1
|
Peripheral Nerve Impairment in a Mouse Model of Alzheimer's Disease. Brain Sci 2021; 11:brainsci11091245. [PMID: 34573265 PMCID: PMC8465822 DOI: 10.3390/brainsci11091245] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 09/16/2021] [Accepted: 09/17/2021] [Indexed: 01/23/2023] Open
Abstract
Sarcopenia, a geriatric syndrome involving loss of muscle mass and strength, is often associated with the early phases of Alzheimer’s disease (AD). Pathological hallmarks of AD including amyloid β (Aβ) aggregates which can be found in peripheral tissues such as skeletal muscle. However, not much is currently known about their possible involvement in sarcopenia. We investigated neuronal innervation in skeletal muscle of Tg2576 mice, a genetic model for Aβ accumulation. We examined cholinergic innervation of skeletal muscle in adult Tg2576 and wild type mice by immunofluorescence labeling of tibialis anterior (TA) muscle sections using antibodies raised against neurofilament light chain (NFL) and acetylcholine (ACh) synthesizing enzyme choline acetyltransferase (ChAT). Combining this histological approach with real time quantification of mRNA levels of nicotinic acetylcholine receptors, we demonstrated that in the TA of Tg2576 mice, neuronal innervation is significantly reduced and synaptic area is smaller and displays less ChAT content when compared to wild type mice. Our study provides the first evidence of reduced cholinergic innervation of skeletal muscle in a mouse model of Aβ accumulation. This evidence sustains the possibility that sarcopenia in AD originates from Aβ-mediated cholinergic loss.
Collapse
|
2
|
Arai Y, Iwasaki Y, Suzuki T, Ide S, Kaga M. Elimination of amyloid precursor protein in senile plaques in the brain of a patient with Alzheimer-type dementia and Down syndrome. Brain Dev 2019; 41:106-110. [PMID: 30086988 DOI: 10.1016/j.braindev.2018.07.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 07/18/2018] [Accepted: 07/23/2018] [Indexed: 11/18/2022]
Abstract
The average lifespan of individuals with Down syndrome has approximately doubled over the past three decades to 55-60 years. To reveal the pathogenic process of Alzheimer-type dementia in individuals with Down syndrome, we immunohistochemically examined senile plaque formation in the cerebral cortex in the autopsy brain and compared findings with our previous studies. We described a 52-year-old female with Down syndrome who developed progressively more frequent myoclonus following cognitive decline and died at the age of 59 years. Her karyotype [46XX, inv(9)(p12q13), i(21)(q10)] included triplication of the gene for amyloid precursor protein and the Down syndrome critical region. On microscopy, very few gamma-aminobutyric acid-ergic (GABAergic) neurons, in the form of small granular cells, in the cortex and Purkinje cells in the cerebellum were visible. In our previous study, amyloid precursor protein immunoreactivity was first noted in senile plaques at the age of 32 years. In this patient, even though amyloid β immunoreactivity was detected in the cores of senile plaques and diffuse plaques, amyloid precursor protein immunoreactivity was not noted in senile plaques in the frontal cortex. Amyloid precursor protein and its derivative amyloid-β play an important role in the formation of senile plaques and the time course of immunoreactive expression may be related to the pathogenic process of Alzheimer-type dementia.
Collapse
Affiliation(s)
- Yasuhiro Arai
- Department of Child Neurology, Tokyo Metropolitan Tobu Medical Center for Persons with Developmental/Multiple Disabilities, Japan.
| | - Yuji Iwasaki
- Department of Child Neurology, Tokyo Metropolitan Tobu Medical Center for Persons with Developmental/Multiple Disabilities, Japan
| | - Toshihiro Suzuki
- Department of Child Neurology, Tokyo Metropolitan Tobu Medical Center for Persons with Developmental/Multiple Disabilities, Japan
| | - Shuuhei Ide
- Department of Child Neurology, Tokyo Metropolitan Tobu Medical Center for Persons with Developmental/Multiple Disabilities, Japan
| | - Makiko Kaga
- Department of Child Neurology, Tokyo Metropolitan Tobu Medical Center for Persons with Developmental/Multiple Disabilities, Japan
| |
Collapse
|
3
|
Abstract
Down syndrome (DS; Trisomy 21) is the most common chromosomal disorder in humans. It has numerous associated neurologic phenotypes including intellectual disability, sleep apnea, seizures, behavioral problems, and dementia. With improved access to medical care, people with DS are living longer than ever before. As more individuals with DS reach old age, the necessity for further life span research is essential and cannot be overstated. There is currently a scarcity of information on common medical conditions encountered as individuals with DS progress into adulthood and old age. Conflicting information and uncertainty about the relative risk of dementia for adults with DS is a source of distress for the DS community that creates a major obstacle to proper evaluation and treatment. In this chapter, we discuss the salient neurologic phenotypes of DS, including Alzheimer's disease (AD), and current understanding of their biologic bases and management.
Collapse
Affiliation(s)
- Michael S Rafii
- Department of Neurology, Keck School of Medicine of the University of Southern California, San Diego, CA, United States
| | | | - Mariko Sawa
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States
| | - William C Mobley
- Department of Neurosciences, University of California San Diego, La Jolla, CA, United States.
| |
Collapse
|
4
|
Monteiro-Cardoso VF, Castro M, Oliveira MM, Moreira PI, Peixoto F, Videira RA. Age-dependent biochemical dysfunction in skeletal muscle of triple-transgenic mouse model of Alzheimer`s disease. Curr Alzheimer Res 2015; 12:100-15. [PMID: 25654504 PMCID: PMC4428479 DOI: 10.2174/1567205012666150204124852] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2014] [Revised: 09/21/2014] [Accepted: 10/09/2014] [Indexed: 12/25/2022]
Abstract
The emergence of Alzheimer`s disease as a systemic pathology shifted the research paradigm toward a better
understanding of the molecular basis of the disease considering the pathophysiological changes in both brain and peripheral
tissues. In the present study, we evaluated the impact of disease progression on physiological relevant features of
skeletal muscle obtained from 3, 6 and 12 month-old 3xTg-AD mice, a model of Alzheimer`s disease, and respective agematched
nonTg mice. Our results showed that skeletal muscle functionality is already affected in 3-month-old 3xTg-AD
mice as evidenced by deficient acetylcholinesterase and catalase activities as well as by alterations in fatty acid composition
of mitochondrial membranes. Additionally, an age-dependent accumulation of amyloid-β1-40 peptide occurred in
skeletal muscle of 3xTg-AD mice, an effect that preceded bioenergetics mitochondrial dysfunction, which was only detected
at 12 months of age, characterized by decreased respiratory control ratio and ADP/O index and by an impairment of
complex I activity. HPLC-MS/MS analyses revealed significant changes in phospholipid composition of skeletal muscle
tissues from 3xTg-AD mice with 12 months of age when compared with age-matched nonTg mice. Increased levels of
lyso-phosphatidylcholine associated with a decrease of phosphatidylcholine molecular species containing arachidonic acid
were detected in 3xTg-AD mice, indicating an enhancement of phospholipase A2 activity and skeletal muscle inflammation.
Additionally, a decrease of phosphatidylethanolamine plasmalogens content and an increase in phosphatidylinositol
levels was observed in 3xTg-AD mice when compared with age-matched nonTg mice. Altogether, these observations
suggest that the skeletal muscle of 3xTg-AD mice are more prone to oxidative and inflammatory events.
Collapse
Affiliation(s)
| | | | | | | | | | - Romeu A Videira
- Chemistry Center - Vila Real (CQ-VR), Chemistry Department, School of Life and Environmental Sciences, University of Tras-os-Montes e Alto Douro, UTAD, P.O. Box 1013; 5001-801 Vila Real, Portugal.
| |
Collapse
|
5
|
Atwood CS, Bowen RL. The endocrine dyscrasia that accompanies menopause and andropause induces aberrant cell cycle signaling that triggers re-entry of post-mitotic neurons into the cell cycle, neurodysfunction, neurodegeneration and cognitive disease. Horm Behav 2015; 76:63-80. [PMID: 26188949 PMCID: PMC4807861 DOI: 10.1016/j.yhbeh.2015.06.021] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2014] [Revised: 06/23/2015] [Accepted: 06/23/2015] [Indexed: 12/26/2022]
Abstract
This article is part of a Special Issue "SBN 2014". Sex hormones are physiological factors that promote neurogenesis during embryonic and fetal development. During childhood and adulthood these hormones support the maintenance of brain structure and function via neurogenesis and the formation of dendritic spines, axons and synapses required for the capture, processing and retrieval of information (memories). Not surprisingly, changes in these reproductive hormones that occur with menopause and during andropause are strongly correlated with neurodegeneration and cognitive decline. In this connection, much evidence now indicates that Alzheimer's disease (AD) involves aberrant re-entry of post-mitotic neurons into the cell cycle. Cell cycle abnormalities appear very early in the disease, prior to the appearance of plaques and tangles, and explain the biochemical, neuropathological and cognitive changes observed with disease progression. Intriguingly, a recent animal study has demonstrated that induction of adult neurogenesis results in the loss of previously encoded memories while decreasing neurogenesis after memory formation during infancy mitigated forgetting. Here we review the biochemical, epidemiological and clinical evidence that alterations in sex hormone signaling associated with menopause and andropause drive the aberrant re-entry of post-mitotic neurons into an abortive cell cycle that leads to neurite retraction, neuron dysfunction and neuron death. When the reproductive axis is in balance, gonadotropins such as luteinizing hormone (LH), and its fetal homolog, human chorionic gonadotropin (hCG), promote pluripotent human and totipotent murine embryonic stem cell and neuron proliferation. However, strong evidence supports menopausal/andropausal elevations in the LH:sex steroid ratio as driving aberrant mitotic events. These include the upregulation of tumor necrosis factor; amyloid-β precursor protein processing towards the production of mitogenic Aβ; and the activation of Cdk5, a key regulator of cell cycle progression and tau phosphorylation (a cardinal feature of both neurogenesis and neurodegeneration). Cognitive and biochemical studies confirm the negative consequences of a high LH:sex steroid ratio on dendritic spine density and human cognitive performance. Prospective epidemiological and clinical evidence in humans supports the premise that rebalancing the ratio of circulating gonadotropins:sex steroids reduces the incidence of AD. Together, these data support endocrine dyscrasia and the subsequent loss of cell cycle control as an important etiological event in the development of neurodegenerative diseases including AD, stroke and Parkinson's disease.
Collapse
Affiliation(s)
- Craig S Atwood
- Department of Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI 53705, USA; Geriatric Research, Education and Clinical Center, Veterans Administration Hospital, Madison, WI 53705, USA; School of Exercise, Biomedical and Health Sciences, Edith Cowan University, Joondalup, 6027 WA, Australia.
| | - Richard L Bowen
- OTB Research, 217 Calhoun St, Unit 1, Charleston, SC 29401, USA
| |
Collapse
|
6
|
Stroh M, Swerdlow RH, Zhu H. Common defects of mitochondria and iron in neurodegeneration and diabetes (MIND): a paradigm worth exploring. Biochem Pharmacol 2014; 88:573-83. [PMID: 24361914 PMCID: PMC3972369 DOI: 10.1016/j.bcp.2013.11.022] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Revised: 11/25/2013] [Accepted: 11/25/2013] [Indexed: 12/19/2022]
Abstract
A popular, if not centric, approach to the study of an event is to first consider that of the simplest cause. When dissecting the underlying mechanisms governing idiopathic diseases, this generally takes the form of an ab initio genetic approach. To date, this genetic 'smoking gun' has remained elusive in diabetes mellitus and for many affected by neurodegenerative diseases. With no single gene, or even subset of genes, conclusively causative in all cases, other approaches to the etiology and treatment of these diseases seem reasonable, including the correlation of a systems' predisposed sensitivity to particular influence. In the cases of diabetes mellitus and neurodegenerative diseases, overlapping themes of mitochondrial influence or dysfunction and iron dyshomeostasis are apparent and relatively consistent. This mini-review discusses the influence of mitochondrial function and iron homeostasis on diabetes mellitus and neurodegenerative disease, namely Alzheimer's disease. Also discussed is the incidence of diabetes accompanied by neuropathy and neurodegeneration along with neurodegenerative disorders prone to development of diabetes. Mouse models containing multiple facets of this overlap are also described alongside current molecular trends attributed to both diseases. As a way of approaching the idiopathic and complex nature of these diseases we are proposing the consideration of a MIND (mitochondria, iron, neurodegeneration, and diabetes) paradigm in which systemic metabolic influence, iron homeostasis, and respective genetic backgrounds play a central role in the development of disease.
Collapse
Affiliation(s)
- Matthew Stroh
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA
| | - Russell H Swerdlow
- Department of Neurology, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| | - Hao Zhu
- Neuroscience Graduate Program, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Clinical Laboratory Sciences, University of Kansas Medical Center, Kansas City, KS 66160, USA; Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, KS 66160, USA.
| |
Collapse
|
7
|
Sterol lipid metabolism in down syndrome revisited: down syndrome is associated with a selective reduction in serum brassicasterol levels. Curr Gerontol Geriatr Res 2012; 2012:179318. [PMID: 22649448 PMCID: PMC3357506 DOI: 10.1155/2012/179318] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2011] [Accepted: 02/22/2012] [Indexed: 02/03/2023] Open
Abstract
Over the past 15 years, insights into sterol metabolism have improved our understanding of the relationship between lipids and common conditions such as atherosclerosis and Alzheimer's Disease (AD). A better understanding of sterol lipid metabolism in individuals with Down Syndrome (DS) may help elucidate how this population's unique metabolic characteristics influence their risks for atherosclerosis and AD. To revisit the question of whether sterol lipid parameters may be altered in DS subjects, we performed a pilot study to assess traditional serum sterol lipids and lipoproteins, as well as markers of sterol biosynthesis, metabolites, and plant sterols in 20 subjects with DS compared to age-matched controls. Here we report that the levels of nearly all lipids and lipoproteins examined are similar to control subjects, suggesting that trisomy 21 does not lead to pronounced general alterations in sterol lipid metabolism. However, the levels of serum brassicasterol were markedly reduced in DS subjects.
Collapse
|
8
|
Yamashita A, Fuchs E, Taira M, Yamamoto T, Hayashi M. Somatostatin-immunoreactive senile plaque-like structures in the frontal cortex and nucleus accumbens of aged tree shrews and Japanese macaques. J Med Primatol 2012; 41:147-57. [PMID: 22512242 DOI: 10.1111/j.1600-0684.2012.00540.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
BACKGROUND Previously, we demonstrated decreased expression of somatostatin mRNA in aged macaque brain, particularly in the prefrontal cortex. To investigate whether or not this age-dependent decrease in mRNA is related to morphological changes, we analyzed somatostatin cells in the cerebra of aged Japanese macaques and compared them with those in rats and tree shrews, the latter of which are closely related to primates. METHODS Brains of aged macaques, tree shrews, and rats were investigated by immunohistochemistry with special emphasis on somatostatin. RESULTS We observed degenerating somatostatin-immunoreactive cells in the cortices of aged macaques and tree shrews. Somatostatin-immunoreactive senile plaque-like structures were found in areas 6 and 8 and in the nucleus accumbens of macaques, as well as in the nucleus accumbens and the cortex of aged tree shrews, where amyloid accumulations were observed. CONCLUSIONS Somatostatin degenerations may be related to amyloid accumulations and may play roles in impairments of cognitive functions during aging.
Collapse
Affiliation(s)
- Akiko Yamashita
- Division of Applied System Neuroscience, Nihon University School of Medicine, Tokyo, Japan.
| | | | | | | | | |
Collapse
|
9
|
Vella LJ, Cappai R. Identification of a novel amyloid precursor protein processing pathway that generates secreted N-terminal fragments. FASEB J 2012; 26:2930-40. [PMID: 22490781 DOI: 10.1096/fj.11-200295] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder of the central nervous system. The proteolytic processing of the amyloid precursor protein (APP) into the β-amyloid (Aβ) peptide is a central event in AD. While the pathway that generates Aβ is well described, many questions remain concerning general APP metabolism and its metabolites. It is becoming clear that the amino-terminal region of APP can be processed to release small N-terminal fragments (NTFs). The purpose of this study was to investigate the occurrence and generation of APP NTFs in vivo and in cell culture (SH-SY5Y) in order to delineate the cellular pathways implicated in their generation. We were able to detect 17- to 28-kDa APP NTFs in human and mouse brain tissue that are distinct from N-APP fragments previously reported. We show that the 17- to 28-kDa APP NTFs were highly expressed in mice from the age of 2 wk to adulthood. SH-SY5Y studies indicate the generation of APP NTFs involves a novel APP processing pathway, regulated by protein kinase C, but independent of α-secretase or β-secretase 1 (BACE) activity. These results identify a novel, developmentally regulated APP processing pathway that may play an important role in the physiological function of APP.
Collapse
Affiliation(s)
- Laura J Vella
- Department of Pathology and Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne, Victoria, Australia
| | | |
Collapse
|
10
|
Jia YL, Jing LJ, Li JY, Lu JJ, Han R, Wang SY, Peng T, Jia YJ. Expression and significance of DSCAM in the cerebral cortex of APP transgenic mice. Neurosci Lett 2011; 491:153-7. [PMID: 21241773 DOI: 10.1016/j.neulet.2011.01.028] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2010] [Revised: 01/09/2011] [Accepted: 01/10/2011] [Indexed: 12/21/2022]
Abstract
Down syndrome cell adhesion molecule (DSCAM) plays important roles in the regulation of synaptogenesis, neurite outgrowth, axon guidance and synapse formation. Overexpression of DSCAM in Down syndrome (DS) may be involved in the pathogenesis of mental retardation through an inhibitory action on synaptogenesis/neurite outgrowth, and in the precocious dementia associated with an amyloid precursor protein (APP) dosage effect with enhanced plaque formation. In this report we examined the expression of DSCAM in the cerebral cortex of APP transgenic mice versus age-matched wild-type mice. We found that the level of DSCAM expression increased with increasing age in both groups of mice, up to a maximum at 3 months old. The level of DSCAM expression in APP transgenic mice was significantly higher than in the age-matched wild types. We propose that overexpression of DSCAM in the cerebral cortex might play an important role in the learning and memory defects of APP transgenic mice.
Collapse
Affiliation(s)
- Yong-Lin Jia
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, No. 1, East Jian She Road, Zhengzhou, Henan Province 450052, China.
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Porayette P, Gallego MJ, Kaltcheva MM, Bowen RL, Vadakkadath Meethal S, Atwood CS. Differential processing of amyloid-beta precursor protein directs human embryonic stem cell proliferation and differentiation into neuronal precursor cells. J Biol Chem 2009; 284:23806-17. [PMID: 19542221 DOI: 10.1074/jbc.m109.026328] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The amyloid-beta precursor protein (AbetaPP) is a ubiquitously expressed transmembrane protein whose cleavage product, the amyloid-beta (Abeta) protein, is deposited in amyloid plaques in neurodegenerative conditions such as Alzheimer disease, Down syndrome, and head injury. We recently reported that this protein, normally associated with neurodegenerative conditions, is expressed by human embryonic stem cells (hESCs). We now report that the differential processing of AbetaPP via secretase enzymes regulates the proliferation and differentiation of hESCs. hESCs endogenously produce amyloid-beta, which when added exogenously in soluble and fibrillar forms but not oligomeric forms markedly increased hESC proliferation. The inhibition of AbetaPP cleavage by beta-secretase inhibitors significantly suppressed hESC proliferation and promoted nestin expression, an early marker of neural precursor cell (NPC) formation. The induction of NPC differentiation via the non-amyloidogenic pathway was confirmed by the addition of secreted AbetaPPalpha, which suppressed hESC proliferation and promoted the formation of NPCs. Together these data suggest that differential processing of AbetaPP is normally required for embryonic neurogenesis.
Collapse
Affiliation(s)
- Prashob Porayette
- Section of Geriatrics and Gerontology, Department of Medicine, University of Wisconsin and Geriatric Research, Education and Clinical Center, Veterans Affairs Hospital, Madison, Wisconsin 53705, USA
| | | | | | | | | | | |
Collapse
|
12
|
Cheon MS, Dierssen M, Kim SH, Lubec G. Protein expression of BACE1, BACE2 and APP in Down syndrome brains. Amino Acids 2007; 35:339-43. [PMID: 18163181 DOI: 10.1007/s00726-007-0618-9] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2007] [Accepted: 10/08/2007] [Indexed: 12/30/2022]
Abstract
Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21. The phenotype of DS is thought to result from overexpression of a gene or genes located on the triplicated chromosome or chromosome region. Several reports have shown that the neuropathology of DS comprises developmental abnormalities and Alzheimer-like lesions such as senile plaques. A key component of senile plaques is amyloid beta-peptide which is generated from the amyloid precursor protein (APP) by sequential action of beta-secretases (BACE1 and BACE2) and gamma-secretase. While BACE1 maps to chromosome 11, APP and BACE2 are located on chromosome 21. To challenge the gene dosage effect and gain insight into the expressional relation between beta-secretases and APP in DS brain, we evaluated protein expression levels of BACE1, BACE2 and APP in fetal and adult DS brain compared to controls. In fetal brain, protein expression levels of BACE2 and APP were comparable between DS and controls. BACE1 was increased, but did not reach statistical significance. In adult brain, BACE1 and BACE2 were comparable between DS and controls, but APP was significantly increased. We conclude that APP overexpression seems to be absent during the development of DS brain up to 18-19 weeks of gestational age. However, its overexpression in adult DS brain could lead to disturbance of normal function of APP contributing to neurodegeneration. Comparable expression of BACE1 and BACE2 speaks against the hypothesis that increased beta-secretase results in (or even underlies) increased production of amyloidogenic A beta fragments. Furthermore, current data indicate that the DS phenotype cannot be fully explained by simple gene dosage effect.
Collapse
Affiliation(s)
- M S Cheon
- Department of Pediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | |
Collapse
|
13
|
Amyloid-beta precursor protein expression and modulation in human embryonic stem cells: a novel role for human chorionic gonadotropin. Biochem Biophys Res Commun 2007; 364:522-7. [PMID: 17959150 DOI: 10.1016/j.bbrc.2007.10.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2007] [Accepted: 10/08/2007] [Indexed: 11/20/2022]
Abstract
The amyloid-beta precursor protein (AbetaPP) is a ubiquitously expressed adhesion and neuritogenic protein whose processing has previously been shown to be regulated by reproductive hormones including the gonadotropin luteinizing hormone (LH) in human neuroblastoma cells. We report for the first time the expression of AbetaPP in human embryonic stem (hES) cells at the mRNA and protein levels. Using N- and C-terminal antibodies against AbetaPP, we detected both the mature and immature forms of AbetaPP as well as truncated variants ( approximately 53kDa, 47kDa, and 29kDa) by immunoblot analyses. Expression of AbetaPP is regulated by both the stemness of the cells and pregnancy-associated hormones. Addition of human chorionic gonadotropin, the fetal equivalent of LH that is dramatically elevated during pregnancy, markedly increased the expression of all AbetaPP forms. These results indicate a critical molecular signaling link between the hormonal environment of pregnancy and the expression of AbetaPP in hES cells that is suggestive of an important function for this protein during early human embryogenesis prior to the formation of neural precursor cells.
Collapse
|
14
|
Bartha JL, Soothill PW. Plasma amyloid beta protein 1-42 levels in fetuses with Down syndrome. Early Hum Dev 2005; 81:351-4. [PMID: 15814219 DOI: 10.1016/j.earlhumdev.2004.09.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2004] [Revised: 09/01/2004] [Accepted: 09/02/2004] [Indexed: 11/23/2022]
Abstract
BACKGROUND The presence of amyloid plaques in the brains of people with Down syndrome is correlated with the severity and the progression of the disease. The core of the plaques is an amyloid beta (A beta) protein. If a relationship between fetal levels and the presence and severity of the disease could be determined, consideration of an early intervention to reduce brain damage can be proposed. AIM To study plasma amyloid beta 1-42 levels in fetuses with Down syndrome. STUDY DESIGN Fetal plasma amyloid beta 1-42 levels were measured using a commercially available immunoassay. The sample size was previously calculated to show a difference with an alpha level of 0.05 and a power (1-beta) of 90%. SUBJECTS Thirteen fetuses with Down syndrome and 17 controls (22.3+/-2.0 and 21.6+/-1.2 weeks of gestation, respectively). OUTCOME MEASURES Fetal plasma amyloid beta 1-42 levels. RESULTS There was no significant difference in plasma amyloid beta 1-42 levels between fetuses with Down syndrome and those with a normal karyotype (193.1+/-48.0 vs. 194.6+/-15.6 pg/mL, respectively). CONCLUSIONS This result does not support the hypothesis that A beta 1-42 may be related to the severity of brain damage in newborns with Down syndrome. The high levels of this peptide in fetuses without Down syndrome favour a physiological role of these peptides during brain development.
Collapse
Affiliation(s)
- Jose L Bartha
- Fetal Medicine Research Unit, Department of Obstetrics and Gynaecology, St Michael's Hospital, University of Bristol, Bristol, UK.
| | | |
Collapse
|
15
|
Wolvetang EJ, Bradfield OM, Hatzistavrou T, Crack PJ, Busciglio J, Kola I, Hertzog PJ. Overexpression of the chromosome 21 transcription factor Ets2 induces neuronal apoptosis. Neurobiol Dis 2003; 14:349-56. [PMID: 14678752 DOI: 10.1016/s0969-9961(03)00107-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022] Open
Abstract
Down syndrome (trisomy 21) neurons display an increased rate of apoptosis in vitro. The genes on chromosome 21 that mediate this increased cell death remain to be elucidated. Here we show that the chromosome 21 transcription factor Ets2, a gene that is overexpressed in Down syndrome, is expressed in neurons, and that moderate overexpression of Ets2 leads to increased apoptosis of primary neuronal cultures from Ets2 tg mice that involves activation of caspase-3. Our data therefore suggest that overexpression of ETS2 may contribute to the increased rate of apoptosis of neurons in Down syndrome.
Collapse
Affiliation(s)
- E J Wolvetang
- Monash Institute of Reproduction and Development, Monash University, Monash Medical Center, 246 Clayton Road, 3168 Clayton, Australia.
| | | | | | | | | | | | | |
Collapse
|
16
|
Wolvetang EW, Bradfield OM, Tymms M, Zavarsek S, Hatzistavrou T, Kola I, Hertzog PJ. The chromosome 21 transcription factor ETS2 transactivates the beta-APP promoter: implications for Down syndrome. BIOCHIMICA ET BIOPHYSICA ACTA 2003; 1628:105-10. [PMID: 12890557 DOI: 10.1016/s0167-4781(03)00121-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The gene that codes for beta-amyloid precursor protein (beta-APP), a protein centrally involved in senile plaque formation in Down syndrome (DS) and Alzheimer's disease (AD), is located on chromosome 21. In DS beta-APP expression is three- to fourfold higher than what is expected from the 1.5-fold increased gene load, suggesting that other genes on chromosome 21 directly or indirectly can further up-regulate beta-APP. Here we show that the chromosome 21 transcription factor ETS2 transactivates the beta-APP gene via specific Ets binding sites in the beta-APP promoter and, in this respect, cooperates with the transcription factor complex AP1. We further show that brains and primary neuronal cultures from Ets2 transgenic mice, as well as 3T3 fibroblasts that overexpress ETS2, display molecular abnormalities also seen in DS, such as elevated expression of beta-APP protein, an increase in presenilin-1 and increased beta-amyloid production. We conclude that ETS2 is a transcriptional regulator of beta-APP and that overexpression of ETS2 in DS may play a role in the pathogenesis of the brain abnormalities in DS and possibly AD.
Collapse
Affiliation(s)
- E W Wolvetang
- Centre for Functional Genomics and Human Disease, Monash Institute of Reproduction and Development, Monash University, Monash Medical Center, 246 Clayton Road, 3168, Clayton, Australia.
| | | | | | | | | | | | | |
Collapse
|
17
|
Hirayama A, Horikoshi Y, Maeda M, Ito M, Takashima S. Characteristic developmental expression of amyloid beta40, 42 and 43 in patients with Down syndrome. Brain Dev 2003; 25:180-5. [PMID: 12689696 DOI: 10.1016/s0387-7604(02)00209-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
We immunohistochemically studied the expression of beta-amyloid precursor protein (APP), Abeta40, Abeta42, and Abeta43 in the frontal lobes of 20 Down syndrome (DS) patients and 13 controls. The immunoreactivity for each antibody was different in the degree of intensity and the chronological pattern of expression. APP and Abeta43 immunoreactivity was increased in neurons initially, and then Abeta43 and 42 immunoreactivity appeared in diffuse plaques from 32 years of age. APP and Abeta43 were characteristically observed in axons around senile plaques. Finally, Abeta40 immunoreactivity was detected in the cores of senile plaques. This time course of immunoreactive expression may be related to the pathogenetic process of Alzheimer-type dementia in DS, and the axonal damage in senile plaques may lead to the formation of neurofibrillary tangles (NFT) or neuronal death through axonal flow disturbance and accumulation of Abeta43 in cortical neurons.
Collapse
Affiliation(s)
- Aya Hirayama
- Department of Pediatrics, Akita University, Akita, Japan.
| | | | | | | | | |
Collapse
|
18
|
Abstract
Trisomy of human chromosome 21 is a major cause of mental retardation and other phenotypic abnormalities collectively known as Down syndrome. Down syndrome is associated with developmental failure followed by processes of neurodegeneration that are known to supervene later in life. Despite a widespread interest in Down syndrome, the cause of developmental failure is unclear. The brain of a child with Down syndrome develops differently from that of a normal one, although characteristic morphological differences have not been noted in prenatal life. On the other hand, a review of the existing literature indicates that there are a series of biochemical alterations occurring in fetal Down syndrome brain that could serve as substrate for morphological changes. We propose that these biochemical alterations represent and/or precede morphological changes. This review attempts to dissect these molecular changes and to explain how they may lead to mental retardation.
Collapse
Affiliation(s)
- Ephrem Engidawork
- Department of Pediatrics, University of Vienna, Währinger Gürtel 18-20, A-1090 Vienna, Austria
| | | |
Collapse
|
19
|
Sugaya K. Potential use of stem cells in neuroreplacement therapies for neurodegenerative diseases. INTERNATIONAL REVIEW OF CYTOLOGY 2003; 228:1-30. [PMID: 14667041 DOI: 10.1016/s0074-7696(03)28001-3] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The use of stem cells for neuroreplacement therapy is no longer science fiction--it is science fact. We have succeeded in the development of neural and mesenchymal stem cell transplantation to produce neural cells in the brain. We have also seen improvement in cognitive function following stem cell transplantation in a memory-impaired aged animal model. These results promise a bright future for stem cell therapies in neurodegenerative diseases. Before we begin to think about clinical applications beyond the present preclinical studies, we have to consider the pathophysiological environment of individual diseases and weigh the factors that affect stem cell biology. Here, I not only review potential therapeutic applications of stem cell strategies in neurodegenerative diseases, but also discuss stem cell biology regarding factors that are altered under disease conditions.
Collapse
Affiliation(s)
- Kiminobu Sugaya
- Department of Psychiatry, University of Illinois at Chicago, The Psychiatric Institute, Chicago, Illinois 60612, USA
| |
Collapse
|
20
|
Engidawork E, Baiic N, Fountoulakis M, Dierssen M, Greber-Platzer S, Lubec G. Beta-amyloid precursor protein, ETS-2 and collagen alpha 1 (VI) chain precursor, encoded on chromosome 21, are not overexpressed in fetal Down syndrome: further evidence against gene dosage effect. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2002:335-46. [PMID: 11771756 DOI: 10.1007/978-3-7091-6262-0_28] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Down syndrome (DS) is the most common human chromosomal abnormality caused by an extra copy of chromosome 21 and characterized clinically by somatic anomalies, mental retardation and precocious dementia. The phenotype of DS is thought to result from overexpression of a gene or genes located on the triplicated chromosome or chromosome region. Reports that challenge this notion, however, have been published. To add to this body of evidence, the expression of beta-amyloid precursor protein (APP), ETS-2 and collagen alpha1 (VI) chain precursor, encoded on chromosome 21, was investigated in fetal brain by western blot and two-dimensional electrophoresis (2-DE). Western blot detected APP and ETS-2 that migrated at approximately 75 and 50kDa, respectively. Subsequent densitometric analysis of APP and ETS-2 immunoreactivity did not produce any significant change between controls and DS. Since the metabolic fate of APP determines the propensity of amyloid beta production, the expression of the secreted forms of APP (sAPP) had been examined. Neither the expression of sAPPalpha nor sAPPbeta showed any detectable changes among the two groups. Collagen alpha1 (VI) chain precursor, a protein resolved as a single spot on 2D gel was identified by matrix associated laser desorption ionization mass spectroscopy. Quantitative analysis of this spot using the 2D Image Master software revealed a significant decrease in fetal DS (P < 0.01) compared to controls. Linear regression analysis did not show any correlation between protein levels and age. The current data suggest that overexpression per se can not fully explain the DS phenotype.
Collapse
Affiliation(s)
- E Engidawork
- Department of Pediatrics, AKH, University of Vienna, Austria
| | | | | | | | | | | |
Collapse
|
21
|
Seidl R, Cairns N, Lubec G. The brain in Down syndrome. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2002:247-61. [PMID: 11771748 DOI: 10.1007/978-3-7091-6262-0_20] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Down syndrome (trisomy 21) is a genetic disease with developmental brain abnormalities resulting in early mental retardation and precocious, age dependent Alzheimer-type neurodegeneration. We tried to discuss the role of neurodevelopmental abnormalities in connection with aberrant expression of genes on chromosome 21 including amyloid precursor protein (APP), CuZn superoxide dismutase (SOD1) and glial-derived S100 beta protein for neurodegeneration in DS. In this model, alterations in developmental pathways due to aberrant gene expression can impair cellular homeostasis and predispose to neurodegeneration of certain brain regions and types of nerve cells, involving cholinergic, serotonergic and catecholaminergic transmission, by shifting balance toward a pro-apoptotic state.
Collapse
Affiliation(s)
- R Seidl
- Department of Pediatrics, University of Vienna, Austria
| | | | | |
Collapse
|
22
|
Abstract
We investigated the expression of synaptojanin, which has been mapped on 21q22.2 on human chromosome, in the cerebral cortex of patients with Down syndrome (DS), using immunohistochemistry and immunoblotting. Synaptojanin expression was observed in Cajal-Retzius cells, cortical plate neurons, subplate neurons, intermediate neurons, germinal matrix cells and the ventricular neuroepithelium of the fetal cerebrum in both controls and DS. After birth, synaptojanin immunoreactivity was mainly observed in cytoplasm of cortical neurons and neurophils. These expressions of synaptojanin suggest a broader role in not only synaptic vesicle recycling, but also the regulation of neuronal migration and synaptogenesis in the fetal period. In comparison with controls, DS brains clearly showed higher immunoreactivity of synaptojanin in every structure, and most of the large neurons showed immunoreactivity. Western blotting with synaptojanin confirmed the increased expression in DS brains. Although the reason for excessive expression of synaptojanin in DS brains is obscured, one possibility can be explained on the basis of a gene dosage effect. As another possibility, on the assumption that synaptojanin modulates synaptic transmission and plays roles in clathrin-mediated synaptic vesicle endocytosis and signaling, the excessive expression of synaptojanin may be involved in compensatory mechanisms occurring in developing DS brains, such as neuronal loss, atrophic basilar dendrites, decreased spines and abnormal synaptic density and length.
Collapse
Affiliation(s)
- Yasuhiro Arai
- Department of Clinical Laboratory, National Center Hospital for Mental, Nervous and Muscular Disorders, Japan
| | | | | | | | | |
Collapse
|
23
|
Lott IT, Head E. Down syndrome and Alzheimer's disease: a link between development and aging. MENTAL RETARDATION AND DEVELOPMENTAL DISABILITIES RESEARCH REVIEWS 2002; 7:172-8. [PMID: 11553933 DOI: 10.1002/mrdd.1025] [Citation(s) in RCA: 109] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
A subset of aged individuals with Down syndrome (DS) exhibits the clinical features of Alzheimer's disease (AD) but our ability to detect dementia in this population is hampered by developmental differences as well as the sensitivity of existing test tools. Despite the apparent clinical heterogeneity in aged individuals with DS, age-associated neuropathology is a consistent feature. This is due to the fact that trisomy 21 leads to a dose-dependent increase in the production of the amyloid precursor protein and subsequently the production of the amyloidogenic fragments leading to early and predominant senile plaque formation. A review of the existing literature indicates that oxidative damage and neuroinflammation may interact to accelerate the disease process particularly in individuals with DS over the age of 40 years. By combining clinical information with measures of brain-region specific neuropathology we can "work backwards" and identify the earliest and most sensitive clinical change that may signal the onset of AD. For the past 50 years, investigators in the fields of mental retardation, developmental disabilities, and aging have been interested in the curious link between AD and DS. The morphologic and biochemical origins of AD are seen in the early years of the lifespan for individuals with DS. Study of the process by which AD evolves in DS affords an opportunity to understand an important link between development and aging. This review will focus on advances in the molecular and clinical basis of this association.
Collapse
Affiliation(s)
- I T Lott
- Department of Pediatrics, University of California, Irvine, Orange, CA 92868, USA.
| | | |
Collapse
|
24
|
Abstract
The amyloid precursor protein (APP) gene and its protein products have multiple functions in the central nervous system and fulfil criteria as neuractive peptides: presence, release and identity of action. There is increased understanding of the role of secretases (proteases) in the metabolism of APP and the production of its peptide fragments. The APP gene and its products have physiological roles in synaptic action, development of the brain, and in the response to stress and injury. These functions reveal the strategic importance of APP in the workings of the brain and point to its evolutionary significance.
Collapse
Affiliation(s)
- P K Panegyres
- Department of Neuropathology, Royal Perth Hospital, Western Australia.
| |
Collapse
|
25
|
Heininger K. A unifying hypothesis of Alzheimer's disease. IV. Causation and sequence of events. Rev Neurosci 2001; 11 Spec No:213-328. [PMID: 11065271 DOI: 10.1515/revneuro.2000.11.s1.213] [Citation(s) in RCA: 66] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Contrary to common concepts, the brain in Alzheimer's disease (AD) does not follow a suicide but a rescue program. Widely shared features of metabolism in starvation, hibernation and various conditions of energy deprivation, e.g. ischemia, allow the definition of a deprivation syndrome which is a phylogenetically conserved adaptive response to energetic stress. It is characterized by hypometabolism, oxidative stress and adjustments of the glucose-fatty acid cycle. Cumulative evidence suggests that the brain in aging and AD actively adapts to the progressive fuel deprivation. The counterregulatory mechanisms aim to preserve glucose for anabolic needs and promote the oxidative utilization of ketone bodies. The agent mediating the metabolic switch is soluble Abeta which inhibits glucose utilization and stimulates ketone body utilization at various levels. These processes, which are initiated during normal aging, include inhibition of pro-glycolytic neurohormones, cholinergic transmission, and pyruvate dehydrogenase, the key transmitter and effector systems regulating glucose metabolism. Hormonal and effector systems which promote ketone body utilization, such as glucocorticosteroid and galanin activity, GABAergic transmission, nitric oxide, lipid transport, Ca2+ elevation, and ketone body metabolizing enzymes, are enhanced. A multitude of risk factors feed into this pathophysiological cascade at a variety of levels. Taking into account its pleiotropic regulatory actions in the deprivation response, a new name for Abeta is suggested: deprivin. On the other hand, cumulative evidence, taken together compelling, suggests that senile plaques are the dump rather than the driving force of AD. Moreover, the neurotoxic action of fibrillar Abeta is a likely in vitro artifact but does not contribute significantly to the in vivo pathophysiological events. This archaic program, conserved from bacteria to man, aims to ensure the survival of a deprived organism and controls such divergent processes as sporulation, hibernation, aging and aging-related diseases. In contrast to the immature brain, ketone body utilization of the aged brain is no longer sufficient to meet the energetic demands and is later supplemented by lactate, thus recapitulating in reverse order the sequential fuel utilization of the immature brain. The transduction pathways which operate to switch metabolism also convey the programming and balancing of the de-/redifferentiation/apoptosis cell cycle decisions. This encompasses the reiteration of developmental processes such as transcription factor activation, tau hyperphosphorylation, and establishment of growth factor independence by means of Ca2+ set point shift. Thus, the increasing energetic insufficiency results in the progressive centralization of metabolic activity to the neuronal soma, leading to pruning of the axonal/dendritic trees, loss of neuronal polarity, downregulation of neuronal plasticity and, eventually, depending on the Ca2+ -energy-redox homeostasis, degeneration of vulnerable neurons. Finally, it is outlined that genetic (e.g. Down's syndrome, APP and presenilin mutations and apoE4) and environmental risk factors represent progeroid factors which accelerate the aging process and precipitate the manifestation of AD as a progeroid systemic disease. Aging and AD are related to each other by threshold phenomena, corresponding to stage 2, the stage of resistance, and stage 3, exhaustion, of a metabolic stress response.
Collapse
Affiliation(s)
- K Heininger
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|
26
|
de la Monte SM. Molecular abnormalities of the brain in Down syndrome: relevance to Alzheimer's neurodegeneration. JOURNAL OF NEURAL TRANSMISSION. SUPPLEMENTUM 2000; 57:1-19. [PMID: 10666665 DOI: 10.1007/978-3-7091-6380-1_1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/15/2023]
Abstract
Down syndrome is caused by over-expression of genes located within a segment of chromosome 21, termed the Down locus. Down syndrome is associated with developmental abnormalities of the central nervous system that result in mental retardation and age-dependent Alzheimer-type neurodegeneration. Some of the neurodegenerative lesions, including A beta amyloid deposition, apoptotic cell death, and aberrant dendritic arborization, are in part due to constitutively increased expression of genes that encode the amyloid precursor protein, superoxide dismutase I, and S100-beta, and located within the Down locus. However, neurodegeneration in Down syndrome is also associated with aberrant expression of genes that are not linked to the Down locus, including the growth associated protein, GAP-43, nitric oxide synthase 3, neuronal thread protein, and pro-apoptosis genes such as p53, Bax, and interleukin-1 beta-converting enzyme. Increased expression of these non-Down locus genes correlates with proliferation of dystrophic neurites and apoptotic cell death, two important correlates of cognitive impairment in Alzheimer's disease. This article reviews the functional importance of abnormal gene expression in relation to Alzheimer-type neurodegeneration in brains of individuals with Down syndrome.
Collapse
Affiliation(s)
- S M de la Monte
- Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| |
Collapse
|
27
|
Abstract
Normal ageing and Alzheimer's disease (AD) have many features in common and, in many respects, both conditions only differ by quantitative criteria. A variety of genetic, medical and environmental factors modulate the ageing-related processes leading the brain into the devastation of AD. In accordance with the concept that AD is a metabolic disease, these risk factors deteriorate the homeostasis of the Ca(2+)-energy-redox triangle and disrupt the cerebral reserve capacity under metabolic stress. The major genetic risk factors (APP and presenilin mutations, Down's syndrome, apolipoprotein E4) are associated with a compromise of the homeostatic triangle. The pathophysiological processes leading to this vulnerability remain elusive at present, while mitochondrial mutations can be plausibly integrated into the metabolic scenario. The metabolic leitmotif is particularly evident with medical risk factors which are associated with an impaired cerebral perfusion, such as cerebrovascular diseases including stroke, cardiovascular diseases, hypo- and hypertension. Traumatic brain injury represents another example due to the persistent metabolic stress following the acute event. Thyroid diseases have detrimental sequela for cerebral metabolism as well. Furthermore, major depression and presumably chronic stress endanger susceptible brain areas mediated by a host of hormonal imbalances, particularly the HPA-axis dysregulation. Sociocultural and lifestyle factors like education, physical activity, diet and smoking may also modulate the individual risk affecting both reserve capacity and vulnerability. The pathophysiological relevance of trace metals, including aluminum and iron, is highly controversial; at any rate, they may adversely affect cellular defences, antioxidant competence in particular. The relative contribution of these factors, however, is as individual as the pattern of the factors. In familial AD, the genetic factors clearly drive the sequence of events. A strong interaction of fat metabolism and apoE polymorphism is suggested by intercultural epidemiological findings. In cultures, less plagued by the 'blessings' of the 'cafeteria diet-sedentary' Western lifestyle, apoE4 appears to be not a risk factor for AD. This intriguing evidence suggests that, analogous to cardiovascular diseases, apoE4 requires a hyperlipidaemic lifestyle to manifest as AD risk factor. Overall, the etiology of AD is a key paradigm for a gene-environment interaction. Copyright 2000 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kurt Heininger
- Department of Neurology, Heinrich Heine University, Düsseldorf, Germany
| |
Collapse
|