridge, UK
| | - Claudia Sievers
- Intelligent Fingerprinting Ltd., 14-17 Evolution Business Park, Milton Road, Impington, Cambridge, UK
| | - Stephan Goetz
- Intelligent Fingerprinting Ltd., 14-17 Evolution Business Park, Milton Road, Impington, Cambridge, UK
| | - Selina Hines
- LGC Ltd., Newmarket Road, Fordham, Cambridgeshire, UK
| | | | - David A Russell
- Intelligent Fingerprinting Ltd., 14-17 Evolution Business Park, Milton Road, Impington, Cambridge, UK.,School of Chemistry, University of East Anglia, Norwich Research Park, Norwich, Norfolk, UK
| |
Collapse
|
24
|
Böttcher M, Kühne D, Beck O. Compliance testing of patients in ADHD treatment with lisdexamphetamine (Elvanse®) using oral fluid as specimen. CLINICAL MASS SPECTROMETRY 2019; 14 Pt B:99-105. [DOI: 10.1016/j.clinms.2019.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2018] [Revised: 04/15/2019] [Accepted: 04/21/2019] [Indexed: 10/27/2022]
|
25
|
Ginsburg BC. Strengths and limitations of two cannabis-impaired driving detection methods: a review of the literature. THE AMERICAN JOURNAL OF DRUG AND ALCOHOL ABUSE 2019; 45:610-622. [DOI: 10.1080/00952990.2019.1655568] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Brett C. Ginsburg
- Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| |
Collapse
|
26
|
Mahmud MS, Fang H, Carreiro S, Wang H, Boyer EW. Wearables technology for drug abuse detection: A survey of recent advancement. ACTA ACUST UNITED AC 2019. [DOI: 10.1016/j.smhl.2018.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
27
|
Bandodkar AJ, Jeang WJ, Ghaffari R, Rogers JA. Wearable Sensors for Biochemical Sweat Analysis. ANNUAL REVIEW OF ANALYTICAL CHEMISTRY (PALO ALTO, CALIF.) 2019; 12:1-22. [PMID: 30786214 DOI: 10.1146/annurev-anchem-061318-114910] [Citation(s) in RCA: 165] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Sweat is a largely unexplored biofluid that contains many important biomarkers ranging from electrolytes and metabolites to proteins, cytokines, antigens, and exogenous drugs. The eccrine and apocrine glands produce and excrete sweat through microscale pores on the epidermal surface, offering a noninvasive means for capturing and probing biomarkers that reflect hydration state, fatigue, nutrition, and physiological changes. Recent advances in skin-interfaced wearable sensors capable of real-time in situ sweat collection and analytics provide capabilities for continuous biochemical monitoring in an ambulatory mode of operation. This review presents a broad overview of sweat-based biochemical sensor technologies with an emphasis on enabling materials, designs, and target analytes of interest. The article concludes with a summary of challenges and opportunities for researchers and clinicians in this swiftly growing field.
Collapse
Affiliation(s)
- Amay J Bandodkar
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - William J Jeang
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
| | - Roozbeh Ghaffari
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
- Epicore Biosystems, Inc., Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| | - John A Rogers
- Department of Materials Science and Engineering, Northwestern University, Evanston, Illinois 60208, USA;
- Center for Bio-Integrated Electronics, Simpson Querrey Institute for BioNanotechnology, Northwestern University, Evanston, Illinois 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, Illinois 60208, USA
- Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
- Feinberg School of Medicine, Northwestern University, Evanston, Illinois 60208, USA
- Departments of Electrical Engineering and Computer Science, Neurological Surgery, Chemistry, and Mechanical Engineering, Northwestern University, Evanston, Illinois 60208, USA
| |
Collapse
|
28
|
Kubáň P, Dvořák M, Kubáň P. Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: A review. Anal Chim Acta 2019; 1075:1-26. [PMID: 31196414 DOI: 10.1016/j.aca.2019.05.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 05/02/2019] [Accepted: 05/03/2019] [Indexed: 01/05/2023]
Abstract
In recent years, advances in sensitive analytical techniques have encouraged the analysis of various compounds in biological fluids. While blood serum, blood plasma and urine still remain the golden standards in clinical, toxicological and forensic science, analyses of other body fluids, such as breast milk, exhaled breath condensate, sweat, saliva, amniotic fluid, cerebrospinal fluid, or capillary blood in form of dried blood spots are becoming more popular. This review article focuses on capillary electrophoresis and microchip electrophoresis of small ions and molecules (e.g. inorganic cations/anions, basic/acidic drugs, small acids/bases, amino acids, peptides and other low molecular weight analytes) in various less conventional human body fluids and hopes to stimulate further interest in the field.
Collapse
Affiliation(s)
- Petr Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Miloš Dvořák
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic
| | - Pavel Kubáň
- Institute of Analytical Chemistry of the Czech Academy of Sciences, Veveří 97, CZ-60200, Brno, Czech Republic.
| |
Collapse
|
29
|
Ghoneim MT, Nguyen A, Dereje N, Huang J, Moore GC, Murzynowski PJ, Dagdeviren C. Recent Progress in Electrochemical pH-Sensing Materials and Configurations for Biomedical Applications. Chem Rev 2019; 119:5248-5297. [PMID: 30901212 DOI: 10.1021/acs.chemrev.8b00655] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
pH-sensing materials and configurations are rapidly evolving toward exciting new applications, especially those in biomedical applications. In this review, we highlight rapid progress in electrochemical pH sensors over the past decade (2008-2018) with an emphasis on key considerations, such as materials selection, system configurations, and testing protocols. In addition to recent progress in optical pH sensors, our main focus in this review is on electromechanical pH sensors due to their significant advances, especially in biomedical applications. We summarize developments of electrochemical pH sensors that by virtue of their optimized material chemistries (from metal oxides to polymers) and geometrical features (from thin films to quantum dots) enable their adoption in biomedical applications. We further present an overview of necessary sensing standards and protocols. Standards ensure the establishment of consistent protocols, facilitating collective understanding of results and building on the current state. Furthermore, they enable objective benchmarking of various pH-sensing reports, materials, and systems, which is critical for the overall progression and development of the field. Additionally, we list critical issues in recent literary reporting and suggest various methods for objective benchmarking. pH regulation in the human body and state-of-the-art pH sensors (from ex vivo to in vivo) are compared for suitability in biomedical applications. We conclude our review by (i) identifying challenges that need to be overcome in electrochemical pH sensing and (ii) providing an outlook on future research along with insights, in which the integration of various pH sensors with advanced electronics can provide a new platform for the development of novel technologies for disease diagnostics and prevention.
Collapse
|
30
|
Reeder JT, Choi J, Xue Y, Gutruf P, Hanson J, Liu M, Ray T, Bandodkar AJ, Avila R, Xia W, Krishnan S, Xu S, Barnes K, Pahnke M, Ghaffari R, Huang Y, Rogers JA. Waterproof, electronics-enabled, epidermal microfluidic devices for sweat collection, biomarker analysis, and thermography in aquatic settings. SCIENCE ADVANCES 2019; 5:eaau6356. [PMID: 30746456 PMCID: PMC6357724 DOI: 10.1126/sciadv.aau6356] [Citation(s) in RCA: 144] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Accepted: 12/10/2018] [Indexed: 05/18/2023]
Abstract
Noninvasive, in situ biochemical monitoring of physiological status, via the use of sweat, could enable new forms of health care diagnostics and personalized hydration strategies. Recent advances in sweat collection and sensing technologies offer powerful capabilities, but they are not effective for use in extreme situations such as aquatic or arid environments, because of unique challenges in eliminating interference/contamination from surrounding water, maintaining robust adhesion in the presence of viscous drag forces and/or vigorous motion, and preventing evaporation of collected sweat. This paper introduces materials and designs for waterproof, epidermal, microfluidic and electronic systems that adhere to the skin to enable capture, storage, and analysis of sweat, even while fully underwater. Field trials demonstrate the ability of these devices to collect quantitative in situ measurements of local sweat chloride concentration, local sweat loss (and sweat rate), and skin temperature during vigorous physical activity in controlled, indoor conditions and in open-ocean swimming.
Collapse
Affiliation(s)
- Jonathan T. Reeder
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Jungil Choi
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Yeguang Xue
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Philipp Gutruf
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Justin Hanson
- Department of Biological Sciences, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611 USA
| | - Mark Liu
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Tyler Ray
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Amay J. Bandodkar
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
| | - Raudel Avila
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - Wei Xia
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi’an Jiaotong University, Xi’an, Shaanxi 710049, China
| | - Siddharth Krishnan
- Department of Materials Science and Engineering and Frederick Seitz Materials Research Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Shuai Xu
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago IL 60611 USA
| | - Kelly Barnes
- Gatorade Sports Science Institute, 617 W. Main St., Barrington, IL 60010, USA
| | - Matthew Pahnke
- Gatorade Sports Science Institute, 617 W. Main St., Barrington, IL 60010, USA
| | - Roozbeh Ghaffari
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Epicore Biosystems Inc., Cambridge, MA 02139, USA
| | - Yonggang Huang
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Civil and Environmental Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
| | - John A. Rogers
- Department of Materials Science and Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Center for Bio-Integrated Electronics, Northwestern University, Evanston, IL 60208, USA
- Department of Mechanical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Department of Biomedical Engineering, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Chemistry, and Electrical Engineering and Computer Science, McCormick School of Engineering, Northwestern University, Evanston, IL 60208, USA
- Departments of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| |
Collapse
|
31
|
Gjerde H, Clausen GB, Andreassen E, Furuhaugen H. Evaluation of Dräger DrugTest 5000 in a Naturalistic Setting. J Anal Toxicol 2018; 42:248-254. [PMID: 29409046 DOI: 10.1093/jat/bky003] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Indexed: 12/15/2022] Open
Abstract
Reliable field testing devices for psychoactive drugs would be useful tools for the police for detecting drug-impaired drivers. The Norwegian Mobile Police Service (NMPS) started using Dräger DrugTest 5000 (DDT5000) in 2015 as an on-site screening instrument for drugs in samples of oral fluid. The aim of this study was to compare the results of field testing of DDT5000 with drug findings in blood and oral fluid samples taken from drivers suspected for driving under the influence of drugs (DUID). In total, 369 drivers were included in this field testing; blood samples were obtained from all of them, while oral fluid samples were collected with the Intercept device from 301 of them. The median time from field testing with DDT5000 and collection of blood and oral fluid samples was 50 min. The proportions of false positive results with DDT5000 compared to findings in blood samples above the Norwegian legal per se limits were for cannabis 14.5%, amphetamine 23.2%, methamphetamine 38.4%, cocaine 87.1%, opiates 65.9% and benzodiazepines 36.4%. The proportions of false negatives were for cannabis 13.4%, amphetamine 4.9%, methamphetamine 6.1%, cocaine 0.0%, opiates 0.0% and benzodiazepines 18.8%. Among drivers who had drug concentrations above the legal limits in blood, the proportion who tested positive using DDT5000 was 82.9% for THC, 90.8% for amphetamine, 75.7% for methamphetamine, 100.0% for cocaine, 100.0% for opiates and 37.2% for benzodiazepines. In cases with false-positive DDT5000 results compared to blood, traces of drugs were most often found in oral fluid. The DDT5000 did not absolutely correctly identify DUID offenders due to fairly large proportions of false-positive or false-negative results compared to drug concentrations in blood. The police reported that DDT5000 was still a valuable tool in identifying possible DUID offenders, resulting in more than doubling the number of apprehended DUID offenders.
Collapse
Affiliation(s)
- Hallvard Gjerde
- Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, NO-0424 Oslo, Norway
| | | | | | - Håvard Furuhaugen
- Department of Forensic Sciences, Oslo University Hospital, P.O. Box 4950 Nydalen, NO-0424 Oslo, Norway
| |
Collapse
|
32
|
Interpreting oral fluid drug results in prisoners: monitoring current drug intake and detection times for drugs self-administered prior to detention. Forensic Toxicol 2018. [DOI: 10.1007/s11419-018-0434-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Review of Chromatographic Bioanalytical Assays for the Quantitative Determination of Marine-Derived Drugs for Cancer Treatment. Mar Drugs 2018; 16:md16070246. [PMID: 30041477 PMCID: PMC6071085 DOI: 10.3390/md16070246] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Revised: 06/15/2018] [Accepted: 07/18/2018] [Indexed: 12/20/2022] Open
Abstract
The discovery of marine-derived compounds for the treatment of cancer has seen a vast increase over the last few decades. Bioanalytical assays are pivotal for the quantification of drug levels in various matrices to construct pharmacokinetic profiles and to link drug concentrations to clinical outcomes. This review outlines the different analytical methods that have been described for marine-derived drugs in cancer treatment hitherto. It focuses on the major parts of the bioanalytical technology, including sample type, sample pre-treatment, separation, detection, and quantification.
Collapse
|
34
|
Sager M, Jedamzik P, Merdivan S, Grimm M, Schneider F, Kromrey ML, Hasan M, Oswald S, Kühn J, Koziolek M, Weitschies W. Low dose caffeine as a salivary tracer for the determination of gastric water emptying in fed and fasted state: A MRI validation study. Eur J Pharm Biopharm 2018; 127:443-452. [DOI: 10.1016/j.ejpb.2018.03.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/16/2018] [Accepted: 03/26/2018] [Indexed: 12/22/2022]
|
35
|
Serum and Saliva Concentrations of Venlafaxine, O-Desmethylvenlafaxine, Quetiapine, and Citalopram in Psychiatric Patients. Ther Drug Monit 2018; 40:351-355. [DOI: 10.1097/ftd.0000000000000508] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
36
|
Garrido E, Pla L, Lozano‐Torres B, El Sayed S, Martínez‐Máñez R, Sancenón F. Chromogenic and Fluorogenic Probes for the Detection of Illicit Drugs. ChemistryOpen 2018; 7:401-428. [PMID: 29872615 PMCID: PMC5974560 DOI: 10.1002/open.201800034] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Indexed: 01/02/2023] Open
Abstract
The consumption of illicit drugs has increased exponentially in recent years and has become a problem that worries both governments and international institutions. The rapid emergence of new compounds, their easy access, the low levels at which these substances are able to produce an effect, and their short time of permanence in the organism make it necessary to develop highly rapid, easy, sensitive, and selective methods for their detection. Currently, the most widely used methods for drug detection are based on techniques that require large measurement times, the use of sophisticated equipment, and qualified personnel. Chromo- and fluorogenic methods are an alternative to those classical procedures.
Collapse
Affiliation(s)
- Eva Garrido
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y, Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamí de Vera s/n46022ValènciaSpain
| | - Luis Pla
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y, Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamí de Vera s/n46022ValènciaSpain
| | - Beatriz Lozano‐Torres
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y, Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamí de Vera s/n46022ValènciaSpain
| | - Sameh El Sayed
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y, Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamí de Vera s/n46022ValènciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)
| | - Ramón Martínez‐Máñez
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y, Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamí de Vera s/n46022ValènciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)
- Departmento de QuímicaUniversitat Politècnica de ValènciaCamí de Vera s/n46022ValènciaSpain
| | - Félix Sancenón
- Instituto Interuniversitario de Investigación de Reconocimiento Molecular y, Desarrollo Tecnológico (IDM)Universitat Politècnica de València, Universitat de ValènciaCamí de Vera s/n46022ValènciaSpain
- CIBER de BioingenieríaBiomateriales y Nanomedicina (CIBER-BBN)
- Departmento de QuímicaUniversitat Politècnica de ValènciaCamí de Vera s/n46022ValènciaSpain
| |
Collapse
|
37
|
Busardò FP, Pichini S, Pellegrini M, Montana A, Lo Faro AF, Zaami S, Graziano S. Correlation between Blood and Oral Fluid Psychoactive Drug Concentrations and Cognitive Impairment in Driving under the Influence of Drugs. Curr Neuropharmacol 2018; 16:84-96. [PMID: 28847293 PMCID: PMC5771389 DOI: 10.2174/1570159x15666170828162057] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2017] [Revised: 08/09/2017] [Accepted: 08/24/2017] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The effects of drugs on driving performance should be checked with drug concentration in the brain and at the same time with the evaluation of both the behavioural and neurophysiological effects. The best accessible indicator of this information is the concentration of the drug and/or metabolites in blood and, to a certain extent, oral fluid. We sought to review international studies on correlation between blood and oral fluid drug concentrations, neurological correlates and cognitive impairment in driving under the influence of drugs. METHODS Relevant scientific articles were identified from PubMed, Cochrane Central, Scopus, Web of Science, Science Direct, EMBASE up to April 2017. RESULTS Up to 2010, no epidemiological studies were available on this matter and International scientists suggested that even minimal amounts of parent drugs in blood and oral fluid could affect driving impairment. More recently, epidemiological data, systematic reviews and meta-analysis on drugged drivers allowed the suggestion of impairment concentration limits for the most common illicit drugs. These values were obtained comparing driving disability induced by psychotropic drugs with that of established blood alcohol limits. Differently from ethyl alcohol where both detection methods and concentration limits have been well established even with inhomogeneity of ranges within different countries, in case of drugs of abuse no official cut-offs have yet been established, nor any standardized analytical protocols. CONCLUSION Multiple aspects of driving performance can be differently affected by illicit drugs, and even if for few of them some dose/concentration dependent impairment has been reported, a wider knowledge on concentration/impairment relationship is still missing.
Collapse
Affiliation(s)
- Francesco Paolo Busardò
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Italy
| | - Simona Pichini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Manuela Pellegrini
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| | - Angelo Montana
- Department “G.F. Ingrassia” – University of Catania, Catania, Italy
| | | | - Simona Zaami
- Unit of Forensic Toxicology (UoFT), Department of Anatomical, Histological, Forensic and Orthopedic Sciences, Sapienza University of Rome, Italy
| | - Silvia Graziano
- National Centre on Addiction and Doping, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
38
|
Zheng Y, Sparve E, Bergström M. A simple validated multi-analyte method for detecting drugs in oral fluid by ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). Drug Test Anal 2017; 10:1001-1008. [DOI: 10.1002/dta.2325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/28/2017] [Accepted: 10/04/2017] [Indexed: 02/06/2023]
Affiliation(s)
- Yufang Zheng
- Department of Laboratory Medicine, Department of Drug Abuse; Unilabs AB; Eskilstuna Sweden
| | - Erik Sparve
- Department of Laboratory Medicine, Department of Drug Abuse; Unilabs AB; Eskilstuna Sweden
| | - Mats Bergström
- Department of Laboratory Medicine, Department of Drug Abuse; Unilabs AB; Eskilstuna Sweden
| |
Collapse
|
39
|
Simmers P, Li SK, Kasting G, Heikenfeld J. Prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized cholinergic agent carbachol. J Dermatol Sci 2017; 89:40-51. [PMID: 29128285 DOI: 10.1016/j.jdermsci.2017.10.013] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/28/2017] [Accepted: 10/24/2017] [Indexed: 11/18/2022]
Abstract
BACKGROUND Continuous non-invasive sampling and sensing of multiple classes of analytes could revolutionize medical diagnostics and wearable technologies, but also remains highly elusive because of the many confounding factors for candidate biofluids such as interstitial fluid, tears, saliva, and sweat. Eccrine sweat biosensing has seen a recent surge in demonstrations of wearable sampling and sensing devices. However, for subjects at rest, access to eccrine sweat is highly limited and unpredictable compared to saliva and tears. OBJECTIVE Reported here is a prolonged and localized sweat stimulation by iontophoretic delivery of the slowly-metabolized nicotinic cholinergic agonist carbachol. METHODS Presented here are detailed measurements of natural baseline sweat rates across multiple days, confirming a clear need for localized sweat stimulation. Iontophoresis was performed with either carbachol or pilocarpine in order to stimulate sweat in subjects at rest. Furthermore, improved methods of quantifying sweat generation rates (nL/min/gland) are demonstrated. RESULTS In-vivo testing reveals that carbachol stimulation can surpass a major goal of 24-h sweat access, in some cases providing more than an order of magnitude longer duration than stimulation with commonly-used pilocarpine. Also demonstrated is reduction of the traditional iontophoretic dosage for sweat stimulation (<5.25-42mC/cm2). This increases the viability of repeated dosing as demonstrated herein, and for carbachol is as much as 100-1000X less than used for other applications. CONCLUSION This work is not only significant for wearable sweat biosensing technology, but could also have broader impact for those studying topical skin products, antiperspirants, textiles and medical adhesives, nerve disorders, the effects of perspiration on skin-health, skin related diseases such as idiopathic pure sudomotor failure and hyperhidrosis, and other skin- and perspiration-related applications.
Collapse
Affiliation(s)
- Phillip Simmers
- Department of Biomedical, Chemical, Enviromental Engineering, University of Cincinnati, Cincinnati, OH 45221, USA
| | - S Kevin Li
- Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Gerald Kasting
- Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45267, USA
| | - Jason Heikenfeld
- Department of Electrical Engineering and Computing Science, University of Cincinnati, Cincinnati, Ohio 45221, USA
| |
Collapse
|
40
|
Miočević O, Cole CR, Laughlin MJ, Buck RL, Slowey PD, Shirtcliff EA. Quantitative Lateral Flow Assays for Salivary Biomarker Assessment: A Review. Front Public Health 2017; 5:133. [PMID: 28660183 PMCID: PMC5469882 DOI: 10.3389/fpubh.2017.00133] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2016] [Accepted: 05/22/2017] [Indexed: 12/17/2022] Open
Abstract
Saliva is an emerging biofluid with a significant number of applications in use across research and clinical settings. The present paper explores the reasons why saliva has grown in popularity in recent years, balancing both the potential strengths and weaknesses of this biofluid. Focusing on reasons why saliva is different from other common biological fluids such as blood, urine, or tears, we review how saliva is easily obtained, with minimal risk to the donor, and reduced costs for collection, transportation, and analysis. We then move on to a brief review of the history and progress in rapid salivary testing, again reviewing the strengths and weaknesses of rapid immunoassays (e.g., lateral flow immunoassay) compared to more traditional immunoassays. We consider the potential for saliva as an alternative biofluid in a setting where rapid results are important. We focus the review on salivary tests for small molecule biomarkers using cortisol as an example. Such salivary tests can be applied readily in a variety of settings and for specific measurement purposes, providing researchers and clinicians with opportunities to assess biomarkers in real time with lower transportation, collection, and analysis costs, faster turnaround time, and minimal training requirements. We conclude with a note of cautious optimism that the field will soon gain the ability to collect and analyze salivary specimens at any location and return viable results within minutes.
Collapse
Affiliation(s)
| | - Craig R. Cole
- Oasis Diagnostics Corporation, Vancouver, WA, United States
| | | | - Robert L. Buck
- Oasis Diagnostics Corporation, Vancouver, WA, United States
| | - Paul D. Slowey
- Oasis Diagnostics Corporation, Vancouver, WA, United States
| | | |
Collapse
|
41
|
Doyon A, Paradis-Tanguay L, Crispino F, Lajeunesse A. Les analyses médico-légales de salives: expertise vis-à-vis l'analyse des drogues. CANADIAN SOCIETY OF FORENSIC SCIENCE JOURNAL 2017. [DOI: 10.1080/00085030.2017.1303254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Alexandra Doyon
- Département de Chimie, biochimie et physique, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, Canada, G9A 5H7
| | - Laurence Paradis-Tanguay
- Département de Chimie, biochimie et physique, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, Canada, G9A 5H7
| | - Frank Crispino
- Département de Chimie, biochimie et physique, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, Canada, G9A 5H7
- Laboratoire de recherche en criminalistique, Université du Québec à Trois-Rivières,
| | - André Lajeunesse
- Département de Chimie, biochimie et physique, Université du Québec à Trois-Rivières, 3351, boul. des Forges, C.P. 500, Trois-Rivières, Québec, Canada, G9A 5H7
- Laboratoire de recherche en criminalistique, Université du Québec à Trois-Rivières,
| |
Collapse
|
42
|
Papaseit E, Farré M, Graziano S, Pacifici R, Pérez-Mañá C, García-Algar O, Pichini S. Monitoring nicotine intake from e-cigarettes: measurement of parent drug and metabolites in oral fluid and plasma. Clin Chem Lab Med 2017; 55:415-423. [PMID: 27559692 DOI: 10.1515/cclm-2016-0405] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2016] [Accepted: 07/19/2016] [Indexed: 01/12/2023]
Abstract
BACKGROUND Electronic cigarettes (e-cig) known as electronic nicotine devices recently gained popularity among smokers. Despite many studies investigating their safety and toxicity, few examined the delivery of e-cig-derived nicotine and its metabolites in alternative biological fluids. METHODS We performed a randomized, crossover, and controlled clinical trial in nine healthy smokers. Nicotine (NIC), cotinine (COT), and trans-3'-hydroxycotinine (3-HCOT) were measured in plasma and oral fluid by liquid chromatography-tandem mass spectrometry after consumption of two consecutive e-cig administrations or two consecutive tobacco cigarettes. RESULTS NIC and its metabolites were detected both in oral fluid and plasma following both administration conditions. Concentrations in oral fluid resulted various orders of magnitude higher than those observed in plasma. Oral fluid concentration of tobacco cigarette and e-cig-derived NIC peaked at 15 min after each administration and ranged between 1.0 and 1396 μg/L and from 0.3 to 860 μg/L; those of COT between 52.8 and 110 μg/L and from 33.8 to 94.7 μg/L; and those of 3-HCOT between 12.4 and 23.5 μg/L and from 8.5 to 24.4 μg/L. The oral fluid to plasma concentration ratio of both e-cig- and tobacco cigarette-derived NIC peaked at 15 min after both administrations and correlated with oral fluid NIC concentration. CONCLUSIONS The obtained results support the measurement of NIC and metabolites in oral fluid in the assessment of intake after e-cig use and appear to be a suitable alternative to plasma when monitoring nicotine delivery from e-cig for clinical and toxicological studies.
Collapse
|
43
|
Martin HJ, Turner MA, Bandelow S, Edwards L, Riazanskaia S, Thomas CLP. Volatile organic compound markers of psychological stress in skin: a pilot study. J Breath Res 2016; 10:046012. [DOI: 10.1088/1752-7155/10/4/046012] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
44
|
Further development on DMFC device used for analytical purpose: real applications in the pharmaceutical field and possible in biological fluids. Anal Bioanal Chem 2016; 408:7311-9. [DOI: 10.1007/s00216-016-9795-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 07/01/2016] [Accepted: 07/14/2016] [Indexed: 11/29/2022]
|
45
|
Alternative sampling strategies for the assessment of alcohol intake of living persons. Clin Biochem 2016; 49:1078-91. [PMID: 27208822 DOI: 10.1016/j.clinbiochem.2016.05.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Revised: 04/28/2016] [Accepted: 05/01/2016] [Indexed: 01/16/2023]
Abstract
Monitoring of alcohol consumption by living persons takes place in various contexts, amongst which workplace drug testing, driving under the influence of alcohol, driving licence regranting programs, alcohol withdrawal treatment, diagnosis of acute intoxication or fetal alcohol ingestion. The matrices that are mostly used today include blood, breath and urine. The aim of this review is to present alternative sampling strategies that allow monitoring of the alcohol consumption in living subjects. Ethanol itself, indirect (carbohydrate deficient transferrin, CDT%) as well as direct biomarkers (ethyl glucuronide, EtG; ethyl sulphate, EtS; fatty acid ethyl esters, FAEEs and phosphatidylethanol species, PEths) of ethanol consumption will be considered. This review covers dried blood spots (CDT%, EtG/EtS, PEths), dried urine spots (EtG/EtS), sweat and skin surface lipids (ethanol, EtG, FAEEs), oral fluid (ethanol, EtG), exhaled breath (PEths), hair (EtG, FAEEs), nail (EtG), meconium (EtG/EtS, FAEEs), umbilical cord and placenta (EtG/EtS and PEth 16:0/18:1). Main results, issues and considerations specific to each matrix are reported. Details about sample preparation and analytical methods are not within the scope of this review.
Collapse
|
46
|
Hill VA, Schaffer MI, Stowe GN. Carboxy-THC in Washed Hair: Still the Reliable Indicator of Marijuana Ingestion. J Anal Toxicol 2016; 40:345-9. [DOI: 10.1093/jat/bkw031] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
|
47
|
de Oliveira MH, Ferreira PCL, Carlos G, Salazar FR, Bergold AM, Pechansky F, Limberger RP, Fröehlich PE. Pharmacokinetics study of mazindol in plasma, oral fluid, and urine of volunteers. Eur J Clin Pharmacol 2016; 72:945-51. [DOI: 10.1007/s00228-016-2055-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 03/29/2016] [Indexed: 11/24/2022]
|
48
|
Ngamchuea K, Batchelor-McAuley C, Cowen PJ, Williams C, Gonçalves LM, Compton RG. Can saliva testing replace blood measurements for health monitoring? Insights from a correlation study of salivary and whole blood glutathione in humans. Analyst 2016; 141:4707-12. [DOI: 10.1039/c6an01139j] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The feasibility of using saliva samples as diagnostic for health status is assessed.
Collapse
Affiliation(s)
- Kamonwad Ngamchuea
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| | | | | | | | - Luís Moreira Gonçalves
- Requimte/LAQV
- Departamento de Química e Bioquímica
- Faculdade de Ciências
- Universidade do Porto
- 4169-007 Porto
| | - Richard G. Compton
- Department of Chemistry
- Physical & Theoretical Chemistry Laboratory
- Oxford University
- Oxford
- UK
| |
Collapse
|
49
|
Vishinkin R, Haick H. Nanoscale Sensor Technologies for Disease Detection via Volatolomics. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2015; 11:6142-64. [PMID: 26448487 DOI: 10.1002/smll.201501904] [Citation(s) in RCA: 91] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2015] [Revised: 07/19/2015] [Indexed: 05/07/2023]
Abstract
The detection of many diseases is missed because of delayed diagnoses or the low efficacy of some treatments. This emphasizes the urgent need for inexpensive and minimally invasive technologies that would allow efficient early detection, stratifying the population for personalized therapy, and improving the efficacy of rapid bed-side assessment of treatment. An emerging approach that has a high potential to fulfill these needs is based on so-called "volatolomics", namely, chemical processes involving profiles of highly volatile organic compounds (VOCs) emitted from body fluids, including breath, skin, urine and blood. This article presents a didactic review of some of the main advances related to the use of nanomaterial-based solid-state and flexible sensors, and related artificially intelligent sensing arrays for the detection and monitoring of disease with volatolomics. The article attempts to review the technological gaps and confounding factors related to VOC testing. Different ways to choose nanomaterial-based sensors are discussed, while considering the profiles of targeted volatile markers and possible limitations of applying the sensing approach. Perspectives for taking volatolomics to a new level in the field of diagnostics are highlighted.
Collapse
Affiliation(s)
- Rotem Vishinkin
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| | - Hossam Haick
- Department of Chemical Engineering and Russell Berrie Nanotechnology Institute, Technion-Israel Institute of Technology, Haifa, 3200003, Israel
| |
Collapse
|
50
|
Rossi R, Pascolo PB. Long-term retention of a divided attention psycho-motor test combining choice reaction test and postural balance test: A preliminary study. ACCIDENT; ANALYSIS AND PREVENTION 2015; 82:126-133. [PMID: 26070019 DOI: 10.1016/j.aap.2015.05.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2014] [Revised: 04/27/2015] [Accepted: 05/14/2015] [Indexed: 06/04/2023]
Abstract
Driving in degraded psychophysical conditions, such as under the influence of alcohol or drugs but also in a state of fatigue or drowsiness, is a growing problem. The current roadside tests used for detecting drugs from drivers suffer various limitations, while impairment is subjective and does not necessarily correlate with drug metabolite concentration found in body fluids. This work is a validation step towards the study of feasibility of a novel test conceived to assess psychophysical conditions of individuals performing at-risk activities. Motor gestures, long-term retention and learning phase related to the protocol are analysed in unimpaired subjects. The protocol is a divided attention test, which combines a critical tracking test achieved with postural movements and a visual choice reaction test. Ten healthy subjects participated in a first set of trials and in a second set after about six months. Each session required the carrying out of the test for ten times in order to investigate learning effect and performance over repetitions. In the first set the subjects showed a learning trend up to the third trial, whilst in the second set of trials they showed motor retention. Nevertheless, the overall performance did not significantly improve. Gestures are probably retained due to the type of tasks and the way in which the instructions are conveyed to the subjects. Moreover, motor retention after a short training suggests that the protocol is easy to learn and understand. Implications for roadside test usage and comparison with current tests are also discussed.
Collapse
Affiliation(s)
- R Rossi
- University of Udine, 33100 Udine, Italy.
| | | |
Collapse
|