1
|
Li N, Liu S, Zhao D, Du H, Xi Y, Wei X, Liu Q, Müller U, Lu Q, Xiong W, Xu Z. Disruption of Cdh23 exon 68 splicing leads to progressive hearing loss in mice by affecting tip-link stability. Proc Natl Acad Sci U S A 2024; 121:e2309656121. [PMID: 38408254 PMCID: PMC10927504 DOI: 10.1073/pnas.2309656121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 12/21/2023] [Indexed: 02/28/2024] Open
Abstract
Inner ear hair cells are characterized by the F-actin-based stereocilia that are arranged into a staircase-like pattern on the apical surface of each hair cell. The tips of shorter-row stereocilia are connected with the shafts of their neighboring taller-row stereocilia through extracellular links named tip links, which gate mechano-electrical transduction (MET) channels in hair cells. Cadherin 23 (CDH23) forms the upper part of tip links, and its cytoplasmic tail is inserted into the so-called upper tip-link density (UTLD) that contains other proteins such as harmonin. The Cdh23 gene is composed of 69 exons, and we show here that exon 68 is subjected to hair cell-specific alternative splicing. Tip-link formation is not affected in genetically modified mutant mice lacking Cdh23 exon 68. Instead, the stability of tip links is compromised in the mutants, which also suffer from progressive and noise-induced hearing loss. Moreover, we show that the cytoplasmic tail of CDH23(+68) but not CDH23(-68) cooperates with harmonin in phase separation-mediated condensate formation. In conclusion, our work provides evidence that inclusion of Cdh23 exon 68 is critical for the stability of tip links through regulating condensate formation of UTLD components.
Collapse
Affiliation(s)
- Nana Li
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Shuang Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Dange Zhao
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Haibo Du
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Yuehui Xi
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
| | - Xiaoxi Wei
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Qingling Liu
- Chinese Institute for Brain Research, Beijing102206, China
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Qing Lu
- Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Ministry of Education, Bio-X Institutes, Shanghai Jiao Tong University, Shanghai200030, China
| | - Wei Xiong
- Chinese Institute for Brain Research, Beijing102206, China
| | - Zhigang Xu
- Shandong Provincial Key Laboratory of Animal Cells and Developmental Biology and Key Laboratory for Experimental Teratology of the Ministry of Education, School of Life Sciences, Shandong University, Qingdao, Shandong266237, China
- Shandong Provincial Collaborative Innovation Center of Cell Biology, Shandong Normal University, Jinan, Shandong250014, China
| |
Collapse
|
2
|
Wagner EL, Im JS, Sala S, Nakahata MI, Imbery TE, Li S, Chen D, Nimchuk K, Noy Y, Archer DW, Xu W, Hashisaki G, Avraham KB, Oakes PW, Shin JB. Repair of noise-induced damage to stereocilia F-actin cores is facilitated by XIRP2 and its novel mechanosensor domain. eLife 2023; 12:e72681. [PMID: 37294664 PMCID: PMC10259482 DOI: 10.7554/elife.72681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 05/17/2023] [Indexed: 06/11/2023] Open
Abstract
Prolonged exposure to loud noise has been shown to affect inner ear sensory hair cells in a variety of deleterious manners, including damaging the stereocilia core. The damaged sites can be visualized as 'gaps' in phalloidin staining of F-actin, and the enrichment of monomeric actin at these sites, along with an actin nucleator and crosslinker, suggests that localized remodeling occurs to repair the broken filaments. Herein, we show that gaps in mouse auditory hair cells are largely repaired within 1 week of traumatic noise exposure through the incorporation of newly synthesized actin. We provide evidence that Xin actin binding repeat containing 2 (XIRP2) is required for the repair process and facilitates the enrichment of monomeric γ-actin at gaps. Recruitment of XIRP2 to stereocilia gaps and stress fiber strain sites in fibroblasts is force-dependent, mediated by a novel mechanosensor domain located in the C-terminus of XIRP2. Our study describes a novel process by which hair cells can recover from sublethal hair bundle damage and which may contribute to recovery from temporary hearing threshold shifts and the prevention of age-related hearing loss.
Collapse
Affiliation(s)
- Elizabeth L Wagner
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biochemistry & Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Jun-Sub Im
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Stefano Sala
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University ChicagoChicagoUnited States
| | - Maura I Nakahata
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Terence E Imbery
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Otolaryngology-Head & Neck Surgery, University of VirginiaCharlottesvilleUnited States
| | - Sihan Li
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biochemistry & Molecular Genetics, University of VirginiaCharlottesvilleUnited States
| | - Daniel Chen
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Katherine Nimchuk
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Yael Noy
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - David W Archer
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
| | - Wenhao Xu
- Genetically Engineered Murine Model (GEMM) Core, University of VirginiaCharlottesvilleUnited States
| | - George Hashisaki
- Department of Otolaryngology-Head & Neck Surgery, University of VirginiaCharlottesvilleUnited States
| | - Karen B Avraham
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine and Sagol School of Neuroscience, Tel Aviv UniversityTel AvivIsrael
| | - Patrick W Oakes
- Department of Cell & Molecular Physiology, Stritch School of Medicine, Loyola University ChicagoChicagoUnited States
| | - Jung-Bum Shin
- Department of Neuroscience, University of VirginiaCharlottesvilleUnited States
- Department of Biochemistry & Molecular Genetics, University of VirginiaCharlottesvilleUnited States
- Department of Otolaryngology-Head & Neck Surgery, University of VirginiaCharlottesvilleUnited States
- Department of Cell Biology, University of VirginiaCharlottesvilleUnited States
| |
Collapse
|
3
|
Kim GS, Wang T, Sayyid ZN, Fuhriman J, Jones SM, Cheng AG. Repair of surviving hair cells in the damaged mouse utricle. Proc Natl Acad Sci U S A 2022; 119:e2116973119. [PMID: 35380897 PMCID: PMC9169652 DOI: 10.1073/pnas.2116973119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 02/21/2022] [Indexed: 11/18/2022] Open
Abstract
Sensory hair cells (HCs) in the utricle are mechanoreceptors required to detect linear acceleration. After damage, the mammalian utricle partially restores the HC population and organ function, although regenerated HCs are primarily type II and immature. Whether native, surviving HCs can repair and contribute to this recovery is unclear. Here, we generated the Pou4f3DTR/+; Atoh1CreERTM/+; Rosa26RtdTomato/+ mouse to fate map HCs prior to ablation. After HC ablation, vestibular evoked potentials were abolished in all animals, with ∼57% later recovering responses. Relative to nonrecovery mice, recovery animals harbored more Atoh1-tdTomato+ surviving HCs. In both groups, surviving HCs displayed markers of both type I and type II subtypes and afferent synapses, despite distorted lamination and morphology. Surviving type II HCs remained innervated in both groups, whereas surviving type I HCs first lacked and later regained calyces in the recovery, but not the nonrecovery, group. Finally, surviving HCs initially displayed immature and subsequently mature-appearing bundles in the recovery group. These results demonstrate that surviving HCs are capable of self-repair and may contribute to the recovery of vestibular function.
Collapse
Affiliation(s)
- Grace S. Kim
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Tian Wang
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Zahra N. Sayyid
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Jessica Fuhriman
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| | - Sherri M. Jones
- Department of Special Education and Communication Disorders, College of Education and Human Sciences, University of Nebraska, Lincoln, NE 68583
| | - Alan G. Cheng
- Department of Otolaryngology–Head and Neck Surgery, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
4
|
Holmgren M, Ravicz ME, Hancock KE, Strelkova O, Kallogjeri D, Indzhykulian AA, Warchol ME, Sheets L. Mechanical overstimulation causes acute injury and synapse loss followed by fast recovery in lateral-line neuromasts of larval zebrafish. eLife 2021; 10:69264. [PMID: 34665127 PMCID: PMC8555980 DOI: 10.7554/elife.69264] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/18/2021] [Indexed: 12/14/2022] Open
Abstract
Excess noise damages sensory hair cells, resulting in loss of synaptic connections with auditory nerves and, in some cases, hair-cell death. The cellular mechanisms underlying mechanically induced hair-cell damage and subsequent repair are not completely understood. Hair cells in neuromasts of larval zebrafish are structurally and functionally comparable to mammalian hair cells but undergo robust regeneration following ototoxic damage. We therefore developed a model for mechanically induced hair-cell damage in this highly tractable system. Free swimming larvae exposed to strong water wave stimulus for 2 hr displayed mechanical injury to neuromasts, including afferent neurite retraction, damaged hair bundles, and reduced mechanotransduction. Synapse loss was observed in apparently intact exposed neuromasts, and this loss was exacerbated by inhibiting glutamate uptake. Mechanical damage also elicited an inflammatory response and macrophage recruitment. Remarkably, neuromast hair-cell morphology and mechanotransduction recovered within hours following exposure, suggesting severely damaged neuromasts undergo repair. Our results indicate functional changes and synapse loss in mechanically damaged lateral-line neuromasts that share key features of damage observed in noise-exposed mammalian ear. Yet, unlike the mammalian ear, mechanical damage to neuromasts is rapidly reversible.
Collapse
Affiliation(s)
- Melanie Holmgren
- Department of Otolaryngology, Washington University School of Medicine, St Louis, United States
| | - Michael E Ravicz
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, United States
| | - Kenneth E Hancock
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, United States
| | - Olga Strelkova
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, United States
| | - Dorina Kallogjeri
- Department of Otolaryngology, Washington University School of Medicine, St Louis, United States
| | - Artur A Indzhykulian
- Eaton-Peabody Laboratory, Massachusetts Eye and Ear, Boston, United States.,Department of Otolaryngology-Head and Neck Surgery, Harvard Medical School, Boston, United States
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St Louis, United States.,Department of Neuroscience, Washington University School of Medicine, St Louis, United States
| | - Lavinia Sheets
- Department of Otolaryngology, Washington University School of Medicine, St Louis, United States.,Department of Developmental Biology, Washington University School of Medicine, St. Louis, United States
| |
Collapse
|
5
|
Fast recovery of disrupted tip links induced by mechanical displacement of hair bundles. Proc Natl Acad Sci U S A 2020; 117:30722-30727. [PMID: 33199645 PMCID: PMC7720144 DOI: 10.1073/pnas.2016858117] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Each of the sensory receptors responsible for hearing or balance—a hair cell—has a mechanosensitive hair bundle. Mechanical stimuli pull upon molecular filaments—the tip links—that open ionic channels in the hair bundle. Loud sounds can damage hearing by breaking the tip links; recovery by replacement of the constituent proteins then requires several hours. We disrupted the tip links in vitro by removing the calcium ions that stabilize them, and then monitored the electrical response or stiffness of hair bundles to determine whether the links could recover. We found that tip links recovered within seconds if their ends were brought back into contact. This form of repair might occur in normal ears to restore sensitivity after damage. Hearing and balance rely on the capacity of mechanically sensitive hair bundles to transduce vibrations into electrical signals that are forwarded to the brain. Hair bundles possess tip links that interconnect the mechanosensitive stereocilia and convey force to the transduction channels. A dimer of dimers, each of these links comprises two molecules of protocadherin 15 (PCDH15) joined to two of cadherin 23 (CDH23). The “handshake” that conjoins the four molecules can be disrupted in vivo by intense stimulation and in vitro by exposure to Ca2+ chelators. Using hair bundles from the rat’s cochlea and the bullfrog’s sacculus, we observed that extensive recovery of mechanoelectrical transduction, hair bundle stiffness, and spontaneous bundle oscillation can occur within seconds after Ca2+ chelation, especially if hair bundles are deflected toward their short edges. Investigating the phenomenon in a two-compartment ionic environment that mimics natural conditions, we combined iontophoretic application of a Ca2+ chelator to selectively disrupt the tip links of individual frog hair bundles with displacement clamping to control hair bundle motion and measure forces. Our observations suggest that, after the normal Ca2+ concentration has been restored, mechanical stimulation facilitates the reconstitution of functional tip links.
Collapse
|
6
|
Menard-Harvey SS, Watson GM. Rho-family G-proteins are required for the recovery of traumatized hair bundle mechanoreceptors in the sea anemone, Nematostella vectensis. Comp Biochem Physiol A Mol Integr Physiol 2019; 242:110637. [PMID: 31866537 DOI: 10.1016/j.cbpa.2019.110637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Revised: 11/26/2019] [Accepted: 12/13/2019] [Indexed: 11/28/2022]
Abstract
Immersing anemones in calcium-free seawater disorganizes hair bundle mechanoreceptors on tentacles of sea anemones while causing a loss of vibration sensitivity. Remarkably, anemone hair bundles recover after being returned to calcium-containing seawater. Reorganization of actin in stereocilia likely follows during the recovery of normal morphology of hair bundles after such immersion. Previous studies have reported that Rho G-proteins are located in the stereocilia of hair bundles in sea anemones where they participate in polymerizing actin in stereocilia upon activation of specific chemoreceptors. We here find that immersing anemones in calcium-free seawater significantly reduces the abundance of hair bundles. A partial recovery of abundance of hair bundles occurs within 3 h post-immersion, but a full recovery of abundance does not occur even 6 h after specimens are returned to calcium-containing seawater. Anemones recovering from immersion in calcium-free seawater feature hair bundles that are significantly wider at their tips than in controls. The hair bundles subsequently narrow at their tips, becoming comparable to those of untreated controls within 6 h. Stereocilia of hair bundles are significantly longer in experimental animals than in controls at 2 h of recovery before shortening to lengths comparable to untreated controls at 6 h. In the presence of Rho inhibitors, the recovery in abundance of hair bundles through 6 h is delayed or inhibited. Likewise, in the presence of Rho inhibitors, stereocilia fail to significantly elongate within 2 h of recovery. These data suggest that Rho G-proteins participate in the normal recovery of abundance and recovery of normal morphology of experimentally damaged hair bundle mechanoreceptors.
Collapse
Affiliation(s)
- Shelcie S Menard-Harvey
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd., Lafayette, LA 70504, USA.
| | - Glen M Watson
- Department of Biology, University of Louisiana at Lafayette, 410 E. St. Mary Blvd., Lafayette, LA 70504, USA.
| |
Collapse
|
7
|
The Development of Cooperative Channels Explains the Maturation of Hair Cell's Mechanotransduction. Biophys J 2019; 117:1536-1548. [PMID: 31585704 PMCID: PMC6817549 DOI: 10.1016/j.bpj.2019.08.042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 08/20/2019] [Accepted: 08/28/2019] [Indexed: 11/29/2022] Open
Abstract
Hearing relies on the conversion of mechanical stimuli into electrical signals. In vertebrates, this process of mechanoelectrical transduction (MET) is performed by specialized receptors of the inner ear, the hair cells. Each hair cell is crowned by a hair bundle, a cluster of microvilli that pivot in response to sound vibrations, causing the opening and closing of mechanosensitive ion channels. Mechanical forces are projected onto the channels by molecular springs called tip links. Each tip link is thought to connect to a small number of MET channels that gate cooperatively and operate as a single transduction unit. Pushing the hair bundle in the excitatory direction opens the channels, after which they rapidly reclose in a process called fast adaptation. It has been experimentally observed that the hair cell’s biophysical properties mature gradually during postnatal development: the maximal transduction current increases, sensitivity sharpens, transduction occurs at smaller hair-bundle displacements, and adaptation becomes faster. Similar observations have been reported during tip-link regeneration after acoustic damage. Moreover, when measured at intermediate developmental stages, the kinetics of fast adaptation varies in a given cell, depending on the magnitude of the imposed displacement. The mechanisms underlying these seemingly disparate observations have so far remained elusive. Here, we show that these phenomena can all be explained by the progressive addition of MET channels of constant properties, which populate the hair bundle first as isolated entities and then progressively as clusters of more sensitive, cooperative MET channels. As the proposed mechanism relies on the difference in biophysical properties between isolated and clustered channels, this work highlights the importance of cooperative interactions between mechanosensitive ion channels for hearing.
Collapse
|
8
|
Wagner EL, Shin JB. Mechanisms of Hair Cell Damage and Repair. Trends Neurosci 2019; 42:414-424. [PMID: 30992136 DOI: 10.1016/j.tins.2019.03.006] [Citation(s) in RCA: 73] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/04/2019] [Accepted: 03/13/2019] [Indexed: 01/22/2023]
Abstract
Sensory hair cells of the inner ear are exposed to continuous mechanical stress, causing damage over time. The maintenance of hair cells is further challenged by damage from a variety of other ototoxic factors, including loud noise, aging, genetic defects, and ototoxic drugs. This damage can manifest in many forms, from dysfunction of the hair cell mechanotransduction complex to loss of specialized ribbon synapses, and may even result in hair cell death. Given that mammalian hair cells do not regenerate, the repair of hair cell damage is important for continued auditory function throughout life. Here, we discuss how several key hair cell structures can be damaged, and what is known about how they are repaired.
Collapse
Affiliation(s)
- Elizabeth L Wagner
- Department of Neuroscience, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA; Department of Biochemistry and Molecular Genetics, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA
| | - Jung-Bum Shin
- Department of Neuroscience, University of Virginia-School of Medicine, Charlottesville, VA 22908, USA.
| |
Collapse
|
9
|
Vélez-Ortega AC, Frolenkov GI. Building and repairing the stereocilia cytoskeleton in mammalian auditory hair cells. Hear Res 2019; 376:47-57. [PMID: 30638948 DOI: 10.1016/j.heares.2018.12.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/19/2018] [Accepted: 12/28/2018] [Indexed: 10/27/2022]
Abstract
Despite all recent achievements in identification of the molecules that are essential for the structure and mechanosensory function of stereocilia bundles in the auditory hair cells of mammalian species, we still have only a rudimentary understanding of the mechanisms of stereocilia formation, maintenance, and repair. Important molecular differences distinguishing mammalian auditory hair cells from hair cells of other types and species have been recently revealed. In addition, we are beginning to solve the puzzle of the apparent life-long stability of the stereocilia bundles in these cells. New data link the stability of the cytoskeleton in the mammalian auditory stereocilia with the normal activity of mechanotransduction channels. These data suggest new ideas on how a terminally-differentiated non-regenerating hair cell in the mammalian cochlea may repair and tune its stereocilia bundle throughout the life span of the organism.
Collapse
Affiliation(s)
- A Catalina Vélez-Ortega
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| | - Gregory I Frolenkov
- Department of Physiology, University of Kentucky, 800 Rose St., Lexington, KY, 40536-0298, USA.
| |
Collapse
|
10
|
Larval Zebrafish Lateral Line as a Model for Acoustic Trauma. eNeuro 2018; 5:eN-NWR-0206-18. [PMID: 30225343 PMCID: PMC6140105 DOI: 10.1523/eneuro.0206-18.2018] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2018] [Revised: 07/25/2018] [Accepted: 08/08/2018] [Indexed: 12/14/2022] Open
Abstract
Excessive noise exposure damages sensory hair cells, leading to permanent hearing loss. Zebrafish are a highly tractable model that have advanced our understanding of drug-induced hair cell death, yet no comparable model exists for noise exposure research. We demonstrate the utility of zebrafish as model to increase understanding of hair cell damage from acoustic trauma and develop protective therapies. We created an acoustic trauma system using underwater cavitation to stimulate lateral line hair cells. We found that acoustic stimulation resulted in exposure time- and intensity-dependent lateral line and saccular hair cell damage that is maximal at 48–72 h post-trauma. The number of TUNEL+ lateral line hair cells increased 72 h post-exposure, whereas no increase was observed in TUNEL+ supporting cells, demonstrating that acoustic stimulation causes hair cell-specific damage. Lateral line hair cells damaged by acoustic stimulation regenerate within 3 d, consistent with prior regeneration studies utilizing ototoxic drugs. Acoustic stimulation-induced hair cell damage is attenuated by pharmacological inhibition of protein synthesis or caspase activation, suggesting a requirement for translation and activation of apoptotic signaling cascades. Surviving hair cells exposed to acoustic stimulation showed signs of synaptopathy, consistent with mammalian studies. Finally, we demonstrate the feasibility of this platform to identify compounds that prevent acoustic trauma by screening a small redox library for protective compounds. Our data suggest that acoustic stimulation results in lateral line hair cell damage consistent with acoustic trauma research in mammals, providing a highly tractable model for high-throughput genetic and drug discovery studies.
Collapse
|
11
|
Choudhary D, Kumar A, Magliery TJ, Sotomayor M. Using thermal scanning assays to test protein-protein interactions of inner-ear cadherins. PLoS One 2017; 12:e0189546. [PMID: 29261728 PMCID: PMC5736220 DOI: 10.1371/journal.pone.0189546] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2017] [Accepted: 11/27/2017] [Indexed: 12/15/2022] Open
Abstract
Protein-protein interactions play a crucial role in biological processes such as cell-cell adhesion, immune system-pathogen interactions, and sensory perception. Understanding the structural determinants of protein-protein complex formation and obtaining quantitative estimates of their dissociation constant (KD) are essential for the study of these interactions and for the discovery of new therapeutics. At the same time, it is equally important to characterize protein-protein interactions in a high-throughput fashion. Here, we use a modified thermal scanning assay to test interactions of wild type (WT) and mutant variants of N-terminal fragments (EC1+2) of cadherin-23 and protocadherin-15, two proteins essential for inner-ear mechanotransduction. An environmentally sensitive fluorescent dye (SYPRO orange) is used to monitor melting temperature (Tm) shifts of protocadherin-15 EC1+2 (pcdh15) in the presence of increasing concentrations of cadherin-23 EC1+2 (cdh23). These Tm shifts are absent when we use proteins containing deafness-related missense mutations known to disrupt cdh23 binding to pcdh15, and are increased for some rationally designed mutants expected to enhance binding. In addition, surface plasmon resonance binding experiments were used to test if the Tm shifts correlated with changes in binding affinity. We used this approach to find a double mutation (cdh23(T15E)- pcdh15(G16D)) that enhances binding affinity of the cadherin complex by 1.98 kJ/mol, roughly two-fold that of the WT complex. We suggest that the thermal scanning methodology can be used in high-throughput format to quickly compare binding affinities (KD from nM up to 100 μM) for some heterodimeric protein complexes and to screen small molecule libraries to find protein-protein interaction inhibitors and enhancers.
Collapse
Affiliation(s)
- Deepanshu Choudhary
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Anusha Kumar
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Thomas J. Magliery
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| | - Marcos Sotomayor
- Department of Chemistry and Biochemistry, The Ohio State University, Columbus, Ohio, United States of America
| |
Collapse
|
12
|
Tompkins N, Spinelli KJ, Choi D, Barr-Gillespie PG. A Model for Link Pruning to Establish Correctly Polarized and Oriented Tip Links in Hair Bundles. Biophys J 2017; 113:1868-1881. [PMID: 29045880 DOI: 10.1016/j.bpj.2017.08.029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/14/2017] [Accepted: 08/21/2017] [Indexed: 10/18/2022] Open
Abstract
Tip links are thought to gate the mechanically sensitive transduction channels of hair cells, but how they form during development and regeneration remains mysterious. In particular, it is unclear how tip links are strung between stereocilia so that they are oriented parallel to a single axis; why their polarity is uniform despite their constituent molecules' intrinsic asymmetry; and why only a single tip link is present at each tip-link position. We present here a series of simple rules that reasonably explain why these phenomena occur. In particular, our model relies on each of the two ends of the tip link having distinct Ca2+-dependent stability and being connected to different motor complexes. A simulation employing these rules allowed us to explore the parameter space for the model, demonstrating the importance of the feedback between transduction channels and angled links, links that are 60° off-axis with respect to mature tip links. We tested this key aspect of the model by examining angled links in chick cochlea hair cells. As implied by the assumptions used to generate the model, we found that angled links were stabilized if there was no tip link at the tip of the upper stereocilium, and appeared when transduction channels were blocked. The model thus plausibly explains how tip-link formation and pruning can occur.
Collapse
Affiliation(s)
- Nathan Tompkins
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Kateri J Spinelli
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon
| | - Dongseok Choi
- School of Public Health, Oregon Health and Science University, Portland, Oregon; Graduate School of Dentistry, Kyung Hee University, Seoul, South Korea
| | - Peter G Barr-Gillespie
- Oregon Hearing Research Center and Vollum Institute, Oregon Health and Science University, Portland, Oregon.
| |
Collapse
|
13
|
Jiang M, Karasawa T, Steyger PS. Aminoglycoside-Induced Cochleotoxicity: A Review. Front Cell Neurosci 2017; 11:308. [PMID: 29062271 PMCID: PMC5640705 DOI: 10.3389/fncel.2017.00308] [Citation(s) in RCA: 171] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Aminoglycoside antibiotics are used as prophylaxis, or urgent treatment, for many life-threatening bacterial infections, including tuberculosis, sepsis, respiratory infections in cystic fibrosis, complex urinary tract infections and endocarditis. Although aminoglycosides are clinically-essential antibiotics, the mechanisms underlying their selective toxicity to the kidney and inner ear continue to be unraveled despite more than 70 years of investigation. The following mechanisms each contribute to aminoglycoside-induced toxicity after systemic administration: (1) drug trafficking across endothelial and epithelial barrier layers; (2) sensory cell uptake of these drugs; and (3) disruption of intracellular physiological pathways. Specific factors can increase the risk of drug-induced toxicity, including sustained exposure to higher levels of ambient sound, and selected therapeutic agents such as loop diuretics and glycopeptides. Serious bacterial infections (requiring life-saving aminoglycoside treatment) induce systemic inflammatory responses that also potentiate the degree of ototoxicity and permanent hearing loss. We discuss prospective clinical strategies to protect auditory and vestibular function from aminoglycoside ototoxicity, including reduced cochlear or sensory cell uptake of aminoglycosides, and otoprotection by ameliorating intracellular cytotoxicity.
Collapse
Affiliation(s)
- Meiyan Jiang
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Takatoshi Karasawa
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States
| | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, OR, United States.,National Center for Rehabilitative Auditory Research, Portland VA Medical Center (VHA), Portland, OR, United States
| |
Collapse
|
14
|
Tang PC, Watson GM. Proteomic identification of hair cell repair proteins in the model sea anemone Nematostella vectensis. Hear Res 2015; 327:245-56. [PMID: 26183436 DOI: 10.1016/j.heares.2015.07.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Revised: 06/15/2015] [Accepted: 07/09/2015] [Indexed: 12/26/2022]
Abstract
Sea anemones have an extraordinary capability to repair damaged hair bundles, even after severe trauma. A group of secreted proteins, named repair proteins (RPs), found in mucus covering sea anemones significantly assists the repair of damaged hair bundle mechanoreceptors both in the sea anemone Haliplanella luciae and the blind cavefish Astyanax hubbsi. The polypeptide constituents of RPs must be identified in order to gain insight into the molecular mechanisms by which repair of hair bundles is accomplished. In this study, several polypeptides of RPs were isolated from mucus using blue native PAGE and then sequenced using LC-MS/MS. Thirty-seven known polypeptides were identified, including Hsp70s, as well as many polypeptide subunits of the 20S proteasome. Other identified polypeptides included those involved in cellular stress responses, protein folding, and protein degradation. Specific inhibitors of Hsp70s and the 20S proteasome were employed in experiments to test their involvement in hair bundle repair. The results of those experiments suggested that repair requires biologically active Hsp70s and 20S proteasomes. A model is proposed that considers the function of extracellular Hsp70s and 20S proteasomes in the repair of damaged hair cells.
Collapse
Affiliation(s)
- Pei-Ciao Tang
- Department of Biology, University of Louisiana Lafayette, USA
| | - Glen M Watson
- Department of Biology, University of Louisiana Lafayette, USA.
| |
Collapse
|
15
|
Li H, Kachelmeier A, Furness DN, Steyger PS. Local mechanisms for loud sound-enhanced aminoglycoside entry into outer hair cells. Front Cell Neurosci 2015; 9:130. [PMID: 25926770 PMCID: PMC4396448 DOI: 10.3389/fncel.2015.00130] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/20/2015] [Indexed: 12/03/2022] Open
Abstract
Loud sound exposure exacerbates aminoglycoside ototoxicity, increasing the risk of permanent hearing loss and degrading the quality of life in affected individuals. We previously reported that loud sound exposure induces temporary threshold shifts (TTS) and enhances uptake of aminoglycosides, like gentamicin, by cochlear outer hair cells (OHCs). Here, we explore mechanisms by which loud sound exposure and TTS could increase aminoglycoside uptake by OHCs that may underlie this form of ototoxic synergy. Mice were exposed to loud sound levels to induce TTS, and received fluorescently-tagged gentamicin (GTTR) for 30 min prior to fixation. The degree of TTS was assessed by comparing auditory brainstem responses (ABRs) before and after loud sound exposure. The number of tip links, which gate the GTTR-permeant mechanoelectrical transducer (MET) channels, was determined in OHC bundles, with or without exposure to loud sound, using scanning electron microscopy. We found wide-band noise (WBN) levels that induce TTS also enhance OHC uptake of GTTR compared to OHCs in control cochleae. In cochlear regions with TTS, the increase in OHC uptake of GTTR was significantly greater than in adjacent pillar cells. In control mice, we identified stereociliary tip links at ~50% of potential positions in OHC bundles. However, the number of OHC tip links was significantly reduced in mice that received WBN at levels capable of inducing TTS. These data suggest that GTTR uptake by OHCs during TTS occurs by increased permeation of surviving, mechanically-gated MET channels, and/or non-MET aminoglycoside-permeant channels activated following loud sound exposure. Loss of tip links would hyperpolarize hair cells and potentially increase drug uptake via aminoglycoside-permeant channels expressed by hair cells. The effect of TTS on aminoglycoside-permeant channel kinetics will shed new light on the mechanisms of loud sound-enhanced aminoglycoside uptake, and consequently on ototoxic synergy.
Collapse
Affiliation(s)
- Hongzhe Li
- Oregon Hearing Research Center, Oregon Health & Science University Portland, OR, USA
| | - Allan Kachelmeier
- Oregon Hearing Research Center, Oregon Health & Science University Portland, OR, USA
| | | | - Peter S Steyger
- Oregon Hearing Research Center, Oregon Health & Science University Portland, OR, USA
| |
Collapse
|
16
|
Abstract
PURPOSE OF THE REVIEW This article presents research findings from two invertebrate model systems with potential to advance both the understanding of noise-induced hearing loss mechanisms and the development of putative therapies to reduce human noise damage. RECENT FINDINGS Work on sea anemone hair bundles, which resemble auditory hair cells, has revealed secretions that exhibit astonishing healing properties not only for damaged hair bundles, but also for vertebrate lateral line neuromasts. We present progress on identifying functional components of the secretions, and their mechanisms of repair. The second model, the Johnston's organ in Drosophila, is also genetically homologous to hair cells and shows noise-induced hearing loss similar to vertebrates. Drosophila offers genetic and molecular insight into noise sensitivity and pathways that can be manipulated to reduce stress and damage from noise. SUMMARY Using the comparative approach is a productive avenue to understanding basic mechanisms, in this case cellular responses to noise trauma. Expanding study of these systems may accelerate identification of strategies to reduce or prevent noise damage in the human ear.
Collapse
Affiliation(s)
- Kevin W Christie
- Department of Biology, The University of Iowa, Iowa City, Iowa 52246
| | - Daniel F. Eberl
- Department of Biology, The University of Iowa, Iowa City, Iowa 52246
| |
Collapse
|
17
|
Indzhykulian AA, Stepanyan R, Nelina A, Spinelli KJ, Ahmed ZM, Belyantseva IA, Friedman TB, Barr-Gillespie PG, Frolenkov GI. Molecular remodeling of tip links underlies mechanosensory regeneration in auditory hair cells. PLoS Biol 2013; 11:e1001583. [PMID: 23776407 PMCID: PMC3679001 DOI: 10.1371/journal.pbio.1001583] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2012] [Accepted: 05/02/2013] [Indexed: 11/18/2022] Open
Abstract
Sound detection by inner ear hair cells requires tip links that interconnect mechanosensory stereocilia and convey force to yet unidentified transduction channels. Current models postulate a static composition of the tip link, with protocadherin 15 (PCDH15) at the lower and cadherin 23 (CDH23) at the upper end of the link. In terminally differentiated mammalian auditory hair cells, tip links are subjected to sound-induced forces throughout an organism's life. Although hair cells can regenerate disrupted tip links and restore hearing, the molecular details of this process are unknown. We developed a novel implementation of backscatter electron scanning microscopy to visualize simultaneously immuno-gold particles and stereocilia links, both of only a few nanometers in diameter. We show that functional, mechanotransduction-mediating tip links have at least two molecular compositions, containing either PCDH15/CDH23 or PCDH15/PCDH15. During regeneration, shorter tip links containing nearly equal amounts of PCDH15 at both ends appear first. Whole-cell patch-clamp recordings demonstrate that these transient PCDH15/PCDH15 links mediate mechanotransduction currents of normal amplitude but abnormal Ca(2+)-dependent decay (adaptation). The mature PCDH15/CDH23 tip link composition is re-established later, concomitant with complete recovery of adaptation. Thus, our findings provide a molecular mechanism for regeneration and maintenance of mechanosensory function in postmitotic auditory hair cells and could help identify elusive components of the mechanotransduction machinery.
Collapse
Affiliation(s)
- Artur A. Indzhykulian
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Ruben Stepanyan
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Anastasiia Nelina
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
| | - Kateri J. Spinelli
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Zubair M. Ahmed
- Division of Pediatric Ophthalmology, Cincinnati Children's Research Foundation, Cincinnati, Ohio, United States of America
| | - Inna A. Belyantseva
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Thomas B. Friedman
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, National Institutes of Health, Rockville, Maryland, United States of America
| | - Peter G. Barr-Gillespie
- Oregon Hearing Research Center, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Gregory I. Frolenkov
- Department of Physiology, University of Kentucky, Lexington, Kentucky, United States of America
- * E-mail:
| |
Collapse
|
18
|
Oesterle EC. Changes in the adult vertebrate auditory sensory epithelium after trauma. Hear Res 2013; 297:91-8. [PMID: 23178236 PMCID: PMC3637947 DOI: 10.1016/j.heares.2012.11.010] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Revised: 10/30/2012] [Accepted: 11/06/2012] [Indexed: 01/12/2023]
Abstract
Auditory hair cells transduce sound vibrations into membrane potential changes, ultimately leading to changes in neuronal firing and sound perception. This review provides an overview of the characteristics and repair capabilities of traumatized auditory sensory epithelium in the adult vertebrate ear. Injured mammalian auditory epithelium repairs itself by forming permanent scars but is unable to regenerate replacement hair cells. In contrast, injured non-mammalian vertebrate ear generates replacement hair cells to restore hearing functions. Non-sensory support cells within the auditory epithelium play key roles in the repair processes.
Collapse
Affiliation(s)
- Elizabeth C Oesterle
- Virginia Merrill Bloedel Hearing Research Center, Department of Otolaryngology-Head and Neck Surgery, CHDD CD176, Box 357923, Univ. of Washington, Seattle, WA 98195-7923, USA.
| |
Collapse
|
19
|
Integrity and regeneration of mechanotransduction machinery regulate aminoglycoside entry and sensory cell death. PLoS One 2013; 8:e54794. [PMID: 23359017 PMCID: PMC3554584 DOI: 10.1371/journal.pone.0054794] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 12/14/2012] [Indexed: 12/04/2022] Open
Abstract
Sound perception requires functional hair cell mechanotransduction (MET) machinery, including the MET channels and tip-link proteins. Prior work showed that uptake of ototoxic aminoglycosides (AG) into hair cells requires functional MET channels. In this study, we examined whether tip-link proteins, including Cadherin 23 (Cdh23), regulate AG entry into hair cells. Using time-lapse microscopy on cochlear explants, we found rapid uptake of gentamicin-conjugated Texas Red (GTTR) into hair cells from three-day-old Cdh23+/+ and Cdh23v2J/+ mice, but failed to detect GTTR uptake in Cdh23v2J/v2J hair cells. Pre-treatment of wildtype cochleae with the calcium chelator 1,2-bis(o-aminophenoxy) ethane-N,N,N',N'-tetraacetic acid (BAPTA) to disrupt tip-links also effectively reduced GTTR uptake into hair cells. Both Cdh23v2J/v2J and BAPTA-treated hair cells were protected from degeneration caused by gentamicin. Six hours after BAPTA treatment, GTTR uptake remained reduced in comparison to controls; by 24 hours, drug uptake was comparable between untreated and BAPTA-treated hair cells, which again became susceptible to cell death induced by gentamicin. Together, these results provide genetic and pharmacologic evidence that tip-links are required for AG uptake and toxicity in hair cells. Because tip-links can spontaneously regenerate, their temporary breakage offers a limited time window when hair cells are protected from AG toxicity.
Collapse
|
20
|
Abstract
According to current knowledge, it must be assumed that temporary idiopathic hearing loss and its spontaneous remission are based on mechanical and/or pathological alterations in the inner ear. The causal mechanisms might be based on inter-individual variations. Induced by dose-dependent activators, temporary as well as permanent damage might occur. Sudden hearing loss may be initiated by an increase in the local nitric oxide (NO) concentration. Spontaneous remission, i.e. functional restoration, can be explained by a local decrease in the NO concentration. In this context, regulatory systems such as the gap-junction system, blood vessels or synapses might be affected. In addition, alterations in the hormone level of estrogen and mineralocorticoids, as well as cellular glutathione and vitamin levels, might lead to temporary alterations in the inner ear. Recent experimental findings indicate a role for the shuttle protein Survivin in the spontaneous remission of sudden hearing loss.
Collapse
|
21
|
Dynamic changes in hair cell stereocilia and cochlear transduction after noise exposure. Biochem Biophys Res Commun 2011; 409:616-21. [PMID: 21616058 DOI: 10.1016/j.bbrc.2011.05.049] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2011] [Accepted: 05/10/2011] [Indexed: 01/13/2023]
Abstract
The structures of cochlear transduction include stereocilia at the apical surface of hair cells and their connection to the tectorial membrane. The transduction site is one of the loci for noise-induced cochlear damage. Although stereocilia are susceptible to noise, it has been found that in the inner ears of avians, this fragile structure is largely self-repairing and is associated with recovery of hearing sensitivity after noise exposure, as observed in the difference between the temporal threshold shift (TTS) and the permanent threshold shift (PTS). In the mammalian cochleae, however, threshold shifts measured in the auditory brainstem responses (ABR) did not parallel the chronological changes in the stereocilia on hair cells. It is unclear how the morphological recovery of the stereocilia on the mammalian hair cells is correlated with the changes in cochlear transduction that can be assessed by measuring receptor potential. In the present study, guinea pigs were exposed to a broadband noise of 110 dB SPL for 2h. Auditory sensitivity was evaluated using ABR and cochlear transduction was assessed using cochlear microphonics (CM). Stereocilia morphology was quantified at different time points after the noise and compared with the control. The noise produced a TTS of 55.69 ± 14.13 dB in frequency-averaged ABR thresholds. The threshold shift was reduced to 9.58 ± 11.75 dB SPL 1 month later with virtually no loss of hair cells. Damage to the stereocilia immediately after noise exposure was found to be associated with depression of CM amplitude. Virtually no abnormal stereocilia were observed 1month after the noise in association with a fully recovered CM.
Collapse
|
22
|
Acoustic trauma increases cochlear and hair cell uptake of gentamicin. PLoS One 2011; 6:e19130. [PMID: 21552569 PMCID: PMC3084257 DOI: 10.1371/journal.pone.0019130] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2011] [Accepted: 03/16/2011] [Indexed: 02/07/2023] Open
Abstract
Background Exposure to intense sound or high doses of aminoglycoside antibiotics can increase hearing thresholds, induce cochlear dysfunction, disrupt hair cell morphology and promote hair cell death, leading to permanent hearing loss. When the two insults are combined, synergistic ototoxicity occurs, exacerbating cochlear vulnerability to sound exposure. The underlying mechanism of this synergism remains unknown. In this study, we tested the hypothesis that sound exposure enhances the intra-cochlear trafficking of aminoglycosides, such as gentamicin, leading to increased hair cell uptake of aminoglycosides and subsequent ototoxicity. Methods Juvenile C57Bl/6 mice were exposed to moderate or intense sound levels, while fluorescently-conjugated or native gentamicin was administered concurrently or following sound exposure. Drug uptake was then examined in cochlear tissues by confocal microscopy. Results Prolonged sound exposure that induced temporary threshold shifts increased gentamicin uptake by cochlear hair cells, and increased gentamicin permeation across the strial blood-labyrinth barrier. Enhanced intra-cochlear trafficking and hair cell uptake of gentamicin also occurred when prolonged sound, and subsequent aminoglycoside exposure were temporally separated, confirming previous observations. Acute, concurrent sound exposure did not increase cochlear uptake of aminoglycosides. Conclusions Prolonged, moderate sound exposures enhanced intra-cochlear aminoglycoside trafficking into the stria vascularis and hair cells. Changes in strial and/or hair cell physiology and integrity due to acoustic overstimulation could increase hair cell uptake of gentamicin, and may represent one mechanism of synergistic ototoxicity.
Collapse
|
23
|
Development and regeneration of sensory transduction in auditory hair cells requires functional interaction between cadherin-23 and protocadherin-15. J Neurosci 2010; 30:11259-69. [PMID: 20739546 DOI: 10.1523/jneurosci.1949-10.2010] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Tip links are extracellular filaments that connect pairs of hair cell stereocilia and convey tension to mechanosensitive channels. Recent evidence suggests that tip links are formed by calcium-dependent interactions between the N-terminal domains of cadherin-23 (CDH23) and protocadherin-15 (PCDH15). Mutations in either CDH23 or PCDH15 cause deafness in mice and humans, indicating the molecules are required for normal inner ear function. However, there is little physiological evidence to support a direct role for CDH23 and PCDH15 in hair cell mechanotransduction. To investigate the contributions of CDH23 and PCDH15 to mechanotransduction and tip-link formation, we examined outer hair cells of mouse cochleas during development and after chemical disruption of tip links. We found that tip links and mechanotransduction with all the qualitative properties of mature transduction recovered within 24 h after disruption. To probe tip-link formation, we measured transduction currents after extracellular application of recombinant CDH23 and PCDH15 fragments, which included putative interaction domains (EC1). Both fragments inhibited development and regeneration of transduction but did not disrupt transduction in mature cells. PCDH15 fragments that carried a mutation in EC1 that causes deafness in humans did not inhibit transduction development or regeneration. Immunolocalization revealed wild-type fragments bound near the tips of hair cell stereocilia. Scanning electron micrographs revealed that hair bundles exposed to fragments had a reduced number of linkages aligned along the morphological axis of sensitivity of the bundle. Together, the data provide direct evidence implicating CDH23 and PCDH15 proteins in the formation of tip links during development and regeneration of mechanotransduction.
Collapse
|
24
|
Differential activation of mitogen-activated protein kinases and brain-derived neurotrophic factor after temporary or permanent damage to a sensory system. Neuroscience 2009; 165:1439-46. [PMID: 19925854 DOI: 10.1016/j.neuroscience.2009.11.025] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2009] [Revised: 10/28/2009] [Accepted: 11/10/2009] [Indexed: 11/24/2022]
Abstract
Functional and morphological differences between temporary (TTS) and permanent (PTS) hearing loss induced by acoustic trauma are well characterized whereas molecular differences remain to be elucidated. A comparative analysis of the expression of the phosphorylated forms of extracellular signal-regulated kinase (ERK1/2), c-jun-N-terminal kinases 1/2 (JNK1/2) and p38 in the mouse cochlea after acoustic trauma resulting in either a temporary or permanent damage is presented. In the acute phase of PTS an upregulation of phosphorylated p38, JNK1/2, and ERK1/2 was found while in the acute phase of TTS a downregulation of phospho-p38 occurred and no immediate change of pJNK1/2 and pERK1/2 was noted. After a 24 h recovery from TTS JNK1/2 and ERK1/2 was activated while the expression of phospho-p38 was downregulated. In contrast PTS group showed complete recovery to control values for all three MAPKs by 24 h post. The level of brain-derived neurotrophic factor (BDNF), a potent otoprotective agent, was elevated after both types of acoustic trauma but the elevation after permanent trauma was of a longer duration. The expression of BDNF receptor's TrkB (truncated form) was downregulated only after permanent hearing loss. Thus, temporary and permanent hearing loss demonstrate different expression patterns and temporal aspects of MAPK, BDNF and TrkB in the cochlea. The results of this study will help reveal the cellular mechanisms underlying hearing loss induced by acoustic trauma.
Collapse
|
25
|
Schuck JB, Smith ME. Cell proliferation follows acoustically-induced hair cell bundle loss in the zebrafish saccule. Hear Res 2009; 253:67-76. [PMID: 19327392 DOI: 10.1016/j.heares.2009.03.008] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2007] [Revised: 03/11/2009] [Accepted: 03/16/2009] [Indexed: 10/21/2022]
Abstract
Fishes are capable of regenerating sensory hair cells in the inner ear after acoustic trauma. However, a time course of auditory hair cell regeneration has not been established for zebrafish. Adult zebrafish (Danio rerio) were exposed to a 100 Hz pure tone at 179 dB re 1 microPa RMS for 36 h and then allowed to recover for 0-14 days before morphological analysis. Hair cell bundle loss and recovery were determined using phalloidin to visualize hair bundles. Cell proliferation was quantified through bromodeoxyuridine (BrdU) labeling. Immediately following sound exposure, zebrafish saccules exhibited significant hair bundle damage (e.g., splayed, broken, and missing stereocilia) and loss (i.e., missing bundles and lesions in the epithelia) in the caudal region. Hair bundle counts increased over the course of the experiment, reaching pre-treatment levels at 14 days post-sound exposure (dpse). Low levels of proliferation were observed in untreated controls, indicating that some cells of the zebrafish saccule are mitotically active in the absence of a damaging event. In sound-exposed fish, cell proliferation peaked two dpse in the caudal region, and to a lesser extent in the rostral region. This proliferation was followed by an increase in numbers of cuticular plates with rudimentary stereocilia and immature-like hair bundles at 7 and 14 dpse, suggesting that at least some of the saccular cell proliferation resulted in newly formed hair cells. This study establishes a time course of hair cell bundle regeneration in the zebrafish inner ear and demonstrates that cell proliferation is associated with the regenerative process.
Collapse
Affiliation(s)
- Julie B Schuck
- Department of Biology and Biotechnology Center, Western Kentucky University, 1906 College Heights Blvd. #11080, Bowling Green, KY 42104-1080, USA
| | | |
Collapse
|
26
|
Unraveling cadherin 23's role in development and mechanotransduction. Proc Natl Acad Sci U S A 2009; 106:4959-60. [PMID: 19321743 DOI: 10.1073/pnas.0902008106] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
27
|
Shi X, Han W, Yamamoto H, Omelchenko I, Nuttall A. Nitric oxide and mitochondrial status in noise-induced hearing loss. Free Radic Res 2008; 41:1313-25. [PMID: 17963121 DOI: 10.1080/10715760701687117] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Abstract
The study investigated the distribution of nitric oxide (NO) within isolated outer hair cells (OHCs) from the cochlea, its relationship to mitochondria and its modulation of mitochondrial function. Using two fluorescent dyes--4,5-diamino-fluorescein diacetate (DAF-2DA), which detects NO, and tetramethyl rhodamine methyl ester (TMRM+), a mitochondrial membrane potential dye--it was found that a relatively greater amount of the DAF fluorescence in OHCs co-localized with mitochondria in comparison to DAF fluorescence in the cytosole. This study also observed reduced mitochondrial membrane potential of OHCs and increased DAF fluorescence following exposure of the cells to noise (120 dB SPL for 4 h) and to an exogenous NO donor, NOC-7 (>350 mm). Antibody label for nitrotyrosine was also increased, indicating NO-related formation of peroxynitrite in both mitochondria and the cytosol. The results suggest that NO may play an important physiological role in regulating OHC energy status and act as a potential agent in OHC pathology.
Collapse
Affiliation(s)
- Xiaorui Shi
- Oregon Hearing Research Center (NRC04), Portland, OR 97239-3098, USA
| | | | | | | | | |
Collapse
|
28
|
Saunders JC. The role of central nervous system plasticity in tinnitus. JOURNAL OF COMMUNICATION DISORDERS 2007; 40:313-34. [PMID: 17418230 PMCID: PMC2083119 DOI: 10.1016/j.jcomdis.2007.03.006] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2007] [Accepted: 03/01/2007] [Indexed: 05/14/2023]
Abstract
UNLABELLED Tinnitus is a vexing disorder of hearing characterized by sound sensations originating in the head without any external stimulation. The specific etiology of these sensations is uncertain but frequently associated with hearing loss. The "neurophysiogical" model of tinnitus has enhanced appreciation of central nervous system (CNS) contributions. The model assumes that plastic changes in the primary and non-primary auditory pathways contribute to tinnitus with the former perhaps sustaining them, and the latter contributing to perceived severity and emotionality. These plastic changes are triggered by peripheral injury, which results in new patterns of brain activity due to anatomic alterations in the connectivity of CNS neurons. These alterations may change the balance between excitatory and inhibitory brain processes, perhaps producing cascades of new neural activity flowing between brainstem and cortex in a self-sustaining manner that produces persistent perceptions of tinnitus. The bases of this model are explored with an attempt to distinguish phenomenological from mechanistic explanations. LEARNING OUTCOMES (1) Readers will learn that the variables associated with the behavioral experience of tinnitus are as complex as the biological variables. (2) Readers will understand what the concept of neuroplastic brain change means, and how it is associated with tinnitus. (3) Readers will learn that there may be no one brain location associated with tinnitus, and it may result from interactions between multiple brain areas. (4) Readers will learn how disinhibition, spontaneous activity, neural synchronization, and tonotopic reorganization may contribute to tinnitus.
Collapse
Affiliation(s)
- James C Saunders
- Department of Otorhinolaryngololgy, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
29
|
Watson GM, Graugnard EM, Mire P. The involvement of arl-5b in the repair of hair cells in sea anemones. J Assoc Res Otolaryngol 2007; 8:183-93. [PMID: 17332968 PMCID: PMC2538354 DOI: 10.1007/s10162-007-0078-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2006] [Accepted: 01/12/2007] [Indexed: 10/23/2022] Open
Abstract
The subcellular processes involved in repair of hair cells are not well understood. Sea anemones repair hair bundle mechanoreceptors on their tentacles after severe trauma caused by 1-h exposure to calcium-depleted seawater. Repair is dependent on the synthesis and secretion of large protein complexes named "repair proteins." A cDNA library on traumatized anemone tissue was probed using polyclonal antibodies raised to a specific chromatographic fraction of the repair protein mixture. An ADP-ribosylation factor-like protein, Arl-5b, was identified. The amino acid sequence of the Arl-5b protein in sea anemones is similar to that among several model vertebrates and humans. A polyclonal antibody raised to a peptide of the anemone Arl-5b labels some but not all hair bundles in healthy control animals. The abundance of labeled hair bundles significantly increases above healthy controls after trauma and continuing through the first hour of recovery. Dilute anti-Arl-5b blocks the spontaneous repair of hair bundle mechanoreceptors, suggesting that Arl-5b acts on the extracellular face of the plasma membrane. Immunoelectron microscopy indicates that Arl-5b is located along the length of stereocilia including sites in the vicinity of tip links. We propose that Arl-5b is involved in installing replacement linkages into damaged hair bundle mechanoreceptors.
Collapse
Affiliation(s)
- Glen M Watson
- Department of Biology, University of Louisiana at Lafayette, Lafayette, LA 70504-2451, USA.
| | | | | |
Collapse
|
30
|
Smith ME, Coffin AB, Miller DL, Popper AN. Anatomical and functional recovery of the goldfish (Carassius auratus) ear following noise exposure. ACTA ACUST UNITED AC 2007; 209:4193-202. [PMID: 17050834 DOI: 10.1242/jeb.02490] [Citation(s) in RCA: 81] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fishes can regenerate lateral line and inner ear sensory hair cells that have been lost following exposure to ototoxic antibiotics. However, regenerative capabilities following noise exposure have not been explored in fish. Moreover, nothing is known about the functional relationship between hair cell damage and hearing loss, or the time course of morphological versus functional recovery in fishes. This study examines the relationship between hair cell damage and physiological changes in auditory responses following noise exposure in the goldfish (Carassius auratus). Goldfish were exposed to white noise (170 dB re. 1 muPa RMS) for 48 h and monitored for 8 days after exposure. Auditory thresholds were determined using the auditory evoked potential technique, and morphological hair cell damage was analyzed using phalloidin and DAPI labeling to visualize hair cell bundles and nuclei. A TUNEL assay was used to identify apoptotic cells. Following noise exposure, goldfish exhibited a significant temporary threshold shift (TTS; ranging from 13 to 20 dB) at all frequencies tested (from 0.2-2 kHz). By 7 days post-exposure, goldfish hearing recovered significantly (mean TTS<4 dB). Increased apoptotic activity was observed in the saccules and lagenae between 0 and 2 days post-exposure. Immediately after noise exposure, the central and caudal regions of saccules exhibited significant loss of hair bundles. Hair bundle density in the central saccule recovered by the end of the experiment (8 days post-exposure) while bundle density in the caudal saccule did not return to control levels in this time frame. These data demonstrate that goldfish inner ear epithelia show damage following noise exposure and that they are capable of significant regenerative responses similar to those seen following ototoxic drug treatment. Interestingly, functional recovery preceded morphological recovery in the goldfish saccule, suggesting that only a subset of hair cells are necessary for normal auditory responses, at least to the extent that hearing was measured in this study.
Collapse
Affiliation(s)
- Michael E Smith
- Department of Biology and Center for Comparative and Evolutionary Biology of Hearing, University of Maryland, College Park, MD 20742, USA.
| | | | | | | |
Collapse
|
31
|
Furman AC, Avissar M, Saunders JC. The effects of intense sound exposure on phase locking in the chick (Gallus domesticus) cochlear nerve. Eur J Neurosci 2006; 24:2003-10. [PMID: 17067297 DOI: 10.1111/j.1460-9568.2006.05068.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Little is known about changes that occur to phase locking in the auditory nerve following exposure to intense and damaging levels of sound. The present study evaluated synchronization in the discharge patterns of cochlear nerve units collected from two groups of young chicks (Gallus domesticus), one shortly after removal from an exposure to a 120-dB, 900-Hz pure tone for 48 h and the other from a group of non-exposed control animals. Spontaneous activity, the characteristic frequency (CF), CF threshold and a phase-locked peri-stimulus time histogram were obtained for every unit in each group. Vector strength and temporal dispersion were calculated from these peri-stimulus time histograms, and plotted against the unit's CF. All parameters of unit responses were then compared between control and exposed units. The results in exposed units revealed that CF thresholds were elevated by 30-35 dB whereas spontaneous activity declined by 24%. In both control and exposed units a high degree of synchronization was observed in the low frequencies. The level of synchronization above approximately 0.5 kHz then systematically declined. The vector strengths in units recorded shortly after removal from the exposure were identical to those seen in control chicks. The deterioration in discharge activity of exposed units, seen in CF threshold and spontaneous activity, contrasted with the total absence of any overstimulation effect on synchronization. This suggested that synchronization arises from mechanisms unscathed by the acoustic trauma induced by the exposure.
Collapse
Affiliation(s)
- Adam C Furman
- Auditory Research Laboratory, Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, 5-Ravdin-ORL, 3400 Spruce Street, Philadelphia, PA 19104, USA.
| | | | | |
Collapse
|
32
|
|
33
|
Ipakchi R, Kyin T, Saunders JC. Loss and recovery of sound-evoked otoacoustic emissions in young chicks following acoustic trauma. Audiol Neurootol 2005; 10:209-19. [PMID: 15809500 DOI: 10.1159/000084842] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2004] [Accepted: 12/20/2004] [Indexed: 11/19/2022] Open
Abstract
Young and adult chickens exhibit substantial inner-ear damage and post-exposure deterioration in cochlear nerve activity following exposure to intense sound. Both the structural and functional losses largely recover in both age groups within 2-4 weeks after exposure. However, some aspects of acoustic trauma differ between the young and adult chicken ear. Overstimulation in the young chick causes considerable post-exposure loss and then recovery of the steady-state endocochlear potential, while in the adult animal there is little post-exposure effect on this potential. Moreover, in adults there is post-exposure loss but little recovery in the distortion product otoacoustic emission (DPOAE). The present study explores the possibility of an age difference in the effects of overstimulation on the DPOAE by examining these emissions in young chicks following exposure to an intense pure tone. Chicks exposed to intense sound were formed into groups at 0 and 12 days of recovery, and these were complemented by two additional groups of age-matched controls. The cubic difference tone emission (the 2f(1)-f(2) DPOAE component) was measured at 9 levels for 13 frequencies in all groups. Shortly after the exposure, the DPOAE reliably declined with the maximum loss at or above the exposure tone frequency. The exposed chicks examined 12 days after exposure showed complete recovery of the DPOAE. It would appear that 12 days of recovery sufficiently repaired inner ear damage to completely restore DPOAE production. This result is different from that in adult chicken and may be related to the greater severity of acoustic damage in the adult ear, a reduced susceptibility of the young ear to acoustic trauma, or the ability of the young animal to more successfully repair the inner ear.
Collapse
Affiliation(s)
- Ramin Ipakchi
- Department of Otorhinolaryngology, Head and Neck Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
34
|
Abstract
Stereocilia tip links on chick short hair cells (SHCs) were counted in the 'patch' lesion produced by acoustic overstimulation. Tip links were also counted on tall hair cells (THCs) immediately superior to the lesion. Eight groups were studied with three exposed to intense sound for differing durations. Three other groups were allowed to recover from the longest exposure for different time periods. Tip link counts from non-exposed control hair cells came from two other groups. Chicks exposed for 4, 24 or 48 h to a 120-dB SPL 0.9-kHz pure tone showed SHC tip link loss of 30.3, 40.6, and 35.5%, respectively. Chicks exposed for 48 h were allowed to recover for 24, 96 or 288 h, and showed systematic tip link recovery to control levels. Tip link loss and recovery in THCs adjacent to the patch lesion were identical to that seen in SHCs. After 288 h of recovery, surviving SHCs were distinguished from newly regenerated SHCs in the patch lesion. A comparison of tip link presence in the surviving (74%) and regenerated (84%) SHCs revealed a significant difference. These results suggest that the process of tip link destruction and recovery following acoustic overstimulation is the same for THCs and SHCs. This observation is surprising based on differences in the degree of acoustic injury to THC and SHC regions of the papillae, and the difference between THC and SHC sensory hair bundle stimulation.
Collapse
Affiliation(s)
- Rachel Kurian
- Department of Otorhinolaryngology: Head and Neck Surgery, University of Pennsylvania, 5-Ravdin-ORL, 3400 Spruce St., Philadelphia, PA 19104, USA
| | | | | |
Collapse
|
35
|
Abstract
Blind cave fish employ superficial neuromasts to detect currents [Baker, C.F. and J.C. Montgomery, J. Comp. Physiol. A 184 (1999) 519-527]. Briefly exposing fish to calcium-free water significantly reduces the ability of the fish to perform rheotaxis (i.e., to orient properly in currents). Spontaneous recovery to control levels of rheotaxis requires 9 days. However, if the fish are treated with fraction beta immediately after exposure to calcium-free water, recovery to control levels of rheotaxis occurs within 1.3 h, the first time point tested. Fraction beta is a chromatographic fraction of 'repair proteins' isolated from sea anemones. The benefits of fraction beta on restoring rheotaxis exhibit dose dependency with the minimum effective dose estimated at 1 ng/ml. Exogenously supplied ATP augments the efficacy of fraction beta. Such augmentation is abolished by PPADS, an inhibitor of purinoceptors. Immunocytochemistry confirms the presence of purinoceptors in superficial neuromasts. The present results suggest that 'repair proteins' obtained from anemones significantly augment intrinsic repair mechanisms in fish. Furthermore, the data obtained in the fish system strongly parallel our previously published findings on sea anemones, raising the possibility that mechanisms of hair bundle repair may be evolutionarily conserved.
Collapse
Affiliation(s)
- Astrid Berg
- Department of Biology, University of Louisiana at Lafayette, 411 E. St. Mary Boulevard, Lafayette, LA 70504-2451, USA
| | | |
Collapse
|
36
|
Abstract
The ability of a fish to interpret acoustic information in its environment is crucial for its survival. Thus, it is important to understand how underwater noise affects fish hearing. In this study, the fathead minnow (Pimephales promelas) was used to examine: (1) the immediate effects of white noise exposure (0.3-4.0 kHz, 142 dB re: 1 microPa) on auditory thresholds and (2) recovery after exposure. Audiograms were measured using the auditory brainstem response protocol and compared to baseline audiograms of fathead minnows not exposed to noise. Immediately after exposure to 24 h of white noise, five out of the eight frequencies tested showed a significantly higher threshold compared to the baseline fish. Recovery was found to depend on both duration of noise exposure and auditory frequency. These results support the hypothesis that the auditory threshold of the fathead minnow can be altered by white noise, especially in its most sensitive hearing range (0.8-2.0 kHz), and provide evidence that these effects can be long term (>14 days).
Collapse
Affiliation(s)
- A R Scholik
- Mechanosensory Physiology Laboratory, School of Biological Sciences, University of Kentucky, Lexington, KY 40506, USA.
| | | |
Collapse
|