1
|
Abstract
Spiral ganglion neurons (SGNs) play a key role in hearing by rapidly and faithfully transmitting signals from the cochlea to the brain. Identification of the transcriptional networks that ensure the proper specification and wiring of SGNs during development will lay the foundation for efforts to rewire a damaged cochlea. Here, we show that the transcription factor Gata3, which is expressed in SGNs throughout their development, is essential for formation of the intricately patterned connections in the cochlea. We generated conditional knock-out mice in which Gata3 is deleted after SGNs are specified. Cochlear wiring is severely disrupted in these animals, with premature extension of neurites that follow highly abnormal trajectories toward their targets, as shown using in vitro neurite outgrowth assays together with time-lapse imaging of whole embryonic cochleae. Expression profiling of mutant neurons revealed a broad shift in gene expression toward a more differentiated state, concomitant with minor changes in SGN identity. Thus, Gata3 appears to serve as an "intermediate regulator" that guides SGNs through differentiation and preserves the auditory fate. As the first auditory-specific regulator of SGN development, Gata3 provides a useful molecular entry point for efforts to engineer SGNs for the restoration of hearing.
Collapse
|
2
|
Sanchez Del Rey A, Sánchez Fernández JM, Gutierrez N, Martínez A, Santaolalla Montoya F. Morphological and morphometric study on human Scarpa ganglion development. Acta Otolaryngol 2013; 133:352-60. [PMID: 23350596 DOI: 10.3109/00016489.2012.756147] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
CONCLUSION In Scarpa neurons the cell and nuclear area increases and nuclear/cytoplasm ratio decreases with fetal age (p < 0.0001). There are statistically significant differences in cell area between all fetal groups, except for the interval 45-74 mm crown-rump-length (CRL). Displacement of a neuron within the internal auditory meatus (IAM) occurs from 9 weeks in the fetus until the neonate. METHODS A light microscopic histomorphometric study of the Scarpa ganglion in human fetuses from spontaneous abortions measuring 45, 74, 90, 134, 145 and 270 mm CRL and a from a 1-day-old neonate (360 mm) was carried out. Cell and nuclear area, ganglion area and distances from the Scarpa ganglion neurons to the endocranial porus of the IAM were measured. RESULTS In the 45, 74, 90 and 134 mm CRL human fetuses the cartilaginous labyrinthine capsule appears divided by the facial nerve and the Scarpa ganglion into two compartments: rostral and dorsal. Ovoidal Scarpa ganglion in the 45 mm CRL lies within the IAM near its endocranial porus (15 µm). In the otic capsule of the 145 mm CRL fetus an endochondral ossification appears in the IAM base, where Scarpa ganglion neurons are displayed in two groups: superior and inferior divided by a vascular-connective septum. This anatomy remains from this specimen until the neonate specimen.
Collapse
Affiliation(s)
- Ana Sanchez Del Rey
- Otorhinolaryngology Department, School of Medicine, University of the Basque Country, UPV/EHU, Bilbao, Vizcaya, Spain.
| | | | | | | | | |
Collapse
|
3
|
Meng L, Lu L, Murphy KM, Yuede CM, Cheverud JM, Csernansky JG, Dong H. Neuroanatomic and behavioral traits for autistic disorders in age-specific restricted index selection mice. Neuroscience 2011; 189:215-22. [PMID: 21624435 DOI: 10.1016/j.neuroscience.2011.05.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2011] [Revised: 04/26/2011] [Accepted: 05/07/2011] [Indexed: 01/18/2023]
Abstract
The pathogenesis of neurodevelopmental disorders such as autism is believed to be influenced by interactions between genetic and environmental factors, and appropriate animal models are needed to assess the influence of such factors on relevant neurodevelopmental phenotypes. A set of inbred mouse strains (Atchley strains) including A12 (E+L0) and A22 (E-L0) were generated by age-specific restricted index selection from a baseline random-bred ICR mouse population obtained from Harlan Sprague-Dawley [Atchley et al. (1997) Genetics 146(2):629-640; Indianapolis, IN, USA). As compared with the A22 strain, A12 mice had significantly increased early (P0-P10) body weight gain with minimal changes in late (P28-P56) body weight gain. We found that these strains also differed in brain weight, brain volume, cell proliferation, and FGF-2 levels in certain brain regions. Specifically, brain weight and volume were significantly greater in A12 mice than that in A22 mice at P10 and P28. Quantitative analysis of bromodeoxyuridine (BrdU) labeling of proliferating cells showed that the number of BrdU-positive cells in the A12 strain were significantly greater in the frontal cortex and lesser in the dentate gyrus than that in the A22 strain at P28. Western blot revealed that fibroblast growth factors-2 (FGF-2), but not brain-derived neurotrophic factor (BDNF), expression was significantly increased in the frontal cortex of A12 strain at P28. Also, A12 mice exhibited decreased intra-strain social interaction and increased repetitive stereotyped behaviors at P28. Our study suggests that A12 mice may partially mimic the anatomic and behavioral traits of patients with neurodevelopmental disorders such as autism spectrum disorders, and therefore may yield insights into the developmental mechanisms involved in their pathogenesis.
Collapse
Affiliation(s)
- L Meng
- Department of Psychiatry and Behavioral Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | | | | | | | | | | | | |
Collapse
|
4
|
Abraira VE, Hyun N, Tucker AF, Coling DE, Brown MC, Lu C, Hoffman GR, Goodrich LV. Changes in Sef levels influence auditory brainstem development and function. J Neurosci 2007; 27:4273-82. [PMID: 17442811 PMCID: PMC6672320 DOI: 10.1523/jneurosci.3477-06.2007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
During development of the CNS, secreted morphogens of the fibroblast growth factor (FGF) family have multiple effects on cell division, migration, and survival depending on where, when, and how much FGF signal is received. The consequences of misregulating the FGF pathway were studied in a mouse with decreased levels of the FGF antagonist Sef. To uncover effects in the nervous system, we focused on the auditory system, which is accessible to physiological analysis. We found that the mitogen-activated protein kinase pathway is active in the rhombic lip, a germinal zone that generates diverse types of neurons, including the cochlear nucleus complex of the auditory system. Sef is expressed immediately adjacent to the rhombic lip, overlapping with FGF15 and FGFR1, which is also present in the lip itself. This pattern suggests that Sef may normally function in non-rhombic lip cells and prevent them from responding to FGF ligand in the vicinity. Consistent with this idea, overexpression of Sef in chicks decreased the size of the auditory nuclei. Cochlear nucleus defects were also apparent in mice with reduced levels of Sef, with 13% exhibiting grossly dysmorphic cochlear nuclei and 26% showing decreased amounts of GFAP in the cochlear nucleus. Additional evidence for cochlear nucleus defects was obtained by electrophysiological analysis of Sef mutant mice, which have normal auditory thresholds but abnormal auditory brainstem responses. These results show both increases and decreases in Sef levels affect the assembly and function of the auditory brainstem.
Collapse
Affiliation(s)
| | | | | | - Donald E. Coling
- Center for Hearing and Deafness, State University of New York at Buffalo, Buffalo, New York 14260, and
| | - M. Christian Brown
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02115
| | | | | | | |
Collapse
|
5
|
Hossain WA, D'Sa C, Morest DK. Site-specific interactions of neurotrophin-3 and fibroblast growth factor (FGF2) in the embryonic development of the mouse cochlear nucleus. ACTA ACUST UNITED AC 2006; 66:897-915. [PMID: 16673387 DOI: 10.1002/neu.20264] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Neurotrophins and FGF2 contribute to formation of the cochlea, but their roles in cochlear nucleus development are unknown. The effects of these factors may differ in the cochlea and cochlear nucleus, which may influence each other's development. It is important to analyze the effects of these factors on cellular structures at well-defined steps in the normal morphogenetic sequence. The present study used immunohistochemistry to localize factors in situ and to test hypotheses about their roles in an in vitro model. Specific antibody staining revealed that TrkC, the NT3 receptor, is present in neural precursors prior to embryonic day E11 until after birth. NT3 appeared in precursor cells during migration (E13-E15) and disappeared at birth. TrkC and NT3 occurred in the same structures, including growing axons, terminals, and their synaptic targets. Thus, NT3 tracks the migration routes and the morphogenetic sequences within a window defined by TrkC. In vitro, the cochlear nucleus anlage was explanted from E11 embryos. Cultures were divided into groups fed with defined medium, with or without FGF2, BDNF, and NT3 supplements, alone or in combinations, for 7 days. When neuroblasts migrated and differentiated, immunostaining was used for locating NT3 and TrkC in the morphogenetic sequence, bromodeoxyuridine for proliferation, and synaptic vesicle protein for synaptogenesis. By time-lapse imaging and quantitative measures, the results support the hypothesis that FGF2 promotes proliferation and migration. NT3 interacts with FGF2 and BDNF to promote neurite outgrowth, fasciculation, and synapse formation. Factors and receptors localize to the structural sites undergoing critical changes.
Collapse
Affiliation(s)
- Waheeda A Hossain
- Department of Neuroscience, University of Connecticut Health Center, Farmington, 06030, USA
| | | | | |
Collapse
|
6
|
Alsina B, Abelló G, Ulloa E, Henrique D, Pujades C, Giraldez F. FGF signaling is required for determination of otic neuroblasts in the chick embryo. Dev Biol 2004; 267:119-34. [PMID: 14975721 DOI: 10.1016/j.ydbio.2003.11.012] [Citation(s) in RCA: 81] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2003] [Revised: 10/01/2003] [Accepted: 11/10/2003] [Indexed: 10/26/2022]
Abstract
The interplay between intrinsic and extrinsic factors is essential for the transit into different cell states during development. We have analyzed the expression and function of FGF10 and FGF-signaling during the early stages of the development of otic neurons. FGF10 is expressed in a highly restricted domain overlapping the presumptive neurogenic region of the chick otic placode. A detailed study of the expression pattern of FGF10, proneural, and neurogenic genes revealed the following temporal sequence for the onset of gene expression: FGF10>Ngn1/Delta1/Hes5>NeuroD/NeuroM. FGF10 and FGF receptor inhibition cause opposed effects on cell determination and cell proliferation. Ectopic expression of FGF10 in vivo promotes an increase in NeuroD and NeuroM expression. BrdU incorporation experiments showed that the increase in NeuroD-expressing cells is not due to an increase in cell proliferation. Inhibition of FGF receptor signaling in otic explants causes a severe reduction in Neurogenin1, NeuroD, Delta1, and Hes5 expression with no change in non-neural genes like Lmx1. However, it does not interfere with NeuroD expression within the CVG or with neuroblast delamination. The loss of proneural gene expression caused by FGF inhibition is not caused by decreased cell proliferation or by increased cell death. We suggest that FGF signaling in the otic epithelium is required for neuronal precursors to withdraw from cell division and irreversibly commit to neuronal fate.
Collapse
Affiliation(s)
- Berta Alsina
- Biologia del Desenvolupament, Departament de Ciéncies Experimentals i de la Salut (DCEXS), Universitat Pompeu Fabra, 08003, Barcelona, Spain.
| | | | | | | | | | | |
Collapse
|
7
|
Bilak MM, Hossain WA, Morest DK. Intracellular fibroblast growth factor produces effects different from those of extracellular application on development of avian cochleovestibular ganglion cells in vitro. J Neurosci Res 2003; 71:629-47. [PMID: 12584722 DOI: 10.1002/jnr.10498] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
In an avian coculture system, the neuronal precursors of the cochleovestibular ganglion typically migrated from the otocyst and differentiated in response to soluble fibroblast growth factor (FGF-2), which had free access to FGF receptors on the cell surface. Free FGF-2 switched cells from a proliferation mode to migration, accompanied by increases in process outgrowth, fasciculation, and polysialic acid expression. Microsphere-bound FGF-2 had some of the same effects, but in addition it increased proliferation and decreased fasciculation and polysialic acid. As shown by immunohistochemistry, FGF-2 that was bound to latex microspheres depleted the FGF surface receptor protein, which localized with the microspheres in the cytoplasm and nucleus. For microsphere-bound FGF-2, the surface receptor-mediated responses to FGF-2 appear to be limited and the door opened to another venue of intracellular events or an intracrine mechanism.
Collapse
Affiliation(s)
- Masako M Bilak
- Department of Neuroscience, University of Connecticut Health Center, Farmington, Connecticut, USA
| | | | | |
Collapse
|
8
|
Alsina B, Giraldez F, Varela-Nieto I. Growth Factors and Early Development of Otic Neurons: Interactions between Intrinsic and Extrinsic Signals. Curr Top Dev Biol 2003; 57:177-206. [PMID: 14674481 DOI: 10.1016/s0070-2153(03)57006-5] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Berta Alsina
- DCEXS-Universitat Pomepu Fabra, Dr Aiguader 80, 08003 Barcelona, Spain
| | | | | |
Collapse
|
9
|
Smith L, Gross J, Morest DK. Fibroblast growth factors (FGFs) in the cochlear nucleus of the adult mouse following acoustic overstimulation. Hear Res 2002; 169:1-12. [PMID: 12121735 DOI: 10.1016/s0378-5955(02)00461-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
To see if fibroblast growth factors (FGFs) might function in the central changes following auditory overstimulation we tracked immunostaining in the cochlear nucleus of adult mice with monoclonal antibodies to FGFs (FGF-1, FGF-2) and FGF receptor. After exposure nearly all outer hair cells died, while inner hair cell and fiber loss were restricted to a region midway along the cochlear spiral. FGFs staining in the cochlear nucleus appeared in hypertrophied astrocytes in the regions of nerve fiber degeneration only. For normal-sized astrocytes there was an increase in the number stained and the intensity of staining across all frequency domains, but not in neurons. The increases were modest at 3-7 days, pronounced at 14 days, modest again by 30 days, and back to control levels by 60 days. FGF receptor staining of neurons occurred equally in all mice, exposed or not. The findings suggest that astrocytes play a role in the central responses to acoustic overstimulation and cochlear damage, involving FGFs, possibly regulating the activity of intrinsic neurons or signaling axonal growth. Not limited to regions of cochlear nerve fiber and inner hair cell loss, the changes in FGFs may represent a reaction to outer hair cell damage which spreads broadly across the central pathways.
Collapse
MESH Headings
- Animals
- Astrocytes/metabolism
- Astrocytes/pathology
- Cochlear Nucleus/injuries
- Cochlear Nucleus/metabolism
- Cochlear Nucleus/pathology
- Female
- Fibroblast Growth Factor 1/metabolism
- Fibroblast Growth Factor 2/metabolism
- Glial Fibrillary Acidic Protein/metabolism
- Hair Cells, Auditory, Inner/metabolism
- Hair Cells, Auditory, Inner/pathology
- Hearing Loss, Noise-Induced/metabolism
- Hearing Loss, Noise-Induced/pathology
- Immunohistochemistry
- Mice
- Mice, Inbred C57BL
- Mice, Inbred CBA
- Receptor Protein-Tyrosine Kinases/metabolism
- Receptor, Fibroblast Growth Factor, Type 1
- Receptors, Fibroblast Growth Factor/metabolism
Collapse
Affiliation(s)
- Lee Smith
- Department of Neuroscience, The University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030-3401, USA
| | | | | |
Collapse
|
10
|
Adamska M, Herbrand H, Adamski M, Krüger M, Braun T, Bober E. FGFs control the patterning of the inner ear but are not able to induce the full ear program. Mech Dev 2001; 109:303-13. [PMID: 11731242 DOI: 10.1016/s0925-4773(01)00550-0] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
FGF2 or FGF8 applied ectopically, close to the developing otic placode enhances transcription of a subset of ear marker genes such as Nkx5-1, SOHo1 and Pax2. Other ear expressed genes (Dlx5 and BMP4) are not up-regulated by FGFs. Ectopic FGFs lead to an increase in size of the vestibulo-cochlear ganglion. This phenotypic change is due to an increased recruitment of epithelial cells to the neuronal fate rather than to an enhanced proliferation. We also observed an induction of additional, vesicle-like structures upon ectopic FGF treatment, but this induction never led to enrolment of a full ear program. We further demonstrate that FGF8 is expressed in two separate, short waves, first at the otic placode stage and later at the vesicle stage. Both activities correspond to critical morphogenetic events in ear development. We propose that FGF8 is an important regulator of otocyst patterning.
Collapse
Affiliation(s)
- M Adamska
- Institute of Physiological Chemistry, Martin-Luther University Halle-Wittenberg, Hollystrasse 1, 06097, Halle, Germany
| | | | | | | | | | | |
Collapse
|
11
|
Zhou X, Baier C, Hossain WA, Goldenson M, Morest DK. Expression of a voltage-dependent potassium channel protein (Kv3.1) in the embryonic development of the auditory system. J Neurosci Res 2001; 65:24-37. [PMID: 11433426 DOI: 10.1002/jnr.1124] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The present study traces the development of a voltage-dependent potassium channel protein (Kv3.1) in the avian homologue of the cochlear nucleus, in the cochleovestibular ganglion, and in the otic epithelium from early developmental stages until near hatching. Immunohistochemistry with antibodies to the carboxy terminus (recognizing the Kv3.1b splice variant) and to the amino terminus (recognizing either form of Kv3.1) was used on Hamburger-Hamilton-staged chicken embryos. There were three periods in the relative levels of immunostaining in these regions. Early (E2-6), when precursor cells proliferate, migrate, and form axons, there was staining when using either antibody. In the middle period (E6-11), marked by hair cell differentiation, dendritic growth, and early synapse formation, staining levels decreased. In the late period (E11-19), when auditory function begins, staining increased rapidly, especially for Kv3.1b. Early Kv3.1 expression occurs in neuronal and hair cell precursors before they differentiate or function. Later, in the otic epithelium, a high level of Kv3.1 in cilia may precede or coincide with the onset of hair cell function. In neurons, some features of its localization correlate with axon outgrowth and synapse formation, others with the onset of neural activity and function.
Collapse
Affiliation(s)
- X Zhou
- Department of Neuroscience, The University of Connecticut Health Center, Farmington, Connecticut 06030-3401, USA
| | | | | | | | | |
Collapse
|
12
|
Abstract
We have investigated the influence of voltage-dependent, potassium conductances on the migration of embryonic neurons, using a culture preparation taken from the acoustico-vestibular anlage long before the onset of electrical excitability and synaptic function. Whole-cell patch clamp recordings from migrating neuroblasts at Hamburger-Hamilton stage 28 (E 5.5) revealed the exclusive expression of voltage-dependent, high-threshold, outward currents, activating at potentials positive to -20 mV. These currents were completely suppressed by the potassium channel blockers, 1.0 mM tetraethylammonium chloride (TEA) or 1.0 mM 4-aminopyridine (4-AP). In control media, the active migration of individual neuroblasts was recorded at 27 +/- 6 microm per hr. Within minutes after adding either drug to the culture, normal migration completely stopped for several hours. Calcium channel blockers, omega-conotoxin (3 microM) or cadmium chloride (100 microM), slowed, but did not halt, migration, while nickel chloride (100 microM) or N-methyl-D-glucamine (1 mM) had no effect. However, within 8 hr after TEA exposure, migratory activity usually returned. This recovery was associated with the appearance of a previously undetected, low-threshold and 4-AP- sensitive potassium conductance. We suggest that high-threshold, TEA/4-AP-sensitive potassium channels may normally support the migration of these neurons, while their chronic blockade can be compensated by the appearance of novel potassium channels. Potassium currents may act in concert with N-type calcium channels to regulate neuronal migration.
Collapse
Affiliation(s)
- R Hendriks
- Department of Anatomy, Center for Neurological Sciences, University of Connecticut Health Center, Farmington 06030-3405, USA
| | | | | |
Collapse
|
13
|
Abstract
The Shaw subfamily of potassium channel genes, including Kv3.1, are highly expressed within the auditory nuclei of the brainstem, where they have been implicated in the characteristic response properties of particular types of neurons. Potassium currents carried by Kv3.1 are voltage-dependent, have a high activation threshold, are slow to inactivate, and are very sensitive to 4-aminopyridine (4-AP) and tetraethylammonium (TEA). We have investigated the developmental appearance of potassium currents in cell cultures from nucleus magnocellularis and its precursor neuroblasts from the acoustico-vestibular anlage of the chicken. Whole-cell patch recordings revealed that high-threshold, sustained, outward currents were present in 91% of neuroblasts. These currents displayed high sensitivities to TEA and 4-AP. The remaining 9% of neuroblasts exhibited only transient outward currents. Most cells (74%) had both a sustained and an initial transient component of outward current. These current types were observed throughout embryogenesis, beginning with the earliest ages (embryonic day [E]2). During proliferation and migration, and early neuronal differentiation, current levels were low; they incremented gradually during the time when the first synapses occur on dendrites and increased 2- to 3-fold just before hatching, when axosomatic synapses form. These findings suggest that the Shaw subfamily of channels in nucleus magnocellularis may be involved in early neuronal development, as well as in synaptic function later on.
Collapse
Affiliation(s)
- R Hendriks
- Department of Anatomy, Center for Neurological Sciences, University of Connecticut Health Center, Farmington 06030-3405, USA
| | | | | |
Collapse
|
14
|
Abstract
Dissociated primary cell cultures were derived from the cochlear nuclei (CN) of postnatal rats using standard techniques. Cultured cells differentiated morphologically, but their dendritic profiles were generally less specialized than those of CN cells in vivo. Physiologically, cultured cells could be divided into three classes: tonic, phasic and non-spiking cells, which differed in many of their fundamental biophysical properties. The percentage of cultured cells that spiked repetitively increased over time to a maximum of 85% at 6 days. However, the percentage of cells that produced action potentials decreased with time in culture, from 91% during the first 8 days to less than 40% after 9 days. CN cells were successfully cultured in both serum-supplemented and serum-free (Neurobasal) media. More neurons survived at low plating densities in Neurobasal than in medium containing serum, although neuronal survival was similar at higher densities. Few neurons raised in the serum-free medium were spontaneously active; other response properties were similar to those of cells grown in the presence of serum. Although differentiation of CN cells in culture did not completely mirror the in vivo developmental pattern, these experiments demonstrate that primary culture represents a viable method for the in vitro study of CN neurons.
Collapse
Affiliation(s)
- J L Fitzakerley
- Center for Hearing Sciences and Department of Otolaryngology-Head and Neck Surgery, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | |
Collapse
|