1
|
Szelenyi ER, Fisenne D, Knox JE, Harris JA, Gornet JA, Palaniswamy R, Kim Y, Venkataraju KU, Osten P. Distributed X chromosome inactivation in brain circuitry is associated with X-linked disease penetrance of behavior. Cell Rep 2024; 43:114068. [PMID: 38614085 PMCID: PMC11107803 DOI: 10.1016/j.celrep.2024.114068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 02/05/2024] [Accepted: 03/21/2024] [Indexed: 04/15/2024] Open
Abstract
The precise anatomical degree of brain X chromosome inactivation (XCI) that is sufficient to alter X-linked disorders in females is unclear. Here, we quantify whole-brain XCI at single-cell resolution to discover a prevalent activation ratio of maternal to paternal X at 60:40 across all divisions of the adult brain. This modest, non-random XCI influences X-linked disease penetrance: maternal transmission of the fragile X mental retardation 1 (Fmr1)-knockout (KO) allele confers 55% of total brain cells with mutant X-active, which is sufficient for behavioral penetrance, while 40% produced from paternal transmission is tolerated. Local XCI mosaicism within affected maternal Fmr1-KO mice further specifies sensorimotor versus social anxiety phenotypes depending on which distinct brain circuitry is most affected, with only a 50%-55% mutant X-active threshold determining penetrance. Thus, our results define a model of X-linked disease penetrance in females whereby distributed XCI among single cells populating brain circuitries can regulate the behavioral penetrance of an X-linked mutation.
Collapse
Affiliation(s)
- Eric R Szelenyi
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Program in Neuroscience, Stony Brook University, Neurobiology and Behavior, Stony Brook, NY 11794, USA.
| | - Danielle Fisenne
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Hofstra University, Hempstead, NY 11549, USA; Certerra, Inc., Farmingdale, NY 11735, USA
| | - Joseph E Knox
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - Julie A Harris
- Allen Institute for Brain Science, Seattle, WA 98109, USA
| | - James A Gornet
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; Columbia University, New York, NY 10027, USA
| | | | - Yongsoo Kim
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA; College of Medicine, Penn State University, Hershey, PA 17033, USA
| | | | - Pavel Osten
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY 11724, USA
| |
Collapse
|
2
|
Fang X, Butler KM, Abidi F, Gass J, Beisang A, Feyma T, Ryther RC, Standridge S, Heydemann P, Jones M, Haas R, Lieberman DN, Marsh E, Benke TA, Skinner S, Neul JL, Percy AK, Friez MJ, Caylor RC. Analysis of X-inactivation status in a Rett syndrome natural history study cohort. Mol Genet Genomic Med 2022; 10:e1917. [PMID: 35318820 PMCID: PMC9034674 DOI: 10.1002/mgg3.1917] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is a rare neurodevelopmental disorder associated with pathogenic MECP2 variants. Because the MECP2 gene is subject to X-chromosome inactivation (XCI), factors including MECP2 genotypic variation, tissue differences in XCI, and skewing of XCI all likely contribute to the clinical severity of individuals with RTT. METHODS We analyzed the XCI patterns from blood samples of 320 individuals and their mothers. It includes individuals with RTT (n = 287) and other syndromes sharing overlapping phenotypes with RTT (such as CDKL5 Deficiency Disorder [CDD, n = 16]). XCI status in each proband/mother duo and the parental origin of the preferentially inactivated X chromosome were analyzed. RESULTS The average XCI ratio in probands was slightly increased compared to their unaffected mothers (73% vs. 69%, p = .0006). Among the duos with informative XCI data, the majority of individuals with classic RTT had their paternal allele preferentially inactivated (n = 180/220, 82%). In sharp contrast, individuals with CDD had their maternal allele preferentially inactivated (n = 10/12, 83%). Our data indicate a weak positive correlation between XCI skewing ratio and clinical severity scale (CSS) scores in classic RTT patients with maternal allele preferentially inactivated XCI (rs = 0.35, n = 40), but not in those with paternal allele preferentially inactivated XCI (rs = -0.06, n = 180). The most frequent MECP2 pathogenic variants were enriched in individuals with highly/moderately skewed XCI patterns, suggesting an association with higher levels of XCI skewing. CONCLUSION These results extend our understanding of the pathogenesis of RTT and other syndromes with overlapping clinical features by providing insight into the both XCI and the preferential XCI of parental alleles.
Collapse
Affiliation(s)
- Xiaolan Fang
- Greenwood Genetic CenterGreenwoodSouth CarolinaUSA
| | | | - Fatima Abidi
- Greenwood Genetic CenterGreenwoodSouth CarolinaUSA
| | - Jennifer Gass
- Florida Cancer Specialists & Research InstituteFort MyersFLUSA,Present address:
Florida Cancer Specialists & Research InstituteFort MyersFloridaUSA
| | - Arthur Beisang
- Gillette Children’s Specialty HealthcareSt. PaulMinnesotaUSA
| | - Timothy Feyma
- Gillette Children’s Specialty HealthcareSt. PaulMinnesotaUSA
| | - Robin C. Ryther
- Department of NeurologyWashington University School of MedicineSt. LouisMissouriUSA
| | - Shannon Standridge
- Division of NeurologyCincinnati Children’s Hospital Medical CenterCincinnatiOhioUSA,Department of Pediatrics, College of MedicineUniversity of CincinnatiCincinnatiOhioUSA
| | | | - Mary Jones
- Oakland Children’s Hospital, UCSFOaklandCaliforniaUSA
| | - Richard Haas
- University of California San DiegoSan DiegoCaliforniaUSA
| | - David N Lieberman
- Department of NeurologyBoston Children’s HospitalBostonMassachusettsUSA
| | - Eric D. Marsh
- Children’s Hospital of Philadelphia and University of PennsylvaniaPhiladelphiaPennsylvaniaUSA
| | - Tim A. Benke
- University of Colorado School of Medicine, Children’s Hospital Colorado‐AuroraDenverColoradoUSA
| | | | - Jeffrey L. Neul
- Vanderbilt Kennedy CenterVanderbilt University Medical CenterNashville TN
| | - Alan K. Percy
- The University of Alabama at BirminghamBirminghamAlabamaUSA
| | | | | |
Collapse
|
3
|
Collins BE, Neul JL. Rett Syndrome and MECP2 Duplication Syndrome: Disorders of MeCP2 Dosage. Neuropsychiatr Dis Treat 2022; 18:2813-2835. [PMID: 36471747 PMCID: PMC9719276 DOI: 10.2147/ndt.s371483] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused predominantly by loss-of-function mutations in the gene Methyl-CpG-binding protein 2 (MECP2), which encodes the MeCP2 protein. RTT is a MECP2-related disorder, along with MECP2 duplication syndrome (MDS), caused by gain-of-function duplications of MECP2. Nearly two decades of research have advanced our knowledge of MeCP2 function in health and disease. The following review will discuss MeCP2 protein function and its dysregulation in the MECP2-related disorders RTT and MDS. This will include a discussion of the genetic underpinnings of these disorders, specifically how sporadic X-chromosome mutations arise and manifest in specific populations. We will then review current diagnostic guidelines and clinical manifestations of RTT and MDS. Next, we will delve into MeCP2 biology, describing the dual landscapes of methylated DNA and its reader MeCP2 across the neuronal genome as well as the function of MeCP2 as a transcriptional modulator. Following this, we will outline common MECP2 mutations and genotype-phenotype correlations in both diseases, with particular focus on mutations associated with relatively mild disease in RTT. We will also summarize decades of disease modeling and resulting molecular, synaptic, and behavioral phenotypes associated with RTT and MDS. Finally, we list several therapeutics in the development pipeline for RTT and MDS and available evidence of their safety and efficacy.
Collapse
Affiliation(s)
- Bridget E Collins
- Medical Scientist Training Program, Vanderbilt University, Nashville, TN, USA
| | - Jeffrey L Neul
- Vanderbilt Kennedy Center, Departments of Pediatrics, Pharmacology, and Special Education, Vanderbilt University Medical Center and Vanderbilt University, Nashville, TN, USA
| |
Collapse
|
4
|
Shah J, Patel H, Jain D, Sheth F, Sheth H. A rare case of a male child with post-zygotic de novo mosaic variant c.538C > T in MECP2 gene: a case report of Rett syndrome. BMC Neurol 2021; 21:469. [PMID: 34856927 PMCID: PMC8638266 DOI: 10.1186/s12883-021-02500-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/21/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Rett syndrome (RTT) is characterized by a normal perinatal period with a normal head size at birth followed by normal development for the first 6 months of life followed by gradual deceleration of head growth, loss of acquired purposeful hand skills, severe expressive and receptive language impairment, severe intellectual disability and gait and truncal apraxia/ ataxia. It is caused due to mutations in the MECP2 gene and follows an X-linked dominant mode of inheritance. It was observed exclusively in females and was believed to be lethal in males. In contrast to this belief, several males were identified with RTT upon genetic analysis, however, most males expired by the age of 2 years due to neonatal encephalopathy. The ones that survived beyond the age of 2 years, were attributed to the presence of an extra X chromosome (co-occurrence of Klinefelter and RTT) or the ones having mosaic cell lines. Only 11 males with somatic mosaicism are known till date. CASE PRESENTATION This case reports an ultra-rare case of a male affected with RTT surviving beyond the age of 2 years due to post-zygotic de novo somatic mosaicism. He was identified with a known pathogenic variant c.538C > T (p.R180*), which to the best of our knowledge is exclusively seen in females and has never been reported in a male before. CONCLUSION The present case is the first report of a mosaic male affected with RTT from India. The present report also carried out genotype-phenotype correlations across surviving mosaic males with RTT. We also postulate the effect of variant type, position along the gene and the variant allele fraction in different tissue types to be correlated with disease severity.
Collapse
Affiliation(s)
- Jhanvi Shah
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, 380015, Ahmedabad, India
| | | | - Deepika Jain
- Shishu Child Development and Early Intervention Centre, Ahmedabad, India
| | - Frenny Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, 380015, Ahmedabad, India.
| | - Harsh Sheth
- FRIGE's Institute of Human Genetics, FRIGE House, Jodhpur Gam Road, Satellite, 380015, Ahmedabad, India.
| |
Collapse
|
5
|
Gomes AR, Fernandes TG, Cabral JM, Diogo MM. Modeling Rett Syndrome with Human Pluripotent Stem Cells: Mechanistic Outcomes and Future Clinical Perspectives. Int J Mol Sci 2021; 22:3751. [PMID: 33916879 PMCID: PMC8038474 DOI: 10.3390/ijms22073751] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 03/23/2021] [Accepted: 04/02/2021] [Indexed: 12/19/2022] Open
Abstract
Rett syndrome (RTT) is a neurodevelopmental disorder caused by mutations in the gene encoding the methyl-CpG-binding protein 2 (MeCP2). Among many different roles, MeCP2 has a high phenotypic impact during the different stages of brain development. Thus, it is essential to intensively investigate the function of MeCP2, and its regulated targets, to better understand the mechanisms of the disease and inspire the development of possible therapeutic strategies. Several animal models have greatly contributed to these studies, but more recently human pluripotent stem cells (hPSCs) have been providing a promising alternative for the study of RTT. The rapid evolution in the field of hPSC culture allowed first the development of 2D-based neuronal differentiation protocols, and more recently the generation of 3D human brain organoid models, a more complex approach that better recapitulates human neurodevelopment in vitro. Modeling RTT using these culture platforms, either with patient-specific human induced pluripotent stem cells (hiPSCs) or genetically-modified hPSCs, has certainly contributed to a better understanding of the onset of RTT and the disease phenotype, ultimately allowing the development of high throughput drugs screening tests for potential clinical translation. In this review, we first provide a brief summary of the main neurological features of RTT and the impact of MeCP2 mutations in the neuropathophysiology of this disease. Then, we provide a thorough revision of the more recent advances and future prospects of RTT modeling with human neural cells derived from hPSCs, obtained using both 2D and organoids culture systems, and its contribution for the current and future clinical trials for RTT.
Collapse
Affiliation(s)
- Ana Rita Gomes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
- Instituto de Medicina Molecular-João Lobo Antunes, Faculdade de Medicina da Universidade de Lisboa, 1649-028 Lisboa, Portugal
| | - Tiago G. Fernandes
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Joaquim M.S. Cabral
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Maria Margarida Diogo
- Department of Bioengineering and IBB-Institute for Bioengineering and Biosciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; (A.R.G.); (T.G.F.); (J.M.S.C.)
- Associate Laboratory i4HB-Institute for Health and Bioeconomy, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| |
Collapse
|
6
|
D'Mello SR. MECP2 and the Biology of MECP2 Duplication Syndrome. J Neurochem 2021; 159:29-60. [PMID: 33638179 DOI: 10.1111/jnc.15331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 01/21/2021] [Accepted: 02/18/2021] [Indexed: 11/27/2022]
Abstract
MECP2 duplication syndrome (MDS), a rare X-linked genomic disorder affecting predominantly males, is caused by duplication of the chromosomal region containing the methyl CpG binding protein-2 (MECP2) gene, which encodes methyl-CpG-binding protein 2 (MECP2), a multi-functional protein required for proper brain development and maintenance of brain function during adulthood. Disease symptoms include severe motor and cognitive impairment, delayed or absent speech development, autistic features, seizures, ataxia, recurrent respiratory infections and shortened lifespan. The cellular and molecular mechanisms by which a relatively modest increase in MECP2 protein causes such severe disease symptoms are poorly understood and consequently there are no treatments available for this fatal disorder. This review summarizes what is known to date about the structure and complex regulation of MECP2 and its many functions in the developing and adult brain. Additionally, recent experimental findings on the cellular and molecular underpinnings of MDS based on cell culture and mouse models of the disorder are reviewed. The emerging picture from these studies is that MDS is a neurodegenerative disorder in which neurons die in specific parts of the central nervous system, including the cortex, hippocampus, cerebellum and spinal cord. Neuronal death likely results from astrocytic dysfunction, including a breakdown of glutamate homeostatic mechanisms. The role of elevations in the expression of glial acidic fibrillary protein (GFAP) in astrocytes and the microtubule-associated protein, Tau, in neurons to the pathogenesis of MDS is discussed. Lastly, potential therapeutic strategies to potentially treat MDS are discussed.
Collapse
|
7
|
Pejhan S, Del Bigio MR, Rastegar M. The MeCP2E1/E2-BDNF- miR132 Homeostasis Regulatory Network Is Region-Dependent in the Human Brain and Is Impaired in Rett Syndrome Patients. Front Cell Dev Biol 2020; 8:763. [PMID: 32974336 PMCID: PMC7471663 DOI: 10.3389/fcell.2020.00763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/21/2020] [Indexed: 11/13/2022] Open
Abstract
Rett Syndrome (RTT) is a rare and progressive neurodevelopmental disorder that is caused by de novo mutations in the X-linked Methyl CpG binding protein 2 (MECP2) gene and is subjected to X-chromosome inactivation. RTT is commonly associated with neurological regression, autistic features, motor control impairment, seizures, loss of speech and purposeful hand movements, mainly affecting females. Different animal and cellular model systems have tremendously contributed to our current knowledge about MeCP2 and RTT. However, the majority of these findings remain unexamined in the brain of RTT patients. Based on previous studies in rodent brains, the highly conserved neuronal microRNA “miR132” was suggested to be an inhibitor of MeCP2 expression. The neuronal miR132 itself is induced by Brain Derived Neurotrophic Factor (BDNF), a neurotransmitter modulator, which in turn is controlled by MeCP2. This makes the basis of the MECP2-BDNF-miR132 feedback regulatory loop in the brain. Here, we studied the components of this feedback regulatory network in humans, and its possible impairment in the brain of RTT patients. In this regard, we evaluated the transcript and protein levels of MECP2/MeCP2E1 and E2 isoforms, BDNF/BDNF, and miR132 (both 3p and 5p strands) by real time RT-PCR, Western blot, and ELISA in four different regions of the human RTT brains and their age-, post-mortem delay-, and sex-matched controls. The transcript level of the studied elements was significantly compromised in RTT patients, even though the change was not identical in different parts of the brain. Our data indicates that MeCP2E1/E2-BDNF protein levels did not follow their corresponding transcript trends. Correlational studies suggested that the MECP2E1/E2-BDNF-miR132 homeostasis regulation might not be similarly controlled in different parts of the human brain. Despite challenges in evaluating autopsy samples in rare diseases, our findings would help to shed some light on RTT pathobiology, and obscurities caused by limited studies on MeCP2 regulation in the human brain.
Collapse
Affiliation(s)
- Shervin Pejhan
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Marc R Del Bigio
- Department of Pathology, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Mojgan Rastegar
- Regenerative Medicine Program, Department of Biochemistry and Medical Genetics, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
8
|
Brain-enriched microRNAs circulating in plasma as novel biomarkers for Rett syndrome. PLoS One 2019; 14:e0218623. [PMID: 31291284 PMCID: PMC6619658 DOI: 10.1371/journal.pone.0218623] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 06/05/2019] [Indexed: 12/13/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused by mutations in the X-linked gene MECP2 (methyl-CpG-binding protein 2). Minimally invasive and accurate biomarkers of disease progression and treatment response could facilitate screening of therapeutic compounds in animal models, enrollment of better-defined participants into clinical trials, and treatment monitoring. In this study, we used a targeted approach based on analysis of brain-enriched microRNAs (miRNAs) circulating in plasma to identify miRNA biomarkers of RTT using Mecp2-mutant mice as a model system and human plasma samples. An “miRNA pair” approach, i.e. the ratio between two miRNAs, was used for data normalization. Specific miRNA pairs and their combinations (classifiers) analyzed in plasma differentiated wild-type from Mecp2 male and female mice with >90% accuracy. Individual miRNA pairs were more effective in distinguishing male (homozygous) animals than female (heterozygous) animals, suggesting that disease severity correlated with the levels of the miRNA biomarkers. In the human study, 30 RTT patients were compared with age-matched controls. The results of this study showed that miRNA classifiers were able to differentiate RTT patients from controls with 85–100% sensitivity. In addition, a comparison of various age groups demonstrated that the dynamics in levels of miRNAs appear to be associated with disease development (involvement of liver, muscle and lipid metabolism in the pathology). Importantly, certain miRNA biomarker pairs were common to both the animal models and human subjects, indicating the similarity between the underlying pathological processes. The data generated in this feasibility study suggest that circulating miRNAs have the potential to be developed as markers of RTT progression and treatment response. Larger clinical studies are needed to further evaluate the findings presented here.
Collapse
|
9
|
Chin EWM, Lim WM, Ma D, Rosales FJ, Goh ELK. Choline Rescues Behavioural Deficits in a Mouse Model of Rett Syndrome by Modulating Neuronal Plasticity. Mol Neurobiol 2019; 56:3882-3896. [PMID: 30220058 PMCID: PMC6505515 DOI: 10.1007/s12035-018-1345-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Accepted: 09/05/2018] [Indexed: 12/16/2022]
Abstract
Rett syndrome (RTT) is a postnatal neurodevelopmental disorder that primarily affects girls, with 95% of RTT cases resulting from mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Choline, a dietary micronutrient found in most foods, has been shown to be important for brain development and function. However, the exact effects and mechanisms are still unknown. We found that 13 mg/day (1.7 × required daily intake) of postnatal choline treatment to Mecp2-conditional knockout mice rescued not only deficits in motor coordination, but also their anxiety-like behaviour and reduced social preference. Cortical neurons in the brains of Mecp2-conditional knockout mice supplemented with choline showed enhanced neuronal morphology and increased density of dendritic spines. Modelling RTT in vitro by knocking down the expression of the MeCP2 protein with shRNA, we found that choline supplementation to MeCP2-knockdown neurons increased their soma sizes and the complexity of their dendritic arbors. Rescue of the morphological defects could lead to enhanced neurotransmission, as suggested by an observed trend of increased expression of synaptic proteins and restored miniature excitatory postsynaptic current frequency in choline-supplemented MeCP2-knockdown neurons. Through the use of specific inhibitors targeting each of the known physiological pathways of choline, synthesis of phosphatidylcholine from choline was found to be essential in bringing about the changes seen in the choline-supplemented MeCP2-knockdown neurons. Taken together, these data reveal a role of choline in modulating neuronal plasticity, possibly leading to behavioural changes, and hence, a potential for using choline to treat RTT.
Collapse
Affiliation(s)
- Eunice W M Chin
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, 20 College Road, Singapore, 169856, Singapore
- Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Wee Meng Lim
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, 20 College Road, Singapore, 169856, Singapore
- Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore
- NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, 117456, Singapore
| | - Dongliang Ma
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, 20 College Road, Singapore, 169856, Singapore
- Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore
| | | | - Eyleen L K Goh
- Neuroscience Academic Clinical Programme, Duke-NUS Medical School, 20 College Road, Singapore, 169856, Singapore.
- Department of Research, National Neuroscience Institute, Singapore, 308433, Singapore.
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.
- KK Research Center, KK Women's and Children's Hospital, Singapore, 229899, Singapore.
| |
Collapse
|
10
|
Sbardella D, Tundo GR, Campagnolo L, Valacchi G, Orlandi A, Curatolo P, Borsellino G, D'Esposito M, Ciaccio C, Cesare SD, Pierro DD, Galasso C, Santarone ME, Hayek J, Coletta M, Marini S. Retention of Mitochondria in Mature Human Red Blood Cells as the Result of Autophagy Impairment in Rett Syndrome. Sci Rep 2017; 7:12297. [PMID: 28951555 PMCID: PMC5614985 DOI: 10.1038/s41598-017-12069-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 09/04/2017] [Indexed: 02/06/2023] Open
Abstract
Rett Syndrome (RTT), which affects approximately 1:10.000 live births, is a X-linked pervasive neuro-developmental disorder which is caused, in the vast majority of cases, by a sporadic mutation in the Methyl-CpG-binding protein-2 (MeCP2) gene. This is a transcriptional activator/repressor with presumed pleiotropic activities. The broad tissue expression of MeCP2 suggests that it may be involved in several metabolic pathways, but the molecular mechanisms which provoke the onset and progression of the syndrome are largely unknown. In this paper, we report that primary fibroblasts that have been isolated from RTT patients display a defective formation of autophagosomes under conditions of nutrient starvation and that the mature Red Blood Cells of some RTT patients retain mitochondria. Moreover, we provide evidence regarding the accumulation of the p62/SQSTM1 protein and ubiquitin-aggregated structures in the cerebellum of Mecp2 knockout mouse model (Mecp2−/y) during transition from the non-symptomatic to the symptomatic stage of the disease. Hence, we propose that a defective autophagy could be involved in the RTT clinical phenotype, which introduces new molecular perspectives in the pathogenesis of the syndrome.
Collapse
Affiliation(s)
- Diego Sbardella
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Grazia Raffaella Tundo
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Luisa Campagnolo
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Giuseppe Valacchi
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy.,Plant for Human Health Institute, North Carolina State University, Kannapolis, NC, USA
| | - Augusto Orlandi
- Department of Biomedicine and Prevention, University of Rome Tor Vergata, Rome, Italy
| | - Paolo Curatolo
- Department of Medicine of Systems, University of Tor Vergata, Rome, Italy
| | | | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A.Buzzati Traverso", Naples, Italy.,IRCCS Neuromed, Pozzuoli, (Is), Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Silvia Di Cesare
- University Department of Pediatrics, Bambino Gesù Children's Hospital, University of Rome Tor Vergata, Rome, Italy
| | - Donato Di Pierro
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Cinzia Galasso
- Department of Medicine of Systems, University of Tor Vergata, Rome, Italy
| | | | - Joussef Hayek
- Child Neuropsychiatry Unit, University Hospital, Azienda Ospedaliera Universitaria Senese (AOUS), Siena, Italy
| | - Massimiliano Coletta
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Rome, Italy.
| |
Collapse
|
11
|
Exome sequence identified a c.320A > G ALG13 variant in a female with infantile epileptic encephalopathy with normal glycosylation and random X inactivation: Review of the literature. Eur J Med Genet 2017; 60:541-547. [PMID: 28778787 DOI: 10.1016/j.ejmg.2017.07.014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 07/12/2017] [Accepted: 07/30/2017] [Indexed: 12/24/2022]
Abstract
Congenital Disorders of Glycosylation (CDG) are new and rapidly expanding neurometabolic disorders with multisystem involvements, broad phenotypic manifestations, and variable severity. The majority results from a defect of one of the steps involved with protein or lipid N-glycosylation pathway. Almost all are inherited in autosomal recessive patterns with a few exceptions such as the X-linked ALG13. Mutations of ALG13 are reported, so far in only 10 patients, all were ascertained through exome/genome sequencing. Specifically, the ALG13 c.320A > G (p.Asn107Ser) variant was reported only in females and in all were de novo mutations. These findings may suggest an X-linked dominant inheritance of this mutation with embryonic male lethality. These patients presented with severe infantile epileptic encephalopathy, global developmental delay, and multisystem abnormalities. Only two of these females had glycosylation studies done, and both showed normal pattern of glycosylated serum transferrin isoforms, and none had their X-chromosome inactivation patterns studied. Here, we report on another female patient who is heterozygous for the same ALG13 c.320A > G (p.Asn107Ser) variant. She presented with infantile spasms, epileptic encephalopathy, hypsarrhythmia, hypotonia, developmental delay, intellectual disability, abnormal coagulation profile, feeding problems, hypotonia, and dysmorphic features. The diagnosis of CGD was suspected clinically, but glycosylation studies were done twice and showed normal patterns on both occasions. Her X-inactivation study was also done and, surprisingly, showed a random pattern of X-inactivation, with no evidence of skewness.
Collapse
|
12
|
The Crucial Role of DNA Methylation and MeCP2 in Neuronal Function. Genes (Basel) 2017; 8:genes8050141. [PMID: 28505093 PMCID: PMC5448015 DOI: 10.3390/genes8050141] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2017] [Revised: 04/25/2017] [Accepted: 05/05/2017] [Indexed: 12/16/2022] Open
Abstract
A neuron is unique in its ability to dynamically modify its transcriptional output in response to synaptic activity while maintaining a core gene expression program that preserves cellular identity throughout a lifetime that is longer than almost every other cell type in the body. A contributing factor to the immense adaptability of a neuron is its unique epigenetic landscape that elicits locus-specific alterations in chromatin architecture, which in turn influences gene expression. One such epigenetic modification that is sensitive to changes in synaptic activity, as well as essential for maintaining cellular identity, is DNA methylation. The focus of this article is on the importance of DNA methylation in neuronal function, summarizing recent studies on critical players in the establishment of (the “writing”), the modification or erasure of (the “editing”), and the mediation of (the “reading”) DNA methylation in neurodevelopment and neuroplasticity. One “reader” of DNA methylation in particular, methyl-CpG-binding protein 2 (MeCP2), is highlighted, given its undisputed importance in neuronal function.
Collapse
|
13
|
Peng J. [MECP2 gene and MECP2-related diseases]. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2017; 19:494-497. [PMID: 28506335 PMCID: PMC7389123 DOI: 10.7499/j.issn.1008-8830.2017.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/10/2017] [Indexed: 06/07/2023]
Affiliation(s)
- Jing Peng
- Department of Pediatrics, Xiangya Hospital, Central South University, Changsha 410008, China
| |
Collapse
|
14
|
Differential X Chromosome Inactivation Patterns during the Propagation of Human Induced Pluripotent Stem Cells. Keio J Med 2017; 66:1-8. [PMID: 28111378 DOI: 10.2302/kjm.2016-0015-oa] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Human induced pluripotent stem cells (hiPSCs) represent a potentially useful tool for studying the molecular mechanisms of disease thanks to their ability to generate patient-specific hiPSC clones. However, previous studies have reported that DNA methylation profiles, including those for imprinted genes, may change during passaging of hiPSCs. This is particularly problematic for hiPSC models of X-linked disease, because unstable X chromosome inactivation status may affect the detection of phenotypes. In the present study, we examined the epigenetic status of hiPSCs derived from patients with Rett syndrome, an X-linked disease, during long-term culture. To analyze X chromosome inactivation, we used a methylation-specific polymerase chain reaction (MSP) to assay the human androgen receptor locus (HUMARA). We found that single cell-derived hiPSC clones exhibit various states of X chromosome inactivation immediately after clonal isolation, even when established simultaneously from a single donor. X chromosome inactivation states remain variable in hiPSC clones at early passages, and this variability may affect cellular phenotypes characteristic of X-linked diseases. Careful evaluation of X chromosome inactivation in hiPSC clones, particularly in early passages, by methods such as HUMARA-MSP, is therefore important when using patient-specific hiPSCs to model X-linked disease.
Collapse
|
15
|
Vacca M, Della Ragione F, Scalabrì F, D'Esposito M. X inactivation and reactivation in X-linked diseases. Semin Cell Dev Biol 2016; 56:78-87. [PMID: 26994527 DOI: 10.1016/j.semcdb.2016.03.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/10/2016] [Accepted: 03/11/2016] [Indexed: 12/22/2022]
Abstract
X chromosome inactivation (XCI) is the phenomenon by which mammals compensate for dosage of X-linked genes in females (XX) versus males (XY). XCI patterns can be random or show extreme skewing, and can modify the mode of inheritance of X-driven phenotypes, which contributes to the variability of human pathologies. Recent findings have shown reversibility of the XCI process, which has opened new avenues in the approaches used for the treatment of X-linked diseases.
Collapse
Affiliation(s)
- Marcella Vacca
- Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, via Pietro Castellino, 111, 80131, Naples, Italy.
| | - Floriana Della Ragione
- Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, via Pietro Castellino, 111, 80131, Naples, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| | | | - Maurizio D'Esposito
- Institute of Genetics and Biophysics "A. Buzzati Traverso", CNR, via Pietro Castellino, 111, 80131, Naples, Italy; IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
16
|
Abstract
Two severe, progressive neurological disorders characterized by intellectual disability, autism, and developmental regression, Rett syndrome and MECP2 duplication syndrome, result from loss and gain of function, respectively, of the same critical gene, methyl-CpG-binding protein 2 (MECP2). Neurons acutely require the appropriate dose of MECP2 to function properly but do not die in its absence or overexpression. Instead, neuronal dysfunction can be reversed in a Rett syndrome mouse model if MeCP2 function is restored. Thus, MECP2 disorders provide a unique window into the delicate balance of neuronal health, the power of mouse models, and the importance of chromatin regulation in mature neurons. In this Review, we will discuss the clinical profiles of MECP2 disorders, the knowledge acquired from mouse models of the syndromes, and how that knowledge is informing current and future clinical studies.
Collapse
|
17
|
Abstract
Rett syndrome (RTT) is a syndromic autism spectrum disorder caused by loss-of-function mutations in MECP2. The methyl CpG binding protein 2 binds methylcytosine and 5-hydroxymethycytosine at CpG sites in promoter regions of target genes, controlling their transcription by recruiting co-repressors and co-activators. Several preclinical studies in mouse models have identified rational molecular targets for drug therapies aimed at correcting the underlying neural dysfunction. These targeted therapies are increasingly translating into human clinical trials. In this review, we present an overview of RTT and describe the current state of preclinical studies in methyl CpG binding protein 2-based mouse models, as well as current clinical trials in individuals with RTT.
Collapse
Affiliation(s)
- Lucas Pozzo-Miller
- />Department of Neurobiology, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Sandipan Pati
- />Department of Neurology, Epilepsy Division, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL USA
| | - Alan K. Percy
- />Department of Pediatrics, Civitan International Research Center, The University of Alabama at Birmingham, Birmingham, AL USA
| |
Collapse
|
18
|
Abstract
Rett syndrome (RTT) has experienced remarkable progress over the past three decades since emerging as a disorder of worldwide proportions, particularly with discovery of the linkage of RTT to MECP2 mutations. The advances in clinical research and the increasing pace of basic science investigations have accelerated the pattern of discovery and understanding. Clinical trials are ongoing and others are planned. A review of these events and the prospects for continued success are highlighted below. The girls and women encountered today with RTT are, overall, in better general, neurologic, and behavioral health than those encountered earlier. This represents important progress worldwide from the concerted efforts of a broadly based and diverse clinical and basic research consortium as well as the efforts of parents, family, and friends.
Collapse
|
19
|
Ben-David E, Shohat S, Shifman S. Allelic expression analysis in the brain suggests a role for heterogeneous insults affecting epigenetic processes in autism spectrum disorders. Hum Mol Genet 2014; 23:4111-24. [PMID: 24659497 DOI: 10.1093/hmg/ddu128] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Monoallelic expression, including genomic imprinting, X-chromosome inactivation and random monoallelic expression of autosomal genes are epigenetic phenomena. Genes that are expressed in a monoallelic way may be more vulnerable to genetic or epigenetic mutations. Thus, comprehensive exploration of monoallelic expression in human brains may shed light on complex brain disorders. Autism-related disorders are known to be associated with imprinted genes on chromosome 15. However, it is not clear whether other imprinted regions or other types of monoallelic expression are associated with autism spectrum disorder (ASD). Here, we performed a genome-wide survey of allele expression imbalance (AEI) in the human brain using single-nucleotide polymorphisms (SNPs), in 18 individuals with ASD and 15 controls. Individuals with ASD had the most extreme number of monoallelic expressed SNPs in both the autosomes and the X chromosome. In two cases that were studied in detail, the monoallelic expression was confined to specific brain region or cell type. Using these data, we were also able to define the allelic expression status of known imprinted genes in the human brain and to identify abnormal imprinting in an individual with ASD. Lastly, we developed an analysis of individual-level expression, focusing on the difference of each individual from the mean. We found that individuals with ASD had more genes that were up- or down-regulated in an individual-specific manner. We also identified pathways perturbed in specific individuals. These results underline the heterogeneity in gene regulation in ASD, at the level of both allelic and total expression.
Collapse
Affiliation(s)
- Eyal Ben-David
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Shahar Shohat
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Sagiv Shifman
- Department of Genetics, The Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| |
Collapse
|
20
|
Spectrum of MECP2 gene mutations in a cohort of Indian patients with Rett syndrome: Report of two novel mutations. Gene 2013; 515:78-83. [DOI: 10.1016/j.gene.2012.11.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2012] [Revised: 10/30/2012] [Accepted: 11/27/2012] [Indexed: 11/23/2022]
|
21
|
Das DK, Mehta B, Menon SR, Raha S, Udani V. Novel mutations in cyclin-dependent kinase-like 5 (CDKL5) gene in Indian cases of Rett syndrome. Neuromolecular Med 2012; 15:218-25. [PMID: 23242510 DOI: 10.1007/s12017-012-8212-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 12/03/2012] [Indexed: 10/27/2022]
Abstract
Rett syndrome is a severe neurodevelopmental disorder, almost exclusively affecting females and characterized by a wide spectrum of clinical manifestations. Both the classic and atypical forms of Rett syndrome are primarily due to mutations in the methyl-CpG-binding protein 2 (MECP2) gene. Mutations in the X-linked cyclin-dependent kinase-like 5 (CDKL5) gene have been identified in patients with atypical Rett syndrome, X-linked infantile spasms sharing common features of generally early-onset seizures and mental retardation. CDKL5 is known as serine/threonine protein kinase 9 (STK9) and is mapped to the Xp22 region. It has a conserved serine/threonine kinase domain within its amino terminus and a large C-terminal region. Disease-causing mutations are distributed in both the amino terminal domain and in the large C-terminal domain. We have screened the CDKL5 gene in 44 patients with atypical Rett syndrome who had tested negative for MECP2 gene mutations and have identified 6 sequence variants, out of which three were novel and three known mutations. Two of these novel mutations p.V966I and p.A1011V were missense and p.H589H a silent mutation. Other known mutations identified were p.V999M, p.Q791P and p.T734A. Sequence homology for all the mutations revealed that the two mutations (p.Q791P and p.T734A) were conserved across species. This indicated the importance of these residues in structure and function of the protein. The damaging effects of these mutations were analysed in silico using PolyPhen-2 online software. The PolyPhen-2 scores of p.Q791P and p.T734A were 0.998 and 0.48, revealing that these mutations could be deleterious and might have potential functional effect. All other mutations had a low score suggesting that they might not alter the activity of CDKL5. We have also analysed the position of the mutations in the CDKL5 protein and found that all the mutations were present in the C-terminal domain of the protein. The C-terminal domain is required for cellular localization through protein-protein interaction; any mutations in this domain might alter this function of the protein. This is the first report from India showing the mutation in CDKL5 gene in Indian cases of Rett syndrome. Our study emphasizes the role of CDKL5 mutation screening in cases of atypical Rett syndrome with congenital seizure variant.
Collapse
Affiliation(s)
- Dhanjit Kumar Das
- Genetic Research Centre, National Institute for Research in Reproductive Health (ICMR), Jahangir Merwanji Street, Parel, Mumbai, 400 012, India.
| | | | | | | | | |
Collapse
|
22
|
Abstract
Rett syndrome is one of the most common causes of complex disability in girls. It is characterized by early neurological regression that severely affects motor, cognitive and communication skills, by autonomic dysfunction and often a seizure disorder. It is a monogenic X-linked dominant neurodevelopmental disorder related to mutation in MECP2, which encodes the methyl-CpG-binding protein MeCP2. There are several mouse models either based on conditional knocking out of the Mecp2 gene or on a truncating mutation. We discuss the clinical aspects with special emphasis on the behavioral phenotype and we review current perspectives in clinical management alongside with perspectives in altering gene expression.
Collapse
Affiliation(s)
- E E J Smeets
- Department of Clinical Genetics, Maastricht University Medical Center, Maastricht, The Netherlands
| | | | | |
Collapse
|
23
|
Artuso R, Papa FT, Grillo E, Mucciolo M, Yasui DH, Dunaway KW, Disciglio V, Mencarelli MA, Pollazzon M, Zappella M, Hayek G, Mari F, Renieri A, Lasalle JM, Ariani F. Investigation of modifier genes within copy number variations in Rett syndrome. J Hum Genet 2011; 56:508-15. [PMID: 21593744 PMCID: PMC3145144 DOI: 10.1038/jhg.2011.50] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
MECP2 mutations are responsible for two different phenotypes in females, classical Rett syndrome and the milder Zappella variant (Z-RTT). We investigated whether Copy Number Variants (CNVs) may modulate the phenotype by comparison of array-CGH data from two discordant pairs of sisters and four additional discordant pairs of unrelated girls matched by mutation type. We also searched for potential MeCP2 targets within CNVs by ChIP-chip analysis. We did not identify one major common gene/region, suggesting that modifiers may be complex and variable between cases. However, we detected CNVs correlating with disease severity that contain candidate modifiers. CROCC (1p36.13) is a potential MeCP2 target in which a duplication in a Z-RTT and a deletion in a classic patient were observed. CROCC encodes a structural component of ciliary motility that is required for correct brain development. CFHR1 and CFHR3, on 1q31.3, may be involved in the regulation of complement during synapse elimination and were found to be deleted in a Z-RTT but duplicated in two classic patients. The duplication of 10q11.22, present in two Z-RTT patients, includes GPRIN2, a regulator of neurite outgrowth and PPYR1, involved in energy homeostasis. Functional analyses are necessary to confirm candidates and to define targets for future therapies.
Collapse
Affiliation(s)
- Rosangela Artuso
- Biotechnology Department, Medical Genetics Section, University of Siena, Siena, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Zhu X, Li M, Pan H, Bao X, Zhang J, Wu X. Analysis of the parental origin of de novo MECP2 mutations and X chromosome inactivation in 24 sporadic patients with Rett syndrome in China. J Child Neurol 2010; 25:842-8. [PMID: 20207612 DOI: 10.1177/0883073809350722] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Rett syndrome is an X-linked neurodevelopmental disorder that predominantly affects females. It is caused by mutations in methyl-CpG-binding protein 2 gene. Due to the sex-limited expression, it has been suggested that de novo X-linked mutations may exclusively occur in male germ cells and thus only females are affected. In this study, the authors have analyzed the parental origin of mutations and the X-chromosome inactivation status in 24 sporadic patients with identified methyl-CpG-binding protein 2 gene mutations. The results showed that 22 of 24 patients have a paternal origin. Only 2 patients have a maternal origin. Except for 2 cases which were homozygotic at the androgen receptor gene locus, of the remaining 22 cases, 16 cases have a random X-chromosome inactivation pattern; the other 6 cases have a skewed X-chromosome inactivation and they favor expression of the wild allele. The relationship between X-chromosome inactivation and phenotype may need more cases to explore.
Collapse
Affiliation(s)
- Xingwang Zhu
- Department of Pediatrics, Peking University First Hospital, Beijing, People's Republic of China
| | | | | | | | | | | |
Collapse
|
25
|
Takahashi S, Ohinata J, Makita Y, Suzuki N, Araki A, Sasaki A, Murono K, Tanaka H, Fujieda K. Skewed X chromosome inactivation failed to explain the normal phenotype of a carrier female with MECP2 mutation resulting in Rett syndrome. Clin Genet 2008; 73:257-61. [DOI: 10.1111/j.1399-0004.2007.00944.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
26
|
Xinhua Bao, Shengling Jiang, Fuying Song, Hong Pan, Meirong Li, Wu XR. X chromosome inactivation in Rett Syndrome and its correlations with MECP2 mutations and phenotype. J Child Neurol 2008; 23:22-5. [PMID: 18184939 DOI: 10.1177/0883073807307077] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rett syndrome (RTT) is an X-linked dominant neurodevelopment disorder, which is mainly caused by gene mutation of methyl-CpG-binding protein 2 (MECP2). The correlations between genotype, X chromosome inactivation (XCI), and phenotype have been studied, but the results are conflicting. In the present study, XCI patterns in patients and their mothers, parental origin of skewed X chromosome in patients, and the correlations between XCI, genotype, and phenotype were analyzed in 52 cases of RTT with MECP2 mutations, 50 RTT mothers, and 48 normal female controls. The results showed XCI and genotype had limitations in explaining all the phenotypic manifestations of RTT. Other genomic factors have to be considered to explain the phenotypic differences.
Collapse
Affiliation(s)
- Xinhua Bao
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | | | | | | | | | | |
Collapse
|
27
|
Abstract
The acronym PHACES is used to describe the association of posterior fossa malformations, hemangiomas, arterial anomalies (cardiovascular or cerebrovascular), coarctation of the aorta and cardiac defects, eye abnormalities, and sternal or ventral defects. We report a female patient with an uncommon variant of this neurocutaneous disorder who manifested a sternal cleft; supraumbilical raphe; hemangiomas of the face, chest, and extremities; micrognathia and cerebrovascular anomalies. A literature review of PHACES patients with both sternal cleft and supraumbilical raphe showed a marked female predilection. Taken together with cases of sternal cleft, supraumbilical raphe and facial hemangiomas tabulated by Gorlin et al. (1994), 91% (40/44) of patients are female. One affected male died shortly after birth. We hypothesized that the gender bias in PHACES results from mutation in an X-linked dominant gene often lethal in males, and performed X-inactivation analysis of the polymorphic androgen receptor locus in this family. We documented consistently skewed X-inactivation (80%/20% in two independent analyses) in the unaffected mother and consistently random X-inactivation (47:53 and 61:39 in independent analyses) in the proband. These findings are consistent with favorably skewed X-inactivation producing a normal maternal phenotype, a phenomenon documented in X-linked dominant Rett syndrome.
Collapse
Affiliation(s)
- J H Levin
- Unit on Pediatric Genetics, Laboratory of Clinical Genomics, National Institute of Child Health and Human Development, National Institutes of Health, 10 Center Drive, Bethesda, MD 20892, USA
| | | |
Collapse
|
28
|
del Gaudio D, Fang P, Scaglia F, Ward PA, Craigen WJ, Glaze DG, Neul JL, Patel A, Lee JA, Irons M, Berry SA, Pursley AA, Grebe TA, Freedenberg D, Martin RA, Hsich GE, Khera JR, Friedman NR, Zoghbi HY, Eng CM, Lupski JR, Beaudet AL, Cheung SW, Roa BB. Increased MECP2 gene copy number as the result of genomic duplication in neurodevelopmentally delayed males. Genet Med 2007; 8:784-92. [PMID: 17172942 DOI: 10.1097/01.gim.0000250502.28516.3c] [Citation(s) in RCA: 219] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
PURPOSE Mutations in the MECP2 gene are associated with Rett syndrome, an X-linked mental retardation disorder in females. Mutations also cause variable neurodevelopmental phenotypes in rare affected males. Recent clinical testing for MECP2 gene rearrangements revealed that entire MECP2 gene duplication occurs in some males manifesting a progressive neurodevelopmental syndrome. METHODS Clinical testing through quantitative DNA methods and chromosomal microarray analysis in our laboratories identified seven male patients with increased MECP2 gene copy number. RESULTS Duplication of the entire MECP2 gene was found in six patients, and MECP2 triplication was found in one patient with the most severe phenotype. The Xq28 duplications observed in these males are unique and vary in size from approximately 200 kb to 2.2 Mb. Three of the mothers who were tested were asymptomatic duplication carriers with skewed X-inactivation. In silico analysis of the Xq28 flanking region showed numerous low-copy repeats with potential roles in recombination. CONCLUSIONS These collective data suggest that increased MECP2 gene copy number is mainly responsible for the neurodevelopmental phenotypes in these males. These findings underscore the allelic and phenotypic heterogeneity associated with the MECP2 gene and highlight the value of molecular analysis for patient diagnosis, family members at risk, and genetic counseling.
Collapse
Affiliation(s)
- Daniela del Gaudio
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Knudsen GPS, Neilson TCS, Pedersen J, Kerr A, Schwartz M, Hulten M, Bailey MES, Orstavik KH. Increased skewing of X chromosome inactivation in Rett syndrome patients and their mothers. Eur J Hum Genet 2006; 14:1189-94. [PMID: 16823396 DOI: 10.1038/sj.ejhg.5201682] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Rett syndrome is a largely sporadic, X-linked neurological disorder with a characteristic phenotype, but which exhibits substantial phenotypic variability. This variability has been partly attributed to an effect of X chromosome inactivation (XCI). There have been conflicting reports regarding incidence of skewed X inactivation in Rett syndrome. In rare familial cases of Rett syndrome, favourably skewed X inactivation has been found in phenotypically normal carrier mothers. We have investigated the X inactivation pattern in DNA from blood and buccal cells of sporadic Rett patients (n=96) and their mothers (n=84). The mean degree of skewing in blood was higher in patients (70.7%) than controls (64.9%). Unexpectedly, the mothers of these patients also had a higher mean degree of skewing in blood (70.8%) than controls. In accordance with these findings, the frequency of skewed (XCI > or =80%) X inactivation in blood was also higher in both patients (25%) and mothers (30%) than in controls (11%). To test whether the Rett patients with skewed X inactivation were daughters of skewed mothers, 49 mother-daughter pairs were analysed. Of 14 patients with skewed X inactivation, only three had a mother with skewed X inactivation. Among patients, mildly affected cases were shown to be more skewed than more severely affected cases, and there was a trend towards preferential inactivation of the paternally inherited X chromosome in skewed cases. These findings, particularly the greater degree of X inactivation skewing in Rett syndrome patients, are of potential significance in the analysis of genotype-phenotype correlations in Rett syndrome.
Collapse
Affiliation(s)
- Gun Peggy S Knudsen
- Faculty Division Rikshospitalet, Department of Medical Genetics, University of Oslo, Oslo, Norway.
| | | | | | | | | | | | | | | |
Collapse
|
30
|
Peddada S, Yasui DH, LaSalle JM. Inhibitors of differentiation (ID1, ID2, ID3 and ID4) genes are neuronal targets of MeCP2 that are elevated in Rett syndrome. Hum Mol Genet 2006; 15:2003-14. [PMID: 16682435 PMCID: PMC1931415 DOI: 10.1093/hmg/ddl124] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Rett syndrome (RTT) is an X-linked dominant neurodevelopmental disorder caused by mutations in MECP2, encoding methyl-CpG-binding protein 2. MeCP2 is a transcriptional repressor elevated in mature neurons and is predicted to be required for neuronal maturation by regulating multiple target genes. Identifying primary gene targets in either Mecp2-deficient mice or human RTT brain has proven to be difficult, perhaps because of the transient requirement for MeCP2 during neuronal maturation. In order to experimentally control the timing of MeCP2 expression and deficiency during neuronal maturation, human SH-SY5Y cells undergoing mature neuronal differentiation were transfected with methylated MeCP2 oligonucleotide decoy to disrupt the binding of MeCP2 to endogenous targets. Genome-wide expression microarray analysis identified all four known members of the inhibitors of differentiation or inhibitors of DNA-binding (ID1, ID2, ID3 and ID4) subfamily of helix-loop-helix genes as novel neuronal targets of MeCP2. Chromatin immunoprecipitation analysis confirmed binding of MeCP2 near or within the promoters of ID1, ID2 and ID3, and quantitative RT-PCR confirmed increased expression of all four Id genes in Mecp2-deficient mouse brain. All four ID proteins were significantly increased in Mecp2-deficient mouse and human RTT brain using immunofluorescence and laser scanning cytometric analyses. Because of their involvement in cell differentiation and neural development, ID genes are ideal primary targets for MeCP2 regulation of neuronal maturation that may explain the molecular pathogenesis of RTT.
Collapse
Affiliation(s)
| | | | - Janine M. LaSalle
- *Address correspondence to: Janine M. LaSalle, Medical Microbiology and Immunology, One Shields Ave., Davis, CA 95616, (530) 754-7598 (phone), (530) 752-8692 (fax),
| |
Collapse
|
31
|
Weaving LS, Ellaway CJ, Gécz J, Christodoulou J. Rett syndrome: clinical review and genetic update. J Med Genet 2006; 42:1-7. [PMID: 15635068 PMCID: PMC1735910 DOI: 10.1136/jmg.2004.027730] [Citation(s) in RCA: 116] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Rett syndrome (RS) is a severe neurodevelopmental disorder that contributes significantly to severe intellectual disability in females worldwide. It is caused by mutations in MECP2 in the majority of cases, but a proportion of atypical cases may result from mutations in CDKL5, particularly the early onset seizure variant. The relationship between MECP2 and CDKL5, and whether they cause RS through the same or different mechanisms is unknown, but is worthy of investigation. Mutations in MECP2 appear to give a growth disadvantage to both neuronal and lymphoblast cells, often resulting in skewing of X inactivation that may contribute to the large degree of phenotypic variation. MeCP2 was originally thought to be a global transcriptional repressor, but recent evidence suggests that it may have a role in regulating neuronal activity dependent expression of specific genes such as Hairy2a in Xenopus and Bdnf in mouse and rat.
Collapse
Affiliation(s)
- L S Weaving
- Program in Developmental Biology, the Hospital for Sick Children, Toronto, Canada
| | | | | | | |
Collapse
|
32
|
Abstract
Mutations in the X-linked gene encoding the methyl-CpG binding protein MeCP2 are the primary cause of classic and atypical Rett syndrome and have recently been shown to contribute to other neurodevelopmental disorders of varying severity. To determine whether there are molecular correlates to the phenotypic heterogeneity, numerous groups have performed genotype-phenotype correlation studies. These studies have yielded conflicting results, in part because they used different criteria for determining severity and classifying mutations. Evolution of the phenotype with age and variable expressivity arising from individual variability in X-chromosome inactivation patterns are among other reasons the findings varied. Nonetheless, evidence of differences in the phenotypic consequences of specific types of mutations is emerging. This review analyzes the available literature and makes recommendations for future studies.
Collapse
Affiliation(s)
- Andrea L Ham
- Department of Biological Sciences, University of Delaware, Newark, DE, USA
| | | | | | | |
Collapse
|
33
|
Caballero IM, Hendrich B. MeCP2 in neurons: closing in on the causes of Rett syndrome. Hum Mol Genet 2005; 14 Spec No 1:R19-26. [PMID: 15809268 DOI: 10.1093/hmg/ddi102] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The discovery in 1999 that Rett syndrome (RTT) is caused by mutations in a gene encoding the methyl-CpG-binding repressor protein MECP2 provided a significant breakthrough in the understanding of this devastating disease. The subsequent production of Mecp2 knockout mice 2 years later provided an experimental resource to better understand how mutations in the MECP2 gene result in RTT. This paper reviews the recent progress in understanding when and where MeCP2 function becomes important in the developing brain, why MeCP2 protein levels are crucial, which genes are normally silenced by MeCP2, and how misexpression of these targets might lead to the clinical manifestations of RTT.
Collapse
Affiliation(s)
- Isabel Martín Caballero
- Institute of Stem Cell Research, Centre Development in Stem Cell Biology, School of Biological Sciences, University of Edinburgh, UK
| | | |
Collapse
|
34
|
Gibson JH, Williamson SL, Arbuckle S, Christodoulou J. X chromosome inactivation patterns in brain in Rett syndrome: implications for the disease phenotype. Brain Dev 2005; 27:266-70. [PMID: 15862188 DOI: 10.1016/j.braindev.2004.07.002] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2004] [Revised: 06/23/2004] [Accepted: 07/11/2004] [Indexed: 10/26/2022]
Abstract
Skewed X chromosome inactivation (XCI) has been implicated in modulating the severity of Rett syndrome (RTT), although studies by different groups have yielded conflicting results. In this study we have characterised the XCI pattern in various neuroanatomical regions of nine RTT brains and non-neural tissue in two of these patients to determine whether or not variable XCI patterns occur in different brain regions or somatic tissues of the same patient. The mean XCI patterns for frontal and occipital cortex were compared between RTT and control subjects, and showed no significant differences when comparing RTT frontal to control frontal cortex or RTT occipital to control occipital cortex. However, one RTT subject displayed variability across the different neuroanatomical regions of the brain and skewing in some non-neural tissues. This observation adds another dimension to the epigenetic factors that may contribute to the phenotype in RTT. It also mandates that caution should be exercised in factoring XCI, including assumptions based on the blood XCI pattern, into the development of phenotype-genotype correlations.
Collapse
Affiliation(s)
- Joanne H Gibson
- Metabolic Diseases Research Unit, Western Sydney Genetics Program, Children's Hospital at Westmead, Locked Bag 4001, Westmead, NSW 2145, Australia
| | | | | | | |
Collapse
|
35
|
LaSalle JM, Hogart A, Thatcher KN. Rett Syndrome: A Rosetta Stone for Understanding the Molecular Pathogenesis of Autism. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2005; 71:131-65. [PMID: 16512349 DOI: 10.1016/s0074-7742(05)71006-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/25/2023]
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology and Rowe Program in Human Genetics, School of Medicine, University of California, Davis 95616, USA
| | | | | |
Collapse
|
36
|
Weaving LS, Christodoulou J, Williamson SL, Friend KL, McKenzie OLD, Archer H, Evans J, Clarke A, Pelka GJ, Tam PPL, Watson C, Lahooti H, Ellaway CJ, Bennetts B, Leonard H, Gécz J. Mutations of CDKL5 cause a severe neurodevelopmental disorder with infantile spasms and mental retardation. Am J Hum Genet 2004; 75:1079-93. [PMID: 15492925 PMCID: PMC1182143 DOI: 10.1086/426462] [Citation(s) in RCA: 350] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2004] [Accepted: 10/01/2004] [Indexed: 11/03/2022] Open
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder caused, in most classic cases, by mutations in the X-linked methyl-CpG-binding protein 2 gene (MECP2). A large degree of phenotypic variation has been observed in patients with RTT, both those with and without MECP2 mutations. We describe a family consisting of a proband with a phenotype that showed considerable overlap with that of RTT, her identical twin sister with autistic disorder and mild-to-moderate intellectual disability, and a brother with profound intellectual disability and seizures. No pathogenic MECP2 mutations were found in this family, and the Xq28 region that contains the MECP2 gene was not shared by the affected siblings. Three other candidate regions were identified by microsatellite mapping, including 10.3 Mb at Xp22.31-pter between Xpter and DXS1135, 19.7 Mb at Xp22.12-p22.11 between DXS1135 and DXS1214, and 16.4 Mb at Xq21.33 between DXS1196 and DXS1191. The ARX and CDKL5 genes, both of which are located within the Xp22 region, were sequenced in the affected family members, and a deletion of nucleotide 183 of the coding sequence (c.183delT) was identified in CDKL5 in the affected family members. In a screen of 44 RTT cases, a single splice-site mutation, IVS13-1G-->A, was identified in a girl with a severe phenotype overlapping RTT. In the mouse brain, Cdkl5 expression overlaps--but is not identical to--that of Mecp2, and its expression is unaffected by the loss of Mecp2. These findings confirm CDKL5 as another locus associated with epilepsy and X-linked mental retardation. These results also suggest that mutations in CDKL5 can lead to a clinical phenotype that overlaps RTT. However, it remains to be determined whether CDKL5 mutations are more prevalent in specific clinical subgroups of RTT or in other clinical presentations.
Collapse
Affiliation(s)
- Linda S Weaving
- Western Sydney Genetics Program, the Children's Hospital at Westmead, New South Wales, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
37
|
Souza JC, Fraga LL, Oliveira MRD, Buchara MDS, Straliotto NC, Rosário SPD, Rezende TM. Atuação do psicólogo frente aos transtornos globais do desenvolvimento infantil. PSICOLOGIA: CIÊNCIA E PROFISSÃO 2004. [DOI: 10.1590/s1414-98932004000200004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
O artigo apresenta revisão bibliográfica sobre a atuação do psicólogo frente aos transtornos globais do desenvolvimento infantil, especificamente sobre autismo infantil, síndrome de Asperger e síndrome de Rett. Inicialmente, apresenta-se uma noção do desenvolvimento infantil, e, então, abordam-se possíveis transtornos, com suas respectivas definições, etiologias, critérios diagnósticos, diagnóstico diferencial e tratamento. Durante o processo de intervenção e prevenção junto à criança, destacam-se a importância do psicólogo no tratamento e a eficácia dos recursos psicoterápicos para a melhora de qualidade de vida da criança com a síndrome.
Collapse
|
38
|
Young JI, Zoghbi HY. X-chromosome inactivation patterns are unbalanced and affect the phenotypic outcome in a mouse model of rett syndrome. Am J Hum Genet 2004; 74:511-20. [PMID: 14973779 PMCID: PMC1182264 DOI: 10.1086/382228] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2003] [Accepted: 12/11/2003] [Indexed: 11/04/2022] Open
Abstract
Rett syndrome (RTT), a neurodevelopmental disorder affecting mostly females, is caused by mutations in the X-linked gene encoding methyl-CpG-binding protein 2 (MeCP2). Although the majority of girls with classic RTT have a random pattern of X-chromosome inactivation (XCI), nonbalanced patterns have been observed in patients carrying mutant MECP2 and, in some cases, account for variability of phenotypic manifestations. We have generated an RTT mouse model that recapitulates all major aspects of the human disease, but we found that females exhibit a high degree of phenotypic variability beyond what is observed in human patients with similar mutations. To evaluate whether XCI influences the phenotypic outcome of Mecp2 mutation in the mouse, we studied the pattern of XCI at the single-cell level in brains of heterozygous females. We found that XCI patterns were unbalanced, favoring expression of the wild-type allele, in most mutant females. It is notable that none of the animals had nonrandom XCI favoring the mutant allele. To explore why the XCI patterns favored expression of the wild-type allele, we studied primary neuronal cultures from Mecp2-mutant mice and found selective survival of neurons in which the wild-type X chromosome was active. Quantitative analysis indicated that fewer phenotypes are observed when a large percentage of neurons have the mutant X chromosome inactivated. The study of neuronal XCI patterns in a large number of female mice carrying a mutant Mecp2 allele highlights the importance of MeCP2 for neuronal viability. These findings also raise the possibility that there are human females who carry mutant MECP2 alleles but are not recognized because their phenotypes are subdued owing to favorable XCI patterns.
Collapse
Affiliation(s)
- Juan I. Young
- Departments of Molecular and Human Genetics, and Pediatrics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston
| | - Huda Y. Zoghbi
- Departments of Molecular and Human Genetics, and Pediatrics and Howard Hughes Medical Institute, Baylor College of Medicine, Houston
| |
Collapse
|
39
|
Affiliation(s)
- Janine M LaSalle
- Medical Microbiology and Immunology and Rowe Program in Human Genetics, School of Medicine, University of California, Davis, California 95616, USA
| |
Collapse
|
40
|
Gomot M, Gendrot C, Verloes A, Raynaud M, David A, Yntema HG, Dessay S, Kalscheuer V, Frints S, Couvert P, Briault S, Blesson S, Toutain A, Chelly J, Desportes V, Moraine C. MECP2 gene mutations in non-syndromic X-linked mental retardation: Phenotype-genotype correlation. ACTA ACUST UNITED AC 2003; 123A:129-39. [PMID: 14598336 DOI: 10.1002/ajmg.a.20247] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Non-syndromic X-linked mental retardation (MRX) is a frequent cause of inherited mental retardation. It is a heterogeneous condition in which the first 12 genes discovered to date explain no more than 15% of the MRX situations ascertained by recurrence in multiplex families. In Rett syndrome (RTT), an X-linked dominant condition mostly sporadic and usually lethal in males, most affected females have been shown to be mutated in the Methyl-CpG binding protein 2 gene (MECP2) that maps at Xq28. Some mentally retarded males related to RTT females carry the same mutation. Several MRX families mapping to Xq28 were subsequently tested for MECP2 and a causative mutation was discovered in three families, suggesting that it could be one of the main genes involved in MRX. We report here the corresponding phenotypes in these three families of increasing severity. In family 1, an in-frame deletion DeltaP387-M466 was found in the 3' region. The patients had severe to mild non-progressive MR, with better motor skills than verbal abilities. In family 2, an Arg to Trp substitution (R167W) was found between the transcription repression domain (TRD) and the methyl binding domain (MBD). The patients had brisk reflexes and essential tremor with mild and non-progressive MR, poor motor co-ordination and written language difficulties. In the third family (MRX16), a Glu to Gly substitution (E137G) was found in the MBD. The patients had manifestations similar to those of family 2, but MR was mild to moderate, speech articulation was poor and some had verbal stereotypies. Regression of language skills was suspected in three patients. Phenotype-genotype correlation could thus be suspected and is discussed in these three families.
Collapse
Affiliation(s)
- Marie Gomot
- Service de Génétique, CHU Bretomeau, INSERM U316, 2 boulevard Tonnellé, 37044 Tours cedex, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Hammer S, Dorrani N, Hartiala J, Stein S, Schanen NC. Rett syndrome in a 47,XXX patient with a de novo MECP2 mutation. Am J Med Genet A 2003; 122A:223-6. [PMID: 12966522 DOI: 10.1002/ajmg.a.20320] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rett syndrome is caused by mutation in MECP2, a gene located on Xq28 and subject to X-inactivation. MECP2 encodes methyl CpG-binding protein 2, a widely expressed transcriptional repressor of methylated DNA. Mutations in MECP2 are primarily de novo events in the male germ line and thus lead to an excess of affected females. Here we report the identification of a unique 47,XXX girl with relatively mild atypical Rett syndrome leading initially to a diagnosis of infantile autism with regression. Mutation analysis of the MECP2 gene identified a de novo MECP2 mutation, L100V. Examination of a panel of X-linked microsatellite markers indicated that her supernumerary X chromosome is maternally derived. X-inactivation patterns were determined by analysis of methylation of the androgen receptor locus, and indicated preferential inactivation of her paternal allele. The parental origin of her MECP2 mutation could not be determined because she was uninformative for intronic polymorphisms flanking her mutation. This is the first reported case of sex chromosome trisomy and MECP2 mutation in a female, and it illustrates the importance of allele dosage on the severity of Rett syndrome phenotype.
Collapse
Affiliation(s)
- Sara Hammer
- Department of Human Genetics, UCLA School of Medicine, Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
42
|
Abstract
The association of Rett syndrome with pathogenic mutations of the methyl-CpG binding protein 2 (MECP2) gene was first made in 1999. Since that time, it has been found that the clinical phenotype can, at least in part, be explained in terms of the type and location of the MECP2 mutation and epigenetic factors such as skewing of X-chromosome inactivation. In addition, MECP2 mutations may be associated with non-Rett syndrome clinical phenotypes, including nonsyndromic and syndromic X-linked mental retardation and Angelman-like phenotypes. Intense research efforts are currently focused on understanding the pathogenesis of Rett syndrome, using sophisticated techniques such as microarray analysis, and the development of mouse models, with an ultimate aim being the development of targeted therapies that could ameliorate or even prevent the devastating consequences of this enigmatic neurodevelopmental disorder.
Collapse
Affiliation(s)
- John Christodoulou
- Western Sydney Genetics Program, The Children's Hospital at Westmead, NSW, Australia.
| | | |
Collapse
|
43
|
Abstract
Syndromes of disordered 'chromatin remodeling' are unique in medicine because they arise from a general deregulation of DNA transcription caused by mutations in genes encoding enzymes which mediate changes in chromatin structure. Chromatin is the packaged form of DNA in the eukaryotic cell. It consists almost entirely of repeating units, called nucleosomes, in which short segments of DNA are wrapped tightly around a disk-like structure comprising two subunits of each of the histone proteins H2A, H2B, H3 and H4. Histone proteins are covalently modified by a number of different adducts (i.e. acetylation and phosphorylation) that regulate the tightness of the DNA-histone interactions. Mutations in genes encoding enzymes that mediate chromatin structure can result in a loss of proper regulation of chromatin structure, which in turn can result in deregulation of gene transcription and inappropriate protein expression. In this review we present examples of representative genetic diseases that arise as a consequence of disordered chromatin remodeling. These include: alpha-thalassemia/mental retardation syndrome, X-linked (ATR-X); Rett syndrome (RS); immunodeficiency-centromeric instability-facial anomalies syndrome (ICF); Rubinstein-Taybi syndrome (RSTS); and Coffin-Lowry syndrome (CLS).
Collapse
Affiliation(s)
- J Ausió
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, British Columbia, Canada.
| | | | | | | | | |
Collapse
|
44
|
Renieri A, Meloni I, Longo I, Ariani F, Mari F, Pescucci C, Cambi F. Rett syndrome: the complex nature of a monogenic disease. J Mol Med (Berl) 2003; 81:346-54. [PMID: 12750821 DOI: 10.1007/s00109-003-0444-9] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2003] [Accepted: 04/24/2003] [Indexed: 10/20/2022]
Abstract
Rett syndrome (RTT) is a severe neurodevelopmental disorder affecting almost exclusively girls. It is currently considered a monogenic X-linked dominant disorder due to mutations in MECP2 gene, encoding the methyl-CpG binding protein 2. A few RTT male cases, resulting from mosaicism for MECP2 mutations, have been reported. Male germline MECP2 mutations cause either severe encephalopathy with death at birth (usually in brothers of classical RTT females) or X-linked recessive mental retardation (XLMR). To date the wide phenotypic heterogeneity associated with MECP2 mutations in females (from classical RTT to healthy carriers) has been explained by differences in X chromosome inactivation. However, conflicting results have been obtained in different studies, with both random and highly skewed X-inactivation reported in healthy carrier females. Consequently it is possible that mechanisms other than X-inactivation play a role in the expressivity of MECP2 mutations. To explain the phenotypic heterogeneity associated with MECP2 mutations we propose a digenic model in which the presence of a "mutated" allele in a second gene, leading to a less functional protein, determines the clinical severity of the MECP2 mutation. The model is supported by the identification of the same mutation in XLMR and RTT cases. The carrier mothers of XLMR families are clinically asymptomatic and present balanced X chromosome inactivation. Therefore the same mutation arising in different genetic backgrounds can cause XLMR in males, remain silent in the carrier females and cause classic RTT in females. MECP2 mutations account for approximately 70-80% of classic RTT cases. MECP2 negative cases might result from mutations in noncoding regions of MECP2 gene. Alternatively, these cases might be due to mutations in other genes (locus heterogeneity). This hypothesis is supported by the identification of several chromosomal rearrangements in MECP2 negative patients with RTT and RTT-like phenotypes. MeCP2 is considered a general transcriptional repressor. However, conditional mouse mutants with selective loss of Mecp2 in the brain develop clinical manifestations similar to RTT, indicating that MECP2 is exclusively required for central nervous system function. The involvement of MeCP2 in methylation-specific transcriptional repression suggests that MECP2 related disorders result from dysregulated gene expression. Studies on gene expression have been performed in mouse and human brains. A relatively small number of gene expression changes were identified. It is possible that MeCP2 causes dysregulation of a very small subset of genes that are not detected with this method of analysis, or that very subtle changes in many genes cause the neuronal phenotype.
Collapse
Affiliation(s)
- Alessandra Renieri
- Medical Genetics, Policlinico Le Scotte, University of Siena, via Bracci 2, 53100 Siena, Italy.
| | | | | | | | | | | | | |
Collapse
|
45
|
Weaving LS, Williamson SL, Bennetts B, Davis M, Ellaway CJ, Leonard H, Thong MK, Delatycki M, Thompson EM, Laing N, Christodoulou J. Effects of MECP2 mutation type, location and X-inactivation in modulating Rett syndrome phenotype. Am J Med Genet A 2003; 118A:103-14. [PMID: 12655490 DOI: 10.1002/ajmg.a.10053] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Rett syndrome (RTT) is a clinically defined disorder that describes a subset of patients with mutations in the X-linked MECP2 gene. However, there is a high degree of variability in the clinical phenotypes produced by mutations in MECP2, even amongst classical RTT patients. In a large-scale screening project, this variability has been examined by looking at the effects of mutation type, functional domain affected and X-inactivation. Mutations have been identified in 60% of RTT patients in this study (25% of whom were atypical), including 23 novel mutations and polymorphisms. More mutations were found in classical patients (63%) compared to atypical patients (44%). All of the pathogenic mutations were de novo in patients for whom parent DNA was available for screening. A composite phenotype score was developed, based on the recommendations for reporting clinical features in RTT of an international collaborative group. This score proved useful for summarising phenotypic severity, but did not correlate with mutation type, domain affected or X-inactivation, probably due to complex interactions between all three. Other correlations suggested that truncating mutations and mutations affecting the methyl-CpG-binding domain tend to lead to a more severe phenotype. Skewed X-inactivation was found in a large proportion (43%) of our patients, particularly in those with truncating mutations and mutations affecting the MBD. It is therefore likely that X-inactivation does modulate the phenotype in RTT.
Collapse
Affiliation(s)
- Linda S Weaving
- Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
46
|
Shahbazian MD, Zoghbi HY. Rett syndrome and MeCP2: linking epigenetics and neuronal function. Am J Hum Genet 2002; 71:1259-72. [PMID: 12442230 PMCID: PMC378559 DOI: 10.1086/345360] [Citation(s) in RCA: 150] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2002] [Accepted: 10/01/2002] [Indexed: 11/03/2022] Open
Affiliation(s)
- Mona D. Shahbazian
- Departments of Molecular and Human Genetics, Pediatrics, Neurology, and Neuroscience and Howard Hughes Medical Institute, Baylor College of Medicine, Houston
| | - Huda Y. Zoghbi
- Departments of Molecular and Human Genetics, Pediatrics, Neurology, and Neuroscience and Howard Hughes Medical Institute, Baylor College of Medicine, Houston
| |
Collapse
|
47
|
Van den Veyver IB, Zoghbi HY. Genetic basis of Rett syndrome. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 8:82-6. [PMID: 12112732 DOI: 10.1002/mrdd.10025] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
The origin of Rett syndrome has long been debated, but several observations have suggested an X-linked dominant inheritance pattern. We and others have pursued an exclusion-mapping strategy using DNA from a small number of familial Rett syndrome cases. This work resulted in the narrowing of the region likely to harbor the mutated gene to Xq27.3-Xqter. After systematic exclusion of several candidate genes, we discovered mutations in MECP2, the gene that encodes the transcriptional repressor, methyl-CpG-binding protein 2. Since then, nonsense, missense, or frameshift mutations have been found in at least 80% of girls affected with classic Rett syndrome. Sixty-four percent of mutations are recurrent C > T transitions at eight CpG dinucleotides mutation hotspots, while the C-terminal region of the gene is prone to recurrent multinucleotide deletions (11%). Most mutations are predicted to result in total or partial loss of function of MeCP2. There is no clear correlation between the type and position of the mutation and the phenotypic features of classic and variant Rett syndrome patients, and XCI appears to be a major determinant of phenotypic severity. Further research focuses on the pathogenic consequences of these mutations along the hypothesis of loss of transcriptional repression of a small number of genes that are essential for neuronal function in the maturing brain.
Collapse
|
48
|
Hammer S, Dorrani N, Dragich J, Kudo S, Schanen C. The phenotypic consequences of MECP2 mutations extend beyond Rett syndrome. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 8:94-8. [PMID: 12112734 DOI: 10.1002/mrdd.10023] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Although MECP2 was initially identified as the causative gene in classic Rett syndrome (RTT), the gene has now been implicated in several phenotypes that extend well beyond the clinically defined disorder. MECP2 mutations have been found in people with various disorders, including neonatal onset encephalopathy, X-linked recessive mental retardation (MRX), classic and atypical RTT, autism, and Angelman syndrome, as well as mildly affected females and normal carrier females. To make matters more complex, in approximately 20% of classic sporadic RTT cases and more than 50% of affected sister pairs, no mutation in MECP2 has been found. X-chromosome inactivation patterns can clearly affect the phenotypic expression in females, while the effect of the type and position of the mutation is more apparent in the broader phenotype than in RTT. Both males and females are at risk, although an excess of paternally derived mutations are found in most cases of classic RTT. Thus, because of the range of disparate phenotypes, the gene may account for a relatively large portion of mental retardation in the population.
Collapse
Affiliation(s)
- Sara Hammer
- Departments of Human Genetics, Mental Retardation Research Center, University of California, Los Angeles, 695 Chales Young Drive South, Los Angeles California, USA
| | | | | | | | | |
Collapse
|
49
|
Hoffbuhr KC, Moses LM, Jerdonek MA, Naidu S, Hoffman EP. Associations between MeCP2 mutations, X-chromosome inactivation, and phenotype. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 8:99-105. [PMID: 12112735 DOI: 10.1002/mrdd.10026] [Citation(s) in RCA: 88] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Rett syndrome is a neurodevelopmental disorder of early postnatal brain growth in girls. Patients show a normal neonatal period with subsequent developmental regression and a loss of acquired skills (communication and motor skills), deceleration of head growth, and development of typical hand stereotypies. Recent studies have shown that mutations in the X-linked methyl CpG binding protein 2 gene (MeCP2) cause most typical cases of Rett syndrome. The MeCP2 gene encodes a protein that binds methylated cytosine residues of CpG dinucleotides and mediates, with histone deacetylases and transcriptional repressors, the transcription "silencing" of other genes. Girls with Rett syndrome exhibit mosaic expression for the MeCP2 defect at the cellular level, with most patients showing random X-inactivation and approximately equal numbers of cells expressing the normal MeCP2 gene and the mutated MeCP2 gene. In rare cases, females with a MeCP2 mutation escape phenotypic expression of the disorder because of nonrandom X-inactivation and the preferential inactivation of the mutated MeCP2 allele. Nonrandom patterns of X-inactivation may also contribute to the clinical variability often seen in girls with Rett syndrome. The spectrum of clinical phenotype caused by MeCP2 mutations is wide, including milder "preserved speech" variants, the severe congenital Rett variant, and a subset of X-linked recessive mental retardation in boys. Studies have shown that atypical and classical Rett syndrome can caused by the same MeCP2 mutations, indicating clinical phenotype is variable even among girls with the same MeCP2 mutation. The relationship between type of MeCP2 mutation, X-inactivation status, and clinical phenotype of Rett syndrome is complex and likely involves other environmental and polygenic modifiers.
Collapse
Affiliation(s)
- K C Hoffbuhr
- Research Center for Genetic Medicine, Children's National Medical Center, Washington D.C 20010, USA
| | | | | | | | | |
Collapse
|
50
|
Shahbazian MD, Sun Y, Zoghbi HY. Balanced X chromosome inactivation patterns in the Rett syndrome brain. AMERICAN JOURNAL OF MEDICAL GENETICS 2002; 111:164-8. [PMID: 12210344 DOI: 10.1002/ajmg.10557] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In Rett syndrome (RTT), an X-linked disorder essentially limited to females, neurological development goes awry. Causing this disarray in neuronal function is a mutated form of a protein known as methyl-CpG-binding protein 2 (MeCP2). Because the MECP2 gene is subject to X chromosome inactivation (XCI) in females, a number of studies have addressed whether the percentage of cells inactivating the normal vs. mutant chromosome in heterozygous females influences the phenotypic outcome of MECP2 mutations. Because most of these studies measured XCI in peripheral blood, however, interpretation of the results requires the assumption that XCI patterns in blood are representative of those in the brain, the primarily affected tissue. Here, we have analyzed the MECP2 sequence and XCI status in 13 brains of RTT patients. Mutations were identified in nine of the cases, with eight of these representing C to T transitions at CpG dinucleotides, and one being a novel frameshift mutation (765delA). Patterns of XCI were balanced in 10 of 10 cases for which the assay was informative. As previous studies have shown that a majority of RTT patients have balanced XCI patterns in peripheral blood, our results suggest that the pattern in blood is an accurate indicator of XCI patterns in the brain for a majority of cases, but there are some notable exceptions that this study may help explain. Given the correlation between balanced XCI and classic RTT, these results suggest that a certain percentage of neurons expressing the mutant MECP2 gene may be required for RTT to become manifest.
Collapse
Affiliation(s)
- Mona D Shahbazian
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | |
Collapse
|