1
|
Takahashi K, Kitaoka Y, Hatta H. Better maintenance of enzymatic capacity and higher levels of substrate transporter proteins in skeletal muscle of aging female mice. Appl Physiol Nutr Metab 2024; 49:1100-1114. [PMID: 38710106 DOI: 10.1139/apnm-2024-0016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
This study investigated sex-specific differences in high-energy phosphate, glycolytic, and mitochondrial enzyme activities and also metabolite transporter protein levels in the skeletal muscles of adult (5 months old), middle-aged (12 months old), and advanced-aged (24 months old) mice. While gastrocnemius glycogen content increased with age regardless of sex, gastrocnemius triglyceride levels increased only in advanced-aged female mice. Aging decreased creatine kinase and adenylate kinase activities in the plantaris muscle of both sexes and in the soleus muscle of male mice but not in female mice. Irrespective of sex, phosphofructokinase and lactate dehydrogenase (LDH) activities decreased in the plantaris and soleus muscles. Additionally, hexokinase activity in the plantaris muscle and LDH activity in the soleus muscle decreased to a greater extent in aged male mice compared with those in aged female mice. Mitochondrial enzyme activities increased in the plantaris muscle of aged female mice but did not change in male mice. The protein content of the glucose transporter 4 in the aged plantaris muscle and fatty acid translocase/cluster of differentiation 36 increased in the aged plantaris and soleus muscles of both sexes, with a significantly higher content in female mice. These findings suggest that females possess a better ability to maintain metabolic enzyme activity and higher levels of metabolite transport proteins in skeletal muscle during aging, despite alterations in lipid metabolism. Our data provide a basis for studying muscle metabolism in the context of age-dependent metabolic perturbations and diseases that affect females and males differently.
Collapse
Affiliation(s)
- Kenya Takahashi
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| | - Yu Kitaoka
- Department of Human Sciences, Kanagawa University, 3-27-1, Rokkakubashi, Kanagawa-ku, Yokohama, Kanagawa 221-8686, Japan
| | - Hideo Hatta
- Department of Sports Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo 153-8902, Japan
| |
Collapse
|
2
|
Cefis M, Dargegen M, Marcangeli V, Taherkhani S, Dulac M, Leduc-Gaudet JP, Mayaki D, Hussain SNA, Gouspillou G. MFN2 overexpression in skeletal muscles of young and old mice causes a mild hypertrophy without altering mitochondrial respiration and H 2O 2 emission. Acta Physiol (Oxf) 2024; 240:e14119. [PMID: 38400630 DOI: 10.1111/apha.14119] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/06/2024] [Accepted: 02/11/2024] [Indexed: 02/25/2024]
Abstract
AIM Sarcopenia, the aging-related loss of muscle mass and function, is a debilitating process negatively impacting the quality of life of affected individuals. Although the mechanisms underlying sarcopenia are incompletely understood, impairments in mitochondrial dynamics, including mitochondrial fusion, have been proposed as a contributing factor. However, the potential of upregulating mitochondrial fusion proteins to alleviate the effects of aging on skeletal muscles remains unexplored. We therefore hypothesized that overexpressing Mitofusin 2 (MFN2) in skeletal muscle in vivo would mitigate the effects of aging on muscle mass and improve mitochondrial function. METHODS MFN2 was overexpressed in young (7 mo) and old (24 mo) male mice for 4 months through intramuscular injections of an adeno-associated viruses. The impacts of MFN2 overexpression on muscle mass and fiber size (histology), mitochondrial respiration, and H2O2 emission (Oroboros fluororespirometry), and various signaling pathways (qPCR and western blotting) were investigated. RESULTS MFN2 overexpression increased muscle mass and fiber size in both young and old mice. No sign of fibrosis, necrosis, or inflammation was found upon MFN2 overexpression, indicating that the hypertrophy triggered by MFN2 overexpression was not pathological. MFN2 overexpression even reduced the proportion of fibers with central nuclei in old muscles. Importantly, MFN2 overexpression had no impact on muscle mitochondrial respiration and H2O2 emission in both young and old mice. MFN2 overexpression attenuated the increase in markers of impaired autophagy in old muscles. CONCLUSION MFN2 overexpression may be a viable approach to mitigate aging-related muscle atrophy and may have applications for other muscle disorders.
Collapse
Affiliation(s)
- Marina Cefis
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
| | - Manon Dargegen
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
| | - Vincent Marcangeli
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
- Département des sciences biologiques, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
| | - Shima Taherkhani
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
- Département des sciences biologiques, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
| | - Maude Dulac
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
| | - Jean-Philippe Leduc-Gaudet
- Research Group in Cellular Signaling, Department of Medical Biology, Université du Québec À Trois-Rivières, Trois-Rivières, Québec, Canada
| | - Dominique Mayaki
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sabah N A Hussain
- Division of Experimental Medicine, Department of Medicine, McGill University, Montréal, Québec, Canada
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Gilles Gouspillou
- Département des sciences de l'activité physique, Faculté des Sciences, UQÀM, Montréal, Québec, Canada
- Meakins-Christie Laboratories and Translational Research in Respiratory Diseases Program, Department of Critical Care, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
3
|
Ehinger JK, Westerlund E, Frostner EÅ, Karlsson M, Paul G, Sjövall F, Elmér E. Mitochondrial function in peripheral blood cells across the human lifespan. NPJ AGING 2024; 10:10. [PMID: 38326348 PMCID: PMC10850142 DOI: 10.1038/s41514-023-00130-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/20/2023] [Indexed: 02/09/2024]
Abstract
Mitochondrial dysfunction is considered a hallmark of aging. Up to now, a gradual decline of mitochondrial respiration with advancing age has mainly been demonstrated in human muscle tissue. A handful of studies have examined age-related mitochondrial dysfunction in human blood cells, and only with small sample sizes and mainly in platelets. In this study, we analyzed mitochondrial respiration in peripheral blood mononuclear cells (PBMCs) and platelets from 308 individuals across the human lifespan (0-86 years). In regression analyses, with adjustment for false discovery rate (FDR), we found age-related changes in respiratory measurements to be either small or absent. The main significant changes were an age-related relative decline in complex I-linked respiration and a corresponding rise of complex II-linked respiration in PBMCs. These results add to the understanding of mitochondrial dysfunction in aging and to its possible role in immune cell and platelet senescence.
Collapse
Affiliation(s)
- Johannes K Ehinger
- Otorhinolaryngology, Head and Neck Surgery, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden.
- Otorhinolaryngology, Head and Neck Surgery, Skåne University Hospital, Lund, Sweden.
| | - Emil Westerlund
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Emergency Department, Kungälv Hospital, Kungälv, Sweden
| | | | | | - Gesine Paul
- Translational Neurology Group and Wallenberg Center for Molecular Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | - Fredrik Sjövall
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Department of Intensive- and Perioperative Care, Skåne University Hospital, Malmö, Sweden
| | - Eskil Elmér
- Mitochondrial Medicine, Department of Clinical Sciences Lund, Lund University, Lund, Sweden
- Clinical Neurophysiology, Medical Imaging and Physiology, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
4
|
Cisterna B, Lofaro FD, Lacavalla MA, Boschi F, Malatesta M, Quaglino D, Zancanaro C, Boraldi F. Aged gastrocnemius muscle of mice positively responds to a late onset adapted physical training. Front Cell Dev Biol 2023; 11:1273309. [PMID: 38020923 PMCID: PMC10679468 DOI: 10.3389/fcell.2023.1273309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2023] [Accepted: 10/27/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction: A regular physical training is known to contribute to preserve muscle mass and strength, maintaining structure and function of neural and vascular compartments and preventing muscle insulin resistance and inflammation. However, physical activity is progressively reduced during aging causing mobility limitations and poor quality of life. Although physical exercise for rehabilitation purposes (e.g., after fractures or cardiovascular events) or simply aiming to counteract the development of sarcopenia is frequently advised by physicians, nevertheless few data are available on the targets and the global effects on the muscle organ of adapted exercise especially if started at old age. Methods: To contribute answering this question for medical translational purposes, the proteomic profile of the gastrocnemius muscle was analyzed in 24-month-old mice undergoing adapted physical training on a treadmill for 12 weeks or kept under a sedentary lifestyle condition. Proteomic data were implemented by morphological and morphometrical ultrastructural evaluations. Results and Discussion: Data demonstrate that muscles can respond to adapted physical training started at old age, positively modulating their morphology and the proteomic profile fostering protective and saving mechanisms either involving the extracellular compartment as well as muscle cell components and pathways (i.e., mitochondrial processes, cytoplasmic translation pathways, chaperone-dependent protein refolding, regulation of skeletal muscle contraction). Therefore, this study provides important insights on the targets of adapted physical training, which can be regarded as suitable benchmarks for future in vivo studies further exploring the effects of this type of physical activity by functional/metabolic approaches.
Collapse
Affiliation(s)
- Barbara Cisterna
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | | | - Maria Assunta Lacavalla
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federico Boschi
- Department of Computer Science, University of Verona, Verona, Italy
| | - Manuela Malatesta
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Carlo Zancanaro
- Department of Neuroscience, Biomedicine and Movement Sciences, University of Verona, Verona, Italy
| | - Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| |
Collapse
|
5
|
Gorgey AS, Lai RE, Khalil RE, Rivers J, Cardozo C, Chen Q, Lesnefsky EJ. Neuromuscular electrical stimulation resistance training enhances oxygen uptake and ventilatory efficiency independent of mitochondrial complexes after spinal cord injury: a randomized clinical trial. J Appl Physiol (1985) 2021; 131:265-276. [PMID: 33982590 DOI: 10.1152/japplphysiol.01029.2020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The purpose of the study was to determine whether neuromuscular electrical stimulation resistance training (NMES-RT)-evoked muscle hypertrophy is accompanied by increased V̇o2 peak, ventilatory efficiency, and mitochondrial respiration in individuals with chronic spinal cord injury (SCI). Thirty-three men and women with chronic, predominantly traumatic SCI were randomized to either NMES-RT (n = 20) or passive movement training (PMT; n = 13). Functional electrical stimulation-lower extremity cycling (FES-LEC) was used to test the leg V̇o2 peak, V̇E/V̇co2 ratio, and substrate utilization pre- and postintervention. Magnetic resonance imaging was used to measure muscle cross-sectional area (CSA). Finally, muscle biopsy was performed to measure mitochondrial complexes and respiration. The NMES-RT group showed a significant increase in postintervention V̇o2 peak compared with baseline (ΔV̇o2 = 14%, P < 0.01) with no changes in the PMT group (ΔV̇o2 = 1.6%, P = 0.47). Similarly, thigh (ΔCSAthigh = 19%) and knee extensor (ΔCSAknee = 30.4%, P < 0.01) CSAs increased following NMES-RT but not after PMT. The changes in thigh and knee extensor muscle CSAs were positively related with the change in V̇o2 peak. Neither NMES-RT nor PMT changed mitochondrial complex tissue levels; however, changes in peak V̇o2 were related to complex I. In conclusion, in persons with SCI, NMES-RT-induced skeletal muscle hypertrophy was accompanied by increased peak V̇o2 consumption which may partially be explained by enhanced activity of mitochondrial complex I.NEW & NOTEWORTHY Leg oxygen uptake (V̇o2) and ventilatory efficiency (V̇E/V̇co2 ratio) were measured during functional electrical stimulation cycling testing following 12-16 wk of either electrically evoked resistance training or passive movement training, and the respiration of mitochondrial complexes. Resistance training increased thigh muscle area and leg V̇o2 peak but decreased V̇E/V̇co2 ratio without changes in mitochondrial complex levels. Leg V̇o2 peak was associated with muscle hypertrophy and mitochondrial respiration of complex I following training.
Collapse
Affiliation(s)
- Ashraf S Gorgey
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Raymond E Lai
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Department of Physical Medicine and Rehabilitation, Virginia Commonwealth University, Richmond, Virginia
| | - Refka E Khalil
- Spinal Cord Injury and Disorders Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Jeannie Rivers
- Surgical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia
| | - Christopher Cardozo
- National Center for the Medical Consequences of Spinal Cord Injury and Medical and Surgical Service, James J Peters VA Medical Center, Bronx, New York.,Department of Medicine, Icahn School of Medicine, New York City, New York.,Department Rehabilitation Medicine, Icahn School of Medicine, New York City, New York
| | - Qun Chen
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| | - Edward J Lesnefsky
- Medical Service, Hunter Holmes McGuire VA Medical Center, Richmond, Virginia.,Division of Cardiology, Pauley Heart Center, Department of Medicine, Virginia Commonwealth University, Richmond, Virginia
| |
Collapse
|
6
|
Harper C, Gopalan V, Goh J. Exercise rescues mitochondrial coupling in aged skeletal muscle: a comparison of different modalities in preventing sarcopenia. J Transl Med 2021; 19:71. [PMID: 33593349 PMCID: PMC7885447 DOI: 10.1186/s12967-021-02737-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 02/04/2021] [Indexed: 01/07/2023] Open
Abstract
Skeletal muscle aging is associated with a decline in motor function and loss of muscle mass- a condition known as sarcopenia. The underlying mechanisms that drive this pathology are associated with a failure in energy generation in skeletal muscle, either from age-related decline in mitochondrial function, or from disuse. To an extent, lifelong exercise is efficacious in preserving the energetic properties of skeletal muscle and thus may delay the onset of sarcopenia. This review discusses the cellular and molecular changes in skeletal muscle mitochondria during the aging process and how different exercise modalities work to reverse these changes. A key factor that will be described is the efficiency of mitochondrial coupling—ATP production relative to O2 uptake in myocytes and how that efficiency is a main driver for age-associated decline in skeletal muscle function. With that, we postulate the most effective exercise modality and protocol for reversing the molecular hallmarks of skeletal muscle aging and staving off sarcopenia. Two other concepts pertinent to mitochondrial efficiency in exercise-trained skeletal muscle will be integrated in this review, including- mitophagy, the removal of dysfunctional mitochondrial via autophagy, as well as the implications of muscle fiber type changes with sarcopenia on mitochondrial function.
Collapse
Affiliation(s)
- Colin Harper
- Clinical Translation Unit (CTU), Tulane University, New Orleans, USA
| | - Venkatesh Gopalan
- Agency for Science, Technology & Research (A*STAR), Singapore Bioimaging Consortium (SBIC), Singapore, Singapore
| | - Jorming Goh
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), Singapore, Singapore. .,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Centre for Healthy Longevity, National University Health System (NUHS), Singapore, Singapore.
| |
Collapse
|
7
|
Glancy B, Kane DA, Kavazis AN, Goodwin ML, Willis WT, Gladden LB. Mitochondrial lactate metabolism: history and implications for exercise and disease. J Physiol 2021; 599:863-888. [PMID: 32358865 PMCID: PMC8439166 DOI: 10.1113/jp278930] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Accepted: 03/25/2020] [Indexed: 12/31/2022] Open
Abstract
Mitochondrial structures were probably observed microscopically in the 1840s, but the idea of oxidative phosphorylation (OXPHOS) within mitochondria did not appear until the 1930s. The foundation for research into energetics arose from Meyerhof's experiments on oxidation of lactate in isolated muscles recovering from electrical contractions in an O2 atmosphere. Today, we know that mitochondria are actually reticula and that the energy released from electron pairs being passed along the electron transport chain from NADH to O2 generates a membrane potential and pH gradient of protons that can enter the molecular machine of ATP synthase to resynthesize ATP. Lactate stands at the crossroads of glycolytic and oxidative energy metabolism. Based on reported research and our own modelling in silico, we contend that lactate is not directly oxidized in the mitochondrial matrix. Instead, the interim glycolytic products (pyruvate and NADH) are held in cytosolic equilibrium with the products of the lactate dehydrogenase (LDH) reaction and the intermediates of the malate-aspartate and glycerol 3-phosphate shuttles. This equilibrium supplies the glycolytic products to the mitochondrial matrix for OXPHOS. LDH in the mitochondrial matrix is not compatible with the cytoplasmic/matrix redox gradient; its presence would drain matrix reducing power and substantially dissipate the proton motive force. OXPHOS requires O2 as the final electron acceptor, but O2 supply is sufficient in most situations, including exercise and often acute illness. Recent studies suggest that atmospheric normoxia may constitute a cellular hyperoxia in mitochondrial disease. As research proceeds appropriate oxygenation levels should be carefully considered.
Collapse
Affiliation(s)
- Brian Glancy
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, Maryland 20892, USA
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA
| | - Daniel A. Kane
- Department of Human Kinetics, St. Francis Xavier University, NS B2G 2W5, Antigonish, Canada
| | | | - Matthew L. Goodwin
- Department of Orthopaedic Surgery, Washington University School of Medicine, Saint Louis, MO 63110, USA
| | - Wayne T. Willis
- College of Medicine, Department of Medicine, University of Arizona, Tucson, AZ 85724-5099, USA
| | - L. Bruce Gladden
- School of Kinesiology, Auburn University, Auburn, AL 36849-5323, USA
| |
Collapse
|
8
|
From mitochondria to sarcopenia: Role of inflammaging and RAGE-ligand axis implication. Exp Gerontol 2021; 146:111247. [PMID: 33484891 DOI: 10.1016/j.exger.2021.111247] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 01/13/2021] [Accepted: 01/18/2021] [Indexed: 02/07/2023]
Abstract
Sarcopenia is characterized by a loss of muscle mass and function that reduces mobility, diminishes quality of life, and can lead to fall-related injuries. At the intracellular level, mitochondrial population alterations are considered as key contributors to the complex etiology of sarcopenia. Mitochondrial dysfunctions lead to reactive oxygen species production, altered cellular proteostasis, and promotes inflammation. Interestingly, the receptor for advanced glycation end-products (RAGE) is a pro-inflammatory receptor involved in inflammaging. In this review, after a brief description of sarcopenia, we will describe how mitochondria and the pathways controlling mitochondrial population quality could participate to age-induced muscle mass and force loss. Finally, we will discuss the RAGE-ligand axis during aging and its possible connection with mitochondria to control inflammaging and sarcopenia.
Collapse
|
9
|
Diphenyl diselenide blunts swimming training on mitochondrial liver redox adaptation mechanisms of aged animals. SPORT SCIENCES FOR HEALTH 2020. [DOI: 10.1007/s11332-019-00603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/06/2022]
|
10
|
High resolution respirometry to assess function of mitochondria in native homogenates of human heart muscle. PLoS One 2020; 15:e0226142. [PMID: 31940313 PMCID: PMC6961865 DOI: 10.1371/journal.pone.0226142] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2019] [Accepted: 11/20/2019] [Indexed: 01/28/2023] Open
Abstract
Impaired myocardial bioenergetics is a hallmark of many cardiac diseases. There is a need of a simple and reproducible method of assessment of mitochondrial function from small human myocardial tissue samples. In this study we adopted high-resolution respirometry to homogenates of fresh human cardiac muscle and compare it with isolated mitochondria. We used atria resected during cardiac surgery (n = 18) and atria and left ventricles from brain-dead organ donors (n = 12). The protocol we developed consisting of two-step homogenization and exposure of 2.5% homogenate in a respirometer to sequential addition of 2.5 mM malate, 15 mM glutamate, 2.5 mM ADP, 10 μM cytochrome c, 10 mM succinate, 2.5 μM oligomycin, 1.5 μM FCCP, 3.5 μM rotenone, 4 μM antimycin and 1 mM KCN or 100 mM Sodium Azide. We found a linear dependency of oxygen consumption on oxygen concentration. This technique requires < 20 mg of myocardium and the preparation of the sample takes <20 min. Mitochondria in the homogenate, as compared to subsarcolemmal and interfibrillar isolated mitochondria, have comparable or better preserved integrity of outer mitochondrial membrane (increase of respiration after addition of cytochrome c is up to 11.7±1.8% vs. 15.7±3.1%, p˂0.05 and 11.7±3.5%, p = 0.99, resp.) and better efficiency of oxidative phosphorylation (Respiratory Control Ratio = 3.65±0.5 vs. 3.04±0.27, p˂0.01 and 2.65±0.17, p˂0.0001, resp.). Results are reproducible with coefficient of variation between two duplicate measurements ≤8% for all indices. We found that whereas atrial myocardium contains less mitochondria than the ventricle, atrial bioenergetic profiles are comparable to left ventricle. In conclusion, high resolution respirometry has been adapted to homogenates of human cardiac muscle and shown to be reliable and reproducible.
Collapse
|
11
|
Aversa Z, Zhang X, Fielding RA, Lanza I, LeBrasseur NK. The clinical impact and biological mechanisms of skeletal muscle aging. Bone 2019; 127:26-36. [PMID: 31128290 PMCID: PMC6708726 DOI: 10.1016/j.bone.2019.05.021] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/15/2019] [Accepted: 05/15/2019] [Indexed: 12/25/2022]
Abstract
Skeletal muscle is a highly plastic tissue that remarkably adapts to diverse stimuli including exercise, injury, disuse, and, as discussed here, aging. Humans achieve peak skeletal muscle mass and strength in mid-life and then experience a progressive decline of up to 50% by the ninth decade. The loss of muscle mass and function with aging is a phenomenon termed sarcopenia. It is evidenced by the loss and atrophy of muscle fibers and the concomitant accretion of fat and fibrous tissue. Sarcopenia has been recognized as a key driver of limitations in physical function and mobility, but is perhaps less appreciated for its role in age-related metabolic dysfunction and loss of organismal resilience. Similar to other tissues, muscle is prone to multiple forms of age-related molecular and cellular damage, including disrupted protein turnover, impaired regenerative capacity, cellular senescence, and mitochondrial dysfunction. The objective of this review is to highlight the clinical consequences of skeletal muscle aging, and provide insights into potential biological mechanisms. In light of population aging, strategies to improve muscle health in older adults promise to have a profound public health impact.
Collapse
Affiliation(s)
- Zaira Aversa
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America
| | - Xu Zhang
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America
| | - Roger A Fielding
- Nutrition, Exercise Physiology, and Sarcopenia Laboratory, Jean Mayer USDA Human Nutrition Research Center on Aging at Tufts University, Boston, MA, United States of America
| | - Ian Lanza
- Division of Endocrinology, Diabetes, Metabolism, and Nutrition, Mayo Clinic, Rochester, MN, United States of America
| | - Nathan K LeBrasseur
- Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, MN, United States of America; Robert and Arlene Kogod Center on Aging, Mayo Clinic, Rochester, MN, United States of America.
| |
Collapse
|
12
|
Holloway GP, Holwerda AM, Miotto PM, Dirks ML, Verdijk LB, van Loon LJC. Age-Associated Impairments in Mitochondrial ADP Sensitivity Contribute to Redox Stress in Senescent Human Skeletal Muscle. Cell Rep 2019. [PMID: 29539414 DOI: 10.1016/j.celrep.2018.02.069] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
It remains unknown if mitochondrial bioenergetics are altered with aging in humans. We established an in vitro method to simultaneously determine mitochondrial respiration and H2O2 emission in skeletal muscle tissue across a range of biologically relevant ADP concentrations. Using this approach, we provide evidence that, although the capacity for mitochondrial H2O2 emission is not increased with aging, mitochondrial ADP sensitivity is impaired. This resulted in an increase in mitochondrial H2O2 and the fraction of electron leak to H2O2, in the presence of virtually all ADP concentrations examined. Moreover, although prolonged resistance training in older individuals increased muscle mass, strength, and maximal mitochondrial respiration, exercise training did not alter H2O2 emission rates in the presence of ADP, the fraction of electron leak to H2O2, or the redox state of the muscle. These data establish that a reduction in mitochondrial ADP sensitivity increases mitochondrial H2O2 emission and contributes to age-associated redox stress.
Collapse
Affiliation(s)
- Graham P Holloway
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada.
| | - Andrew M Holwerda
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 Maastricht, the Netherlands
| | - Paula M Miotto
- Department of Human Health and Nutritional Sciences, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Marlou L Dirks
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 Maastricht, the Netherlands
| | - Lex B Verdijk
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 Maastricht, the Netherlands
| | - Luc J C van Loon
- NUTRIM School of Nutrition and Translational Research in Metabolism, Maastricht University Medical Centre, 6200 Maastricht, the Netherlands
| |
Collapse
|
13
|
Musci RV, Hamilton KL, Linden MA. Exercise-Induced Mitohormesis for the Maintenance of Skeletal Muscle and Healthspan Extension. Sports (Basel) 2019; 7:E170. [PMID: 31336753 PMCID: PMC6681340 DOI: 10.3390/sports7070170] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 07/07/2019] [Accepted: 07/09/2019] [Indexed: 12/25/2022] Open
Abstract
Oxidative damage is one mechanism linking aging with chronic diseases including the progressive loss of skeletal muscle mass and function called sarcopenia. Thus, mitigating oxidative damage is a potential avenue to prevent or delay the onset of chronic disease and/or extend healthspan. Mitochondrial hormesis (mitohormesis) occurs when acute exposure to stress stimulates adaptive mitochondrial responses that improve mitochondrial function and resistance to stress. For example, an acute oxidative stress via mitochondrial superoxide production stimulates the activation of endogenous antioxidant gene transcription regulated by the redox sensitive transcription factor Nrf2, resulting in an adaptive hormetic response. In addition, acute stresses such as aerobic exercise stimulate the expansion of skeletal muscle mitochondria (i.e., mitochondrial biogenesis), constituting a mitohormetic response that protects from sarcopenia through a variety of mechanisms. This review summarized the effects of age-related declines in mitochondrial and redox homeostasis on skeletal muscle protein homeostasis and highlights the mitohormetic mechanisms by which aerobic exercise mitigates these age-related declines and maintains function. We discussed the potential efficacy of targeting the Nrf2 signaling pathway, which partially mediates adaptation to aerobic exercise, to restore mitochondrial and skeletal muscle function. Finally, we highlight knowledge gaps related to improving redox signaling and make recommendations for future research.
Collapse
Affiliation(s)
- Robert V Musci
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA.
| | - Karyn L Hamilton
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| | - Melissa A Linden
- Department of Health and Exercise Science, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
14
|
Abstract
With an ever aging population, identifying interventions that can alleviate age-related functional declines has become increasingly important. Dietary supplements have taken center stage based on various health claims and have become a multi-million dollar business. One such supplement is creatine, a major contributor to normal cellular physiology. Creatine, an energy source that can be endogenously synthesized or obtained through diet and supplement, is involved primarily in cellular metabolism via ATP replenishment. The goal of this chapter is to summarize how creatine and its associated enzyme, creatine kinase, act under normal physiological conditions, and how altered levels of either may lead to detrimental functional outcomes. Furthermore, we will focus on the effect of aging on the creatine system and how supplementation may affect the aging process and perhaps reverse it.
Collapse
Affiliation(s)
- Nathalie Sumien
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Ritu A Shetty
- Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, TX, USA
| | - Eric B Gonzales
- Department of Medical Education, TCU and UNTHSC School of Medicine, Fort Worth, TX, USA.
| |
Collapse
|
15
|
A method for assessing mitochondrial physiology using mechanically permeabilized flight muscle of Aedes aegypti mosquitoes. Anal Biochem 2019; 576:33-41. [PMID: 30974092 DOI: 10.1016/j.ab.2019.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/04/2019] [Accepted: 04/04/2019] [Indexed: 11/21/2022]
Abstract
Aedes aegypti is the most important and widespread vector of arboviruses, including dengue and zika. Insect dispersal through the flight activity is a key parameter that determines vector competence, and is energetically driven by oxidative phosphorylation in flight muscle mitochondria. Analysis of mitochondrial function is central for a better understanding of cellular metabolism, and is mostly studied using isolated organelles. However, this approach has several challenges and methods for assessment of mitochondrial function in chemically-permeabilized tissues were designed. Here, we described a reliable protocol to assess mitochondrial physiology using mechanically permeabilized flight muscle of single A. aegypti mosquitoes in combination with high-resolution respirometry. By avoiding the use of detergents, high respiratory rates were obtained indicating that substrate access to mitochondria was not limited. This was confirmed by using selective inhibitors for specific mitochondrial substrates. Additionally, mitochondria revealed highly coupled, as ATP synthase or adenine nucleotide translocator inhibition strongly impacted respiration. Finally, we determined that pyruvate and proline induced the highest respiratory rates compared to other substrates tested. This method allows the assessment of mitochondrial physiology in mosquito flight muscle at individual level, and can be used for the identification of novel targets aiming rational insect vector control.
Collapse
|
16
|
Li P, Liu A, Xiong W, Lin H, Xiao W, Huang J, Zhang S, Liu Z. Catechins enhance skeletal muscle performance. Crit Rev Food Sci Nutr 2019; 60:515-528. [PMID: 30633538 DOI: 10.1080/10408398.2018.1549534] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Muscle-related disorders, such as sarcopenia and cachexia, caused by aging and chronic diseases can lead to the loss of muscle mass and strength to different degrees, severely affecting human health. Globally, tea is one of the three most popular beverages, and its major active ingredient catechins have been reported to delay muscular atrophy and enhance movement. However, currently, there is no systematic review to elaborate its roles and the associated mechanisms. This article reviews the (1) functions and mechanisms of catechins in the differentiation of myogenic stem cells, biogenesis of mitochondria, synthesis and degradation of proteins, regulation of glucose level, and metabolism of lipids in muscle cells; and (2) effect of catechins on the blood vessels, bones, and nerves that are closely related to the skeletal muscles. Catechins could prevent, mitigate, delay, and even treat muscle-related disorders caused by aging and diseases.
Collapse
Affiliation(s)
- Penghui Li
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Ailing Liu
- College of Bioscience and Biotechnology, Hunan Agricultural University, Changsha, Hunan, China
| | - Wei Xiong
- The Key Laboratory of Carcinogenesis of the Chinese Ministry of Health and the Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Cancer Research Institute, Central South University, Changsha, Hunan, China
| | - Haiyan Lin
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Jianan Huang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Sheng Zhang
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| | - Zhonghua Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan, China.,National Research Center of Engineering Technology for Utilization of Functional Ingredients from Botanicals, Collaborative Innovation Centre of Utilisation of Functional Ingredients from Botanicals, Hunan Agricultural University, Changsha, Hunan, China
| |
Collapse
|
17
|
Layec G, Trinity JD, Hart CR, Le Fur Y, Zhao J, Reese V, Jeong EK, Richardson RS. Impaired Muscle Efficiency but Preserved Peripheral Hemodynamics and Mitochondrial Function With Advancing Age: Evidence From Exercise in the Young, Old, and Oldest-Old. J Gerontol A Biol Sci Med Sci 2018; 73:1303-1312. [PMID: 29584857 PMCID: PMC6132121 DOI: 10.1093/gerona/gly050] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2017] [Accepted: 03/20/2018] [Indexed: 12/17/2022] Open
Abstract
Muscle weakness in the elderly has been linked to recurrent falls and morbidity; therefore, elucidating the mechanisms contributing to the loss of muscle function and mobility with advancing age is critical. To this aim, we comprehensively examined skeletal muscle metabolic function and hemodynamics in 11 young (23 ± 2 years), 11 old (68 ± 2 years), and 10 oldest-old (84 ± 2 years) physical activity-matched participants. Specifically, oxidative stress markers, mitochondrial function, and the ATP cost of contraction as well as peripheral hemodynamics were assessed during dynamic plantar flexion exercise at 40 per cent of maximal work rate (WRmax). Both the PCr recovery time constant and the peak rate of mitochondrial ATP synthesis were not significantly different between groups. In contrast, the ATP cost of dynamic contractions (young: 1.5 ± 1.0, old: 3.4 ± 2.1, oldest-old: 6.1 ± 3.6 mM min-1 W-1) and systemic markers of oxidative stress were signficantly increased with age, with the ATP cost of contraction being negatively correlated with WRmax (r = .59, p < .05). End-of-exercise blood flow per Watt rose significantly with increasing age (young: 37 ± 20, old: 82 ± 68, oldest-old: 154 ± 93 mL min-1 W-1). These findings suggest that the progressive deterioration of muscle contractile efficiency with advancing age may play an important role in the decline in skeletal muscle functional capacity in the elderly.
Collapse
Affiliation(s)
- Gwenael Layec
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Joel D Trinity
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| | - Corey R Hart
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, CRMBM, UMR, Marseille, France
| | - Jia Zhao
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Van Reese
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah
| | - Russell S Richardson
- Department of Medicine, Division of Geriatrics, University of Utah, Salt Lake City, Utah
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, Utah
| |
Collapse
|
18
|
Abstract
A substantial loss of muscle mass and strength (sarcopenia), a decreased regenerative capacity, and a compromised physical performance are hallmarks of aging skeletal muscle. These changes are typically accompanied by impaired muscle metabolism, including mitochondrial dysfunction and insulin resistance. A challenge in the field of muscle aging is to dissociate the effects of chronological aging per se on muscle characteristics from the secondary influence of lifestyle and disease processes. Remarkably, physical activity and exercise are well-established countermeasures against muscle aging, and have been shown to attenuate age-related decreases in muscle mass, strength, and regenerative capacity, and slow or prevent impairments in muscle metabolism. We posit that exercise and physical activity can influence many of the changes in muscle during aging, and thus should be emphasized as part of a lifestyle essential to healthy aging.
Collapse
Affiliation(s)
- Giovanna Distefano
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
| | - Bret H Goodpaster
- Translational Research Institute for Metabolism and Diabetes, Florida Hospital, Orlando, Florida 32804
- Sanford Burnham Prebys Medical Discovery Institute, Orlando, Florida 32827
| |
Collapse
|
19
|
Chung S, Rosenberry R, Ryan TE, Munson M, Dombrowsky T, Park S, Nasirian A, Haykowsky MJ, Nelson MD. Near-infrared spectroscopy detects age-related differences in skeletal muscle oxidative function: promising implications for geroscience. Physiol Rep 2018; 6:e13588. [PMID: 29411535 PMCID: PMC5801551 DOI: 10.14814/phy2.13588] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2017] [Accepted: 12/29/2017] [Indexed: 02/06/2023] Open
Abstract
Age is the greatest risk factor for chronic disease and is associated with a marked decline in functional capacity and quality of life. A key factor contributing to loss of function in older adults is the decline in skeletal muscle function. While the exact mechanism(s) remains incompletely understood, age-related mitochondrial dysfunction is thought to play a major role. To explore this question further, we studied 15 independently living seniors (age: 72 ± 5 years; m/f: 4/11; BMI: 27.6 ± 5.9) and 17 young volunteers (age: 25 ± 4 years; m/f: 8/9; BMI: 24.0 ± 3.3). Skeletal muscle oxidative function was measured in forearm muscle from the recovery kinetics of muscle oxygen consumption using near-infrared spectroscopy (NIRS). Muscle oxygen consumption was calculated as the slope of change in hemoglobin saturation during a series of rapid, supra-systolic arterial cuff occlusions following a brief bout of exercise. Aging was associated with a significant prolongation of the time constant of oxidative recovery following exercise (51.8 ± 5.4 sec vs. 37.1 ± 2.1 sec, P = 0.04, old vs. young, respectively). This finding suggests an overall reduction in mitochondrial function with age in nonlocomotor skeletal muscle. That these data were obtained using NIRS holds great promise in gerontology for quantitative assessment of skeletal muscle oxidative function at the bed side or clinic.
Collapse
Affiliation(s)
- Susie Chung
- Applied Physiology and Advanced Imaging LaboratoryDepartment of KinesiologyUniversity of Texas at ArlingtonArlingtonTexas
| | - Ryan Rosenberry
- Applied Physiology and Advanced Imaging LaboratoryDepartment of KinesiologyUniversity of Texas at ArlingtonArlingtonTexas
| | - Terence E. Ryan
- Department of PhysiologyEast Carolina UniversityGreenvilleNorth Carolina
| | - Madison Munson
- Applied Physiology and Advanced Imaging LaboratoryDepartment of KinesiologyUniversity of Texas at ArlingtonArlingtonTexas
| | | | - Suwon Park
- College of NursingUniversity of Texas at ArlingtonArlingtonTexas
| | - Aida Nasirian
- Applied Physiology and Advanced Imaging LaboratoryDepartment of KinesiologyUniversity of Texas at ArlingtonArlingtonTexas
| | | | - Michael D. Nelson
- Applied Physiology and Advanced Imaging LaboratoryDepartment of KinesiologyUniversity of Texas at ArlingtonArlingtonTexas
| |
Collapse
|
20
|
Update on mitochondria and muscle aging: all wrong roads lead to sarcopenia. Biol Chem 2018; 399:421-436. [DOI: 10.1515/hsz-2017-0331] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 01/19/2018] [Indexed: 12/21/2022]
Abstract
Abstract
Sarcopenia is a well-known geriatric syndrome that has been endorsed over the years as a biomarker allowing for the discrimination, at a clinical level, of biological from chronological age. Multiple candidate mechanisms have been linked to muscle degeneration during sarcopenia. Among them, there is wide consensus on the central role played by the loss of mitochondrial integrity in myocytes, secondary to dysfunctional quality control mechanisms. Indeed, mitochondria establish direct or indirect contacts with other cellular components (e.g. endoplasmic reticulum, peroxisomes, lysosomes/vacuoles) as well as the extracellular environment through the release of several biomolecules. The functional implications of these interactions in the context of muscle physiology and sarcopenia are not yet fully appreciated and represent a promising area of investigation. Here, we present an overview of recent findings concerning the interrelation between mitochondrial quality control processes, inflammation and the metabolic regulation of muscle mass in the pathogenesis of sarcopenia highlighting those pathways that may be exploited for developing preventive and therapeutic interventions against muscle aging.
Collapse
|
21
|
Ferguson BS, Rogatzki MJ, Goodwin ML, Kane DA, Rightmire Z, Gladden LB. Lactate metabolism: historical context, prior misinterpretations, and current understanding. Eur J Appl Physiol 2018; 118:691-728. [PMID: 29322250 DOI: 10.1007/s00421-017-3795-6] [Citation(s) in RCA: 233] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 12/22/2017] [Indexed: 02/07/2023]
Abstract
Lactate (La-) has long been at the center of controversy in research, clinical, and athletic settings. Since its discovery in 1780, La- has often been erroneously viewed as simply a hypoxic waste product with multiple deleterious effects. Not until the 1980s, with the introduction of the cell-to-cell lactate shuttle did a paradigm shift in our understanding of the role of La- in metabolism begin. The evidence for La- as a major player in the coordination of whole-body metabolism has since grown rapidly. La- is a readily combusted fuel that is shuttled throughout the body, and it is a potent signal for angiogenesis irrespective of oxygen tension. Despite this, many fundamental discoveries about La- are still working their way into mainstream research, clinical care, and practice. The purpose of this review is to synthesize current understanding of La- metabolism via an appraisal of its robust experimental history, particularly in exercise physiology. That La- production increases during dysoxia is beyond debate, but this condition is the exception rather than the rule. Fluctuations in blood [La-] in health and disease are not typically due to low oxygen tension, a principle first demonstrated with exercise and now understood to varying degrees across disciplines. From its role in coordinating whole-body metabolism as a fuel to its role as a signaling molecule in tumors, the study of La- metabolism continues to expand and holds potential for multiple clinical applications. This review highlights La-'s central role in metabolism and amplifies our understanding of past research.
Collapse
Affiliation(s)
- Brian S Ferguson
- College of Applied Health Sciences, University of Illinois at Chicago, Chicago, IL, USA
| | - Matthew J Rogatzki
- Department of Health and Exercise Science, Appalachian State University, Boone, NC, USA
| | - Matthew L Goodwin
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA.,Huntsman Cancer Institute, Salt Lake City, UT, USA
| | - Daniel A Kane
- Department of Human Kinetics, St. Francis Xavier University, Antigonish, Canada
| | - Zachary Rightmire
- School of Kinesiology, Auburn University, 301 Wire Road, Auburn, AL, 36849, USA
| | - L Bruce Gladden
- School of Kinesiology, Auburn University, 301 Wire Road, Auburn, AL, 36849, USA.
| |
Collapse
|
22
|
Mitochondrial-Targeted Antioxidant Maintains Blood Flow, Mitochondrial Function, and Redox Balance in Old Mice Following Prolonged Limb Ischemia. Int J Mol Sci 2017; 18:ijms18091897. [PMID: 28869535 PMCID: PMC5618546 DOI: 10.3390/ijms18091897] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2017] [Revised: 07/24/2017] [Accepted: 08/24/2017] [Indexed: 01/08/2023] Open
Abstract
Aging is a major factor in the decline of limb blood flow with ischemia. However, the underlying mechanism remains unclear. We investigated the role of mitochondrial reactive oxygen species (ROS) with regard to limb perfusion recovery in aging during ischemia. We performed femoral artery ligation in young and old mice with or without treatment with a scavenger of mitochondrial superoxide, MitoTEMPO (180 μg/kg/day, from pre-operative day 7 to post-operative day (POD) 21) infusion using an implanted mini-pump. The recoveries of cutaneous blood flow in the ischemic hind limb were lower in old mice than in young mice but were improved in MitoTEMPO-treated old mice. Mitochondrial DNA damage appeared in ischemic aged muscles but was eliminated by MitoTEMPO treatment. For POD 2, MitoTEMPO treatment suppressed the expression of p53 and the ratio of Bax/Bcl2 and upregulated the expression of hypoxia-inducible factor-1α (HIF-1α) and vascular endothelial growth factor (VEGF) in ischemic aged skeletal muscles. For POD 21, MitoTEMPO treatment preserved the expression of PGC-1α in ischemic aged skeletal muscle. The ischemic soleus of old mice showed a lower mitochondrial respiratory control ratio in POD 21 compared to young mice, which was recovered in MitoTEMPO-treated old mice. Scavenging of mitochondrial superoxide attenuated mitochondrial DNA damage and preserved the mitochondrial respiration, in addition to suppression of the expression of p53 and preservation of the expression of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) in ischemic skeletal muscles with aging. Resolution of excessive mitochondrial superoxide could be an effective therapy to recover blood flow of skeletal muscle during ischemia in senescence.
Collapse
|
23
|
Mikkelsen U, Agergaard J, Couppé C, Grosset J, Karlsen A, Magnusson S, Schjerling P, Kjaer M, Mackey A. Skeletal muscle morphology and regulatory signalling in endurance-trained and sedentary individuals: The influence of ageing. Exp Gerontol 2017; 93:54-67. [DOI: 10.1016/j.exger.2017.04.001] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2016] [Revised: 03/30/2017] [Accepted: 04/05/2017] [Indexed: 01/01/2023]
|
24
|
Tepp K, Puurand M, Timohhina N, Adamson J, Klepinin A, Truu L, Shevchuk I, Chekulayev V, Kaambre T. Changes in the mitochondrial function and in the efficiency of energy transfer pathways during cardiomyocyte aging. Mol Cell Biochem 2017; 432:141-158. [PMID: 28293876 DOI: 10.1007/s11010-017-3005-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/04/2017] [Indexed: 12/11/2022]
Abstract
The role of mitochondria in alterations that take place in the muscle cell during healthy aging is a matter of debate during recent years. Most of the studies in bioenergetics have a focus on the model of isolated mitochondria, while changes in the crosstalk between working myofibrils and mitochondria in senescent cardiomyocytes have been less studied. The aim of our research was to investigate the modifications in the highly regulated ATP production and energy transfer systems in heart cells in old rat cardiomyocytes. The results of our work demonstrated alterations in the diffusion restrictions of energy metabolites, manifested by changes in the apparent Michaelis-Menten constant of mitochondria to exogenous ADP. The creatine kinase (CK) phosphotransfer pathway efficiency declines significantly in senescence. The ability of creatine to stimulate OXPHOS as well as to increase the affinity of mitochondria for ADP is falling and the most critical decline is already in the 1-year group (middle-age model in rats). Also, a moderate decrease in the adenylate kinase phosphotransfer system was detected. The importance of glycolysis increases in senescence, while the hexokinase activity does not change during healthy aging. The main result of our study is that the decline in the heart muscle performance is not caused by the changes in the respiratory chain complexes activity but mainly by the decrease in the energy transfer efficiency, especially by the CK pathway.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Jasper Adamson
- Laboratory of Chemical Physics, National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Laura Truu
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618, Tallinn, Estonia.,School of Natural Sciences and Health, Tallinn University, Tallinn, Estonia
| |
Collapse
|
25
|
Tepp K, Timohhina N, Puurand M, Klepinin A, Chekulayev V, Shevchuk I, Kaambre T. Bioenergetics of the aging heart and skeletal muscles: Modern concepts and controversies. Ageing Res Rev 2016; 28:1-14. [PMID: 27063513 DOI: 10.1016/j.arr.2016.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Revised: 04/01/2016] [Accepted: 04/04/2016] [Indexed: 01/03/2023]
Abstract
Age-related alterations in the bioenergetics of the heart and oxidative skeletal muscle tissues are of crucial influence on their performance. Until now the prevailing concept of aging was the mitochondrial theory, the increased production of reactive oxygen species, mediated by deficiency in the activity of respiratory chain complexes. However, studies with mitochondria in situ have presented results which, to some extent, disagree with previous ones, indicating that the mitochondrial theory of aging may be overestimated. The studies reporting age-related decline in mitochondrial function were performed using mainly isolated mitochondria. Measurements on this level are not able to take into account the system level properties. The relevant information can be obtained only from appropriate studies using cells or tissue fibers. The functional interactions between the components of Intracellular Energetic Unit (ICEU) regulate the energy production and consumption in oxidative muscle cells. The alterations of these interactions in ICEU should be studied in order to find a more effective protocol to decelerate the age-related changes taking place in the energy metabolism. In this article, an overview is given of the present theories and controversies of causes of age-related alterations in bioenergetics. Also, branches of study, which need more emphasis, are indicated.
Collapse
Affiliation(s)
- Kersti Tepp
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia.
| | - Natalja Timohhina
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Marju Puurand
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Aleksandr Klepinin
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Vladimir Chekulayev
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Igor Shevchuk
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia
| | - Tuuli Kaambre
- Laboratory of Bioenergetics, National Institute of Chemical Physics and Biophysics, Akadeemia tee 23, 12618 Tallinn, Estonia; Faculty of Science, Tallinn University, Narva mnt. 25, 10120, Estonia
| |
Collapse
|
26
|
Holzem KM, Vinnakota KC, Ravikumar VK, Madden EJ, Ewald GA, Dikranian K, Beard DA, Efimov IR. Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts. FASEB J 2016; 30:2698-707. [PMID: 27075244 DOI: 10.1096/fj.201500118r] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 04/05/2016] [Indexed: 01/06/2023]
Abstract
During human heart failure, the balance of cardiac energy use switches from predominantly fatty acids (FAs) to glucose. We hypothesized that this substrate shift was the result of mitochondrial degeneration; therefore, we examined mitochondrial oxidation and ultrastructure in the failing human heart by using respirometry, transmission electron microscopy, and gene expression studies of demographically matched donor and failing human heart left ventricular (LV) tissues. Surprisingly, respiratory capacities for failing LV isolated mitochondria (n = 9) were not significantly diminished compared with donor LV isolated mitochondria (n = 7) for glycolysis (pyruvate + malate)- or FA (palmitoylcarnitine)-derived substrates, and mitochondrial densities, assessed via citrate synthase activity, were consistent between groups. Transmission electron microscopy images also showed no ultrastructural remodeling for failing vs. donor mitochondria; however, the fraction of lipid droplets (LDs) in direct contact with a mitochondrion was reduced, and the average distance between an LD and its nearest neighboring mitochondrion was increased. Analysis of FA processing gene expression between donor and failing LVs revealed 0.64-fold reduced transcript levels for the mitochondrial-LD tether, perilipin 5, in the failing myocardium (P = 0.003). Thus, reduced FA use in heart failure may result from improper delivery, potentially via decreased perilipin 5 expression and mitochondrial-LD tethering, and not from intrinsic mitochondrial dysfunction.-Holzem, K. M., Vinnakota, K. C., Ravikumar, V. K., Madden, E. J., Ewald, G. A., Dikranian, K., Beard, D. A., Efimov, I. R. Mitochondrial structure and function are not different between nonfailing donor and end-stage failing human hearts.
Collapse
Affiliation(s)
- Katherine M Holzem
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kalyan C Vinnakota
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Vinod K Ravikumar
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Eli J Madden
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Gregory A Ewald
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Krikor Dikranian
- Washington University School of Medicine, St. Louis, Missouri, USA
| | - Daniel A Beard
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan, USA
| | - Igor R Efimov
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri, USA; George Washington University, Washington, D.C., USA
| |
Collapse
|
27
|
Diolez P, Bourdel-Marchasson I, Calmettes G, Pasdois P, Detaille D, Rouland R, Gouspillou G. Hypothesis on Skeletal Muscle Aging: Mitochondrial Adenine Nucleotide Translocator Decreases Reactive Oxygen Species Production While Preserving Coupling Efficiency. Front Physiol 2015; 6:369. [PMID: 26733871 PMCID: PMC4679911 DOI: 10.3389/fphys.2015.00369] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/19/2015] [Indexed: 01/07/2023] Open
Abstract
Mitochondrial membrane potential is the major regulator of mitochondrial functions, including coupling efficiency and production of reactive oxygen species (ROS). Both functions are crucial for cell bioenergetics. We previously presented evidences for a specific modulation of adenine nucleotide translocase (ANT) appearing during aging that results in a decrease in membrane potential - and therefore ROS production-but surprisingly increases coupling efficiency under conditions of low ATP turnover. Careful study of the bioenergetic parameters (oxidation and phosphorylation rates, membrane potential) of isolated mitochondria from skeletal muscles (gastrocnemius) of aged and young rats revealed a remodeling at the level of the phosphorylation system, in the absence of alteration of the inner mitochondrial membrane (uncoupling) or respiratory chain complexes regulation. We further observed a decrease in mitochondrial affinity for ADP in aged isolated mitochondria, and higher sensitivity of ANT to its specific inhibitor atractyloside. This age-induced modification of ANT results in an increase in the ADP concentration required to sustain the same ATP turnover as compared to young muscle, and therefore in a lower membrane potential under phosphorylating-in vivo-conditions. Thus, for equivalent ATP turnover (cellular ATP demand), coupling efficiency is even higher in aged muscle mitochondria, due to the down-regulation of inner membrane proton leak caused by the decrease in membrane potential. In the framework of the radical theory of aging, these modifications in ANT function may be the result of oxidative damage caused by intra mitochondrial ROS and may appear like a virtuous circle where ROS induce a mechanism that reduces their production, without causing uncoupling, and even leading in improved efficiency. Because of the importance of ROS as therapeutic targets, this new mechanism deserves further studies.
Collapse
Affiliation(s)
- Philippe Diolez
- INSERM U1045 - Centre de Recherche Cardio-Thoracique de Bordeaux and LIRYC, Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, CHU de Bordeaux Pessac, France
| | - Isabelle Bourdel-Marchasson
- CHU de Bordeaux, Pôle de Gérontologie CliniqueBordeaux, France; Résonance Magnétique des Systèmes Biologiques, UMR 5536 Centre National de la Recherche Scientifique, Université de BordeauxBordeaux, France
| | - Guillaume Calmettes
- Division of Cardiology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles Los Angeles, CA, USA
| | - Philippe Pasdois
- INSERM U1045 - Centre de Recherche Cardio-Thoracique de Bordeaux and LIRYC, Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, CHU de Bordeaux Pessac, France
| | - Dominique Detaille
- INSERM U1045 - Centre de Recherche Cardio-Thoracique de Bordeaux and LIRYC, Institut de Rythmologie et Modélisation Cardiaque, Université de Bordeaux, CHU de Bordeaux Pessac, France
| | - Richard Rouland
- Résonance Magnétique des Systèmes Biologiques, UMR 5536 Centre National de la Recherche Scientifique, Université de Bordeaux Bordeaux, France
| | - Gilles Gouspillou
- Département des Sciences de l'activité Physique, Université du Québec À Montréal Montréal, QC, Canada
| |
Collapse
|
28
|
Joseph AM, Adhihetty PJ, Leeuwenburgh C. Beneficial effects of exercise on age-related mitochondrial dysfunction and oxidative stress in skeletal muscle. J Physiol 2015; 594:5105-23. [PMID: 26503074 DOI: 10.1113/jp270659] [Citation(s) in RCA: 110] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022] Open
Abstract
Mitochondria are negatively affected by ageing leading to their inability to adapt to higher levels of oxidative stress and this ultimately contributes to the systemic loss of muscle mass and function termed sarcopenia. Since mitochondria are central mediators of muscle health, they have become highly sought-after targets of physiological and pharmacological interventions. Exercise is the only known strategy to combat sarcopenia and this is largely mediated through improvements in mitochondrial plasticity. More recently a critical role for mitochondrial turnover in preserving muscle has been postulated. Specifically, cellular pathways responsible for the regulation of mitochondrial turnover including biogenesis, dynamics and autophagy may become dysregulated during ageing resulting in the reduced clearance and accumulation of damaged organelles within the cell. When mitochondrial quality is compromised and homeostasis is not re-established, myonuclear cell death is activated and muscle atrophy ensues. In contrast, acute and chronic exercise attenuates these deficits, restoring mitochondrial turnover and promoting a healthier mitochondrial pool that leads to the preservation of muscle. Additionally, the magnitude of these exercise-induced mitochondrial adaptations is currently debated with several studies reporting a lower adaptability of old muscle relative to young, but the processes responsible for this diminished training response are unclear. Based on these observations, understanding the molecular details of how advancing age and exercise influence mitochondria in older muscle will provide invaluable insight into the development of exercise protocols that will maximize beneficial adaptations in the elderly. This information will also be imperative for future research exploring pharmacological targets of mitochondrial plasticity.
Collapse
Affiliation(s)
- Anna-Maria Joseph
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, FL, 32611, USA.
| | - Peter J Adhihetty
- Department of Applied Physiology and Kinesiology, University of Florida, Gainesville, FL, 32611, USA
| | - Christiaan Leeuwenburgh
- Department of Aging and Geriatric Research, Division of Biology of Aging, University of Florida, Gainesville, FL, 32611, USA
| |
Collapse
|
29
|
Hey-Mogensen M, Gram M, Jensen MB, Lund MT, Hansen CN, Scheibye-Knudsen M, Bohr VA, Dela F. A novel method for determining human ex vivo submaximal skeletal muscle mitochondrial function. J Physiol 2015; 593:3991-4010. [PMID: 26096709 DOI: 10.1113/jp270204] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 06/04/2015] [Indexed: 12/23/2022] Open
Abstract
The present study utilized a novel method aiming to investigate mitochondrial function in human skeletal muscle at submaximal levels and at a predefined membrane potential. The effect of age and training status was investigated using a cross-sectional design. Ageing was found to be related to decreased leak regardless of training status. Increased training status was associated with increased mitochondrial hydrogen peroxide emission. Despite numerous studies, there is no consensus about whether mitochondrial function is altered with increased age. The novelty of the present study is the determination of mitochondrial function at submaximal activity rates, which is more physiologically relevant than the ex vivo functionality protocols used previously. Muscle biopsies were taken from 64 old or young male subjects (aged 60-70 or 20-30 years). Aged subjects were recruited as trained or untrained. Muscle biopsies were used for the isolation of mitochondria and subsequent measurements of DNA repair, anti-oxidant capacity and mitochondrial protein levels (complexes I-V). Mitochondrial function was determined by simultaneous measurement of oxygen consumption, membrane potential and hydrogen peroxide emission using pyruvate + malate (PM) or succinate + rotenone (SR) as substrates. Proton leak was lower in aged subjects when determined at the same membrane potential and was unaffected by training status. State 3 respiration was lower in aged untrained subjects. This effect, however, was alleviated in aged trained subjects. H2 O2 emission with PM was higher in aged subjects, and was exacerbated by training, although it was not changed when using SR. However, with a higher manganese superoxide dismuthase content, the trained aged subjects may actually have lower or similar mitochondrial superoxide emission compared to the untrained subjects. We conclude that ageing and the physical activity level in aged subjects are both related to changes in the intrinsic functionality of the mitochondrion in skeletal muscle. Both of these changes could be important factors in determining the metabolic health of the aged skeletal muscle cell.
Collapse
Affiliation(s)
- Martin Hey-Mogensen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark.,Present address: Diabetes Research Unit, Novo Nordisk A/S, Novo Nordisk Park, Måløv, Denmark
| | - Martin Gram
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Martin Borch Jensen
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Present address: Buck Institute for Research on Aging, 8001 Redwood Blvd, Novato, CA, USA
| | - Michael Taulo Lund
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Christina Neigaard Hansen
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Morten Scheibye-Knudsen
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Vilhelm A Bohr
- Center for Healthy Aging, Department of Cellular and Molecular Medicine, University of Copenhagen, Copenhagen, Denmark.,Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Flemming Dela
- Xlab, Center for Healthy Aging - Department of Biomedical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
30
|
Porter C, Hurren NM, Cotter MV, Bhattarai N, Reidy PT, Dillon EL, Durham WJ, Tuvdendorj D, Sheffield-Moore M, Volpi E, Sidossis LS, Rasmussen BB, Børsheim E. Mitochondrial respiratory capacity and coupling control decline with age in human skeletal muscle. Am J Physiol Endocrinol Metab 2015; 309:E224-32. [PMID: 26037248 PMCID: PMC4525111 DOI: 10.1152/ajpendo.00125.2015] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2015] [Accepted: 06/01/2015] [Indexed: 11/22/2022]
Abstract
Mitochondrial health is critical to physiological function, particularly in tissues with high ATP turnover, such as striated muscle. It has been postulated that derangements in skeletal muscle mitochondrial function contribute to impaired physical function in older adults. Here, we determined mitochondrial respiratory capacity and coupling control in skeletal muscle biopsies obtained from young and older adults. Twenty-four young (28 ± 7 yr) and thirty-one older (62 ± 8 yr) adults were studied. Mitochondrial respiration was determined in permeabilized myofibers from the vastus lateralis after the addition of substrates oligomycin and CCCP. Thereafter, mitochondrial coupling control was calculated. Maximal coupled respiration (respiration linked to ATP production) was lower in muscle from older vs. young subjects (P < 0.01), as was maximal uncoupled respiration (P = 0.06). Coupling control in response to the ATP synthase inhibitor oligomycin was lower in older adults (P < 0.05), as was the mitochondria flux control ratio, coupled respiration normalized to maximal uncoupled respiration (P < 0.05). Calculation of respiratory function revealed lower respiration linked to ATP production (P < 0.001) and greater reserve respiration (P < 0.01); i.e., respiratory capacity not used for phosphorylation in muscle from older adults. We conclude that skeletal muscle mitochondrial respiratory capacity and coupling control decline with age. Lower respiratory capacity and coupling efficiency result in a reduced capacity for ATP production in skeletal muscle of older adults.
Collapse
Affiliation(s)
- Craig Porter
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Shriners Hospitals for Children, Galveston, Texas;
| | - Nicholas M Hurren
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Shriners Hospitals for Children, Galveston, Texas; Departments of Pediatrics and Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Hospital Research Institute, and Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Matthew V Cotter
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Departments of Pediatrics and Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Hospital Research Institute, and Arkansas Children's Nutrition Center, Little Rock, Arkansas
| | - Nisha Bhattarai
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Shriners Hospitals for Children, Galveston, Texas
| | - Paul T Reidy
- Department of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas; and
| | - Edgar L Dillon
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - William J Durham
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Demidmaa Tuvdendorj
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | | | - Elena Volpi
- Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Labros S Sidossis
- Shriners Hospitals for Children, Galveston, Texas; Department of Internal Medicine, University of Texas Medical Branch, Galveston, Texas
| | - Blake B Rasmussen
- Department of Rehabilitation Sciences, University of Texas Medical Branch, Galveston, Texas; and
| | - Elisabet Børsheim
- Department of Surgery, University of Texas Medical Branch, Galveston, Texas; Shriners Hospitals for Children, Galveston, Texas; Departments of Pediatrics and Geriatrics, University of Arkansas for Medical Sciences, Little Rock, Arkansas; Arkansas Children's Hospital Research Institute, and Arkansas Children's Nutrition Center, Little Rock, Arkansas
| |
Collapse
|
31
|
Layec G, Trinity JD, Hart CR, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS. Impact of age on exercise-induced ATP supply during supramaximal plantar flexion in humans. Am J Physiol Regul Integr Comp Physiol 2015; 309:R378-88. [PMID: 26041112 DOI: 10.1152/ajpregu.00522.2014] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2014] [Accepted: 06/02/2015] [Indexed: 11/22/2022]
Abstract
Currently, the physiological factors responsible for exercise intolerance and bioenergetic alterations with age are poorly understood due, at least in art, to the confounding effect of reduced physical activity in the elderly. Thus, in 40 healthy young (22 ± 2 yr) and old (74 ± 8 yr) activity-matched subjects, we assessed the impact of age on: 1) the relative contribution of the three major pathways of ATP synthesis (oxidative ATP synthesis, glycolysis, and the creatine kinase reaction) and 2) the ATP cost of contraction during high-intensity exercise. Specifically, during supramaximal plantar flexion (120% of maximal aerobic power), to stress the functional limits of the skeletal muscle energy systems, we used (31)P-labeled magnetic resonance spectroscopy to assess metabolism. Although glycolytic activation was delayed in the old, ATP synthesis from the main energy pathways was not significantly different between groups. Similarly, the inferred peak rate of mitochondrial ATP synthesis was not significantly different between the young (25 ± 8 mM/min) and old (24 ± 6 mM/min). In contrast, the ATP cost of contraction was significantly elevated in the old compared with the young (5.1 ± 2.0 and 3.7 ± 1.7 mM·min(-1)·W(-1), respectively; P < 0.05). Overall, these findings suggest that, when young and old subjects are activity matched, there is no evidence of age-related mitochondrial and glycolytic dysfunction. However, this study does confirm an abnormal elevation in exercise-induced skeletal muscle metabolic demand in the old that may contribute to the decline in exercise capacity with advancing age.
Collapse
Affiliation(s)
- Gwenael Layec
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah;
| | - Joel D Trinity
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah
| | - Corey R Hart
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Seong-Eun Kim
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - H Jonathan Groot
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | - Jacob R Sorensen
- Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| | - Eun-Kee Jeong
- Department of Radiology and Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City, Utah; and
| | - Russell S Richardson
- Division of Geriatrics, Department of Medicine, University of Utah, Salt Lake City, Utah; Geriatric Research, Education, and Clinical Center, George E. Whalen Veterans Affairs Medical Center, Salt Lake City, Utah; Department of Exercise and Sport Science, University of Utah, Salt Lake City, Utah
| |
Collapse
|
32
|
Skeletal muscle mitochondrial energetic efficiency and aging. Int J Mol Sci 2015; 16:10674-85. [PMID: 25970752 PMCID: PMC4463669 DOI: 10.3390/ijms160510674] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2015] [Revised: 05/05/2015] [Accepted: 05/05/2015] [Indexed: 02/06/2023] Open
Abstract
Aging is associated with a progressive loss of maximal cell functionality, and mitochondria are considered a key factor in aging process, since they determine the ATP availability in the cells. Mitochondrial performance during aging in skeletal muscle is reported to be either decreased or unchanged. This heterogeneity of results could partly be due to the method used to assess mitochondrial performance. In addition, in skeletal muscle the mitochondrial population is heterogeneous, composed of subsarcolemmal and intermyofibrillar mitochondria. Therefore, the purpose of the present review is to summarize the results obtained on the functionality of the above mitochondrial populations during aging, taking into account that the mitochondrial performance depends on organelle number, organelle activity, and energetic efficiency of the mitochondrial machinery in synthesizing ATP from the oxidation of fuels.
Collapse
|
33
|
Dahl R, Larsen S, Dohlmann TL, Qvortrup K, Helge JW, Dela F, Prats C. Three-dimensional reconstruction of the human skeletal muscle mitochondrial network as a tool to assess mitochondrial content and structural organization. Acta Physiol (Oxf) 2015; 213:145-55. [PMID: 24684826 DOI: 10.1111/apha.12289] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 11/20/2013] [Accepted: 03/25/2014] [Indexed: 12/20/2022]
Abstract
AIM Mitochondria undergo continuous changes in shape as result of complex fusion and fission processes. The physiological relevance of mitochondrial dynamics is still unclear. In the field of mitochondria bioenergetics, there is a need of tools to assess cell mitochondrial content. To develop a method to visualize mitochondrial networks in high resolution and assess mitochondrial volume. METHODS Confocal fluorescence microscopy imaging of mitochondrial network stains in human vastus lateralis single muscle fibres and focused ion beam/ scanning electron microscopy (FIB/SEM) imaging, combined with 3D reconstruction was used as a tool to analyse mitochondrial morphology and measure mitochondrial fractional volume. RESULTS Most type I and type II muscle fibres have tubular highly interconnected profusion mitochondria, which are thicker and more structured in type I muscle fibres (Fig. 1). In some muscle fibres, profission-isolated ellipsoid-shaped mitochondria were observed. Mitochondrial volume was significantly higher in type I muscle fibres and showed no correlation with any of the investigated molecular and biochemical mitochondrial measurements (Fig. 2). Three-dimensional reconstruction of FIB/SEM data sets shows that some subsarcolemmal mitochondria are physically interconnected with some intermyofibrillar mitochondria (Fig. 3). CONCLUSION Two microscopy methods to visualize skeletal muscle mitochondrial networks in 3D are described and can be used as tools to investigate mitochondrial dynamics in response to life-style interventions and/or in certain pathologies. Our results question the classification of mitochondria into subsarcolemmal and intermyofibrillar pools, as they are physically interconnected.
Collapse
Affiliation(s)
- R. Dahl
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - S. Larsen
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - T. L. Dohlmann
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - K. Qvortrup
- Core Facility for Integrated Microscopy; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| | - J. W. Helge
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - F. Dela
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
| | - C. Prats
- Copenhagen Muscle Research Center; Center for Healthy Aging; Copenhagen Denmark
- Core Facility for Integrated Microscopy; Department of Biomedical Sciences; University of Copenhagen; Copenhagen Denmark
| |
Collapse
|
34
|
Gram M, Vigelsø A, Yokota T, Hansen CN, Helge JW, Hey-Mogensen M, Dela F. Two weeks of one-leg immobilization decreases skeletal muscle respiratory capacity equally in young and elderly men. Exp Gerontol 2014; 58:269-78. [PMID: 25193555 DOI: 10.1016/j.exger.2014.08.013] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Revised: 08/18/2014] [Accepted: 08/26/2014] [Indexed: 12/19/2022]
Abstract
Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative capacity in 17 young (23±1years) and 15 elderly (68±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mtHSP70) and voltage dependent anion channel (VDAC) were measured in skeletal muscle by Western blotting. The elderly men had lower content of complexes I-V and mtHSP70 but similar respiratory capacity and content of VDAC compared to the young. In both groups the respiratory capacity and protein content of VDAC, mtHSP70 and complexes I, II, IV and V decreased with immobilization and increased with retraining. Moreover, there was no overall difference in the response between the groups. When the intrinsic mitochondrial capacity was evaluated by normalizing respiration to citrate synthase activity, the respiratory differences with immobilization and training disappeared. In conclusion, aging is not associated with a decrease in muscle respiratory capacity in spite of lower complexes I-V and mtHSP70 protein content. Furthermore, immobilization decreased and aerobic training increased the respiratory capacity and protein contents of complexes I-V, mtHSP70 and VDAC similarly in the two groups. This suggests that inactivity and training alter mitochondrial biogenesis equally in young and elderly men.
Collapse
Affiliation(s)
- Martin Gram
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Andreas Vigelsø
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Takashi Yokota
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark; Department of Cardiovascular Medicine, Hokkaido University Graduate School of Medicine, Sapporo, Japan.
| | - Christina Neigaard Hansen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Jørn Wulff Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Martin Hey-Mogensen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
35
|
Hart CR, Layec G, Trinity JD, Liu X, Kim SE, Groot HJ, Le Fur Y, Sorensen JR, Jeong EK, Richardson RS. Evidence of Preserved Oxidative Capacity and Oxygen Delivery in the Plantar Flexor Muscles With Age. J Gerontol A Biol Sci Med Sci 2014; 70:1067-76. [PMID: 25165028 DOI: 10.1093/gerona/glu139] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Accepted: 07/15/2014] [Indexed: 11/14/2022] Open
Abstract
Studies examining the effect of aging on skeletal muscle oxidative capacity have yielded equivocal results; however, these investigations may have been confounded by differences in oxygen (O(2)) delivery, physical activity, and small numbers of participants. Therefore, we evaluated skeletal muscle oxidative capacity and O(2) delivery in a relatively large group (N = 40) of young (22 ± 2 years) and old (73 ± 7 years) participants matched for physical activity. After submaximal dynamic plantar flexion exercise, phosphocreatine (PCr) resynthesis ((31)P magnetic resonance spectroscopy), muscle reoxygenation (near-infrared spectroscopy), and popliteal artery blood flow (Doppler ultrasound) were measured. The phosphocreatine recovery time constant (Tau) (young: 33 ± 16; old: 30 ± 11 seconds), maximal rate of adenosine triphosphate (ATP) synthesis (young: 25 ± 9; old: 27 ± 8 mM/min), and muscle reoxygenation rates determined by the deoxyhemoglobin/myoglobin recovery Tau (young: 48 ± 5; old: 47 ± 9 seconds) were similar between groups. Similarly, although tending to be higher in the old, there were no significant age-related differences in postexercise popliteal blood flow (area under the curve: young: 1,665 ± 227 vs old: 2,404 ± 357 mL, p = .06) and convective O(2) delivery (young: 293 ± 146 vs old: 404 ± 191 mL, p = .07). In conclusion, when physical activity and O(2) delivery are similar, oxidative capacity in the plantar flexors is not affected by aging. These findings reveal that diminished skeletal muscle oxidative capacity is not an obligatory accompaniment to the aging process.
Collapse
Affiliation(s)
- Corey R Hart
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah. Department of Exercise and Sport Science
| | - Gwenael Layec
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah. Department of Medicine, Division of Geriatrics, and
| | - Joel D Trinity
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah. Department of Medicine, Division of Geriatrics, and
| | - Xin Liu
- Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City
| | - Seong-Eun Kim
- Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City
| | - H Jonathan Groot
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah. Department of Exercise and Sport Science
| | - Yann Le Fur
- Aix-Marseille Université, CNRS, CRMBM UMR 7339, Marseille, France
| | | | - Eun-Kee Jeong
- Department of Radiology, Utah Center for Advanced Imaging Research, University of Utah, Salt Lake City
| | - Russell S Richardson
- Geriatric Research, Education, and Clinical Center, George E. Whalen VA Medical Center, Salt Lake City, Utah. Department of Exercise and Sport Science, Department of Medicine, Division of Geriatrics, and
| |
Collapse
|
36
|
Treadmill training increases SIRT-1 and PGC-1 α protein levels and AMPK phosphorylation in quadriceps of middle-aged rats in an intensity-dependent manner. Mediators Inflamm 2014; 2014:987017. [PMID: 25002755 PMCID: PMC4070581 DOI: 10.1155/2014/987017] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2014] [Revised: 04/08/2014] [Accepted: 04/15/2014] [Indexed: 01/07/2023] Open
Abstract
The present study investigated the effects of running at 0.8 or 1.2 km/h on inflammatory proteins (i.e., protein levels of TNF- α , IL-1 β , and NF- κ B) and metabolic proteins (i.e., protein levels of SIRT-1 and PGC-1 α , and AMPK phosphorylation) in quadriceps of rats. Male Wistar rats at 3 (young) and 18 months (middle-aged rats) of age were divided into nonexercised (NE) and exercised at 0.8 or 1.2 km/h. The rats were trained on treadmill, 50 min per day, 5 days per week, during 8 weeks. Forty-eight hours after the last training session, muscles were removed, homogenized, and analyzed using biochemical and western blot techniques. Our results showed that: (a) running at 0.8 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with NE rats; (b) these responses were lower for the inflammatory proteins and higher for the metabolic proteins in young rats compared with middle-aged rats; (c) running at 1.2 km/h decreased the inflammatory proteins and increased the metabolic proteins compared with 0.8 km/h; (d) these responses were similar between young and middle-aged rats when trained at 1.2 km. In summary, the age-related increases in inflammatory proteins, and the age-related declines in metabolic proteins can be reversed and largely improved by treadmill training.
Collapse
|
37
|
Gouspillou G, Bourdel-Marchasson I, Rouland R, Calmettes G, Biran M, Deschodt-Arsac V, Miraux S, Thiaudiere E, Pasdois P, Detaille D, Franconi JM, Babot M, Trézéguet V, Arsac L, Diolez P. Mitochondrial energetics is impaired in vivo in aged skeletal muscle. Aging Cell 2014; 13:39-48. [PMID: 23919652 PMCID: PMC4326861 DOI: 10.1111/acel.12147] [Citation(s) in RCA: 100] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2013] [Indexed: 12/25/2022] Open
Abstract
With aging, most skeletal muscles undergo a progressive loss of mass and strength, a process termed sarcopenia. Aging-related defects in mitochondrial energetics have been proposed to be causally involved in sarcopenia. However, changes in muscle mitochondrial oxidative phosphorylation with aging remain a highly controversial issue, creating a pressing need for integrative approaches to determine whether mitochondrial bioenergetics are impaired in aged skeletal muscle. To address this issue, mitochondrial bioenergetics was first investigated in vivo in the gastrocnemius muscle of adult (6 months) and aged (21 months) male Wistar rats by combining a modular control analysis approach with 31P magnetic resonance spectroscopy measurements of energetic metabolites. Using this innovative approach, we revealed that the in vivo responsiveness (‘elasticity’) of mitochondrial oxidative phosphorylation to contraction-induced increase in ATP demand is significantly reduced in aged skeletal muscle, a reduction especially pronounced under low contractile activities. In line with this in vivo aging-related defect in mitochondrial energetics, we found that the mitochondrial affinity for ADP is significantly decreased in mitochondria isolated from aged skeletal muscle. Collectively, the results of this study demonstrate that mitochondrial bioenergetics are effectively altered in vivo in aged skeletal muscle and provide a novel cellular basis for this phenomenon.
Collapse
Affiliation(s)
- Gilles Gouspillou
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- Département de Kinanthropologie; Université du Québec à Montréal; Montreal Quebec Canada
| | - Isabelle Bourdel-Marchasson
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- CHU de Bordeaux; Pôle de gérontologie clinique; Bordeaux France
| | - Richard Rouland
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Guillaume Calmettes
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
- Department of Medicine (Cardiology); David Geffen School of Medicine; University of California; Los Angeles CA USA
| | - Marc Biran
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Véronique Deschodt-Arsac
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Sylvain Miraux
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Eric Thiaudiere
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Philippe Pasdois
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Dominique Detaille
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| | - Jean-Michel Franconi
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Marion Babot
- Laboratoire de Physiologie Moléculaire et Cellulaire; Institut de Biochimie et Génétique Cellulaires; UMR 5095; CNRS-Université Bordeaux 2; Bordeaux Cedex France
| | - Véronique Trézéguet
- Laboratoire de Physiologie Moléculaire et Cellulaire; Institut de Biochimie et Génétique Cellulaires; UMR 5095; CNRS-Université Bordeaux 2; Bordeaux Cedex France
| | - Laurent Arsac
- Résonance Magnétique des Systèmes Biologiques; UMR 5536 CNRS - Bordeaux Segalen University; Bordeaux France
| | - Philippe Diolez
- INSERM U1045 - Cardio-Thoracic Research Centre - and Rhythmology and Heart Modeling Institute (LIRYC); Bordeaux University; Bordeaux France
| |
Collapse
|
38
|
Larsen S, Kraunsøe R, Gram M, Gnaiger E, Helge JW, Dela F. The best approach: homogenization or manual permeabilization of human skeletal muscle fibers for respirometry? Anal Biochem 2013; 446:64-8. [PMID: 24161612 DOI: 10.1016/j.ab.2013.10.023] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2013] [Revised: 10/07/2013] [Accepted: 10/15/2013] [Indexed: 10/26/2022]
Abstract
The number of studies on mitochondrial function is growing as a result of the recognition of the pivotal role of an intact mitochondrial function in numerous diseases. Measurements of oxygen consumption by the mitochondria in human skeletal muscle are used in many studies. There are several advantages of studying mitochondrial respiration in permeabilized fibers (Pfi), but the method requires a manual procedure of mechanical separation of the fiber bundles in the biopsy and chemical permeabilization of the cell membrane. This is time-consuming and subject to interpersonal variability. An alternative is to use a semiautomatic tool for preparation of a homogenate of the muscle biopsy. We investigated whether the PBI shredder is useful in preparing a muscle homogenate for measurements of mitochondrial respiratory capacity. The homogenate is compared with the Pfi preparation. Maximal respiratory capacity was significantly reduced in the homogenate compared with the Pfi from human skeletal muscle. A marked cytochrome c response was observed in the homogenate, which was not the case with the Pfi, indicating that the outer mitochondrial membrane was not intact. The mitochondria in the homogenate were more uncoupled compared with the Pfi. Manual permeabilization is an advantageous technique for preparing human skeletal muscle biopsies for respirometry.
Collapse
Affiliation(s)
- Steen Larsen
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark.
| | - Regitze Kraunsøe
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Martin Gram
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Erich Gnaiger
- Department of Visceral, Transplant, and Thoracic Surgery, D. Swarovski Research Laboratory, Medical University of Innsbruck, A-6020 Innsbruck, Austria
| | - Jørn W Helge
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Flemming Dela
- Xlab, Center for Healthy Aging, Department of Biomedical Sciences, Faculty of Health Sciences, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
39
|
Pulliam DA, Bhattacharya A, Van Remmen H. Mitochondrial dysfunction in aging and longevity: a causal or protective role? Antioxid Redox Signal 2013; 19:1373-87. [PMID: 23025472 DOI: 10.1089/ars.2012.4950] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
SIGNIFICANCE Among the most highly investigated theories of aging is the mitochondrial theory of aging. The basis of this theory includes a central role for altered or compromised mitochondrial function in the pathophysiologic declines associated with aging. In general, studies in various organisms, including nematodes, rodents, and humans, have largely upheld that aging is associated with mitochondrial dysfunction. However, results from a number of studies directly testing the mitochondrial theory of aging by modulating oxidant production or scavenging in vivo in rodents have generally been inconsistent with predictions of the theory. RECENT ADVANCES Interestingly, electron transport chain mutations or deletions in invertebrates and mice that causes mitochondrial dysfunction paradoxically leads to enhanced longevity, further challenging the mitochondrial theory of aging. CRITICAL ISSUES How can mitochondrial dysfunction contribute to lifespan extension in the mitochondrial mutants, and what does it mean for the mitochondrial theory of aging? FUTURE DIRECTIONS It will be important to determine the potential mechanisms that lead to enhanced longevity in the mammalian mitochondrial mutants.
Collapse
Affiliation(s)
- Daniel A Pulliam
- 1 Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio , San Antonio, Texas
| | | | | |
Collapse
|
40
|
Konopka AR, Sreekumaran Nair K. Mitochondrial and skeletal muscle health with advancing age. Mol Cell Endocrinol 2013; 379:19-29. [PMID: 23684888 PMCID: PMC3788080 DOI: 10.1016/j.mce.2013.05.008] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 04/22/2013] [Accepted: 05/08/2013] [Indexed: 12/21/2022]
Abstract
With increasing age there is a temporal relationship between the decline of mitochondrial and skeletal muscle volume, quality and function (i.e., health). Reduced mitochondrial mRNA expression, protein abundance, and protein synthesis rates appear to promote the decline of mitochondrial protein quality and function. Decreased mitochondrial function is suspected to impede energy demanding processes such as skeletal muscle protein turnover, which is critical for maintaining protein quality and thus skeletal muscle health with advancing age. The focus of this review was to discuss promising human physiological systems underpinning the decline of mitochondrial and skeletal muscle health with advancing age while highlighting therapeutic strategies such as aerobic exercise and caloric restriction for combating age-related functional impairments.
Collapse
Affiliation(s)
- Adam R Konopka
- Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
| | | |
Collapse
|
41
|
Siegel MP, Kruse SE, Percival JM, Goh J, White CC, Hopkins HC, Kavanagh TJ, Szeto HH, Rabinovitch PS, Marcinek DJ. Mitochondrial-targeted peptide rapidly improves mitochondrial energetics and skeletal muscle performance in aged mice. Aging Cell 2013; 12:763-71. [PMID: 23692570 PMCID: PMC3772966 DOI: 10.1111/acel.12102] [Citation(s) in RCA: 135] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2013] [Indexed: 12/25/2022] Open
Abstract
Mitochondrial dysfunction plays a key pathogenic role in aging skeletal muscle resulting in significant healthcare costs in the developed world. However, there is no pharmacologic treatment to rapidly reverse mitochondrial deficits in the elderly. Here, we demonstrate that a single treatment with the mitochondrial-targeted peptide SS-31 restores in vivo mitochondrial energetics to young levels in aged mice after only one hour. Young (5 month old) and old (27 month old) mice were injected intraperitoneally with either saline or 3 mg kg(-1) of SS-31. Skeletal muscle mitochondrial energetics were measured in vivo one hour after injection using a unique combination of optical and (31) P magnetic resonance spectroscopy. Age-related declines in resting and maximal mitochondrial ATP production, coupling of oxidative phosphorylation (P/O), and cell energy state (PCr/ATP) were rapidly reversed after SS-31 treatment, while SS-31 had no observable effect on young muscle. These effects of SS-31 on mitochondrial energetics in aged muscle were also associated with a more reduced glutathione redox status and lower mitochondrial H2 O2 emission. Skeletal muscle of aged mice was more fatigue resistant in situ one hour after SS-31 treatment, and eight days of SS-31 treatment led to increased whole-animal endurance capacity. These data demonstrate that SS-31 represents a new strategy for reversing age-related deficits in skeletal muscle with potential for translation into human use.
Collapse
Affiliation(s)
- M. P. Siegel
- Department of Bioengineering, University of Washington, Seattle, WA 98195
| | - S. E. Kruse
- Department of Radiology, University of Washington, Seattle, WA 98195
| | - J. M. Percival
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195
| | - J. Goh
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
- Department of Nutritional Science, University of Washington, Seattle, WA 98195
| | - C. C. White
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195
| | - H. C. Hopkins
- Department of Comparative Medicine, University of Washington, Seattle, WA 98195
| | - T. J. Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA 98195
| | - H. H. Szeto
- Department of Pharmacology, Weill Cornell Medical College, New York, NY 10021
| | - P. S. Rabinovitch
- Department of Pathology, University of Washington, Seattle, WA 98195
| | - D. J. Marcinek
- Department of Bioengineering, University of Washington, Seattle, WA 98195
- Department of Radiology, University of Washington, Seattle, WA 98195
| |
Collapse
|
42
|
|
43
|
Johnson ML, Robinson MM, Nair KS. Skeletal muscle aging and the mitochondrion. Trends Endocrinol Metab 2013; 24:247-56. [PMID: 23375520 PMCID: PMC3641176 DOI: 10.1016/j.tem.2012.12.003] [Citation(s) in RCA: 152] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 12/19/2012] [Accepted: 12/19/2012] [Indexed: 01/06/2023]
Abstract
Decline in human muscle mass and strength (sarcopenia) is a hallmark of the aging process. A growing body of research in the areas of bioenergetics and protein turnover has placed the mitochondria at the center of this process. It is now clear that, unless an active lifestyle is rigorously followed, skeletal muscle mitochondrial decline occurs as humans age. Increasing research on mitochondrial biology has elucidated the regulatory pathways involved in mitochondrial biogenesis, many of which are potential therapeutic targets, and highlight the beneficial effects of vigorous physical activity on skeletal muscle health for an aging population.
Collapse
Affiliation(s)
- Matthew L Johnson
- Mayo Clinic, Division of Endocrinology, 200 First Street SW, Joseph 5-194, Rochester, MN 55905, USA
| | | | | |
Collapse
|
44
|
Rebuttal from Venturelli and Richardson. J Appl Physiol (1985) 2013; 114:1111-2. [DOI: 10.1152/japplphysiol.01438.2012b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
|
45
|
Jacobs RA, Diaz V, Soldini L, Haider T, Thomassen M, Nordsborg NB, Gassmann M, Lundby C. Fast-Twitch Glycolytic Skeletal Muscle Is Predisposed to Age-Induced Impairments in Mitochondrial Function. J Gerontol A Biol Sci Med Sci 2013; 68:1010-22. [DOI: 10.1093/gerona/gls335] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
46
|
Sjövall F, Ehinger JKH, Marelsson SE, Morota S, Frostner EA, Uchino H, Lundgren J, Arnbjörnsson E, Hansson MJ, Fellman V, Elmér E. Mitochondrial respiration in human viable platelets--methodology and influence of gender, age and storage. Mitochondrion 2012; 13:7-14. [PMID: 23164798 DOI: 10.1016/j.mito.2012.11.001] [Citation(s) in RCA: 92] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Revised: 09/25/2012] [Accepted: 11/07/2012] [Indexed: 12/23/2022]
Abstract
Studying whole cell preparations with intact mitochondria and respiratory complexes has a clear benefit compared to isolated or disrupted mitochondria due to the dynamic interplay between mitochondria and other cellular compartments. Platelet mitochondria have a potential to serve as a source of human viable mitochondria when studying mitochondrial physiology and pathogenic mechanisms, as well as for the diagnostics of mitochondrial diseases. The objective of the present study was to perform a detailed evaluation of platelet mitochondrial respiration using high-resolution respirometry. Further, we aimed to explore the limits of sample size and the impact of storage as well as to establish a wide range of reference data from different pediatric and adult cohorts. Our results indicate that platelet mitochondria are well suited for ex-vivo analysis with the need for minute sample amounts and excellent reproducibility and stability.
Collapse
Affiliation(s)
- Fredrik Sjövall
- Mitochondrial Pathophysiology Unit, Lund University, 221 84 Lund, Sweden.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
47
|
Conley KE, Jubrias SA, Cress ME, Esselman P. Exercise efficiency is reduced by mitochondrial uncoupling in the elderly. Exp Physiol 2012; 98:768-77. [PMID: 23085769 DOI: 10.1113/expphysiol.2012.067314] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
A reduction in exercise efficiency accompanies ageing in humans. Here we evaluated the impact of changes in the contractile-coupling and mitochondrial-coupling efficiencies on the reduction in exercise efficiency in the elderly. Nine adult (mean, 38.8 years old) and 40 elderly subjects (mean, 68.8 years old) performed a cycle ergometer test to measure O2 uptake and leg power output up to the aerobic limit ( ). Reduced leg power output per unit O2 uptake was reflected in a drop in delta efficiency (εD) from 0.27 ± 0.01 (mean ± SEM) in adults to 0.22 ± 0.01 in the elderly group. Similar declines with age were apparent for both the leg power output at and the ATP generation capacity (ATPmax) determined in vivo using (31)P magnetic resonance spectroscopy. These similar declines resulted in unchanged contractile-coupling efficiency values (εC) in the adult (0.50 ± 0.05) versus the elderly group (0.58 ± 0.04) and agreed with independent measures of muscle contractile-coupling efficiency in human quadriceps (0.5). The mitochondrial-coupling efficiency calculated from the ratio of delta to contractile-coupling efficiencies in the adults (εD/εC = 0.58 ± 0.08) corresponded to values for well-coupled mitochondria (0.6); however, εD/εC was significantly lower in the elderly subjects (0.44 ± 0.03). Conversion of ATPmax per mitochondrial volume (ATPmax/Vv[mt,f]) reported in these groups into thermodynamic units confirmed this drop in mitochondrial-coupling efficiency from 0.57 ± 0.08 in adults to 0.41 ± 0.03 in elderly subjects. Thus, two independent methods revealed that reduced mitochondrial-coupling efficiency was a key part of the drop in exercise efficiency in these elderly subjects and may be an important part of the loss of exercise performance with age.
Collapse
Affiliation(s)
- Kevin E Conley
- Department of Radiology, Box 357115, University of Washington Medical Center, Seattle, WA 98195-7115, USA.
| | | | | | | |
Collapse
|
48
|
Mortensen SP, Nyberg M, Winding K, Saltin B. Lifelong physical activity preserves functional sympatholysis and purinergic signalling in the ageing human leg. J Physiol 2012; 590:6227-36. [PMID: 22966164 DOI: 10.1113/jphysiol.2012.240093] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ageing is associated with an impaired ability to modulate sympathetic vasoconstrictor activity (functional sympatholysis) and a reduced exercise hyperaemia. The purpose of this study was to investigate whether a physically active lifestyle can offset the impaired functional sympatholysis and exercise hyperaemia in the leg and whether ATP signalling is altered by ageing and physical activity. Leg haemodynamics, interstitial [ATP] and P2Y(2) receptor content was determined in eight young (23 ± 1 years), eight lifelong sedentary elderly (66 ± 2 years) and eight lifelong active elderly (62 ± 2 years) men at rest and during one-legged knee extensions (12 W and 45% maximal workload (WL(max))) and arterial infusion of ACh and ATP with and without tyramine. The vasodilatory response to ACh was lowest in the sedentary elderly, higher in active elderly (P < 0.05) and highest in the young men (P < 0.05), whereas ATP-induced vasodilatation was lower in the sedentary elderly (P < 0.05). During exercise (12 W), leg blood flow, vascular conductance and VO2 was lower and leg lactate release higher in the sedentary elderly compared to the young (P < 0.05), whereas there was no difference between the active elderly and young. Interstitial [ATP] during exercise and P2Y(2) receptor content were higher in the active elderly compared to the sedentary elderly (P < 0.05). Tyramine infusion lowered resting vascular conductance in all groups, but only in the sedentary elderly during exercise (P < 0.05). Tyramine did not alter the vasodilator response to ATP infusion in any of the three groups. Plasma [noradrenaline] increased more during tyramine infusion in both elderly groups compared to young (P < 0.05). A lifelong physically active lifestyle can maintain an intact functional sympatholysis during exercise and vasodilator response to ATP despite a reduction in endothelial nitric oxide function. A physically active lifestyle increases interstitial ATP levels and skeletal muscle P2Y(2) receptor content.
Collapse
Affiliation(s)
- S P Mortensen
- The Copenhagen Muscle Research Centre, Rigshospitalet, Section 7641, Blegdamsvej 9, DK-2100 Copenhagen Ø, Denmark.
| | | | | | | |
Collapse
|
49
|
Nyberg M, Blackwell JR, Damsgaard R, Jones AM, Hellsten Y, Mortensen SP. Lifelong physical activity prevents an age-related reduction in arterial and skeletal muscle nitric oxide bioavailability in humans. J Physiol 2012; 590:5361-70. [PMID: 22890714 DOI: 10.1113/jphysiol.2012.239053] [Citation(s) in RCA: 89] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Ageing has been proposed to be associated with increased levels of reactive oxygen species (ROS) that scavenge nitric oxide (NO). In eight young sedentary (23 ± 1 years; Y), eight older lifelong sedentary (66 ± 2 years; OS) and eight older lifelong physically active subjects (62 ± 2 years; OA), we studied the effect of ROS on systemic and skeletal muscle NO bioavailability and leg blood flow by infusion of the antioxidant N-acetylcysteine (NAC). Infusion of NAC increased the bioavailability of NO in OS, as evidenced by an increased concentration of stable metabolites of NO (NOx) in the arterial and venous circulation and in the muscle interstitium. In OA, infusion of NAC only increased NOx concentrations in venous plasma whereas in Y, infusion of NAC did not affect NOx concentrations. Skeletal muscle protein levels of endothelial and neuronal NO synthase were 32% and 24% higher, respectively, in OA than in OS. Exercise at 12 W elicited a lower leg blood flow response that was associated with a lower leg oxygen uptake in OS than in Y. The improved bioavailability of NO in OS did not increase blood flow during exercise. These data demonstrate that NO bioavailability is compromised in the systemic circulation and in the musculature of sedentary ageing humans due to increased oxidative stress. Lifelong physical activity opposes this effect within the trained musculature and in the arterial circulation. The lower blood flow response to leg exercise in ageing humans is not associated with a reduced NO bioavailability.
Collapse
Affiliation(s)
- Michael Nyberg
- Department of Exercise and Sport Sciences, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | | | | | |
Collapse
|
50
|
Skeletal muscle mitochondria and aging: a review. J Aging Res 2012; 2012:194821. [PMID: 22888430 PMCID: PMC3408651 DOI: 10.1155/2012/194821] [Citation(s) in RCA: 200] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 05/21/2012] [Indexed: 12/12/2022] Open
Abstract
Aging is characterized by a progressive loss of muscle mass and muscle strength. Declines in skeletal muscle mitochondria are thought to play a primary role in this process. Mitochondria are the major producers of reactive oxygen species, which damage DNA, proteins, and lipids if not rapidly quenched. Animal and human studies typically show that skeletal muscle mitochondria are altered with aging, including increased mutations in mitochondrial DNA, decreased activity of some mitochondrial enzymes, altered respiration with reduced maximal capacity at least in sedentary individuals, and reduced total mitochondrial content with increased morphological changes. However, there has been much controversy over measurements of mitochondrial energy production, which may largely be explained by differences in approach and by whether physical activity is controlled for. These changes may in turn alter mitochondrial dynamics, such as fusion and fission rates, and mitochondrially induced apoptosis, which may also lead to net muscle fiber loss and age-related sarcopenia. Fortunately, strategies such as exercise and caloric restriction that reduce oxidative damage also improve mitochondrial function. While these strategies may not completely prevent the primary effects of aging, they may help to attenuate the rate of decline.
Collapse
|