1
|
Falconi-Sobrinho LL, Fonseca-Rodrigues D, da Silva ML, Coimbra NC, Pinto-Ribeiro F. Neuroanatomical and neurochemical substrates mediating fear-induced antinociception: A systematic review of rodent preclinical studies. Neurosci Biobehav Rev 2025; 168:105959. [PMID: 39613200 DOI: 10.1016/j.neubiorev.2024.105959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 11/06/2024] [Accepted: 11/25/2024] [Indexed: 12/01/2024]
Abstract
Fear-induced antinociception (FIA), an instinctive defensive response producing pain suppression in stressful and/or dangerous situations, has been the subject of extensive research to elucidate the mechanisms involved in triggering and controlling pain during emotional disorders. In this systematic review, we synthesized pre-clinical studies that demonstrated the neural hodology and the neurochemical bases of FIA in laboratory animals. The literature search in PubMed, Web of Science, Science Direct, and Scopus, from inception up to July 2022, retrieved 797 articles from which 50 studies were included in this review. This review highlights key encephalic regions implicated in the modulation of FIA, such as the prefrontal cortex, the amygdaloid complex, the hippocampus, the hypothalamus, the corpora quadrigemina, the periaqueductal gray matter, and some reticular formation nuclei. FIA-related neural pathways, neurotransmitters and neuromodulators such as glutamatergic, serotonergic, norepinephrine, GABAergic, nitrergic, opioidergic and endocannabinoid connections across these encephalic regions were also addressed. Understanding these neural circuits and molecular neural mediation sheds light on the complex interplay between fear, anxiety, and pain modulation, offering potential avenues for therapeutic interventions targeting pain management in the context of heightened emotional states.
Collapse
Affiliation(s)
- Luiz Luciano Falconi-Sobrinho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal; Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Diana Fonseca-Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal
| | - Marcelo Lourenço da Silva
- Postgraduate Program in Biosciences Applied to Health (PPGB), Federal University of Alfenas (UNIFAL), Alfenas, Minas Gerais, Brazil; Institute of Biomedical Sciences, Federal University of Alfenas (UNIFAL), Alfenas, Brazil
| | - Norberto Cysne Coimbra
- Laboratory of Neuroanatomy and Neuropsychobiology, Department of Pharmacology, Ribeirão Preto Medical School of the University of São Paulo (USP), Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil; NAP-USP-Neurobiology of Emotions Research Centre (NuPNE), Ribeirão Preto School of Medicine of the University of São Paulo (FMRP-USP), Av. Bandeirantes, 3900, Ribeirão Preto, São Paulo 14049-900, Brazil.
| | - Filipa Pinto-Ribeiro
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Gualtar Campus, Braga 4710-057, Portugal; ICVS/3B's-PT Government Associate Laboratory, Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Guimarães, Portugal.
| |
Collapse
|
2
|
Mellott JG, Duncan S, Busby J, Almassri LS, Wawrzyniak A, Iafrate MC, Ohl AP, Slabinski EA, Beaver AM, Albaba D, Vega B, Mafi AM, Buerke M, Tokar NJ, Young JW. Age-related upregulation of dense core vesicles in the central inferior colliculus. Front Cell Neurosci 2024; 18:1396387. [PMID: 38774486 PMCID: PMC11107844 DOI: 10.3389/fncel.2024.1396387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 04/11/2024] [Indexed: 05/24/2024] Open
Abstract
Presbycusis is one of the most prevalent disabilities in aged populations of industrialized countries. As we age less excitation reaches the central auditory system from the periphery. To compensate, the central auditory system [e.g., the inferior colliculus (IC)], downregulates GABAergic inhibition to maintain homeostatic balance. However, the continued downregulation of GABA in the IC causes a disruption in temporal precision related to presbycusis. Many studies of age-related changes to neurotransmission in the IC have therefore focused on GABAergic systems. However, we have discovered that dense core vesicles (DCVs) are significantly upregulated with age in the IC. DCVs can carry neuropeptides, co-transmitters, neurotrophic factors, and proteins destined for the presynaptic zone to participate in synaptogenesis. We used immuno transmission electron microscopy across four age groups (3-month; 19-month; 24-month; and 28-month) of Fisher Brown Norway rats to examine the ultrastructure of DCVs in the IC. Tissue was stained post-embedding for GABA immunoreactivity. DCVs were characterized by diameter and by the neurochemical profile (GABAergic/non-GABAergic) of their location (bouton, axon, soma, and dendrite). Our data was collected across the dorsolateral to ventromedial axis of the central IC. After quantification, we had three primary findings. First, the age-related increase of DCVs occurred most robustly in non-GABAergic dendrites in the middle and low frequency regions of the central IC during middle age. Second, the likelihood of a bouton having more than one DCV increased with age. Lastly, although there was an age-related loss of terminals throughout the IC, the proportion of terminals that contained at least one DCV did not decline. We interpret this finding to mean that terminals carrying proteins packaged in DCVs are spared with age. Several recent studies have demonstrated a role for neuropeptides in the IC in defining cell types and regulating inhibitory and excitatory neurotransmission. Given the age-related increase of DCVs in the IC, it will be critical that future studies determine whether (1) specific neuropeptides are altered with age in the IC and (2) if these neuropeptides contribute to the loss of inhibition and/or increase of excitability that occurs during presbycusis and tinnitus.
Collapse
Affiliation(s)
- Jeffrey G. Mellott
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Syllissa Duncan
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Justine Busby
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Laila S. Almassri
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
- University Hospitals Hearing Research Center, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Alexa Wawrzyniak
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Milena C. Iafrate
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Andrew P. Ohl
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Elizabeth A. Slabinski
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Abigail M. Beaver
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Diana Albaba
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Brenda Vega
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Amir M. Mafi
- The Ohio State University College of Medicine, Columbus, OH, United States
| | - Morgan Buerke
- Department of Psychology, Louisiana State University, Baton Rouge, LA, United States
| | - Nick J. Tokar
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| | - Jesse W. Young
- Department of Anatomy and Neurobiology, Northeast Ohio Medical University, Rootstown, OH, United States
| |
Collapse
|
3
|
Lenschow C, Mendes ARP, Lima SQ. Hearing, touching, and multisensory integration during mate choice. Front Neural Circuits 2022; 16:943888. [PMID: 36247731 PMCID: PMC9559228 DOI: 10.3389/fncir.2022.943888] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Accepted: 06/28/2022] [Indexed: 12/27/2022] Open
Abstract
Mate choice is a potent generator of diversity and a fundamental pillar for sexual selection and evolution. Mate choice is a multistage affair, where complex sensory information and elaborate actions are used to identify, scrutinize, and evaluate potential mating partners. While widely accepted that communication during mate assessment relies on multimodal cues, most studies investigating the mechanisms controlling this fundamental behavior have restricted their focus to the dominant sensory modality used by the species under examination, such as vision in humans and smell in rodents. However, despite their undeniable importance for the initial recognition, attraction, and approach towards a potential mate, other modalities gain relevance as the interaction progresses, amongst which are touch and audition. In this review, we will: (1) focus on recent findings of how touch and audition can contribute to the evaluation and choice of mating partners, and (2) outline our current knowledge regarding the neuronal circuits processing touch and audition (amongst others) in the context of mate choice and ask (3) how these neural circuits are connected to areas that have been studied in the light of multisensory integration.
Collapse
Affiliation(s)
- Constanze Lenschow
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Ana Rita P Mendes
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| | - Susana Q Lima
- Champalimaud Foundation, Champalimaud Research, Neuroscience Program, Lisbon, Portugal
| |
Collapse
|
4
|
Zhao Q, Fan HZ, Li YL, Liu L, Wu YX, Zhao YL, Tian ZX, Wang ZR, Tan YL, Tan SP. Vocal Acoustic Features as Potential Biomarkers for Identifying/Diagnosing Depression: A Cross-Sectional Study. Front Psychiatry 2022; 13:815678. [PMID: 35573349 PMCID: PMC9095973 DOI: 10.3389/fpsyt.2022.815678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 03/30/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND At present, there is no established biomarker for the diagnosis of depression. Meanwhile, studies show that acoustic features convey emotional information. Therefore, this study explored differences in acoustic characteristics between depressed patients and healthy individuals to investigate whether these characteristics can identify depression. METHODS Participants included 71 patients diagnosed with depression from a regional hospital in Beijing, China, and 62 normal controls from within the greater community. We assessed the clinical symptoms of depression of all participants using the Hamilton Depression Scale (HAMD), Hamilton Anxiety Scale (HAMA), and Patient Health Questionnaire (PHQ-9), and recorded the voice of each participant as they read positive, neutral, and negative texts. OpenSMILE was used to analyze their voice acoustics and extract acoustic characteristics from the recordings. RESULTS There were significant differences between the depression and control groups in all acoustic characteristics (p < 0.05). Several mel-frequency cepstral coefficients (MFCCs), including MFCC2, MFCC3, MFCC8, and MFCC9, differed significantly between different emotion tasks; MFCC4 and MFCC7 correlated positively with PHQ-9 scores, and correlations were stable in all emotion tasks. The zero-crossing rate in positive emotion correlated positively with HAMA total score and HAMA somatic anxiety score (r = 0.31, r = 0.34, respectively), and MFCC9 of neutral emotion correlated negatively with HAMD anxiety/somatization scores (r = -0.34). Linear regression showed that the MFCC7-negative was predictive on the PHQ-9 score (β = 0.90, p = 0.01) and MFCC9-neutral was predictive on HAMD anxiety/somatization score (β = -0.45, p = 0.049). Logistic regression showed a superior discriminant effect, with a discrimination accuracy of 89.66%. CONCLUSION The acoustic expression of emotion among patients with depression differs from that of normal controls. Some acoustic characteristics are related to the severity of depressive symptoms and may be objective biomarkers of depression. A systematic method of assessing vocal acoustic characteristics could provide an accurate and discreet means of screening for depression; this method may be used instead of-or in conjunction with-traditional screening methods, as it is not subject to the limitations associated with self-reported assessments wherein subjects may be inclined to provide socially acceptable responses rather than being truthful.
Collapse
Affiliation(s)
- Qing Zhao
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Hong-Zhen Fan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yan-Li Li
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Lei Liu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Ya-Xue Wu
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yan-Li Zhao
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhan-Xiao Tian
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Zhi-Ren Wang
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Yun-Long Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| | - Shu-Ping Tan
- Peking University HuiLongGuan Clinical Medical School, Beijing Huilongguan Hospital, Beijing, China
| |
Collapse
|
5
|
Guh YJ, Tseng YC, Shao YT. To cope with a changing aquatic soundscape: Neuroendocrine and antioxidant responses to chronic noise stress in fish. Gen Comp Endocrinol 2021; 314:113918. [PMID: 34555413 DOI: 10.1016/j.ygcen.2021.113918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/17/2022]
Abstract
Anthropogenic underwater noises that change aquatic soundscapes represent an important issue in marine conservation. While it is evident that strong underwater acoustic pollutants may cause significant damage to fish at short ranges, the physiological effects of long-term exposure to relatively quiet but continuous noise are less well understood. Here, we present a summary of the known impacts of long-term underwater noise on hypothalamic-pituitary-interrenal (HPI) axis-mediated physiological responses, oxidant/antioxidant balance, and neurotransmitter regulation in fish. Cortisol is known to play a central role in physiological stress response, most often as a mediator of acute response. However, recent research indicates that noise exposure may also induce chronic corticosteroid responses, which involve increased rates of cortisol turnover. Moreover, continuous noise affects oxidative stress and antioxidant systems in vertebrates and fish, suggesting that oxidative species may mediate some noise-induced physiological responses and make these systems valuable noise stress markers. Lastly, noise stress is also known to affect neurotransmitters in the brain that may cause neurophysiological and behavioral changes. The neurochemical mechanisms underlying observed behavioral disorders in fish after exposure to changing acoustic environments are a topic of active research. Overall, a growing body of evidence suggests that chronic noise pollution could be a threat to fish populations. In future work, systematic and comparative investigations into long-term and transgenerational adaptive neuronal and metabolic responses to noise will be important to understand the physiological patterns and dynamics of noise response relevant to fish conservation.
Collapse
Affiliation(s)
- Ying-Jey Guh
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan
| | - Yung-Che Tseng
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, Taiwan.
| | - Yi-Ta Shao
- Institute of Marine Biology, National Taiwan Ocean University, Taiwan; Center of Excellence for the Oceans, National Taiwan Ocean University, Taiwan; Intelligent Maritime Research Center, National Taiwan Ocean University, Taiwan
| |
Collapse
|
6
|
Maruska KP, Butler JM. Endocrine Modulation of Sending and Receiving Signals in Context-Dependent Social Communication. Integr Comp Biol 2021. [DOI: 10.1093/icb/icab074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
Abstract
Animal communication requires senders to transmit signals through the environment to conspecific receivers, which then leads to context-dependent behavioral decisions. Sending and receiving sensory information in social contexts, however, can be dramatically influenced by an individual’s internal state, particularly in species that cycle in and out of breeding or other physiological condition like nutritional state or social status. Modulatory substances like steroids, peptides, and biogenic amines can influence both the substrates used for sending social signals (e.g., motivation centers, sensorimotor pathways, and muscles) as well as the peripheral sensory organs and central neural circuitry involved in the reception of this information and subsequent execution of behavioral responses. This issue highlights research from neuroethologists on the topic of modulation of sending and receiving social signals and demonstrates that it can occur in both males and females, in different senses at both peripheral sensory organs and the brain, at different levels of biological organization, on different temporal scales, in various social contexts, and across many diverse vertebrate taxa. Modifying a signal produced by a sender or how that signal is perceived in a receiver provides flexibility in communication and has broad implications for influencing social decisions like mate choice, which ultimately affects reproductive fitness and species persistence. This phenomenon of modulators and internal physiological state impacting communication abilities is likely more widespread than currently realized and we hope this issue inspires others working on diverse systems to examine this topic from different perspectives. An integrative and comparative approach will advance discovery in this field and is needed to better understand how endocrine modulation contributes to sexual selection and the evolution of animal communication in general.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
- Biology Department, Stanford University, 371 Jane Stanford Way, Stanford, CA 94305-5020, USA
| |
Collapse
|
7
|
Maruska KP, Butler JM. Reproductive- and Social-State Plasticity of Multiple Sensory Systems in a Cichlid Fish. Integr Comp Biol 2021; 61:249-268. [PMID: 33963407 DOI: 10.1093/icb/icab062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Intra- and inter-sexual communications are vital to the survival and reproductive success of animals. In species that cycle in and out of breeding or other physiological condition, sensory function can be modulated to optimize communication at crucial times. Little is known, however, about how widespread this sensory plasticity is across taxa, whether it occurs in multiple senses or both sexes within a species, and what potential modulatory substances and substrates are involved. Thus, studying modulation of sensory communication in a single species can provide valuable insights for understanding how sensory abilities can be altered to optimize detection of salient signals in different sensory channels and social contexts. The African cichlid fish Astatotilapia burtoni uses multimodal communication in social contexts such as courtship, territoriality, and parental care and shows plasticity in sensory abilities. In this review, we synthesize what is known about how visual, acoustic, and chemosensory communication is used in A. burtoni in inter- and intra-specific social contexts, how sensory funtion is modulated by an individual's reproductive, metabolic, and social state, and discuss evidence for plasticity in potential modulators that may contribute to changes in sensory abilities and behaviors. Sensory plasticity in females is primarily associated with the natural reproductive cycle and functions to improve detection of courtship signals (visual, auditory, chemosensory, and likely mechanosensory) from high-quality males for reproduction. Plasticity in male sensory abilities seems to function in altering their ability to detect the status of other males in the service of territory ownership and future reproductive opportunities. Changes in different classes of potential modulators or their receptors (steroids, neuropeptides, and biogenic amines) occur at both peripheral sensory organs (eye, inner ear, and olfactory epithelium) and central visual, olfactory, and auditory processing regions, suggesting complex mechanisms contributing to plasticity of sensory function. This type of sensory plasticity revealed in males and females of A. burtoni is likely more widespread among diverse animals than currently realized, and future studies should take an integrative and comparative approach to better understand the proximate and ultimate mechanisms modulating communication abilities across taxa.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| | - Julie M Butler
- Department of Biological Sciences, Louisiana State University, 202 Life Sciences Bldg., Baton Rouge, LA 70803, USA
| |
Collapse
|
8
|
Wyrick D, Mazzucato L. State-Dependent Regulation of Cortical Processing Speed via Gain Modulation. J Neurosci 2021; 41:3988-4005. [PMID: 33858943 PMCID: PMC8176754 DOI: 10.1523/jneurosci.1895-20.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 03/04/2021] [Accepted: 03/08/2021] [Indexed: 11/21/2022] Open
Abstract
To thrive in dynamic environments, animals must be capable of rapidly and flexibly adapting behavioral responses to a changing context and internal state. Examples of behavioral flexibility include faster stimulus responses when attentive and slower responses when distracted. Contextual or state-dependent modulations may occur early in the cortical hierarchy and may be implemented via top-down projections from corticocortical or neuromodulatory pathways. However, the computational mechanisms mediating the effects of such projections are not known. Here, we introduce a theoretical framework to classify the effects of cell type-specific top-down perturbations on the information processing speed of cortical circuits. Our theory demonstrates that perturbation effects on stimulus processing can be predicted by intrinsic gain modulation, which controls the timescale of the circuit dynamics. Our theory leads to counterintuitive effects, such as improved performance with increased input variance. We tested the model predictions using large-scale electrophysiological recordings from the visual hierarchy in freely running mice, where we found that a decrease in single-cell intrinsic gain during locomotion led to an acceleration of visual processing. Our results establish a novel theory of cell type-specific perturbations, applicable to top-down modulation as well as optogenetic and pharmacological manipulations. Our theory links connectivity, dynamics, and information processing via gain modulation.SIGNIFICANCE STATEMENT To thrive in dynamic environments, animals adapt their behavior to changing circumstances and different internal states. Examples of behavioral flexibility include faster responses to sensory stimuli when attentive and slower responses when distracted. Previous work suggested that contextual modulations may be implemented via top-down inputs to sensory cortex coming from higher brain areas or neuromodulatory pathways. Here, we introduce a theory explaining how the speed at which sensory cortex processes incoming information is adjusted by changes in these top-down projections, which control the timescale of neural activity. We tested our model predictions in freely running mice, revealing that locomotion accelerates visual processing. Our theory is applicable to internal modulation as well as optogenetic and pharmacological manipulations and links circuit connectivity, dynamics, and information processing.
Collapse
Affiliation(s)
- David Wyrick
- Department of Biology and Institute of Neuroscience
| | - Luca Mazzucato
- Department of Biology and Institute of Neuroscience
- Departments of Mathematics and Physics, University of Oregon, Eugene, Oregon 97403
| |
Collapse
|
9
|
Jeong JE, Jeon S, Han JS, Cho EY, Hong KS, Park SN, Kim JJ. The Mediating Effect of Psychological Distress on the Association between BDNF, 5-HTTLPR, and Tinnitus Severity. Psychiatry Investig 2021; 18:187-195. [PMID: 33685039 PMCID: PMC8016684 DOI: 10.30773/pi.2020.0295] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 11/13/2020] [Indexed: 12/19/2022] Open
Abstract
OBJECTIVE To investigate the association between genetic polymorphisms of brain-derived neurotrophic factor (BDNF) or serotonin transporter gene-linked polymorphic region (5-HTTLPR) and tinnitus, and the mediating effects of psychological distress on this association. METHODS Eighty-six patients experiencing tinnitus and 252 controls were recruited. The Tinnitus Handicap Inventory was used to assess the severity of tinnitus and the Beck Depression Inventory-II (BDI-II), Beck Anxiety Inventory-II (BAI-II), and the Korean version of the Brief Encounter Psychosocial Instrument (BEPSI-K) were used to assess psychological distress. We compared the association of BDNF rs6265 (Val66Met) and 5-HTTLPR variants in the two groups. The mediating effects of BDI-II, BAI-II, and BEPSI-K were examined using multiple regression analysis and validated by the Sobel test and bootstrapping. RESULTS No significant differences were found between the groups regarding BDNF Val66Met and 5-HTTLPR, but the 5-HTTLPR variants trended toward association. Depressive symptoms appeared to act as a mediator on the relationship within the 5-HTTLPR s/s genotype and the severity of tinnitus. CONCLUSION Our findings provide a speculative idea on the association between the serotonergic system and tinnitus and suggest that depressive symptoms act as a mediator in tinnitus. Therefore, screening for depressive symptoms in patients with tinnitus is essential and intervention for depressive symptoms may help alleviate the severity of tinnitus.
Collapse
Affiliation(s)
- Jo-Eun Jeong
- Department of Psychiatry, Daejeon St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sekye Jeon
- Department of Psychiatry, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jae Sang Han
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Eun Young Cho
- Center of Clinical Research, Samsung Biomedical Research Institute, Seoul, Republic of Korea
| | - Kyung Sue Hong
- Department of Psychiatry, Sungkyunkwan University School of Medicine, Samsung Seoul Hospital, Seoul, Republic of Korea
| | - Shi Nae Park
- Department of Otorhinolaryngology-Head and Neck Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Jung Jin Kim
- Department of Psychiatry, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| |
Collapse
|
10
|
Siemann JK, Veenstra-VanderWeele J, Wallace MT. Approaches to Understanding Multisensory Dysfunction in Autism Spectrum Disorder. Autism Res 2020; 13:1430-1449. [PMID: 32869933 PMCID: PMC7721996 DOI: 10.1002/aur.2375] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/20/2020] [Accepted: 07/28/2020] [Indexed: 12/14/2022]
Abstract
Abnormal sensory responses are a DSM-5 symptom of autism spectrum disorder (ASD), and research findings demonstrate altered sensory processing in ASD. Beyond difficulties with processing information within single sensory domains, including both hypersensitivity and hyposensitivity, difficulties in multisensory processing are becoming a core issue of focus in ASD. These difficulties may be targeted by treatment approaches such as "sensory integration," which is frequently applied in autism treatment but not yet based on clear evidence. Recently, psychophysical data have emerged to demonstrate multisensory deficits in some children with ASD. Unlike deficits in social communication, which are best understood in humans, sensory and multisensory changes offer a tractable marker of circuit dysfunction that is more easily translated into animal model systems to probe the underlying neurobiological mechanisms. Paralleling experimental paradigms that were previously applied in humans and larger mammals, we and others have demonstrated that multisensory function can also be examined behaviorally in rodents. Here, we review the sensory and multisensory difficulties commonly found in ASD, examining laboratory findings that relate these findings across species. Next, we discuss the known neurobiology of multisensory integration, drawing largely on experimental work in larger mammals, and extensions of these paradigms into rodents. Finally, we describe emerging investigations into multisensory processing in genetic mouse models related to autism risk. By detailing findings from humans to mice, we highlight the advantage of multisensory paradigms that can be easily translated across species, as well as the potential for rodent experimental systems to reveal opportunities for novel treatments. LAY SUMMARY: Sensory and multisensory deficits are commonly found in ASD and may result in cascading effects that impact social communication. By using similar experiments to those in humans, we discuss how studies in animal models may allow an understanding of the brain mechanisms that underlie difficulties in multisensory integration, with the ultimate goal of developing new treatments. Autism Res 2020, 13: 1430-1449. © 2020 International Society for Autism Research, Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Justin K Siemann
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee, USA
| | - Jeremy Veenstra-VanderWeele
- Department of Psychiatry, Columbia University, Center for Autism and the Developing Brain, New York Presbyterian Hospital, and New York State Psychiatric Institute, New York, New York, USA
| | - Mark T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, Tennessee, USA
- Department of Psychology, Vanderbilt University, Nashville, Tennessee, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, Tennessee, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, Tennessee, USA
| |
Collapse
|
11
|
Neuropeptide Y Expression Defines a Novel Class of GABAergic Projection Neuron in the Inferior Colliculus. J Neurosci 2020; 40:4685-4699. [PMID: 32376782 DOI: 10.1523/jneurosci.0420-20.2020] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 04/22/2020] [Accepted: 05/01/2020] [Indexed: 12/24/2022] Open
Abstract
Located in the midbrain, the inferior colliculus (IC) integrates information from numerous auditory nuclei and is an important hub for sound processing. Despite its importance, little is known about the molecular identity and functional roles of defined neuron types in the IC. Using a multifaceted approach in mice of both sexes, we found that neuropeptide Y (NPY) expression identifies a major class of inhibitory neurons, accounting for approximately one-third of GABAergic neurons in the IC. Retrograde tracing showed that NPY neurons are principal neurons that can project to the medial geniculate nucleus. In brain slice recordings, many NPY neurons fired spontaneously, suggesting that NPY neurons may drive tonic inhibition onto postsynaptic targets. Morphologic reconstructions showed that NPY neurons are stellate cells, and the dendrites of NPY neurons in the tonotopically organized central nucleus of the IC cross isofrequency laminae. Immunostaining confirmed that NPY neurons express NPY, and we therefore hypothesized that NPY signaling regulates activity in the IC. In crosses between Npy1rcre and Ai14 Cre-reporter mice, we found that NPY Y1 receptor (Y1R)-expressing neurons are glutamatergic and were broadly distributed throughout the rostrocaudal extent of the IC. In whole-cell recordings, application of a high-affinity Y1R agonist led to hyperpolarization in most Y1R-expressing IC neurons. Thus, NPY neurons represent a novel class of inhibitory principal neurons that are well poised to use GABAergic and NPY signaling to regulate the excitability of circuits in the IC and auditory thalamus.SIGNIFICANCE STATEMENT The identification of neuron types is a fundamental question in neuroscience. In the inferior colliculus (IC), the hub of the central auditory pathway, molecular markers for distinct classes of inhibitory neurons have remained unknown. We found that neuropeptide Y (NPY) expression identifies a class of GABAergic principal neurons that constitute one-third of the inhibitory neurons in the IC. NPY neurons fire spontaneously, have a stellate morphology, and project to the auditory thalamus. Additionally, we found that NPY signaling hyperpolarized the membrane potential of a subset of excitatory IC neurons that express the NPY Y1 receptor. Thus, NPY neurons are a novel class of inhibitory neurons that use GABA and NPY signaling to regulate activity in the IC and auditory thalamus.
Collapse
|
12
|
Jafari Z, Kolb BE, Mohajerani MH. Auditory Dysfunction in Parkinson's Disease. Mov Disord 2020; 35:537-550. [PMID: 32052894 DOI: 10.1002/mds.28000] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/21/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
PD is a progressive and complex neurological disorder with heterogeneous symptomatology. PD is characterized by classical motor features of parkinsonism and nonmotor symptoms and involves extensive regions of the nervous system, various neurotransmitters, and protein aggregates. Extensive evidence supports auditory dysfunction as an additional nonmotor feature of PD. Studies indicate a broad range of auditory impairments in PD, from the peripheral hearing system to the auditory brainstem and cortical areas. For instance, research demonstrates a higher occurrence of hearing loss in early-onset PD and evidence of abnormal auditory evoked potentials, event-related potentials, and habituation to novel stimuli. Electrophysiological data, such as auditory P3a, also is suggested as a sensitive measure of illness duration and severity. Improvement in auditory responses following dopaminergic therapies also indicates the presence of similar neurotransmitters (i.e., glutamate and dopamine) in the auditory system and basal ganglia. Nonetheless, hearing impairments in PD have received little attention in clinical practice so far. This review summarizes evidence of peripheral and central auditory impairments in PD and provides conclusions and directions for future empirical and clinical research. © 2020 International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Zahra Jafari
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada.,Department of Basic Sciences in Rehabilitation, School of Rehabilitation Sciences, Iran University of Medical Science (IUMS), Tehran, Iran
| | - Bryan E Kolb
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| | - Majid H Mohajerani
- Department of Neuroscience, Canadian Centre for Behavioural Neuroscience, University of Lethbridge, Lethbridge, AB, Canada
| |
Collapse
|
13
|
Regulation of Noise-Induced Loss of Serotonin Transporters with Resveratrol in a Rat Model Using 4-[ 18F]-ADAM/Small-Animal Positron Emission Tomography. Molecules 2019; 24:molecules24071344. [PMID: 30959762 PMCID: PMC6480549 DOI: 10.3390/molecules24071344] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2019] [Revised: 03/28/2019] [Accepted: 04/04/2019] [Indexed: 11/16/2022] Open
Abstract
Serotonin (5-HT) plays a crucial role in modulating the afferent fiber discharge rate in the inferior colliculus, auditory cortex, and other nuclei of the ascending auditory system. Resveratrol, a natural polyphenol phytoalexin, can inhibit serotonin transporters (SERT) to increase synaptic 5-HT levels. In this study, we investigated the effects of resveratrol on noise-induced damage in the serotonergic system. Male Sprague-Dawley rats were anaesthetized and exposed to an 8-kHz tone at 116 dB for 3.5 h. Resveratrol (30 mg/kg, intraperitoneal injection [IP]) and citalopram (20 mg/kg, IP), a specific SERT inhibitor used as a positive control, were administered once a day for four consecutive days, with the first treatment occurring 2 days before noise exposure. Auditory brainstem response testing and positron emission tomography (PET) with N,N-dimethyl-2-(2-amino-4-[18F]fluorophenylthio)benzylamine (4-[18F]-ADAM, a specific radioligand for SERT) were used to evaluate functionality of the auditory system and integrity of the serotonergic system, respectively, before and after noise exposure. Finally, immunohistochemistry was performed 1 day after the last PET scan. Our results indicate that noise-induced serotonergic fiber loss occurred in multiple brain regions including the midbrain, thalamus, hypothalamus, striatum, auditory cortex, and frontal cortex. This noise-induced damage to the serotonergic system was ameliorated in response to treatment with resveratrol and citalopram. However, noise exposure increased the hearing threshold in the rats regardless of drug treatment status. We conclude that resveratrol has protective effects against noise-induced loss of SERT.
Collapse
|
14
|
Batton AD, Blaha CD, Bieber A, Lee KH, Boschen SL. Stimulation of the subparafascicular thalamic nucleus modulates dopamine release in the inferior colliculus of rats. Synapse 2018; 73:e22073. [PMID: 30291737 DOI: 10.1002/syn.22073] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/21/2018] [Accepted: 09/26/2018] [Indexed: 11/08/2022]
Abstract
Although dopamine is commonly studied for its role in incentive motivation, cognition, and various neuropsychiatric disorders, evidence from Parkinson's disease (PD) patients that present auditory deficits suggest that dopamine is also involved in central auditory processing. It has been recently discovered that the subparafascicular thalamic nucleus (SPF) sends dopaminergic projections to the inferior colliculus (IC), an important convergence hub for the ascending and descending auditory pathways. In the present study, our aim was to provide neurochemical evidence that activation of SPF neurons evokes dopamine release in the IC of anesthetized rats using fast-scan cyclic and paired pulse voltammetry in combination with carbon fiber microelectrodes. Electrical stimulation of the SPF (60 and 90 Hz) evoked dopamine release in the IC in a frequency-dependent manner, with higher frequencies evoking greater amplitude dopamine responses. Optogenetic-evoked dopamine responses were similar to the effects of electrical stimulation suggesting that electrical stimulation-evoked dopamine release was not due to nonspecific activation of fibers of passage, but rather to activation of SPF cells projecting to the IC. Selective dopamine reuptake blockade enhanced the evoked dopamine response, while selective blockade of serotonin did not, confirming the selectivity of the neurochemical recordings to dopamine. Therefore, the SPF neuronal pathway functionally mediates dopamine release in the IC and thus may be involved in auditory processing deficits associated with PD.
Collapse
Affiliation(s)
- Aiyana D Batton
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
- Department of Psychiatry and Psychology, Mayo Clinic, Rochester, Minnesota
| | - Charles D Blaha
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Allan Bieber
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Kendall H Lee
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| | - Suelen L Boschen
- Department of Neurologic Surgery, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
15
|
Incrocci RM, Paliarin F, Nobre MJ. Prelimbic NMDA receptors stimulation mimics the attenuating effects of clozapine on the auditory electrophysiological rebound induced by ketamine withdrawal. Neurotoxicology 2018; 69:1-10. [PMID: 30170016 DOI: 10.1016/j.neuro.2018.08.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 08/24/2018] [Accepted: 08/24/2018] [Indexed: 11/26/2022]
Abstract
Ketamine (KET) is a non-competitive N-Methyl-d-aspartate (NMDA) receptors antagonist that intensifies sensory experiences, prompts hallucinations and delusions, exacerbates previously installed psychosis and disrupts physiological evoked potentials (AEPs). Pharmacologically, KET stimulates glutamate efflux in the medial prefrontal cortex, mainly in the prelimbic (PrL) sub-region. Efferences from this region exert a top-down regulatory control of bottom-up sensory processes either directly or indirectly. In the midbrain, the central nucleus of the inferior colliculus (CIC) plays a fundamental role in the processing of auditory ascending information related to sound localization, sensorimotor gating, and preattentive event-related potentials. Auditory hallucinations elicited during a psychotic outbreak are accompanied by CIC neural activation. Thus, it is possible that NMDA-mediated glutamate neurotransmission in the PrL indirectly modulates CIC neuronal firing. The aim of the present study was to assess the effects of KET on the latency and amplitude of AEPs elicited in the CIC of rats tested during KET effects and following withdrawal from the chronic administration. Changes on emotionally induced by KET treatment were evaluated with the use of the elevated zero maze (EZM). Unlike typical neuroleptics, the atypical antipsychotic clozapine (CLZ) potently blocks the disruption of the sensorimotor gating induced by NMDA antagonists. Therefore, the effects of KET withdrawal on AEPs were challenged with a systemic injection of CLZ. In addition, we further investigated the role of NMDA receptors of the PrL on the AEPs expression recorded in the CIC through intra-PrL infusions of NMDA itself. Our results showed that the processing of sensory information in the CIC is under indirect control of PrL. These data suggest that the long-term KET treatment disrupts the collicular auditory field potentials, possibly through influencing PrL glutamate activity on intrinsic 5-HT mechanisms in the dorsal raphe and CIC.
Collapse
Affiliation(s)
- Roberta Monteiro Incrocci
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - Franciely Paliarin
- Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil
| | - Manoel Jorge Nobre
- Departamento de Psicologia, Uni-FACEF, 14401-135, Franca, SP, Brazil; Departamento de Psicologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo (USP), 14040-901, Ribeirão Preto, SP, Brazil; Instituto de Neurociências e Comportamento-INeC, Campus USP, 14040-901, Ribeirão Preto, SP, Brazil.
| |
Collapse
|
16
|
Affiliation(s)
- David M Baguley
- Audiology (94), Addenbrooke's Hospital, Hills Road, Cambridge CB2 2QQ, UK.
| |
Collapse
|
17
|
Behavioral Animal Model of the Emotional Response to Tinnitus and Hearing Loss. J Assoc Res Otolaryngol 2017; 19:67-81. [PMID: 29047013 DOI: 10.1007/s10162-017-0642-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 09/28/2017] [Indexed: 12/28/2022] Open
Abstract
Increased prevalence of emotional distress is associated with tinnitus and hearing loss. The underlying mechanisms of the negative emotional response to tinnitus and hearing loss remain poorly understood, and it is challenging to disentangle the emotional consequences of hearing loss from those specific to tinnitus in listeners experiencing both. We addressed these questions in laboratory rats using three common rodent anxiety screening assays: elevated plus maze, open field test, and social interaction test. Open arm activity in the elevated plus maze decreased substantially after one trial in controls, indicating its limited utility for comparing pre- and post-treatment behavior. Open field exploration and social interaction behavior were consistent across multiple sessions in control animals. Individual sound-exposed and salicylate-treated rats showed a range of phenotypes in the open field, including reduced entries into the center in some subjects and reduced locomotion overall. In rats screened for tinnitus, less locomotion was associated with higher tinnitus scores. In salicylate-treated animals, locomotion was correlated with age. Sound-exposed and salicylate-treated rats also showed reduced social interaction. These results suggest that open field exploratory activity is a selective measure for identifying tinnitus distress in individual animals, whereas social interaction reflects the general effects of hearing loss. This animal model will facilitate future studies of the structural and functional changes in the brain pathways underlying emotional distress associated with hearing dysfunction, as well as development of novel interventions to ameliorate or prevent negative emotional responses.
Collapse
|
18
|
de Oliveira RP, Nagaishi KY, Barbosa Silva RC. Atypical antipsychotic clozapine reversed deficit on prepulse inhibition of the acoustic startle reflex produced by microinjection of DOI into the inferior colliculus in rats. Behav Brain Res 2017; 325:72-78. [DOI: 10.1016/j.bbr.2017.01.053] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/20/2017] [Accepted: 01/25/2017] [Indexed: 01/23/2023]
|
19
|
Siemann JK, Muller CL, Forsberg CG, Blakely RD, Veenstra-VanderWeele J, Wallace MT. An autism-associated serotonin transporter variant disrupts multisensory processing. Transl Psychiatry 2017; 7:e1067. [PMID: 28323282 PMCID: PMC5416665 DOI: 10.1038/tp.2017.17] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Revised: 12/29/2016] [Accepted: 01/09/2017] [Indexed: 01/29/2023] Open
Abstract
Altered sensory processing is observed in many children with autism spectrum disorder (ASD), with growing evidence that these impairments extend to the integration of information across the different senses (that is, multisensory function). The serotonin system has an important role in sensory development and function, and alterations of serotonergic signaling have been suggested to have a role in ASD. A gain-of-function coding variant in the serotonin transporter (SERT) associates with sensory aversion in humans, and when expressed in mice produces traits associated with ASD, including disruptions in social and communicative function and repetitive behaviors. The current study set out to test whether these mice also exhibit changes in multisensory function when compared with wild-type (WT) animals on the same genetic background. Mice were trained to respond to auditory and visual stimuli independently before being tested under visual, auditory and paired audiovisual (multisensory) conditions. WT mice exhibited significant gains in response accuracy under audiovisual conditions. In contrast, although the SERT mutant animals learned the auditory and visual tasks comparably to WT littermates, they failed to show behavioral gains under multisensory conditions. We believe these results provide the first behavioral evidence of multisensory deficits in a genetic mouse model related to ASD and implicate the serotonin system in multisensory processing and in the multisensory changes seen in ASD.
Collapse
Affiliation(s)
- J K Siemann
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - C L Muller
- Neuroscience Program, Vanderbilt University, Nashville, TN, USA
| | - C G Forsberg
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
| | - R D Blakely
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL, USA
- Florida Atlantic University Brain Institute, Florida Atlantic University, Jupiter, FL, USA
- Department of Pharmacology, Vanderbilt University, Nashville, TN, USA
| | - J Veenstra-VanderWeele
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Psychiatry, Sackler Institute for Developmental Psychobiology, Columbia University, New York, NY, USA
- Center for Autism and The Developing Brain, New York Presbyterian Hospital, New York, NY, USA
- New York State Psychiatric Institute, New York, NY, USA
| | - M T Wallace
- Department of Psychiatry, Vanderbilt University, Nashville, TN, USA
- Silvio O. Conte Center for Neuroscience Research, Vanderbilt University, Nashville, TN, USA
- Department of Psychology, Vanderbilt University, Nashville, TN, USA
- Department of Hearing and Speech Sciences, Vanderbilt University, Nashville, TN, USA
- Kennedy Center for Research on Human Development, Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
20
|
Kurela L, Wallace M. Serotonergic Modulation of Sensory and Multisensory Processing in Superior Colliculus. Multisens Res 2017. [DOI: 10.1163/22134808-00002552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The ability to integrate information across the senses is vital for coherent perception of and interaction with the world. While much is known regarding the organization and function of multisensory neurons within the mammalian superior colliculus (SC), very little is understood at a mechanistic level. One open question in this regard is the role of neuromodulatory networks in shaping multisensory responses. While the SC receives substantial serotonergic projections from the raphe nuclei, and serotonergic receptors are distributed throughout the SC, the potential role of serotonin (5-HT) signaling in multisensory function is poorly understood. To begin to fill this knowledge void, the current study provides physiological evidence for the influences of 5-HT signaling on auditory, visual and audiovisual responses of individual neurons in the intermediate and deep layers of the SC, with a focus on the 5HT2a receptor. Using single-unit extracellular recordings in combination with pharmacological methods, we demonstrate that alterations in 5HT2a receptor signaling change receptive field (RF) architecture as well as responsivity and integrative abilities of SC neurons when assessed at the level of the single neuron. In contrast, little changes were seen in the local field potential (LFP). These results are the first to implicate the serotonergic system in multisensory processing, and are an important step to understanding how modulatory networks mediate multisensory integration in the SC.
Collapse
Affiliation(s)
- LeAnne R. Kurela
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
| | - Mark T. Wallace
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN 37232, USA
- Department of Hearing & Speech Sciences, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychology, Vanderbilt University, Nashville, TN 37232, USA
- Department of Psychiatry, Vanderbilt University, Nashville, TN 37232, USA
| |
Collapse
|
21
|
Felix RA, Elde CJ, Nevue AA, Portfors CV. Serotonin modulates response properties of neurons in the dorsal cochlear nucleus of the mouse. Hear Res 2016; 344:13-23. [PMID: 27838373 DOI: 10.1016/j.heares.2016.10.017] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Revised: 10/10/2016] [Accepted: 10/26/2016] [Indexed: 01/15/2023]
Abstract
The neurochemical serotonin (5-hydroxytryptamine, 5-HT) is involved in a variety of behavioral functions including arousal, reward, and attention, and has a role in several complex disorders of the brain. In the auditory system, 5-HT fibers innervate a number of subcortical nuclei, yet the modulatory role of 5-HT in nearly all of these areas remains poorly understood. In this study, we examined spiking activity of neurons in the dorsal cochlear nucleus (DCN) following iontophoretic application of 5-HT. The DCN is an early site in the auditory pathway that receives dense 5-HT fiber input from the raphe nuclei and has been implicated in the generation of auditory disorders marked by neuronal hyperexcitability. Recordings from the DCN in awake mice demonstrated that iontophoretic application of 5-HT had heterogeneous effects on spiking rate, spike timing, and evoked spiking threshold. We found that 56% of neurons exhibited increases in spiking rate during 5-HT delivery, while 22% had decreases in rate and the remaining neurons had no change. These changes were similar for spontaneous and evoked spiking and were typically accompanied by changes in spike timing. Spiking increases were associated with lower first spike latencies and jitter, while decreases in spiking generally had opposing effects on spike timing. Cases in which 5-HT application resulted in increased spiking also exhibited lower thresholds compared to the control condition, while cases of decreased spiking had no threshold change. We also found that the 5-HT2 receptor subtype likely has a role in mediating increased excitability. Our results demonstrate that 5-HT can modulate activity in the DCN of awake animals and that it primarily acts to increase neuronal excitability, in contrast to other auditory regions where it largely has a suppressive role. Modulation of DCN function by 5-HT has implications for auditory processing in both normal hearing and disordered states.
Collapse
Affiliation(s)
- Richard A Felix
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA.
| | - Cameron J Elde
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Alexander A Nevue
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| | - Christine V Portfors
- School of Biological Sciences and Integrative Physiology and Neuroscience, Washington State University, Vancouver, WA, USA
| |
Collapse
|
22
|
Luo M, Li Y, Zhong W. Do dorsal raphe 5-HT neurons encode “beneficialness”? Neurobiol Learn Mem 2016; 135:40-49. [DOI: 10.1016/j.nlm.2016.08.008] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 08/15/2016] [Accepted: 08/17/2016] [Indexed: 10/21/2022]
|
23
|
Park S, Nevin ABC, Cardozo-Pelaez F, Lurie DI. Pb exposure prolongs the time period for postnatal transient uptake of 5-HT by murine LSO neurons. Neurotoxicology 2016; 57:258-269. [PMID: 27771255 DOI: 10.1016/j.neuro.2016.10.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 09/27/2016] [Accepted: 10/17/2016] [Indexed: 01/09/2023]
Abstract
Pb exposure is associated with cognitive deficits including Attention Deficit Hyperactivity Disorder (ADHD) in children and alters auditory temporal processing in humans and animals. Serotonin has been implicated in auditory temporal processing and previous studies from our laboratory have demonstrated that developmental Pb decreases expression of serotonin (5-HT) in the adult murine lateral superior olive (LSO). During development, certain non-serotonergic sensory neurons, including auditory LSO neurons, transiently take up 5-HT through the serotonin reuptake transporter (SERT). The uptake of 5-HT is important for development of sensory systems. This study examines the effect of Pb on the serotonergic system in the LSO of the early postnatal mouse. Mice were exposed to moderate Pb (0.01mM) or high Pb (0.1mM) throughout gestation and postnatal day 4 (P4) and P8. We found that Pb exposure prolongs the normal developmental expression of 5-HT by LSO neurons and this is correlated with expression of SERT on LSO cell bodies. The prolonged expression of 5-HT by postnatal LSO neurons is correlated with decreased synaptic immunolabeling within the LSO. This Pb-associated decrease in synaptic density within the LSO could contribute to the auditory temporal processing deficits and cognitive deficits associated with developmental Pb exposure.
Collapse
Affiliation(s)
- Sunyoung Park
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States; Business Planning Department, Kyowa Hakko Kirin Korea Co., Ltd., Seoul, Republic of Korea
| | - Andrew B C Nevin
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Fernando Cardozo-Pelaez
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States
| | - Diana I Lurie
- Center for Structural and Functional Neuroscience, Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, MT 59812, United States.
| |
Collapse
|
24
|
Abstract
The presence of cranial autonomic symptoms in migraine is well known and thought to represent activation of the trigeminal parasympathetic reflex pathway similar to trigeminal autonomic cephalalgias. However, studies regarding the prevalence of these symptoms are few. The characteristics of migraineurs with cranial autonomic symptoms and the association of cranial autonomic symptoms with laterality of headache have never been studied in a clinic population. Seventy-eight consecutive subjects with migraine were recruited from the Headache Clinic of the Department of Psychiatry after exclusion of subjects with secondary headache. Their demographic data and detailed history of headache were noted and leading questions were asked regarding cranial autonomic symptoms. χ2 test and Fisher's exact test was used for categorical variables, whereas an independent sample t-test was applied on numerical data. Spearman's correlation was used for correlational analysis of categorical variables. Female subjects (78.2%) outnumbered males and the average duration of illness in the whole sample was 3.81 years. Migraine without aura (53.8%) was the commonest diagnosis, followed by migraine with aura (24.4%). Cranial autonomic symptoms were present in 73.1% of subjects and, commonly, they were ipsilateral to headache. Moreover, strictly unilateral cranial autonomic symptoms were reported by only 32% of patients. The anatomical side of headache did not affect the presence of autonomic symptoms. Those with or without autonomic symptoms did not differ with respect to gender, diagnosis, laterality of headache or associated symptoms except phonophobia, which was more common in subjects with autonomic symptoms ( P = 0.05). Those with autonomic symptoms had longer duration of illness ( P = 0.03) and longer headache episodes ( P = 0.04). In addition, sleep was ineffective in relieving their headache ( P = 0.02). Cranial autonomic symptoms are frequent in migraineurs and are common in subjects with long duration of illness and longer headache episodes. Clinical evidence in the present study suggests that subjects with cranial autonomic symptoms have a hyperactive efferent arm of trigeminal autonomic reflex. The connections of trigeminal nucleus with the locus coeruleus and dorsal raphe nucleus may account for the observed phenotypic differences between the two groups. Further research, however, is required to elucidate the underlying neural mechanisms of cranial autonomic symptoms in migraine.
Collapse
Affiliation(s)
- R Gupta
- Department of Psychiatry, University College of Medical Sciences and GTB Hospital, Shahdara, Delhi, India.
| | | |
Collapse
|
25
|
Forlano PM, Maruska KP, Sisneros JA, Bass AH. Hormone-Dependent Plasticity of Auditory Systems in Fishes. HEARING AND HORMONES 2016. [DOI: 10.1007/978-3-319-26597-1_2] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
26
|
Papesh MA, Hurley LM. Modulation of auditory brainstem responses by serotonin and specific serotonin receptors. Hear Res 2015; 332:121-136. [PMID: 26688176 DOI: 10.1016/j.heares.2015.11.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Revised: 10/28/2015] [Accepted: 11/23/2015] [Indexed: 11/16/2022]
Abstract
The neuromodulator serotonin is found throughout the auditory system from the cochlea to the cortex. Although effects of serotonin have been reported at the level of single neurons in many brainstem nuclei, how these effects correspond to more integrated measures of auditory processing has not been well-explored. In the present study, we aimed to characterize the effects of serotonin on far-field auditory brainstem responses (ABR) across a wide range of stimulus frequencies and intensities. Using a mouse model, we investigated the consequences of systemic serotonin depletion, as well as the selective stimulation and suppression of the 5-HT1 and 5-HT2 receptors, on ABR latency and amplitude. Stimuli included tone pips spanning four octaves presented over a forty dB range. Depletion of serotonin reduced the ABR latencies in Wave II and later waves, suggesting that serotonergic effects occur as early as the cochlear nucleus. Further, agonists and antagonists of specific serotonergic receptors had different profiles of effects on ABR latencies and amplitudes across waves and frequencies, suggestive of distinct effects of these agents on auditory processing. Finally, most serotonergic effects were more pronounced at lower ABR frequencies, suggesting larger or more directional modulation of low-frequency processing. This is the first study to describe the effects of serotonin on ABR responses across a wide range of stimulus frequencies and amplitudes, and it presents an important step in understanding how serotonergic modulation of auditory brainstem processing may contribute to modulation of auditory perception.
Collapse
Affiliation(s)
- Melissa A Papesh
- Indiana University, Department of Speech and Hearing Sciences, 200 South Jordan Avenue, Bloomington, IN 47405, USA.
| | - Laura M Hurley
- Indiana University, Department of Biology, Center for the Integrative Study of Animal Behavior, 1001 E. Third Street, Bloomington, IN 47405, USA
| |
Collapse
|
27
|
Pannese A, Grandjean D, Frühholz S. Subcortical processing in auditory communication. Hear Res 2015; 328:67-77. [DOI: 10.1016/j.heares.2015.07.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 06/23/2015] [Accepted: 07/01/2015] [Indexed: 12/21/2022]
|
28
|
Jin Y, Luo B, Su YY, Wang XX, Chen L, Wang M, Wang WW, Chen L. Sodium salicylate suppresses GABAergic inhibitory activity in neurons of rodent dorsal raphe nucleus. PLoS One 2015; 10:e0126956. [PMID: 25962147 PMCID: PMC4427486 DOI: 10.1371/journal.pone.0126956] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 04/09/2015] [Indexed: 11/19/2022] Open
Abstract
Sodium salicylate (NaSal), a tinnitus inducing agent, can activate serotonergic (5-HTergic) neurons in the dorsal raphe nucleus (DRN) and can increase serotonin (5-HT) level in the inferior colliculus and the auditory cortex in rodents. To explore the underlying neural mechanisms, we first examined effects of NaSal on neuronal intrinsic properties and the inhibitory synaptic transmissions in DRN slices of rats by using whole-cell patch-clamp technique. We found that NaSal hyperpolarized the resting membrane potential, decreased the input resistance, and suppressed spontaneous and current-evoked firing in GABAergic neurons, but not in 5-HTergic neurons. In addition, NaSal reduced GABAergic spontaneous and miniature inhibitory postsynaptic currents in 5-HTergic neurons. We next examined whether the observed depression of GABAergic activity would cause an increase in the excitability of 5-HTergic neurons using optogenetic technique in DRN slices of the transgenic mouse with channelrhodopsin-2 expressed in GABAergic neurons. When the GABAergic inhibition was enhanced by optical stimulation to GABAergic neurons in mouse DRN, NaSal significantly depolarized the resting membrane potential, increased the input resistance and increased current-evoked firing of 5-HTergic neurons. However, NaSal would fail to increase the excitability of 5-HTergic neurons when the GABAergic synaptic transmission was blocked by picrotoxin, a GABA receptor antagonist. Our results indicate that NaSal suppresses the GABAergic activities to raise the excitability of local 5-HTergic neural circuits in the DRN, which may contribute to the elevated 5-HT level by NaSal in the brain.
Collapse
Affiliation(s)
- Yan Jin
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
| | - Bin Luo
- Department of Otolaryngology-Head and Neck Surgery, Anhui Provincial Hospital, Hefei, 230001, China
| | - Yan-Yan Su
- Department of Anatomy, Anhui Medical University, Hefei, 230032, China
| | - Xin-Xing Wang
- Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China
| | - Liang Chen
- Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China
| | - Ming Wang
- Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China
| | - Wei-Wen Wang
- Key Laboratory of Mental Health, Institute of Psychology, Chinese Academy of Sciences, Beijing, 100101, China
- * E-mail: (LC); (WWW)
| | - Lin Chen
- CAS Key Laboratory of Brain Function and Diseases, School of Life Sciences, University of Science and Technology of China, Hefei, 230027, China
- Auditory Research Laboratory, University of Science and Technology of China, Hefei, 230027, China
- * E-mail: (LC); (WWW)
| |
Collapse
|
29
|
Deviance detection in auditory subcortical structures: what can we learn from neurochemistry and neural connectivity? Cell Tissue Res 2015; 361:215-32. [DOI: 10.1007/s00441-015-2134-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2014] [Accepted: 01/22/2015] [Indexed: 12/18/2022]
|
30
|
Lavezzi AM, Pusiol T, Matturri L. Cytoarchitectural and functional abnormalities of the inferior colliculus in sudden unexplained perinatal death. Medicine (Baltimore) 2015; 94:e487. [PMID: 25674737 PMCID: PMC4602737 DOI: 10.1097/md.0000000000000487] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022] Open
Abstract
The inferior colliculus is a mesencephalic structure endowed with serotonergic fibers that plays an important role in the processing of acoustic information. The implication of the neuromodulator serotonin also in the aetiology of sudden unexplained fetal and infant death syndromes and the demonstration in these pathologies of developmental alterations of the superior olivary complex (SOC), a group of pontine nuclei likewise involved in hearing, prompted us to investigate whether the inferior colliculus may somehow contribute to the pathogenetic mechanism of unexplained perinatal death. Therefore, we performed in a wide set of fetuses and infants, aged from 33 gestational weeks to 7 postnatal months and died of both known and unknown cause, an in-depth anatomopathological analysis of the brainstem, particularly of the midbrain. Peculiar neuroanatomical and functional abnormalities of the inferior colliculus, such as hypoplasia/structural disarrangement and immunonegativity or poor positivity of serotonin, were exclusively found in sudden death victims, and not in controls. In addition, these alterations were frequently related to dysgenesis of connected structures, precisely the raphé nuclei and the superior olivary complex, and to nicotine absorption in pregnancy. We propose, on the basis of these results, the involvement of the inferior colliculus in more important functions than those related to hearing, as breathing and, more extensively, all the vital activities, and then in pathological conditions underlying a sudden death in vulnerable periods of the autonomic nervous system development, particularly associated to harmful risk factors as cigarette smoking.
Collapse
Affiliation(s)
- Anna M Lavezzi
- From the "Lino Rossi" Research Center for the Study and Prevention of Unexpected Perinatal Death and SIDS, Department of Biomedical, Surgical and Dental Sciences, University of Milan, Italy (AML, LM) and Institute of Anatomic Pathology, Hospital of Rovereto (Trento), Italy (TP)
| | | | | |
Collapse
|
31
|
Ponnath A, Farris HE. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs. Front Neural Circuits 2014; 8:85. [PMID: 25120437 PMCID: PMC4111082 DOI: 10.3389/fncir.2014.00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.
Collapse
Affiliation(s)
- Abhilash Ponnath
- Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Otolaryngology and Biocommunication, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Hamilton E Farris
- Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Otolaryngology and Biocommunication, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
32
|
OBARA N, KAMIYA H, FUKUDA S. Serotonergic modulation of inhibitory synaptic transmission in mouse inferiorcolliculus. Biomed Res 2014; 35:81-4. [DOI: 10.2220/biomedres.35.81] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
33
|
Hanson JL, Hurley LM. Context-dependent fluctuation of serotonin in the auditory midbrain: the influence of sex, reproductive state and experience. ACTA ACUST UNITED AC 2013; 217:526-35. [PMID: 24198252 DOI: 10.1242/jeb.087627] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In the face of changing behavioral situations, plasticity of sensory systems can be a valuable mechanism to facilitate appropriate behavioral responses. In the auditory system, the neurotransmitter serotonin is an important messenger for context-dependent regulation because it is sensitive to both external events and internal state, and it modulates neural activity. In male mice, serotonin increases in the auditory midbrain region, the inferior colliculus (IC), in response to changes in behavioral context such as restriction stress and social contact. Female mice have not been measured in similar contexts, although the serotonergic system is sexually dimorphic in many ways. In the present study, we investigated the effects of sex, experience and estrous state on the fluctuation of serotonin in the IC across contexts, as well as potential relationships between behavior and serotonin. Contrary to our expectation, there were no sex differences in increases of serotonin in response to a restriction stimulus. Both sexes had larger increases in second exposures, suggesting experience plays a role in serotonergic release in the IC. In females, serotonin increased during both restriction and interactions with males; however, the increase was more rapid during restriction. There was no effect of female estrous phase on the serotonergic change for either context, but serotonin was related to behavioral activity in females interacting with males. These results show that changes in behavioral context induce increases in serotonin in the IC by a mechanism that appears to be uninfluenced by sex or estrous state, but may depend on experience and behavioral activity.
Collapse
Affiliation(s)
- Jessica L Hanson
- Department of Biology, Indiana University, Bloomington, IN 47405, USA
| | | |
Collapse
|
34
|
Brodsky JR, Mejico LJ, Giraud A, Woods CI. Impairment of habituation of the auditory brain stem response in migrainous vertigo. Ann Otol Rhinol Laryngol 2013; 122:308-15. [PMID: 23815047 DOI: 10.1177/000348941312200504] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
OBJECTIVES We evaluated the auditory brain stem response (ABR) in migrainous vertigo (MV). METHODS Four subjects who met clinical criteria for definite MV and 4 subjects with non-vertiginous migraine (NVM) underwent ABR testing while asymptomatic and within 16 hours of a symptomatic episode. Four control subjects were also tested. A set of 4 consecutive 750-click series was administered at 50-, 60-, and 70-dB intensities. We compared the groups in terms of habituation of the amplitude of wave IV-V (habituation of IV-V) from the first through fourth series for each set. RESULTS The habituation of IV-V amplitude to 50-dB stimuli was significantly less (p = 0.047) in the symptomatic MV group (5.08% +/- 22.32%) than in the symptomatic NVM group (-21.44% +/- 13.50%) or the control group (-26.06% +/- 9.76%). The habituation of IV-V amplitude to 70-dB stimuli in the MV group was significantly less (p = 0.031) during symptomatic testing (-3.43% +/- 8.89%) than during asymptomatic testing (-21.23% +/- 6.41%). CONCLUSIONS The habituation of IV-V amplitude is reduced during MV attacks. This finding suggests impaired brain stem inhibition at the level of the inferior colliculus, which shares serotonergic connections with the dorsal raphe nucleus, an area hyperactive in migraine.
Collapse
Affiliation(s)
- Jacob R Brodsky
- Department of Otolaryngology and Communication Sciences, Upstate Medical University, Syracuse, New York, USA
| | | | | | | |
Collapse
|
35
|
Pollak GD. The dominant role of inhibition in creating response selectivities for communication calls in the brainstem auditory system. Hear Res 2013; 305:86-101. [PMID: 23545427 DOI: 10.1016/j.heares.2013.03.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2012] [Revised: 02/20/2013] [Accepted: 03/06/2013] [Indexed: 10/27/2022]
Abstract
This review is concerned with how communication calls are processed and represented by populations of neurons in both the inferior colliculus (IC), the auditory midbrain nucleus, and the dorsal nucleus of the lateral lemniscus (DNLL), the nucleus just caudal to the IC. The review has five sections where focus in each section is on inhibition and its role in shaping response selectivity for communication calls. In the first section, the lack of response selectivity for calls in DNLL neurons is presented and discusses why inhibition plays virtually no role in shaping selectivity. In the second section, the lack of selectivity in the DNLL is contrasted with the high degree of response selectivity in the IC. The third section then reviews how inhibition in the IC shapes response selectivities for calls, and how those selectivities can create a population response with a distinctive response profile to a particular call, which differs from the population profile evoked by any other call. The fourth section is concerned with the specifics of inhibition in the IC, and how the interaction of excitation and inhibition creates directional selectivities for frequency modulations, one of the principal acoustic features of communication signals. The two major hypotheses for directional selectivity are presented. One is the timing hypothesis, which holds that the precise timing of excitation relative to inhibition is the feature that shapes directionality. The other hypothesis is that the relative magnitudes of excitation and inhibition are the dominant features that shape directionality, where timing is relatively unimportant. The final section then turns to the role of serotonin, a neuromodulator that can markedly change responses to calls in the IC. Serotonin provides a linkage between behavioral states and processing. This linkage is discussed in the final section together with the hypothesis that serotonin acts to enhances the contrast in the population responses to various calls over and above the distinctive population responses that were created by inhibition. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives".
Collapse
Affiliation(s)
- George D Pollak
- Section of Neurobiology and Center for Perceptual Systems, 337 Patterson Laboratory Building, The University of Texas at Austin, Austin, TX 78712, USA.
| |
Collapse
|
36
|
Sewall KB, Caro SP, Sockman KW. Song competition affects monoamine levels in sensory and motor forebrain regions of male Lincoln's sparrows (Melospiza lincolnii). PLoS One 2013; 8:e59857. [PMID: 23555809 PMCID: PMC3608548 DOI: 10.1371/journal.pone.0059857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2012] [Accepted: 02/22/2013] [Indexed: 11/24/2022] Open
Abstract
Male animals often change their behavior in response to the level of competition for mates. Male Lincoln's sparrows (Melospiza lincolnii) modulate their competitive singing over the period of a week as a function of the level of challenge associated with competitors' songs. Differences in song challenge and associated shifts in competitive state should be accompanied by neural changes, potentially in regions that regulate perception and song production. The monoamines mediate neural plasticity in response to environmental cues to achieve shifts in behavioral state. Therefore, using high pressure liquid chromatography with electrochemical detection, we compared levels of monoamines and their metabolites from male Lincoln's sparrows exposed to songs categorized as more or less challenging. We compared levels of norepinephrine and its principal metabolite in two perceptual regions of the auditory telencephalon, the caudomedial nidopallium and the caudomedial mesopallium (CMM), because this chemical is implicated in modulating auditory sensitivity to song. We also measured the levels of dopamine and its principal metabolite in two song control nuclei, area X and the robust nucleus of the arcopallium (RA), because dopamine is implicated in regulating song output. We measured the levels of serotonin and its principal metabolite in all four brain regions because this monoamine is implicated in perception and behavioral output and is found throughout the avian forebrain. After controlling for recent singing, we found that males exposed to more challenging song had higher levels of norepinephrine metabolite in the CMM and lower levels of serotonin in the RA. Collectively, these findings are consistent with norepinephrine in perceptual brain regions and serotonin in song control regions contributing to neuroplasticity that underlies socially-induced changes in behavioral state.
Collapse
Affiliation(s)
- Kendra B. Sewall
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (KBS); (KWS)
| | - Samuel P. Caro
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | - Keith W. Sockman
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- Curriculum in Neurobiology, University of North Carolina, Chapel Hill, North Carolina, United States of America
- * E-mail: (KBS); (KWS)
| |
Collapse
|
37
|
Hurley LM, Sullivan MR. From behavioral context to receptors: serotonergic modulatory pathways in the IC. Front Neural Circuits 2012; 6:58. [PMID: 22973195 PMCID: PMC3434355 DOI: 10.3389/fncir.2012.00058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Accepted: 08/10/2012] [Indexed: 12/18/2022] Open
Abstract
In addition to ascending, descending, and lateral auditory projections, inputs extrinsic to the auditory system also influence neural processing in the inferior colliculus (IC). These types of inputs often have an important role in signaling salient factors such as behavioral context or internal state. One route for such extrinsic information is through centralized neuromodulatory networks like the serotonergic system. Serotonergic inputs to the IC originate from centralized raphe nuclei, release serotonin in the IC, and activate serotonin receptors expressed by auditory neurons. Different types of serotonin receptors act as parallel pathways regulating specific features of circuitry within the IC. This results from variation in subcellular localizations and effector pathways of different receptors, which consequently influence auditory responses in distinct ways. Serotonin receptors may regulate GABAergic inhibition, influence response gain, alter spike timing, or have effects that are dependent on the level of activity. Serotonin receptor types additionally interact in nonadditive ways to produce distinct combinatorial effects. This array of effects of serotonin is likely to depend on behavioral context, since the levels of serotonin in the IC transiently increase during behavioral events including stressful situations and social interaction. These studies support a broad model of serotonin receptors as a link between behavioral context and reconfiguration of circuitry in the IC, and the resulting possibility that plasticity at the level of specific receptor types could alter the relationship between context and circuit function.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Center for the Integrative Study of Animal Behavior, Indiana University Bloomington, IN, USA
| | | |
Collapse
|
38
|
Abstract
Signal duration is important for identifying sound sources and determining signal meaning. Duration-tuned neurons (DTNs) respond preferentially to a range of stimulus durations and maximally to a best duration (BD). Duration-tuned neurons are found in the auditory midbrain of many vertebrates, although studied most extensively in bats. Studies of DTNs across vertebrates have identified cells with BDs and temporal response bandwidths that mirror the range of species-specific vocalizations. Neural tuning to stimulus duration appears to be universal among hearing vertebrates. Herein, we test the hypothesis that neural mechanisms underlying duration selectivity may be similar across vertebrates. We instantiated theoretical mechanisms of duration tuning in computational models to systematically explore the roles of excitatory and inhibitory receptor strengths, input latencies, and membrane time constant on duration tuning response profiles. We demonstrate that models of duration tuning with similar neural circuitry can be tuned with species-specific parameters to reproduce the responses of in vivo DTNs from the auditory midbrain. To relate and validate model output to in vivo responses, we collected electrophysiological data from the inferior colliculus of the awake big brown bat, Eptesicus fuscus, and present similar in vivo data from the published literature on DTNs in rats, mice, and frogs. Our results support the hypothesis that neural mechanisms of duration tuning may be shared across vertebrates despite species-specific differences in duration selectivity. Finally, we discuss how the underlying mechanisms of duration selectivity relate to other auditory feature detectors arising from the interaction of neural excitation and inhibition.
Collapse
|
39
|
Maruska KP, Tricas TC. Gonadotropin-releasing hormone (GnRH) modulates auditory processing in the fish brain. Horm Behav 2011; 59:451-64. [PMID: 21238455 DOI: 10.1016/j.yhbeh.2011.01.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2010] [Revised: 01/06/2011] [Accepted: 01/06/2011] [Indexed: 11/29/2022]
Abstract
Gonadotropin-releasing hormone 1 (GnRH1) neurons control reproductive activity, but GnRH2 and GnRH3 neurons have widespread projections and function as neuromodulators in the vertebrate brain. While these extra-hypothalamic GnRH forms function as olfactory and visual neuromodulators, their potential effect on processing of auditory information is unknown. To test the hypothesis that GnRH modulates the processing of auditory information in the brain, we used immunohistochemistry to determine seasonal variations in these neuropeptide systems, and in vivo single-neuron recordings to identify neuromodulation in the midbrain torus semicircularis of the soniferous damselfish Abudefduf abdominalis. Our results show abundant GnRH-immunoreactive (-ir) axons in auditory processing regions of the midbrain and hindbrain. The number of extra-hypothalamic GnRH somata and the density of GnRH-ir axons within the auditory torus semicircularis also varied across the year, suggesting seasonal changes in GnRH influence of auditory processing. Exogenous application of GnRH (sGnRH and cGnRHII) caused a primarily inhibitory effect on auditory-evoked single neuron responses in the torus semicircularis. In the majority of neurons, GnRH caused a long-lasting decrease in spike rate in response to both tone bursts and playbacks of complex natural sounds. GnRH also decreased response latency and increased auditory thresholds in a frequency and stimulus type-dependent manner. To our knowledge, these results show for the first time in any vertebrate that GnRH can influence context-specific auditory processing in vivo in the brain, and may function to modulate seasonal auditory-mediated social behaviors.
Collapse
Affiliation(s)
- Karen P Maruska
- Department of Zoology and Hawai'i Institute of Marine Biology, University of Hawai'i at Manoa, Honolulu, HI 96822, USA.
| | | |
Collapse
|
40
|
Hall IC, Rebec GV, Hurley LM. Serotonin in the inferior colliculus fluctuates with behavioral state and environmental stimuli. ACTA ACUST UNITED AC 2010; 213:1009-17. [PMID: 20228336 DOI: 10.1242/jeb.035956] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Neuromodulation by serotonin (5-HT) could link behavioral state and environmental events with sensory processing. Within the auditory system, the presence of 5-HT alters the activity of neurons in the inferior colliculus (IC), but the conditions that influence 5-HT neurotransmission in this region of the brain are unknown. We used in vivo voltammetry to measure extracellular 5-HT in the IC of behaving mice to address this issue. Extracellular 5-HT increased with the recovery from anesthesia, suggesting that the neuromodulation of auditory processing is correlated with the level of behavioral arousal. Awake mice were further exposed to auditory (broadband noise), visual (light) or olfactory (2,5-dihydro-2,4,5-trimethylthiazoline, TMT) stimuli, presented with food or confined in a small arena. Only the auditory stimulus or restricted movement increased the concentration of extracellular 5-HT in the IC. Changes occurred within minutes of stimulus onset, with the auditory stimulus increasing extracellular 5-HT by an average of 5% and restricted movement increasing it by an average of 14%. These findings suggest that the neuromodulation of auditory processing by 5-HT is a dynamic process that is dependent on internal state and behavioral conditions.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biology, 1001 E. Third Street, 342 Jordan Hall, Indiana University, Bloomington, IN 47405, USA.
| | | | | |
Collapse
|
41
|
Ramsey LCB, Sinha SR, Hurley LM. 5-HT1A and 5-HT1B receptors differentially modulate rate and timing of auditory responses in the mouse inferior colliculus. Eur J Neurosci 2010; 32:368-79. [PMID: 20646059 DOI: 10.1111/j.1460-9568.2010.07299.x] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Serotonin (5-hydroxytryptamine; 5-HT) is a physiological signal that translates both internal and external information about behavioral context into changes in sensory processing through a diverse array of receptors. The details of this process, particularly how receptors interact to shape sensory encoding, are poorly understood. In the inferior colliculus, a midbrain auditory nucleus, 5-HT1A receptors have suppressive and 5-HT1B receptors have facilitatory effects on evoked responses of neurons. We explored how these two receptor classes interact by testing three hypotheses: that they (i) affect separate neuron populations; (ii) affect different response properties; or (iii) have different endogenous patterns of activation. The first two hypotheses were tested by iontophoretic application of 5-HT1A and 5-HT1B receptor agonists individually and together to neurons in vivo. 5-HT1A and 5-HT1B agonists affected overlapping populations of neurons. During co-application, 5-HT1A and 5-HT1B agonists influenced spike rate and frequency bandwidth additively, with each moderating the effect of the other. In contrast, although both agonists individually influenced latencies and interspike intervals, the 5-HT1A agonist dominated these measurements during co-application. The third hypothesis was tested by applying antagonists of the 5-HT1A and 5-HT1B receptors. Blocking 5-HT1B receptors was complementary to activation of the receptor, but blocking 5-HT1A receptors was not, suggesting the endogenous activation of additional receptor types. These results suggest that cooperative interactions between 5-HT1A and 5-HT1B receptors shape auditory encoding in the inferior colliculus, and that the effects of neuromodulators within sensory systems may depend nonlinearly on the specific profile of receptors that are activated.
Collapse
|
42
|
Abstract
OBJECTIVES To assess the role of serotonin transporter gene (SLC6A4) polymorphism in tinnitus. MATERIALS AND METHODS Fifty-four consecutive patients experiencing subjective tinnitus and 174 healthy controls were allocated for the study. Psychoacoustic parameters of tinnitus were measured. Beck Depression Inventory was used to assess the depression level of the patients. Tinnitus Handicap Inventory was used to assess the severity of tinnitus. A visual analog scale was designed to measure the impact of tinnitus on quality of life of the patients. The 44-bp insertion-deletion in the promoter region (5-HTTLPR) and 17-bp variable number tandem repeats in the second intron of the serotonin transporter gene were assessed. RESULTS No difference was found between the genotypes and allele frequencies of the patients and controls regarding variable number tandem repeats and 5-HTTLPR polymorphisms (p > 0.05). There was no association between the psychoacoustic parameters of tinnitus and SLC6A4 polymorphism (p > 0.05). There was a significant association between the 5-HTTLPR polymorphism and scores from the visual analog scale of the patients (p < 0.05). CONCLUSION Generation of tinnitus signal is not associated with SLC6A4 polymorphism and possibly with serotonergic mechanisms. However, the "ll" genotype variant of the SLC6A4 polymorphic promoter region seems associated with the limbic and autonomic nervous system symptoms of the patients with tinnitus. Therefore, serotonergic mechanisms may help explain the neurophysiological model of tinnitus, and serotonin replacement or serotonin reuptake inhibitors may increase the success rate of tinnitus treatment modalities based on the neurophysiologic model of tinnitus.
Collapse
|
43
|
Salvante KG, Racke DM, Campbell CR, Sockman KW. Plasticity in singing effort and its relationship with monoamine metabolism in the songbird telencephalon. Dev Neurobiol 2010; 70:41-57. [PMID: 19899137 DOI: 10.1002/dneu.20752] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Factors intrinsic or extrinsic to individuals, such as their quality or the quality of competition in their social environment, can influence their communication signaling effort. We hypothesized that telencephalic monoamine secretion mediates the effects of a male's own quality and quality of his social environment on his sexual signaling effort. The duration of a male European starling's (Sturnus vulgaris) principal sexual signal, his song, positively correlates with several aspects of his quality, including his reproductive success, immunocompetence, and ability to attract mates. Therefore, the length of songs to which he is exposed reflects, in part, the quality of competition in his social environment. We manipulated the quality of the competitive environment by exposing male starlings to long or short songs for 1 week. We measured the length of songs produced by experimental males to gauge their quality, counted the number of songs they produced to gauge singing effort, and quantified telencephalic monoamine metabolism using high-pressure liquid chromatography. Singing effort increased with the length of the males' own songs and with the length of songs to which we exposed them. Norepinephrine metabolism in area X of the song control system was negatively correlated with the subjects' mean song length and singing effort. Serotonin metabolism in the caudomedial mesopallium of the auditory telencephalon increased with the length of songs to which we exposed the subjects and with their singing effort. This raises the hypothesis that serotonin and norepinephrine secretion in the telencephalon help mediate the effects of extrinsic and intrinsic factors on signaling effort.
Collapse
Affiliation(s)
- Katrina G Salvante
- Department of Biology, University of North Carolina, Chapel Hill, North Carolina 27599-3280, USA.
| | | | | | | |
Collapse
|
44
|
Brønnick KS, Nordby H, Larsen JP, Aarsland D. Disturbance of automatic auditory change detection in dementia associated with Parkinson's disease: A mismatch negativity study. Neurobiol Aging 2010; 31:104-13. [DOI: 10.1016/j.neurobiolaging.2008.02.021] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2007] [Revised: 01/11/2008] [Accepted: 02/27/2008] [Indexed: 11/16/2022]
|
45
|
Mazurek B, Haupt H, Joachim R, Klapp BF, Stöver T, Szczepek AJ. Stress induces transient auditory hypersensitivity in rats. Hear Res 2009; 259:55-63. [PMID: 19840840 DOI: 10.1016/j.heares.2009.10.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2009] [Revised: 07/09/2009] [Accepted: 10/13/2009] [Indexed: 12/31/2022]
Abstract
Exposure to harsh environment induces stress reactions that increase probability of survival. Stress influences the endocrine, nervous and immune systems and affects the functioning of a variety of organs. Numerous researchers demonstrated that a 24-h exposure to an acoustic rodent repellent provokes stress reaction in exposed animals. In addition to the activated hypothalamic-pituitary-adrenal (HPA) axis, exposed animals had pathological reactions in the reproductive organs, bronchia and skin. Here, we examined the effect of above stress model on the auditory system of Wistar rats. We found that 24-h stress decreases the thresholds and increases the amplitudes of auditory brainstem responses and distortion product otoacoustic emissions. Resultant auditory hypersensitivity was transient and most pronounced between 3 and 6h post-stress, returning to control levels one week later. The concentration of corticosterone and tumor necrosis factor alpha was systemically elevated in stressed animals between 3 and 6h post-stress, confirming the activation of the HPA axis. In addition, expression of the HPA-axis-associated genes: glucocorticoid receptor (GR) and hypoxia-inducible factor 1 alpha (Hif1a) was modulated in the auditory tissues. In detail, in the inferior colliculus, we found an up-regulation of GR mRNA 3h post-stress and continuous up-regulation of Hif1a up to 24h post-stress. In the spiral ganglion, we found no differences in gene expression between stressed and control animals. In the organ of Corti, expression of GR mRNA remained stable, whereas that of Hif1a was significantly down-regulated one week after stress. In addition, the expression of an outer hair cell marker prestin was significantly up-regulated 6h post-stress. We conclude that 24-h stress induces transient hypersensitivity of the auditory system and modulates gene expression in a tissue-specific manner. Stress-induced auditory hypersensitivity could have evolutionary consequence by giving animals an advantage of hearing better under stress conditions.
Collapse
Affiliation(s)
- Birgit Mazurek
- Molecular Biology Research Laboratory, Department of Otorhinolaryngology, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | | | | | | | | | | |
Collapse
|
46
|
|
47
|
Fortune T, Lurie DI. Chronic low-level lead exposure affects the monoaminergic system in the mouse superior olivary complex. J Comp Neurol 2009; 513:542-58. [PMID: 19226511 DOI: 10.1002/cne.21978] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Low-level lead (Pb) exposure is associated with behavioral and cognitive dysfunction, but it is not clear how Pb produces these behavioral changes. Pb has been shown to alter auditory temporal processing in both humans and animals. Auditory temporal processing occurs in the superior olivary complex (SOC) in the brainstem, where it is an important component in sound detection in noisy environments and in selective auditory attention. The SOC receives a serotonergic innervation from the dorsal raphe, and serotonin has been implicated in auditory temporal processing within the brainstem and inferior colliculus. Because Pb exposure modulates auditory temporal processing, the serotonergic system is a potential target for Pb. The current study was undertaken to determine whether developmental Pb exposure preferentially changes the serotonergic system within the SOC. Pb-treated mice were exposed to no Pb, very low Pb (0.01 mM), or low Pb (0.1 mM) throughout gestation and through 21 days postnatally. Brainstem sections from control and Pb-exposed mice were immunostained for the vesicular monoamine transporter 2 (VMAT2), serotonin (5-HT), and dopamine-beta-hydroxylase (DbetaH; a marker for norepinephrine) in order to elucidate the effect of Pb on monoaminergic input into the SOC. Sections were also immunolabeled with antibodies to vesicular glutamate transporter 1 (VGLUT1), vesicular gamma-aminobutyric acid (GABA) transporter (VGAT), and vesicular acetylcholine transporter (VAChT) to determine whether Pb exposure alters the glutaminergic, GABAergic, or cholinergic systems. Pb exposure caused a significant decrease in VMAT2, 5-HT, and DbetaH expression, whereas VGLUT1, VGAT, and VAChT showed no change. These results provide evidence that Pb exposure during development alters normal monoaminergic expression in the auditory brainstem.
Collapse
Affiliation(s)
- Tyler Fortune
- Center for Environmental Health Sciences, Department of Biomedical & Pharmaceutical Sciences, College of Health Professions and Biomedical Sciences, The University of Montana, Missoula, Montana 59812-1552, USA
| | | |
Collapse
|
48
|
Motts SD, Schofield BR. Sources of cholinergic input to the inferior colliculus. Neuroscience 2009; 160:103-14. [PMID: 19281878 DOI: 10.1016/j.neuroscience.2009.02.036] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2008] [Revised: 02/09/2009] [Accepted: 02/12/2009] [Indexed: 01/09/2023]
Abstract
We combined retrograde tracing with immunohistochemistry for choline acetyltransferase to identify the source of cholinergic input to the inferior colliculus (IC) in guinea pigs. Injection of a retrograde tracer into one IC labeled cells in many brainstem nuclei. Retrogradely-labeled cells that were also immunoreactive for choline acetyltransferase were identified in two nuclei in the midbrain tegmentum: the pedunculopontine tegmental nucleus (PPT) and the laterodorsal tegmental nucleus (LDT). More PPT and LDT cells project ipsilaterally than contralaterally to the IC and, on both sides, there are more projecting cells in the PPT than in the LDT. Double-labeled cells were not found in any other brainstem nucleus. A common feature of cholinergic cells in PPT and LDT is collateral projections to multiple targets. We placed different retrograde tracers into each IC to identify cells in PPT and LDT that project to both ICs. In both PPT and LDT, a substantial proportion (up to 57%) of the immunoreactive cells that contained tracer from the contralateral IC also contained tracer from the ipsilateral IC. We conclude that acetylcholine in the IC originates from the midbrain tegmental cholinergic nuclei: PPT and LDT. These nuclei are known to participate in arousal, the sleep/wake cycle and prepulse inhibition of acoustic startle. It is likely that the cholinergic input to the IC is directly associated with these functions.
Collapse
Affiliation(s)
- S D Motts
- Department of Anatomy and Neurobiology, Northeastern Ohio Universities Colleges of Medicine and Pharmacy, 4209 State Route 44, PO Box 95, Rootstown, OH 44272, USA
| | | |
Collapse
|
49
|
Miko IJ, Sanes DH. Transient gain adjustment in the inferior colliculus is serotonin- and calcium-dependent. Hear Res 2009; 251:39-50. [PMID: 19232535 DOI: 10.1016/j.heares.2009.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/23/2008] [Revised: 02/07/2009] [Accepted: 02/09/2009] [Indexed: 11/17/2022]
Abstract
In the inferior colliculus (IC), a brief period of acoustic conditioning can transiently enhance evoked discharge rate. The cellular basis of this phenomenon was assessed with whole cell current-clamp recordings in a gerbil IC brain slice preparation. The current needed to elicit a single action potential was first established for each neuron. A 5s synaptic stimulus train was delivered to the lateral lemniscus (LL), and followed immediately by the initial current pulse to assess a change in postsynaptic gain. The majority of IC neurons (66%) displayed an increase in current-evoked action potentials (Positive Gain). Despite the blockade of ionotropic glutamate receptors, this effect was correlated with membrane depolarization that occurred during the synaptic train. The postsynaptic mechanism for positive gain was examined by selective blockade of specific neurotransmitter receptors. Gain in action potentials was enhanced by antagonists of metabotropic glutamate, acetylcholine, GABA(A) and glycine receptors. In contrast, the gain was blocked or reduced by an antagonist to ionotropic serotonin receptors (5-HT(3)R). Blocking voltage-activated calcium channels with verapamil also reduced the effect. These results suggest that 5-HT(3)R activation, coupled with increased intracellular calcium, can transiently alter postsynaptic excitability in IC neurons.
Collapse
Affiliation(s)
- Ilona J Miko
- Center for Neural Science, 4 Washington Place, New York University, New York, NY 10003, USA
| | | |
Collapse
|
50
|
Hurley LM, Tracy JA, Bohorquez A. Serotonin 1B receptor modulates frequency response curves and spectral integration in the inferior colliculus by reducing GABAergic inhibition. J Neurophysiol 2008; 100:1656-67. [PMID: 18632894 DOI: 10.1152/jn.90536.2008] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The selectivity of sensory neurons for stimuli is often shaped by a balance between excitatory and inhibitory inputs, making this balance an effective target for regulation. In the inferior colliculus (IC), an auditory midbrain nucleus, the amplitude and selectivity of frequency response curves are altered by the neuromodulator serotonin, but the changes in excitatory-inhibitory balance that mediate this plasticity are not well understood. Previous findings suggest that the presynaptic 5-HT1B receptor may act to decrease the release of GABA onto IC neurons. Here, in vivo extracellular recording and iontophoresis of the selective 5-HT1B agonist CP93129 were used to characterize inhibition within and surrounding frequency response curves using two-tone protocols to indirectly measure inhibition as a decrease in spikes relative to an excitatory tone alone. The 5-HT1B agonist attenuated such two-tone spike reduction in a varied pattern among neurons, suggesting that the function of 5-HT1B modulation also varies. The hypothesis that the 5-HT1B receptor reduces inhibition was tested by comparing the effects of CP93129 and the GABAA antagonists bicuculline and gabazine in the same neurons. The effects of GABAA antagonists on spike count, tuning bandwidth, two-tone ratio, and temporal response characteristics mimicked those of CP93129 across the neuron population. GABAA antagonists also blocked or reduced the facilitation of evoked responses by CP93129. These results are all consistent with the reduction of GABAA-mediated inhibition by 5-HT1B receptors in the IC, resulting in an increase in the level of evoked responses in some neurons, and a decrease in spectral selectivity in others.
Collapse
Affiliation(s)
- Laura M Hurley
- Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.
| | | | | |
Collapse
|