1
|
Calabro FJ, Parr AC, Sydnor VJ, Hetherington H, Prasad KM, Ibrahim TS, Sarpal DK, Famalette A, Verma P, Luna B. Leveraging ultra-high field (7T) MRI in psychiatric research. Neuropsychopharmacology 2024; 50:85-102. [PMID: 39251774 PMCID: PMC11525672 DOI: 10.1038/s41386-024-01980-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/21/2024] [Accepted: 07/23/2024] [Indexed: 09/11/2024]
Abstract
Non-invasive brain imaging has played a critical role in establishing our understanding of the neural properties that contribute to the emergence of psychiatric disorders. However, characterizing core neurobiological mechanisms of psychiatric symptomatology requires greater structural, functional, and neurochemical specificity than is typically obtainable with standard field strength MRI acquisitions (e.g., 3T). Ultra-high field (UHF) imaging at 7 Tesla (7T) provides the opportunity to identify neurobiological systems that confer risk, determine etiology, and characterize disease progression and treatment outcomes of major mental illnesses. Increases in scanner availability, regulatory approval, and sequence availability have made the application of UHF to clinical cohorts more feasible than ever before, yet the application of UHF approaches to the study of mental health remains nascent. In this technical review, we describe core neuroimaging methodologies which benefit from UHF acquisition, including high resolution structural and functional imaging, single (1H) and multi-nuclear (e.g., 31P) MR spectroscopy, and quantitative MR techniques for assessing brain tissue iron and myelin. We discuss advantages provided by 7T MRI, including higher signal- and contrast-to-noise ratio, enhanced spatial resolution, increased test-retest reliability, and molecular and neurochemical specificity, and how these have begun to uncover mechanisms of psychiatric disorders. Finally, we consider current limitations of UHF in its application to clinical cohorts, and point to ongoing work that aims to overcome technical hurdles through the continued development of UHF hardware, software, and protocols.
Collapse
Affiliation(s)
- Finnegan J Calabro
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA.
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA.
| | - Ashley C Parr
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Valerie J Sydnor
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Konasale M Prasad
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
- Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, PA, USA
| | - Tamer S Ibrahim
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, USA
| | - Deepak K Sarpal
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Alyssa Famalette
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Piya Verma
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
| | - Beatriz Luna
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, USA
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, USA
| |
Collapse
|
2
|
Egger N, Nagelstraßer S, Wildenberg S, Bitz A, Ruck L, Herrler J, Meixner CR, Kimmlingen R, Lanz T, Schmitter S, Uder M, Nagel AM. Accelerated B 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and robust parallel transmit pulse design for heart and prostate imaging at 7 T. Magn Reson Med 2024; 92:1933-1951. [PMID: 38888143 DOI: 10.1002/mrm.30185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 04/26/2024] [Accepted: 05/17/2024] [Indexed: 06/20/2024]
Abstract
PURPOSE To investigate the impact of reduced k-space sampling onB 1 + $$ {\mathrm{B}}_1^{+} $$ mapping and the resulting impact on phase shimming and dynamic/universal parallel transmit (pTx) RF pulse design. METHODS Channel-wise 3DB 1 + $$ {\mathrm{B}}_1^{+} $$ maps were measured at 7 T in 35 and 23 healthy subjects for the heart and prostate region, respectively. With theseB 1 + $$ {\mathrm{B}}_1^{+} $$ maps, universal phase shims optimizing homogeneity andB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency were designed for heart and prostate imaging. In addition, universal 4kT-point pulses were designed for the heart. Subsequently, individual phase shims and individual 4kT-pulses were designed based onB 1 + $$ {\mathrm{B}}_1^{+} $$ maps with different acceleration factors and tested on the original maps. The performance of the pulses was compared by evaluating their coefficients of variation (CoV),B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and specific energy doses (SED). Furthermore, validation measurements were carried out for one heart and one prostate subject. RESULTS For both organs, the universal phase shims showed significantly higherB 1 + $$ {\mathrm{B}}_1^{+} $$ efficiencies and lower CoVs compared to the vendor provided default shim, but could still be improved with individual phase shims based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps (acquisition time = 30 s). In the heart, the universal 4kT-pulse achieved significantly lower CoVs than tailored phase shims. Tailored 4kT-pulses based on acceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps resulted in even further reduced CoVs or a 2.5-fold reduction in SED at the same CoVs as the universal 4kT-pulse. CONCLUSION AcceleratedB 1 + $$ {\mathrm{B}}_1^{+} $$ maps can be used for the design of tailored pTx pulses for prostate and cardiac imaging at 7 T, which further improve homogeneity,B 1 + $$ {\mathrm{B}}_1^{+} $$ efficiency, or SED compared to universal pulses.
Collapse
Affiliation(s)
- Nico Egger
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Sophia Nagelstraßer
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Saskia Wildenberg
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Andreas Bitz
- Electrical Engineering and Information Technology, University of Applied Sciences - FH Aachen, Aachen, Germany
| | - Laurent Ruck
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | | | | | - Sebastian Schmitter
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Michael Uder
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Armin Michael Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| |
Collapse
|
3
|
Yang H, Wang G, Li Z, Li H, Zheng J, Hu Y, Cao X, Liao C, Ye H, Tian Q. Artificial intelligence for neuro MRI acquisition: a review. MAGMA (NEW YORK, N.Y.) 2024; 37:383-396. [PMID: 38922525 DOI: 10.1007/s10334-024-01182-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024]
Abstract
OBJECT To review recent advances of artificial intelligence (AI) in enhancing the efficiency and throughput of the MRI acquisition workflow in neuroimaging, including planning, sequence design, and correction of acquisition artifacts. MATERIALS AND METHODS A comprehensive analysis was conducted on recent AI-based methods in neuro MRI acquisition. The study focused on key technological advances, their impact on clinical practice, and potential risks associated with these methods. RESULTS The findings indicate that AI-based algorithms have a substantial positive impact on the MRI acquisition process, improving both efficiency and throughput. Specific algorithms were identified as particularly effective in optimizing acquisition steps, with reported improvements in workflow efficiency. DISCUSSION The review highlights the transformative potential of AI in neuro MRI acquisition, emphasizing the technological advances and clinical benefits. However, it also discusses potential risks and challenges, suggesting areas for future research to mitigate these concerns and further enhance AI integration in MRI acquisition.
Collapse
Affiliation(s)
- Hongjia Yang
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Guanhua Wang
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Ziyu Li
- Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Haoxiang Li
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Jialan Zheng
- School of Biomedical Engineering, Tsinghua University, Beijing, China
| | - Yuxin Hu
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
| | - Xiaozhi Cao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Congyu Liao
- Department of Electrical Engineering, Stanford University, Stanford, CA, USA
- Department of Radiology, Stanford University, Stanford, CA, USA
| | - Huihui Ye
- State Key Laboratory of Extreme Photonics and Instrumentation, College of Optical Science and Engineering, Zhejiang University, Hangzhou, China
| | - Qiyuan Tian
- School of Biomedical Engineering, Tsinghua University, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Tsinghua University, Beijing, China.
| |
Collapse
|
4
|
Kilic T, Liebig P, Demirel OB, Herrler J, Nagel AM, Ugurbil K, Akçakaya M. Unsupervised deep learning with convolutional neural networks for static parallel transmit design: A retrospective study. Magn Reson Med 2024; 91:2498-2507. [PMID: 38247050 PMCID: PMC10997461 DOI: 10.1002/mrm.30014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Revised: 12/28/2023] [Accepted: 12/29/2023] [Indexed: 01/23/2024]
Abstract
PURPOSE To mitigateB 1 + $$ {B}_1^{+} $$ inhomogeneity at 7T for multi-channel transmit arrays using unsupervised deep learning with convolutional neural networks (CNNs). METHODS Deep learning parallel transmit (pTx) pulse design has received attention, but such methods have relied on supervised training and did not use CNNs for multi-channelB 1 + $$ {B}_1^{+} $$ maps. In this work, we introduce an alternative approach that facilitates the use of CNNs with multi-channelB 1 + $$ {B}_1^{+} $$ maps while performing unsupervised training. The multi-channelB 1 + $$ {B}_1^{+} $$ maps are concatenated along the spatial dimension to enable shift-equivariant processing amenable to CNNs. Training is performed in an unsupervised manner using a physics-driven loss function that minimizes the discrepancy of the Bloch simulation with the target magnetization, which eliminates the calculation of reference transmit RF weights. The training database comprises 3824 2D sagittal, multi-channelB 1 + $$ {B}_1^{+} $$ maps of the healthy human brain from 143 subjects.B 1 + $$ {B}_1^{+} $$ data were acquired at 7T using an 8Tx/32Rx head coil. The proposed method is compared to the unregularized magnitude least-squares (MLS) solution for the target magnetization in static pTx design. RESULTS The proposed method outperformed the unregularized MLS solution for RMS error and coefficient-of-variation and had comparable energy consumption. Additionally, the proposed method did not show local phase singularities leading to distinct holes in the resulting magnetization unlike the unregularized MLS solution. CONCLUSION Proposed unsupervised deep learning with CNNs performs better than unregularized MLS in static pTx for speed and robustness.
Collapse
Affiliation(s)
- Toygan Kilic
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Omer Burak Demirel
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Armin M Nagel
- Institute of Radiology, University Hospital Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Division of Medical Physics in Radiology, German Cancer Research Centre (DKFZ), Heidelberg, Germany
| | - Kamil Ugurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Mehmet Akçakaya
- Electrical and Computer Engineering, University of Minnesota, Minneapolis, Minnesota, USA
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Perera Molligoda Arachchige AS, Teixeira de Castro Gonçalves Ortega AC, Catapano F, Politi LS, Hoff MN. From strength to precision: A systematic review exploring the clinical utility of 7-Tesla magnetic resonance imaging in abdominal imaging. World J Radiol 2024; 16:20-31. [PMID: 38312348 PMCID: PMC10835428 DOI: 10.4329/wjr.v16.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND After approval for clinical use in 2017 early investigations of ultra-high-field abdominal magnetic resonance imaging (MRI) have demonstrated the feasibility as well as diagnostic capabilities of liver, kidney, and prostate MRI at 7-Tesla. However, the elevation of the field strength to 7-Tesla not only brought advantages to abdominal MRI but also presented considerable challenges and drawbacks, primarily stemming from heightened artifacts and limitations in Specific Absorption Rate, etc. Furthermore, evidence in the literature is relatively scarce concerning human studies in comparison to phantom/animal studies which necessitates an investigation into the evidence so far in humans and summarizing all relevant evidence. AIM To offer a comprehensive overview of current literature on clinical abdominal 7T MRI that emphasizes current trends, details relevant challenges, and provides a concise set of potential solutions. METHODS This systematic review adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A PubMed search, utilizing Medical Subject Headings terms such as "7-Tesla" and organ-specific terms, was conducted for articles published between January 1, 1985, and July 25, 2023. Eligibility criteria included studies exploring 7T MRI for imaging human abdominal organs, encompassing various study types (in-vivo/ex-vivo, method development, reviews/meta-analyses). Exclusion criteria involved animal studies and those lacking extractable data. Study selection involved initial identification via title/abstract, followed by a full-text review by two researchers, with discrepancies resolved through discussion. Data extraction covered publication details, study design, population, sample size, 7T MRI protocol, image characteristics, endpoints, and conclusions. RESULTS The systematic review included a total of 21 studies. The distribution of clinical 7T abdominal imaging studies revealed a predominant focus on the prostate (n = 8), followed by the kidney (n = 6) and the hepatobiliary system (n = 5). Studies on these organs, and in the pancreas, demonstrated clear advantages at 7T. However, small bowel studies showed no significant improvements compared to traditional MRI at 1.5T. The majority of studies evaluated originated from Germany (n = 10), followed by the Netherlands (n = 5), the United States (n = 5), Austria (n = 2), the United Kingdom (n = 1), and Italy (n = 1). CONCLUSION Further increase of abdominal clinical MRI field strength to 7T demonstrated high imaging potential, yet also limitations mainly due to the inhomogeneous radiofrequency (RF) excitation field relative to lower field strengths. Hence, further optimization of dedicated RF coil elements and pulse sequences are expected to better optimize clinical imaging at high magnetic field strength.
Collapse
Affiliation(s)
| | | | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| |
Collapse
|
6
|
Terekhov M, Elabyad IA, Lohr D, Hofmann U, Schreiber LM. High-resolution imaging of the excised porcine heart at a whole-body 7 T MRI system using an 8Tx/16Rx pTx coil. MAGMA (NEW YORK, N.Y.) 2023; 36:279-293. [PMID: 37027119 PMCID: PMC10140105 DOI: 10.1007/s10334-023-01077-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2022] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 04/28/2023]
Abstract
INTRODUCTION MRI of excised hearts at ultra-high field strengths ([Formula: see text]≥7 T) can provide high-resolution, high-fidelity ground truth data for biomedical studies, imaging science, and artificial intelligence. In this study, we demonstrate the capabilities of a custom-built, multiple-element transceiver array customized for high-resolution imaging of excised hearts. METHOD A dedicated 16-element transceiver loop array was implemented for operation in parallel transmit (pTx) mode (8Tx/16Rx) of a clinical whole-body 7 T MRI system. The initial adjustment of the array was performed using full-wave 3D-electromagnetic simulation with subsequent final fine-tuning on the bench. RESULTS We report the results of testing the implemented array in tissue-mimicking liquid phantoms and excised porcine hearts. The array demonstrated high efficiency of parallel transmits characteristics enabling efficient pTX-based B1+-shimming. CONCLUSION The receive sensitivity and parallel imaging capability of the dedicated coil were superior to that of a commercial 1Tx/32Rx head coil in both SNR and T2*-mapping. The array was successfully tested to acquire ultra-high-resolution (0.1 × 0.1 × 0.8 mm voxel) images of post-infarction scar tissue. High-resolution (isotropic 1.6 mm3 voxel) diffusion tensor imaging-based tractography provided high-resolution information about normal myocardial fiber orientation.
Collapse
Affiliation(s)
- Maxim Terekhov
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany.
| | - Ibrahim A Elabyad
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - David Lohr
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| | - Ulrich Hofmann
- Department of Internal Medicine I / Cardiology, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany
| | - Laura M Schreiber
- Comprehensive Heart Failure Center (CHFC), Department of Cardiovascular Imaging, University Hospital Würzburg, Am Schwarzenberg 15, 97078, Würzburg, Germany
| |
Collapse
|
7
|
D’Astous A, Cereza G, Papp D, Gilbert KM, Stockmann JP, Alonso-Ortiz E, Cohen-Adad J. Shimming toolbox: An open-source software toolbox for B0 and B1 shimming in MRI. Magn Reson Med 2023; 89:1401-1417. [PMID: 36441743 PMCID: PMC9910837 DOI: 10.1002/mrm.29528] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 10/21/2022] [Accepted: 10/25/2022] [Indexed: 11/29/2022]
Abstract
PURPOSE Introduce Shimming Toolbox ( https://shimming-toolbox.org), an open-source software package for prototyping new methods and performing static, dynamic, and real-time B0 shimming as well as B1 shimming experiments. METHODS Shimming Toolbox features various field mapping techniques, manual and automatic masking for the brain and spinal cord, B0 and B1 shimming capabilities accessible through a user-friendly graphical user interface. Validation of Shimming Toolbox was demonstrated in three scenarios: (i) B0 dynamic shimming in the brain at 7T using custom AC/DC coils, (ii) B0 real-time shimming in the spinal cord at 3T, and (iii) B1 static shimming in the spinal cord at 7T. RESULTS The B0 dynamic shimming of the brain at 7T took about 10 min to perform. It showed a 47% reduction in the standard deviation of the B0 field, associated with noticeable improvements in geometric distortions in EPI images. Real-time dynamic xyz-shimming in the spinal cord took about 5 min and showed a 30% reduction in the standard deviation of the signal distribution. B1 static shimming experiments in the spinal cord took about 10 min to perform and showed a 40% reduction in the coefficient of variation of the B1 field. CONCLUSION Shimming Toolbox provides an open-source platform where researchers can collaborate, prototype and conveniently test B0 and B1 shimming experiments. Future versions will include additional field map preprocessing techniques, optimization algorithms, and compatibility across multiple MRI manufacturers.
Collapse
Affiliation(s)
- Alexandre D’Astous
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Gaspard Cereza
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Daniel Papp
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Kyle M. Gilbert
- Centre for Functional and Metabolic Mapping, The
University of Western Ontario, London, Ontario, Canada
| | - Jason P. Stockmann
- Athinoula A. Martinos Center for Biomedical Imaging,
Massachusetts General Hospital, Charlestown, MA, United States
- Harvard Medical School, Boston, MA, United States
| | - Eva Alonso-Ortiz
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering,
Polytechnique Montréal, Montréal, QC, Canada
- Functional Neuroimaging Unit, CRIUGM, Université de
Montréal, Montréal, QC, Canada
- Mila - Quebec AI Institute, Montréal, QC,
Canada
- Centre de recherche du CHU Sainte-Justine,
Université de Montréal, Montréal, QC, Canada
| |
Collapse
|
8
|
Williams SN, McElhinney P, Gunamony S. Ultra-high field MRI: parallel-transmit arrays and RF pulse design. Phys Med Biol 2023; 68. [PMID: 36410046 DOI: 10.1088/1361-6560/aca4b7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/21/2022] [Indexed: 11/22/2022]
Abstract
This paper reviews the field of multiple or parallel radiofrequency (RF) transmission for magnetic resonance imaging (MRI). Currently the use of ultra-high field (UHF) MRI at 7 tesla and above is gaining popularity, yet faces challenges with non-uniformity of the RF field and higher RF power deposition. Since its introduction in the early 2000s, parallel transmission (pTx) has been recognized as a powerful tool for accelerating spatially selective RF pulses and combating the challenges associated with RF inhomogeneity at UHF. We provide a survey of the types of dedicated RF coils used commonly for pTx and the important modeling of the coil behavior by electromagnetic (EM) field simulations. We also discuss the additional safety considerations involved with pTx such as the specific absorption rate (SAR) and how to manage them. We then describe the application of pTx with RF pulse design, including a practical guide to popular methods. Finally, we conclude with a description of the current and future prospects for pTx, particularly its potential for routine clinical use.
Collapse
Affiliation(s)
- Sydney N Williams
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Paul McElhinney
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom
| | - Shajan Gunamony
- Imaging Centre of Excellence, University of Glasgow, Glasgow, United Kingdom.,MR CoilTech Limited, Glasgow, United Kingdom
| |
Collapse
|
9
|
Zheng M, Gao Y, Quan Z, Zhang X. The design and evaluation of single-channel loopole coils at 7T MRI. Phys Med Biol 2022; 67. [DOI: 10.1088/1361-6560/ac8fdf] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 09/06/2022] [Indexed: 11/12/2022]
Abstract
Abstract
Objective. Improving the local uniformity of
B
1
+
field for awake monkey brain magnetic resonance imaging (MRI) at ultra-high fields while facilitating convenient placement and fixation of MRI-compatible multimodal devices for neuroscience study, can eventually advance our understanding of the primate’s brain organization. Approach. A group of single-channel RF coils including conventional loop coils and loopole coils sharing the same size and shape were designed for comparison; their performance as the transmit coil was quantitatively evaluated through a series of numerical electromagnetic (EM) simulations, and further verified by using 7T MRI over a saline phantom and a monkey in vivo. Main results. Compared to conventional loop coils, the optimized loopole coil brought up to 23.5%
B
1
+
uniformity improvement for monkey brain imaging in EM simulations, and this performance was further verified over monkey brain imaging at 7T in vivo. Importantly, we have systematically explored the underlying mechanism regarding the relationship between loopole coils’ current density distribution and
B
1
+
uniformity, observing that it can be approximated as a sinusoidal curve. Significance. The proposed loopole coil design can improve the imaging quality in awake and behaving monkeys, thus benefiting advanced brain research at UHF.
Collapse
|
10
|
Glasser MF, Coalson TS, Harms MP, Xu J, Baum GL, Autio JA, Auerbach EJ, Greve DN, Yacoub E, Van Essen DC, Bock NA, Hayashi T. Empirical transmit field bias correction of T1w/T2w myelin maps. Neuroimage 2022; 258:119360. [PMID: 35697132 PMCID: PMC9483036 DOI: 10.1016/j.neuroimage.2022.119360] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 06/01/2022] [Accepted: 06/04/2022] [Indexed: 12/30/2022] Open
Abstract
T1-weighted divided by T2-weighted (T1w/T2w) myelin maps were initially developed for neuroanatomical analyses such as identifying cortical areas, but they are increasingly used in statistical comparisons across individuals and groups with other variables of interest. Existing T1w/T2w myelin maps contain radiofrequency transmit field (B1+) biases, which may be correlated with these variables of interest, leading to potentially spurious results. Here we propose two empirical methods for correcting these transmit field biases using either explicit measures of the transmit field or alternatively a 'pseudo-transmit' approach that is highly correlated with the transmit field at 3T. We find that the resulting corrected T1w/T2w myelin maps are both better neuroanatomical measures (e.g., for use in cross-species comparisons), and more appropriate for statistical comparisons of relative T1w/T2w differences across individuals and groups (e.g., sex, age, or body-mass-index) within a consistently acquired study at 3T. We recommend that investigators who use the T1w/T2w approach for mapping cortical myelin use these B1+ transmit field corrected myelin maps going forward.
Collapse
Affiliation(s)
| | | | - Michael P Harms
- Psychiatry, Washington University Medical School, St. Louis, MO, United States
| | - Junqian Xu
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States; Departments of Radiology and Psychiatry, Baylor College of Medicine, Houston, TX, United States
| | - Graham L Baum
- Department of Psychology, Harvard University, Cambridge, MA, United States
| | - Joonas A Autio
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| | - Edward J Auerbach
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | - Douglas N Greve
- Athinoula A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States
| | - Essa Yacoub
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN, United States
| | | | - Nicholas A Bock
- Department of Psychology, Neuroscience and Behaviour, McMaster University, Hamilton, ON, Canada
| | - Takuya Hayashi
- RIKEN Center for Biosystems Dynamics Research, Kobe, Japan
| |
Collapse
|
11
|
Löwen D, Pracht ED, Stirnberg R, Liebig P, Stöcker T. Interleaved binomial kT-Points for water-selective imaging at 7T. Magn Reson Med 2022; 88:2564-2572. [PMID: 35942989 DOI: 10.1002/mrm.29376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/07/2022]
Abstract
PURPOSE We present a time-efficient water-selective, parallel transmit RF excitation pulse design for ultra-high field applications. METHODS The proposed pulse design method achieves flip angle homogenization at ultra-high fields by employing spatially nonselective k T $$ {\mathrm{k}}_T $$ -points pulses. In order to introduce water-selection, the concept of binomial pulses is applied. Due to the composite nature of k T $$ {\mathrm{k}}_T $$ -points, the pulse can be split into multiple binomial subpulse blocks shorter than half the precession period of fat, that are played out successively. Additional fat precession turns, that would otherwise impair the spectral response, can thus be avoided. Bloch simulations of the proposed interleaved binomial k T $$ {\mathrm{k}}_T $$ -points pulses were carried out and compared in terms of duration, homogeneity, fat suppression and pulse energy. For validation, in vivo MP-RAGE and 3D-EPI data were acquired. RESULTS Simulation results show that interleaved binomial k T $$ {\mathrm{k}}_T $$ -points pulses achieve shorter total pulse durations, improved flip angle homogeneity and more robust fat suppression compared to available methods. Interleaved binomial k T $$ {\mathrm{k}}_T $$ -points can be customized by changing the number of k T $$ {\mathrm{k}}_T $$ -points, the subpulse duration and the order of the binomial pulse. Using shorter subpulses, the number of k T $$ {\mathrm{k}}_T $$ -points can be increased and hence better homogeneity is achieved, while still maintaining short total pulse durations. Flip angle homogenization and fat suppression of interleaved binomial k T $$ {\mathrm{k}}_T $$ -points pulses is demonstrated in vivo at 7T, confirming Bloch simulation results. CONCLUSION In this work, we present a time efficient and robust parallel transmission technique for nonselective water excitation with simultaneous flip angle homogenization at ultra-high field.
Collapse
Affiliation(s)
- Daniel Löwen
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | | | | | | | - Tony Stöcker
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
- Department of Physics and Astronomy, University of Bonn, Bonn, Germany
| |
Collapse
|
12
|
Seo JH, Chung JY. A Preliminary Study for Reference RF Coil at 11.7 T MRI: Based on Electromagnetic Field Simulation of Hybrid-BC RF Coil According to Diameter and Length at 3.0, 7.0 and 11.7 T. SENSORS 2022; 22:s22041512. [PMID: 35214409 PMCID: PMC8875900 DOI: 10.3390/s22041512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/14/2022] [Indexed: 02/05/2023]
Abstract
Magnetic resonance imaging (MRI) systems must undergo quantitative evaluation through daily and periodic performance assessments. In general, the reference or standard radiofrequency (RF) coils for these performance assessments of 1.5 to 7.0 T MRI systems have been low-pass-type birdcage (LP-BC) RF coils. However, LP-BC RF coils are inappropriate for use as reference RF coils because of their relatively lower magnetic field (B1-field) sensitivity than other types of BC RF coils, especially in ultrahigh-field (UHF) MRI systems above 3.0 T. Herein, we propose a hybrid-type BC (Hybrid-BC) RF coil as a reference RF coil with improved B1-field sensitivity in UHF MRI system and applied it to an 11.7 T MRI system. An electromagnetic field (EM-field) analysis on the Hybrid-BC RF coil was performed to provide the proper dimensions for its use as a reference RF coil. Commercial finite difference time-domain program was used in EM-field simulation, and home-made analysis programs were used in analysis. The optimal specifications of the proposed Hybrid-BC RF coils for them to qualify as reference RF coils are proposed based on their B1+-field sensitivity under unnormalized conditions, as well as by considering their B1+-field uniformity and RF safety under normalized conditions.
Collapse
Affiliation(s)
- Jeung-Hoon Seo
- Neuroscience Research Institute, Gachon University, Incheon 21988, Korea;
| | - Jun-Young Chung
- Department of Neuroscience, College of Medicine, Gachon University, Incheon 21565, Korea
- Correspondence: ; Tel.: +82-32-822-5361; Fax: +82-32-822-8251
| |
Collapse
|
13
|
Hangel G, Niess E, Lazen P, Bednarik P, Bogner W, Strasser B. Emerging methods and applications of ultra-high field MR spectroscopic imaging in the human brain. Anal Biochem 2022; 638:114479. [PMID: 34838516 DOI: 10.1016/j.ab.2021.114479] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2021] [Revised: 10/15/2021] [Accepted: 11/16/2021] [Indexed: 12/21/2022]
Abstract
Magnetic Resonance Spectroscopic Imaging (MRSI) of the brain enables insights into the metabolic changes and fluxes in diseases such as tumors, multiple sclerosis, epilepsy, or hepatic encephalopathy, as well as insights into general brain functionality. However, the routine application of MRSI is mostly hampered by very low signal-to-noise ratios (SNR) due to the low concentrations of metabolites, about 10000 times lower than water. Furthermore, MRSI spectra have a dense information content with many overlapping metabolite resonances, especially for proton MRSI. MRI scanners at ultra-high field strengths, like 7 T or above, offer the opportunity to increase SNR, as well as the separation between resonances, thus promising to solve both challenges. Yet, MRSI at ultra-high field strengths is challenged by decreased B0- and B1-homogeneity, shorter T2 relaxation times, stronger chemical shift displacement errors, and aggravated lipid contamination. Therefore, to capitalize on the advantages of ultra-high field strengths, these challenges must be overcome. This review focuses on the challenges MRSI of the human brain faces at ultra-high field strength, as well as the possible applications to this date.
Collapse
Affiliation(s)
- Gilbert Hangel
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria; Department of Neurosurgery, Medical University of Vienna, Austria
| | - Eva Niess
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Philipp Lazen
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Petr Bednarik
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Wolfgang Bogner
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria
| | - Bernhard Strasser
- High Field MR Centre, Department of Medical Imaging and Image-Guided Therapy, Medical University of Vienna, Austria.
| |
Collapse
|
14
|
Abstract
Especially after the launch of 7 T, the ultrahigh magnetic field (UHF) imaging community achieved critically important strides in our understanding of the physics of radiofrequency interactions in the human body, which in turn has led to solutions for the challenges posed by such UHFs. As a result, the originally obtained poor image quality has progressed to the high-quality and high-resolution images obtained at 7 T and now at 10.5 T in the human torso. Despite these tremendous advances, work still remains to further improve the image quality and fully capitalize on the potential advantages UHF has to offer.
Collapse
|
15
|
Yang X, Zheng J, Wang Y, Long SA, Kainz W, Chen J. Body-loop related MRI radiofrequency-induced heating hazards: Observations, characterizations, and recommendations. Magn Reson Med 2021; 87:337-348. [PMID: 34355817 DOI: 10.1002/mrm.28954] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/17/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE To assess RF-induced heating hazards in 1.5T MR systems caused by body-loop postures. METHODS Twelve advanced high-resolution anatomically correct human body models with different body-loop postures are created based on poseable human adult male models. Numerical simulations are performed to assess the radiofrequency (RF)-induced heating of these 12 models at 11 landmarks. A customized phantom is developed to validate the numerical simulations and quantitatively analyze factors affecting the RF-induced heating, eg, the contact area, the loop size, and the loading position. The RF-induced heating inside three differently posed phantoms is measured. RESULTS The RF-induced heating from the body-loop postures can be up to 11 times higher than that from the original posture. The RF-induced heating increases with increasing body-loop size and decreasing contact area. The magnetic flux increases when the body-loop center and the RF coil isocenter are close to each other, leading to increased RF-induced heating. An air gap created in the body loop or generating a polarized magnetic field parallel to the body loop can reduce the heating by a factor of three at least. Experimental measurements are provided, validating the correctness of the numerical results. CONCLUSION Safe patient posture during MR examinations is recommended with the use of insulation materials to prevent loop formation and consequently avoiding high RF-induced heating. If body loops cannot be avoided, the body loop should be placed outside the RF transmitting coil. In addition, linear polarization with magnetic fields parallel to the body loop can be used to circumvent high RF-induced heating.
Collapse
Affiliation(s)
- Xiaolin Yang
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Jianfeng Zheng
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Yu Wang
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Stuart A Long
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| | - Wolfgang Kainz
- Center for Devices and Radiological Health, Food and Drug Administration, Silver Spring, Maryland, USA
| | - Ji Chen
- Department of Electrical and Computer Engineering, University of Houston, Houston, Texas, USA
| |
Collapse
|
16
|
Zhu Y, Lu M, Grissom WA, Gore JC, Yan X. Hybrid-pair ratio adjustable power splitters for add-on RF shimming and array-compressed parallel transmission. Magn Reson Med 2021; 86:3382-3390. [PMID: 34286860 DOI: 10.1002/mrm.28934] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 06/08/2021] [Accepted: 07/01/2021] [Indexed: 02/03/2023]
Abstract
PURPOSE A ratio adjustable power splitter (RAPS) circuit was recently proposed for add-on RF shimming and array-compressed parallel transmission. Here we propose a new RAPS circuit design based on off-the-shelf components for improved performance and manufacturability. THEORY AND METHODS The original RAPS used a pair of home-built Wilkinson splitter and hybrid coupler connected by a pair of connectorized coaxial cables. Here we propose a new hybrid-pair RAPS (or HP-RAPS) circuit that replaces the home-built circuits with two commercially available hybrid couplers and replaces connectorized cables with interchangeable microstrip lines. We derive the relation between the desired splitting ratio and the required phase shifts for HP-RAPS and investigate how to generate arbitrary splitting ratios using paired meandering and straight lines. Several HP-RAPSs with different splitting ratios were fabricated and tested on the workbench and MRI experiments. RESULTS The splitting ratio of an HP-RAPS circuit has a tan or cot dependence on the meandering line's additional length compared to the straight line. The fabricated HP-RAPSs exhibit accurate splitting ratios as expected (<4% deviations) and generate transmit fields that well agree with predicted fields. They also demonstrated a low insertion loss of 0.33 dB, high output isolation of -26 dB, and acceptable impedance matching of -16 dB. CONCLUSION A novel HP-RAPS circuit was developed and implemented. It is easy-to-fabricate/reproduce with minimal expertise. It also preserves the features of the original RAPS circuit (ratio-adjustable, small footprint, etc.) with lower insertion loss.
Collapse
Affiliation(s)
- Yue Zhu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ming Lu
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William A Grissom
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - John C Gore
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Biomedical Engineering, Vanderbilt University, Nashville, TN, USA
| | - Xinqiang Yan
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
17
|
Geldschläger O, Bosch D, Glaser S, Henning A. Local excitation universal parallel transmit pulses at 9.4T. Magn Reson Med 2021; 86:2589-2603. [PMID: 34180089 DOI: 10.1002/mrm.28905] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 12/30/2022]
Abstract
PURPOSE To demonstrate that the concept of "universal pTx pulses" is applicable to local excitation applications. METHODS A database of B0 / B 1 + maps from eight different subjects was acquired at 9.4T. Based on these maps, universal pulses that aim at local excitation of the visual cortex area in the human brain (with a flip angle of 90° or 7°) were calculated. The remaining brain regions should not experience any excitation. The pulses were designed with an extension of the "spatial domain method." A 2D and a 3D target excitation pattern were tested, respectively. The pulse performance was examined on non-database subjects by Bloch simulations and in vivo at 9.4T using a GRE anatomical MRI and a presaturated TurboFLASH B 1 + mapping sequence. RESULTS The calculated universal pulses show excellent performance in simulations and in vivo on subjects that were not contained in the design database. The visual cortex region is excited, while the desired non-excitation areas produce the only minimal signal. In simulations, the pulses with 3D target pattern show a lack of excitation uniformity in the visual cortex region; however, in vivo, this inhomogeneity can be deemed acceptable. A reduced field of view application of the universal pulse design concept was performed successfully. CONCLUSIONS The proposed design approach creates universal local excitation pulses for a flip angle of 7° and 90°, respectively. Providing universal pTx pulses for local excitation applications prospectively abandons the need for time-consuming subject-specific B0 / B 1 + mapping and pTx-pulse calculation during the scan session.
Collapse
Affiliation(s)
- Ole Geldschläger
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Dario Bosch
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Biomedical Magnetic Resonance, University Hospital Tübingen, Tübingen, Germany
| | - Steffen Glaser
- Department for Chemistry, Technical University of Munich, Garching, Germany
| | - Anke Henning
- High-Field Magnetic Resonance Center, Max Planck Institute for Biological Cybernetics, Tübingen, Germany.,Advanced Imaging Research Center, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
18
|
Santini T, Koo M, Farhat N, Campos VP, Alkhateeb S, Vieira MAC, Butters MA, Rosano C, Aizenstein HJ, Mettenburg J, Novelli EM, Ibrahim TS. Analysis of hippocampal subfields in sickle cell disease using ultrahigh field MRI. Neuroimage Clin 2021; 30:102655. [PMID: 34215139 PMCID: PMC8102634 DOI: 10.1016/j.nicl.2021.102655] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 03/28/2021] [Accepted: 03/29/2021] [Indexed: 12/05/2022]
Abstract
Sickle cell disease (SCD) is an inherited hemoglobinopathy that causes organ dysfunction, including cerebral vasculopathy and neurological complications. Hippocampal segmentation with newer and advanced 7 Tesla (7T) MRI protocols has revealed atrophy in specific subregions in other neurodegenerative and neuroinflammatory diseases, however, there is limited evidence of hippocampal involvement in SCD. Thus, we explored whether SCD may be also associated with abnormalities in hippocampal subregions. We conducted 7T MRI imaging in individuals with SCD, including the HbSS, HbSC and HbS/beta thalassemia genotypes (n = 53), and healthy race and age-matched controls (n = 47), using a customized head coil. Both T1- and T2-weighted images were used for automatic segmentation of the hippocampal subfields. Individuals with SCD had, on average, significantly smaller volume of the region including the Dentate Gyrus and Cornu Ammonis (CA) 2 and 3 as compared to the control group. Other hippocampal subregions also showed a trend towards smaller volumes in the SCD group. These findings support and extend previous reports of reduced volume in the temporal lobe in SCD patients. Further studies are necessary to investigate the mechanisms that lead to structural changes in the hippocampus subfields and their relationship with cognitive performance in SCD patients.
Collapse
Affiliation(s)
- Tales Santini
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Minseok Koo
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Nadim Farhat
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Vinicius P Campos
- Department of Electrical and Computer Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Salem Alkhateeb
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States
| | - Marcelo A C Vieira
- Department of Electrical and Computer Engineering, University of São Paulo, São Carlos, SP, Brazil
| | - Meryl A Butters
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Caterina Rosano
- Department of Epidemiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Howard J Aizenstein
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joseph Mettenburg
- Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Enrico M Novelli
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States; Department of Pharmacology and Chemical Biology, University of Pittsburgh, Pittsburgh, PA, United States.
| | - Tamer S Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, PA, United States; Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States; Department of Radiology, University of Pittsburgh, Pittsburgh, PA, United States.
| |
Collapse
|
19
|
Matsuda T, Uwano I, Iwadate Y, Yoshioka K, Sasaki M. Spatial and temporal variations of flip-angle distributions in the human brain using an eight-channel parallel transmission system at 7T: comparison of three radiofrequency excitation methods. Radiol Phys Technol 2021; 14:161-166. [PMID: 33710499 DOI: 10.1007/s12194-021-00612-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 10/21/2022]
Abstract
We investigated the spatial and temporal variations of flip-angle (FA) distributions in the human brain from multiple scans, using an eight-channel parallel transmission (pTx) system at 7T. Nine healthy volunteers were scanned in five sessions using three radiofrequency excitation techniques each time: circular polarization (CP), static pTx, and dynamic pTx. We calculated the coefficients of variation of the FA values within the brain area to evaluate the variations, and the maximum intersession differences in the FA values (Dmax), comparing them between the three methods. The coefficients of variation decreased in the following order: CP, static pTx, and dynamic pTx (median: 20.1%, 13.6%, and 5.7%, respectively; p < 0.001). The average Dmax values were significantly higher for the static pTx (5.4°) than for the dynamic pTx (2.8°) and CP (1.7°) methods (p = 0.004 and 0.001, respectively). Compared to the CP method, the dynamic pTx method at 7T can efficiently minimize spatial variations in the FA distribution with a mild increase in temporal variations. The static pTx method exhibited a remarkably wide temporal variation.
Collapse
Affiliation(s)
- Tsuyoshi Matsuda
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori Yahaba, Iwate, 028-3694, Japan.
| | - Ikuko Uwano
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori Yahaba, Iwate, 028-3694, Japan
| | - Yuji Iwadate
- MR Applications and Workflow, GE Healthcare Japan Corporation, 4-7-127 Asahigaoka, Hino, Tokyo, 191-0065, Japan
| | - Kunihiro Yoshioka
- Department of Radiology, School of Medicine, Iwate Medical University, 2-1-1 Idaidori Yahaba, Iwate, 028-3695, Japan
| | - Makoto Sasaki
- Division of Ultrahigh Field MRI, Institute for Biomedical Sciences, Iwate Medical University, 1-1-1 Idaidori Yahaba, Iwate, 028-3694, Japan
| |
Collapse
|
20
|
Abbasi-Rad S, O'Brien K, Kelly S, Vegh V, Rodell A, Tesiram Y, Jin J, Barth M, Bollmann S. Improving FLAIR SAR efficiency at 7T by adaptive tailoring of adiabatic pulse power through deep learning B 1 + estimation. Magn Reson Med 2020; 85:2462-2476. [PMID: 33226685 DOI: 10.1002/mrm.28590] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 10/15/2020] [Accepted: 10/19/2020] [Indexed: 01/22/2023]
Abstract
PURPOSE The purpose of this study is to demonstrate a method for specific absorption rate (SAR) reduction for 2D T2 -FLAIR MRI sequences at 7 T by predicting the required adiabatic radiofrequency (RF) pulse power and scaling the RF amplitude in a slice-wise fashion. METHODS We used a time-resampled frequency-offset corrected inversion (TR-FOCI) adiabatic pulse for spin inversion in a T2 -FLAIR sequence to improve B 1 + homogeneity and calculated the pulse power required for adiabaticity slice-by-slice to minimize the SAR. Drawing on the implicit B 1 + inhomogeneity in a standard localizer scan, we acquired 3D AutoAlign localizers and SA2RAGE B 1 + maps in 28 volunteers. Then, we trained a convolutional neural network (CNN) to estimate the B 1 + profile from the localizers and calculated pulse scale factors for each slice. We assessed the predicted B 1 + profiles and the effect of scaled pulse amplitudes on the FLAIR inversion efficiency in oblique transverse, sagittal, and coronal orientations. RESULTS The predicted B 1 + amplitude maps matched the measured ones with a mean difference of 9.5% across all slices and participants. The slice-by-slice scaling of the TR-FOCI inversion pulse was most effective in oblique transverse orientation and resulted in a 1 min and 30 s reduction in SAR induced delay time while delivering identical image quality. CONCLUSION We propose a SAR reduction technique based on the estimation of B 1 + profiles from standard localizer scans using a CNN and show that scaling the inversion pulse power slice-by-slice for FLAIR sequences at 7T reduces SAR and scan time without compromising image quality.
Collapse
Affiliation(s)
- Shahrokh Abbasi-Rad
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Kieran O'Brien
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Samuel Kelly
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Viktor Vegh
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Anders Rodell
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia
| | - Yasvir Tesiram
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia
| | - Jin Jin
- Siemens Healthcare Pty Ltd, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia
| | - Markus Barth
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| | - Steffen Bollmann
- Centre for Advanced Imaging, The University of Queensland, Brisbane, Queensland, Australia.,ARC Training Centre for Innovation in Biomedical Imaging Technology, The University of Queensland, Brisbane, Queensland, Australia.,School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
21
|
Roberts NT, Hinshaw LA, Colgan TJ, Ii T, Hernando D, Reeder SB. B 0 and B 1 inhomogeneities in the liver at 1.5 T and 3.0 T. Magn Reson Med 2020; 85:2212-2220. [PMID: 33107109 DOI: 10.1002/mrm.28549] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/02/2020] [Accepted: 09/18/2020] [Indexed: 12/17/2022]
Abstract
PURPOSE The purpose of this work is to characterize the magnitude and variability of B0 and B1 inhomogeneities in the liver in large cohorts of patients at both 1.5 T and 3.0 T. METHODS Volumetric B0 and B1 maps were acquired over the liver of patients presenting for routine abdominal MRI. Regions of interest were drawn in the nine Couinaud segments of the liver, and the average value was recorded. Magnitude and variation of measured averages in each segment were reported across all patients. RESULTS A total of 316 B0 maps and 314 B1 maps, acquired at 1.5 T and 3.0 T on a variety of GE Healthcare MRI systems in 630 unique exams, were identified, analyzed, and, in the interest of reproducible research, de-identified and made public. Measured B0 inhomogeneities ranged (5th-95th percentiles) from -31.7 Hz to 164.0 Hz for 3.0 T (-14.5 Hz to 81.3 Hz at 1.5 T), while measured B1 inhomogeneities (ratio of actual over prescribed flip angle) ranged from 0.59 to 1.13 for 3.0 T (0.83 to 1.11 at 1.5 T). CONCLUSION This study provides robust characterization of B0 and B1 inhomogeneities in the liver to guide the development of imaging applications and protocols. Field strength, bore diameter, and sex were determined to be statistically significant effects for both B0 and B1 uniformity. Typical clinical liver imaging at 3.0 T should expect B0 inhomogeneities ranging from approximately -100 Hz to 250 Hz (-50 Hz to 150 Hz at 1.5 T) and B1 inhomogeneities ranging from approximately 0.4 to 1.3 (0.7 to 1.2 at 1.5 T).
Collapse
Affiliation(s)
- Nathan T Roberts
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Electrical and Computer Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Louis A Hinshaw
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Timothy J Colgan
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Takanori Ii
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Radiology, University of Yamanashi, Yamanashi, Japan
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Scott B Reeder
- Department of Radiology, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medical Physics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Emergency Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| |
Collapse
|
22
|
A Novel Mono-surface Antisymmetric 8Tx/16Rx Coil Array for Parallel Transmit Cardiac MRI in Pigs at 7T. Sci Rep 2020; 10:3117. [PMID: 32080274 PMCID: PMC7033245 DOI: 10.1038/s41598-020-59949-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/30/2020] [Indexed: 02/01/2023] Open
Abstract
A novel mono-surface antisymmetric 16-element transmit/receive (Tx/Rx) coil array was designed, simulated, constructed, and tested for cardiac magnetic resonance imaging (cMRI) in pigs at 7 T. The cardiac array comprised of a mono-surface 16-loops with two central elements arranged anti-symmetrically and flanked by seven elements on either side. The array was configured for parallel transmit (pTx) mode to have an eight channel transmit and 16-channel receive (8Tx/16Rx) coil array. Electromagnetic (EM) simulations, bench-top measurements, phantom, and MRI experiments with two pig cadavers (68 and 46 kg) were performed. Finally, the coil was used in pilot in-vivo measurements with a 60 kg pig. Flip angle (FA), geometry factor (g-factor), signal-to-noise ratio (SNR) maps, and high-resolution cardiac images were acquired with an in-plane resolution of 0.6 mm × 0.6 mm (in-vivo) and 0.3 mm × 0.3 mm (ex-vivo). The mean g-factor over the heart was 1.26 (R = 6). Static phase [Formula: see text] shimming in a pig body phantom with the optimal phase vectors makes possible to improve the [Formula: see text] homogeneity by factor > 2 and transmit efficiency by factor > 3 compared to zero phases (before RF shimming). Parallel imaging performed in the in-vivo measurements demonstrated well preserved diagnostic quality of the resulting images at acceleration factors up to R = 6. The described hardware design can be adapted for arrays optimized for animals and humans with a larger number of elements (32-64) while maintaining good decoupling for various MRI applications at UHF (e.g., cardiac, head, and spine).
Collapse
|
23
|
Elabyad IA, Terekhov M, Stefanescu MR, Lohr D, Fischer M, Schreiber LM. Design of a novel antisymmetric coil array for parallel transmit cardiac MRI in pigs at 7 T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2019; 305:195-208. [PMID: 31306985 DOI: 10.1016/j.jmr.2019.07.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/12/2019] [Accepted: 07/04/2019] [Indexed: 05/12/2023]
Abstract
The design, simulation, assembly and testing of a novel dedicated antisymmetric transmit/receive (Tx/Rx) coil array to demonstrate the feasibility of cardiac magnetic resonance imaging (cMRI) in pigs at 7 T was described. The novel antisymmetric array is composed of eight elements based on mirrored and reversed loop orientations to generate varying B1+ field harmonics for RF shimming. The central four loop elements formed together a pair of antisymmetric L-shaped channels to allow good decoupling between all neighboring elements of the entire array. The antisymmetric array was compared to a standard symmetric rectilinear loop array with an identical housing dimension. Both arrays were driven in the parallel transmit (pTx) mode forming an 8-channel transmit and 16-channel receive (8Tx/16Rx) coil array, where the same posterior array was combined with both anterior arrays. The hardware and imaging performance of the dedicated cardiac arrays were validated and compared by means of electromagnetic (EM) simulations, bench-top measurements, phantom, and ex-vivo MRI experiments with 46 kg female pig. Combined signal-to-noise ratio (SNR), geometry factor (g-factor), noise correlation maps, and high resolution ex-vivo cardiac images were acquired with an in-plane resolution of 0.3 mm × 0.3 mm using both arrays. The novel antisymmetric array enhanced the SNR within the heart by about two times and demonstrated good decoupling and improved control of the B1+ field distributions for RF shimming compared to the standard coil array. Parallel imaging with acceleration factor (R) up to 4 was possible using the novel antisymmetric coil array while maintaining the mean g-factor within the heart region of 1.13.
Collapse
Affiliation(s)
- Ibrahim A Elabyad
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany; Department of Electronics and Communications Engineering, Thebes Higher Institute of Engineering, Cairo, Egypt.
| | - M Terekhov
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M R Stefanescu
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - D Lohr
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - M Fischer
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| | - L M Schreiber
- Chair of Cellular and Molecular Imaging, Comprehensive Heart Failure Center (CHFC), University Hospital Wuerzburg, D-97078 Wuerzburg, Germany.
| |
Collapse
|
24
|
Garwood M, Uğurbil K. RF pulse methods for use with surface coils: Frequency-modulated pulses and parallel transmission. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2018; 291:84-93. [PMID: 29705035 PMCID: PMC5943143 DOI: 10.1016/j.jmr.2018.01.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2018] [Accepted: 01/24/2018] [Indexed: 06/08/2023]
Abstract
The first use of a surface coil to obtain a 31P NMR spectrum from an intact rat by Ackerman and colleagues initiated a revolution in magnetic resonance imaging (MRI) and spectroscopy (MRS). Today, we take it for granted that one can detect signals in regions external to an RF coil; at the time, however, this concept was most unusual. In the approximately four decade long period since its introduction, this simple idea gave birth to an increasing number of innovations that has led to transformative changes in the way we collect data in an in vivo magnetic resonance experiment, particularly with MRI of humans. These innovations include spatial localization and/or encoding based on the non-uniform B1 field generated by the surface coil, leading to new spectroscopic localization methods, image acceleration, and unique RF pulses that deal with B1 inhomogeneities and even reduce power deposition. Without the surface coil, many of the major technological advances that define the extraordinary success of MRI in clinical diagnosis and in biomedical research, as exemplified by projects like the Human Connectome Project, would not have been possible.
Collapse
Affiliation(s)
- Michael Garwood
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA.
| | - Kamil Uğurbil
- Center for Magnetic Resonance Research and Department of Radiology, University of Minnesota, Minneapolis, MN 55455 USA
| |
Collapse
|
25
|
Advances in MR angiography with 7T MRI: From microvascular imaging to functional angiography. Neuroimage 2018; 168:269-278. [DOI: 10.1016/j.neuroimage.2017.01.019] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Revised: 01/03/2017] [Accepted: 01/09/2017] [Indexed: 01/15/2023] Open
|
26
|
Uğurbil K. Imaging at ultrahigh magnetic fields: History, challenges, and solutions. Neuroimage 2018; 168:7-32. [PMID: 28698108 PMCID: PMC5758441 DOI: 10.1016/j.neuroimage.2017.07.007] [Citation(s) in RCA: 86] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2016] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/06/2023] Open
Abstract
Following early efforts in applying nuclear magnetic resonance (NMR) spectroscopy to study biological processes in intact systems, and particularly since the introduction of 4 T human scanners circa 1990, rapid progress was made in imaging and spectroscopy studies of humans at 4 T and animal models at 9.4 T, leading to the introduction of 7 T and higher magnetic fields for human investigation at about the turn of the century. Work conducted on these platforms has provided numerous technological solutions to challenges posed at these ultrahigh fields, and demonstrated the existence of significant advantages in signal-to-noise ratio and biological information content. Primary difference from lower fields is the deviation from the near field regime at the radiofrequencies (RF) corresponding to hydrogen resonance conditions. At such ultrahigh fields, the RF is characterized by attenuated traveling waves in the human body, which leads to image non-uniformities for a given sample-coil configuration because of destructive and constructive interferences. These non-uniformities were initially considered detrimental to progress of imaging at high field strengths. However, they are advantageous for parallel imaging in signal reception and transmission, two critical technologies that account, to a large extend, for the success of ultrahigh fields. With these technologies and improvements in instrumentation and imaging methods, today ultrahigh fields have provided unprecedented gains in imaging of brain function and anatomy, and started to make inroads into investigation of the human torso and extremities. As extensive as they are, these gains still constitute a prelude to what is to come given the increasingly larger effort committed to ultrahigh field research and development of ever better instrumentation and techniques.
Collapse
Affiliation(s)
- Kamil Uğurbil
- Center for Magnetic Resonance Research (CMRR), University of Minnesota Medical School, Minneapolis, MN 55455, USA.
| |
Collapse
|
27
|
Haemer GG, Vaidya M, Collins CM, Sodickson DK, Wiggins GC, Lattanzi R. Approaching ultimate intrinsic specific absorption rate in radiofrequency shimming using high-permittivity materials at 7 Tesla. Magn Reson Med 2017; 80:391-399. [PMID: 29193307 DOI: 10.1002/mrm.27022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2017] [Revised: 10/18/2017] [Accepted: 10/31/2017] [Indexed: 11/07/2022]
Abstract
PURPOSE The aim of this study was to evaluate the effect of integrated high-permittivity materials (HPMs) on excitation homogeneity and global specific absorption rate (SAR) for transmit arrays at 7T. METHODS A rapid electrodynamic simulation framework was used to calculate L-curves associated with excitation of a uniform 2D profile in a dielectric sphere. We used ultimate intrinsic SAR as an absolute performance reference to compare different transmit arrays in the presence and absence of a layer of HPM. We investigated the optimal permittivity for the HPM as a function of its thickness, the sample size, and the number of array elements. RESULTS Adding a layer of HPM can improve the performance of a 24-element array to match that of a 48-element array without HPM, whereas a 48-element array with HPM can perform as well as a 64-element array without HPM. Optimal relative permittivity values changed based on sample and coil geometry, but were always within a range obtainable with readily available materials (εr = 100-200). CONCLUSION Integration of HPMs could be a practical method to improve RF shimming performance, alternative to increasing the number of coils. The proposed simulation framework could be used to explore the design of novel transmit arrays for head imaging at ultra-high field strength. Magn Reson Med 80:391-399, 2018. © 2017 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Gillian G Haemer
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Manushka Vaidya
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Christopher M Collins
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| | - Graham C Wiggins
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAI2R) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, New York, USA.,NYU WIRELESS, New York University Tandon School of Engineering, Brooklyn, New York, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, New York, USA
| |
Collapse
|
28
|
Vaidya MV, Deniz CM, Collins CM, Sodickson DK, Lattanzi R. Manipulating transmit and receive sensitivities of radiofrequency surface coils using shielded and unshielded high-permittivity materials. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2017; 31:355-366. [PMID: 29110240 DOI: 10.1007/s10334-017-0657-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/29/2017] [Accepted: 10/02/2017] [Indexed: 10/18/2022]
Abstract
OBJECTIVE To use high-permittivity materials (HPM) positioned near radiofrequency (RF) surface coils to manipulate transmit/receive field patterns. MATERIALS AND METHODS A large HPM pad was placed below the RF coil to extend the field of view (FOV). The resulting signal-to-noise ratio (SNR) was compared with that of other coil configurations covering the same FOV in simulations and experiments at 7 T. Transmit/receive efficiency was evaluated when HPM discs with or without a partial shield were positioned at a distance from the coil. Finally, we evaluated the increase in transmit homogeneity for a four-channel array with HPM discs interposed between adjacent coil elements. RESULTS Various configurations of HPM increased SNR, transmit/receive efficiency, excitation/reception sensitivity overlap, and FOV when positioned near a surface coil. For a four-channel array driven in quadrature, shielded HPM discs enhanced the field below the discs as well as at the center of the sample as compared with other configurations with or without unshielded HPM discs. CONCLUSION Strategically positioning HPM at a distance from a surface coil or array can increase the overlap between excitation/reception sensitivities, and extend the FOV of a single coil for reduction of the number of channels in an array while minimally affecting the SNR.
Collapse
Affiliation(s)
- Manushka V Vaidya
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA. .,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA. .,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA.
| | - Cem M Deniz
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA.,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA
| | - Christopher M Collins
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA
| | - Daniel K Sodickson
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research and the Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 First Ave, Fourth Floor, New York, NY, 10016, USA.,The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, 550 First Avenue, New York, NY, 10016, USA.,NYU WIRELESS, 2 Metro Tech Center, Brooklyn, NY, 11201, USA
| |
Collapse
|
29
|
Hsu YC, Lattanzi R, Chu YH, Cloos MA, Sodickson DK, Lin FH. Mitigation of B1+ inhomogeneity using spatially selective excitation with jointly designed quadratic spatial encoding magnetic fields and RF shimming. Magn Reson Med 2017; 78:577-587. [PMID: 27696518 PMCID: PMC5538365 DOI: 10.1002/mrm.26397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Revised: 08/05/2016] [Accepted: 08/06/2016] [Indexed: 11/05/2022]
Abstract
PURPOSE The inhomogeneity of flip angle distribution is a major challenge impeding the application of high-field MRI. We report a method combining spatially selective excitation using generalized spatial encoding magnetic fields (SAGS) with radiofrequency (RF) shimming to achieve homogeneous excitation. This method can be an alternative approach to address the challenge of B1+ inhomogeneity using nonlinear gradients. METHODS We proposed a two-step algorithm that jointly optimizes the combination of nonlinear spatial encoding magnetic fields and the combination of multiple RF transmitter coils and then optimizes the locations, RF amplitudes, and phases of the spokes. RESULTS Our results show that jointly designed SAGS and RF shimming can provide a more homogeneous flip angle distribution than using SAGS or RF shimming alone. Compared with RF shimming alone, our approach can reduce the relative standard deviation of flip angle by 56% and 52% using phantom and human head data, respectively. CONCLUSION The jointly designed SAGS and RF shimming method can be used to achieve homogeneous flip angle distributions when fully parallel RF transmission is not available. Magn Reson Med 78:577-587, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Yi-Cheng Hsu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Riccardo Lattanzi
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
| | - Ying-Hua Chu
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
| | - Martijn A. Cloos
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
| | - Daniel K. Sodickson
- Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, 660 1 Ave. New York, NY 10016 USA
| | - Fa-Hsuan Lin
- Institute of Biomedical Engineering, National Taiwan University, Taipei, Taiwan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| |
Collapse
|
30
|
O'Reilly TPA, Ruytenberg T, Webb AG. Modular transmit/receive arrays using very-high permittivity dielectric resonator antennas. Magn Reson Med 2017. [PMID: 28635034 PMCID: PMC5811774 DOI: 10.1002/mrm.26784] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
PURPOSE Dielectric resonator antenna (DRAs) are compact structures that exhibit low coupling between adjacent elements and therefore can be used as MRI transmit arrays. In this study, we use very high permittivity materials to construct modular flexible transceive arrays of a variable numbers of elements for operation at 7T. METHODS DRAs were constructed using rectangular blocks of ceramic (lead zirconate titanate, εr = 1070) with the transverse electric (TE)01 mode tuned to 298 MHz. Finite-difference time-domain simulations were used to determine the B1 and specific absorption rate distributions. B1+ maps were acquired in a phantom to validate the simulations. Performance was compared to an equally sized surface coil. In vivo images were acquired of the wrist (four elements), ankle (seven elements), and calf muscle (16 elements). RESULTS Coupling between DRAs spaced 5 mm apart on a phantom was -18.2 dB compared to -9.1 dB for equivalently spaced surface coils. DRAs showed a higher B1+ intensity close to the antenna but a lower penetration depth compared to the surface coil. CONCLUSION DRAs show very low coupling compared to equally sized surface coils and can be used in transceive arrays without requiring decoupling networks. The penetration depth of the current DRA geometry means they are ideally suited to imaging of extremities. Magn Reson Med 79:1781-1788, 2018. © 2017 The Authors Magnetic Resonance in Medicine published by Wiley Periodicals, Inc. on behalf of International Society for Magnetic Resonance in Medicine. This is an open access article under the terms of the Creative Commons Attribution NonCommercial License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited and is not used for commercial purposes.
Collapse
Affiliation(s)
- Thomas P A O'Reilly
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Thomas Ruytenberg
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| | - Andrew G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
31
|
Kim KN, Han SD, Seo JH, Heo P, Yoo D, Im GH, Lee JH. An Asymmetric Birdcage Coil for Small-animal MR Imaging at 7T. Magn Reson Med Sci 2016; 16:253-258. [PMID: 27725573 PMCID: PMC5600033 DOI: 10.2463/mrms.tn.2016-0149] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The birdcage (BC) coil is currently being utilized for uniform radiofrequency (RF) transmit/receive (Tx/Rx) or Tx-only configuration in many magnetic resonance (MR) imaging applications, but insufficient magnetic flux (|B1|) density and their non-uniform distribution still exists in high-field (HF) environments. We demonstrate that the asymmetric birdcage (ABC) transmit/receive (Tx/Rx) volume coil, which is a modified standard birdcage (SBC) coil with the end ring split into two halves, is suitable for improving the |B1| sensitivity in 7T small-animal MR imaging. Cylindrical SBC and ABC coils with 35 mm diameter were constructed and bench tested for mouse body MR imaging at 300 MHz using a 7T scanner. To assess the ABC coil performance, computational electromagnetic (EM) simulation and 7T MR experiment were performed by using a cylindrical phantom and in vivo mouse body and quantitatively compared with the SBC coil in terms of |B1| distribution, RF transmit (|B1+|) field, and signal-to-noise ratio (SNR). The bench measurements of the two BC coils are similar, yielding a quality value (Q-value) of 74.42 for the SBC coil and 77.06 for the ABC coil. The computational calculation results clearly show that the proposed ABC coil offers superior |B1| field and |B1+| field sensitivity in the central axial slice compared with the SBC coil. There was also high SNR and uniformly distributed flip angle (FA) under the loaded condition of mouse body in the 7T experiment. Although ABC geometry allows a further increase in the |B1| field and |B1+| field sensitivity in only the central axial slice, the geometrical modification of the SBC coil can make a high performance RF coil feasible in the central axial slice and also make target imaging possible in the diagonal direction.
Collapse
Affiliation(s)
- Kyoung-Nam Kim
- Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute
| | - Sang-Doc Han
- Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute
| | - Jeung-Hoon Seo
- Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute
| | - Phil Heo
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University
| | - Dongkyeom Yoo
- Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute
| | - Geun Ho Im
- Center for Molecular and Cellular Imaging, Samsung Biomedical Research Institute
| | - Jung Hee Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Science and Technology, Sungkyunkwan University.,Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine
| |
Collapse
|
32
|
O'Reilly TPA, Webb AG, Brink WM. Practical improvements in the design of high permittivity pads for dielectric shimming in neuroimaging at 7T. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2016; 270:108-114. [PMID: 27434779 DOI: 10.1016/j.jmr.2016.07.003] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2016] [Revised: 06/15/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Improvements are proposed for practical design and use of high permittivity materials in high field neuroimaging in three different areas: (i) a simple formula to predict the permittivity of tri-component aqueous-based perovskite suspensions with relative permittivities between 110 and 300, (ii) characterization of addition of a hydroxyethyl-cellulose gelling agent to improve the long-term stability and material properties of "dielectric pads", and (iii) investigation of the integration of, for example, headphones into the dielectric pads to increase patient comfort within tightly-fitting receive coil arrays.
Collapse
Affiliation(s)
- T P A O'Reilly
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| | - A G Webb
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands.
| | - W M Brink
- C.J. Gorter Center for High Field MRI, Department of Radiology, Leiden University Medical Center, Leiden, Netherlands
| |
Collapse
|
33
|
Padormo F, Beqiri A, Hajnal JV, Malik SJ. Parallel transmission for ultrahigh-field imaging. NMR IN BIOMEDICINE 2016; 29:1145-61. [PMID: 25989904 PMCID: PMC4995736 DOI: 10.1002/nbm.3313] [Citation(s) in RCA: 124] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2014] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 05/24/2023]
Abstract
The development of MRI systems operating at or above 7 T has provided researchers with a new window into the human body, yielding improved imaging speed, resolution and signal-to-noise ratio. In order to fully realise the potential of ultrahigh-field MRI, a range of technical hurdles must be overcome. The non-uniformity of the transmit field is one of such issues, as it leads to non-uniform images with spatially varying contrast. Parallel transmission (i.e. the use of multiple independent transmission channels) provides previously unavailable degrees of freedom that allow full spatial and temporal control of the radiofrequency (RF) fields. This review discusses the many ways in which these degrees of freedom can be used, ranging from making more uniform transmit fields to the design of subject-tailored RF pulses for both uniform excitation and spatial selection, and also the control of the specific absorption rate. © 2015 The Authors. NMR in Biomedicine published by John Wiley & Sons Ltd.
Collapse
Affiliation(s)
- Francesco Padormo
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Arian Beqiri
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Joseph V Hajnal
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
- Centre for the Developing Brain, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| | - Shaihan J Malik
- Department of Biomedical Engineering, Division of Imaging Sciences and Biomedical Engineering, King's College London, King's Health Partners, St Thomas' Hospital, London, UK
| |
Collapse
|
34
|
Ertürk MA, El-Sharkawy AMM, Bottomley PA. Monitoring local heating around an interventional MRI antenna with RF radiometry. Med Phys 2016; 42:1411-23. [PMID: 25735295 DOI: 10.1118/1.4907960] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
PURPOSE Radiofrequency (RF) radiometry uses thermal noise detected by an antenna to measure the temperature of objects independent of medical imaging technologies such as magnetic resonance imaging (MRI). Here, an active interventional MRI antenna can be deployed as a RF radiometer to measure local heating, as a possible new method of monitoring device safety and thermal therapy. METHODS A 128 MHz radiometer receiver was fabricated to measure the RF noise voltage from an interventional 3 T MRI loopless antenna and calibrated for temperature in a uniformly heated bioanalogous gel phantom. Local heating (ΔT) was induced using the antenna for RF transmission and measured by RF radiometry, fiber-optic thermal sensors, and MRI thermometry. The spatial thermal sensitivity of the antenna radiometer was numerically computed using a method-of-moment electric field analyses. The gel's thermal conductivity was measured by MRI thermometry, and the localized time-dependent ΔT distribution computed from the bioheat transfer equation and compared with radiometry measurements. A "H-factor" relating the 1 g-averaged ΔT to the radiometric temperature was introduced to estimate peak temperature rise in the antenna's sensitive region. RESULTS The loopless antenna radiometer linearly tracked temperature inside a thermally equilibrated phantom up to 73 °C to within ±0.3 °C at a 2 Hz sample rate. Computed and MRI thermometric measures of peak ΔT agreed within 13%. The peak 1 g-average temperature was H = 1.36 ± 0.02 times higher than the radiometric temperature for any media with a thermal conductivity of 0.15-0.50 (W/m)/K, indicating that the radiometer can measure peak 1 g-averaged ΔT in physiologically relevant tissue within ±0.4 °C. CONCLUSIONS Active internal MRI detectors can serve as RF radiometers at the MRI frequency to provide accurate independent measures of local and peak temperature without the artifacts that can accompany MRI thermometry or the extra space needed to accommodate alternative thermal transducers. A RF radiometer could be integrated in a MRI scanner to permit "self-monitoring" for assuring device safety and/or monitoring delivery of thermal therapy.
Collapse
Affiliation(s)
- M Arcan Ertürk
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, Maryland 21287 and Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287
| | - AbdEl-Monem M El-Sharkawy
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287
| | - Paul A Bottomley
- Division of MR Research, Russell H. Morgan Department of Radiology and Radiological Sciences, Johns Hopkins University, Baltimore, Maryland 21287
| |
Collapse
|
35
|
Restivo M, Raaijmakers A, van den Berg C, Luijten P, Hoogduin H. Improving peak local SAR prediction in parallel transmit using in situ S-matrix measurements. Magn Reson Med 2016; 77:2040-2047. [PMID: 27173968 DOI: 10.1002/mrm.26261] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Revised: 03/16/2016] [Accepted: 04/08/2016] [Indexed: 11/08/2022]
Abstract
PURPOSE Peak local specific absorption rate (pSAR10g) is an important parameter used to determine patient safety during radiofrequency transmission. pSAR10g predictions for parallel transmit MRI are affected by the level of coupling exhibited by a modeled array in the simulation environment. However, simulated array coupling is rarely equal to the physical array coupling. Accurately simulating the physical array coupling may improve the accuracy of predicted SAR levels. METHODS The scattering parameter matrix (S-matrix) of a prototype 4-channel array was measured in situ using directional couplers installed on a 7T scanner. Agreement between the simulated and measured S-matrix was achieved by using network co-simulation with a modified cost function. B1+ maps acquired in a phantom were compared to B1+ distributions determined from simulations. RESULTS The modified co-simulation technique forces the simulations to have S-matrices similar to the measured values. A comparison of realistically versus ideally simulated coupling conditions shows that ideally simulated coupling can result in large ( > 40%) error in pSAR10g predictions, even when the array is reasonably tuned. The simulated B1+ distributions match the measured B1+ distributions better when the coupling is accurately simulated. CONCLUSION Considering the measured array coupling matrix in numerical simulations eliminates a potential confound in pSAR10g prediction. Magn Reson Med 77:2040-2047, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- Matthew Restivo
- Center for Imaging Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Alexander Raaijmakers
- Center for Imaging Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Cornelis van den Berg
- Center for Imaging Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Peter Luijten
- Center for Imaging Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Hans Hoogduin
- Center for Imaging Sciences, University Medical Center Utrecht, Utrecht, The Netherlands
| |
Collapse
|
36
|
Ertürk MA, Raaijmakers AJE, Adriany G, Uğurbil K, Metzger GJ. A 16-channel combined loop-dipole transceiver array for 7 Tesla body MRI. Magn Reson Med 2016; 77:884-894. [PMID: 26887533 DOI: 10.1002/mrm.26153] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Revised: 12/21/2015] [Accepted: 01/17/2016] [Indexed: 12/17/2022]
Abstract
PURPOSE To develop a 16-channel transceive body imaging array at 7.0 T with improved transmit, receive, and specific absorption rate (SAR) performance by combining both loop and dipole elements and using their respective and complementary near and far field characteristics. METHODS A 16-channel radiofrequency (RF) coil array consisting of eight loop-dipole blocks (16LD) was designed and constructed. Transmit and receive performance was quantitatively investigated in phantom and human model simulations, and experiments on five healthy volunteers inside the prostate. Comparisons were made with 16-channel microstrip line (16ML) and 10-channel fractionated dipole antenna (10DA) arrays. The 16LD was used to acquire anatomic and functional images of the prostate, kidneys, and heart. RESULTS The 16LD provided > 14% improvements in the signal-to-noise ratio (SNR), peak B1+, B1+ transmit, and SAR efficiencies over the 16ML and 10DA in simulations inside the prostate. Experimentally, the 16LD had > 20% higher SNR and B1+ transmit efficiency compared with other arrays, and achieved up to 51.8% higher peak B1+ compared with 10DA. CONCLUSION Combining loop and dipole elements provided a body imaging array with high channel count and density while limiting inter-element coupling. The 16LD improved both near and far-field performance compared with existing 7.0T body arrays and provided high-quality MRI of the prostate kidneys and heart. Magn Reson Med 77:884-894, 2017. © 2016 International Society for Magnetic Resonance in Medicine.
Collapse
Affiliation(s)
- M Arcan Ertürk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | | | - Gregor Adriany
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Kâmil Uğurbil
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| | - Gregory J Metzger
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
37
|
Vaidya MV, Collins CM, Sodickson DK, Brown R, Wiggins GC, Lattanzi R. Dependence of B1+ and B1- Field Patterns of Surface Coils on the Electrical Properties of the Sample and the MR Operating Frequency. CONCEPTS IN MAGNETIC RESONANCE. PART B, MAGNETIC RESONANCE ENGINEERING 2016; 46:25-40. [PMID: 27795697 PMCID: PMC5082994 DOI: 10.1002/cmr.b.21319] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/19/2023]
Abstract
In high field MRI, the spatial distribution of the radiofrequency magnetic ( B1) field is usually affected by the presence of the sample. For hardware design and to aid interpretation of experimental results, it is important both to anticipate and to accurately simulate the behavior of these fields. Fields generated by a radiofrequency surface coil were simulated using dyadic Green's functions, or experimentally measured over a range of frequencies inside an object whose electrical properties were varied to illustrate a variety of transmit [Formula: see text] and receive [Formula: see text] field patterns. In this work, we examine how changes in polarization of the field and interference of propagating waves in an object can affect the B1 spatial distribution. Results are explained conceptually using Maxwell's equations and intuitive illustrations. We demonstrate that the electrical conductivity alters the spatial distribution of distinct polarized components of the field, causing "twisted" transmit and receive field patterns, and asymmetries between [Formula: see text] and [Formula: see text]. Additionally, interference patterns due to wavelength effects are observed at high field in samples with high relative permittivity and near-zero conductivity, but are not present in lossy samples due to the attenuation of propagating EM fields. This work provides a conceptual framework for understanding B1 spatial distributions for surface coils and can provide guidance for RF engineers.
Collapse
Affiliation(s)
- Manushka V Vaidya
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Christopher M Collins
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Daniel K Sodickson
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Ryan Brown
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| | - Graham C Wiggins
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAI R) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016
| | - Riccardo Lattanzi
- Department of Radiology, Center for Advanced Imaging Innovation and Research (CAIR) and Bernard and Irene Schwartz Center for Biomedical Imaging, New York University School of Medicine, New York, NY 10016; The Sackler Institute of Graduate Biomedical Sciences, New York University School of Medicine, New York, NY 10016; NYU WIRELESS, Polytechnic Institute of New York University, Brooklyn, NY 11201
| |
Collapse
|
38
|
Gudino N, Duan Q, de Zwart JA, Murphy-Boesch J, Dodd SJ, Merkle H, van Gelderen P, Duyn JH. Optically controlled switch-mode current-source amplifiers for on-coil implementation in high-field parallel transmission. Magn Reson Med 2015; 76:340-9. [PMID: 26256671 DOI: 10.1002/mrm.25857] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 06/23/2015] [Accepted: 07/12/2015] [Indexed: 01/20/2023]
Abstract
PURPOSE We tested the feasibility of implementing parallel transmission (pTX) for high-field MRI using a radiofrequency (RF) amplifier design to be located on or in the immediate vicinity of an RF transmit coil. METHOD We designed a current-source switch-mode amplifier based on miniaturized, nonmagnetic electronics. Optical RF carrier and envelope signals to control the amplifier were derived, through a custom-built interface, from the RF source accessible in the scanner control. Amplifier performance was tested by benchtop measurements as well as with imaging at 7T (300 MHz) and 11.7 T (500 MHz). The ability to perform pTX was evaluated by measuring interchannel coupling and phase adjustment in a two-channel setup. RESULTS The amplifier delivered in excess of 44 W RF power and caused minimal interference with MRI. The interface derived accurate optical control signals with carrier frequencies ranging from 64 to 750 MHz. Decoupling better than 14 dB was obtained between two coil loops separated by only 1 cm. Application to MRI was demonstrated by acquiring artifact-free images at 7 T and 11.7 T. CONCLUSION We propose an optically controlled miniaturized RF amplifier for on-coil implementation at high fields that should facilitate implementation of high-density pTX arrays. Magn Reson Med 76:340-349, 2016. Published 2015. This article is a U.S. Government work and is in the public domain in the USA.
Collapse
Affiliation(s)
- Natalia Gudino
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Qi Duan
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jacco A de Zwart
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Joe Murphy-Boesch
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Stephen J Dodd
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hellmut Merkle
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Peter van Gelderen
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Jeff H Duyn
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
39
|
Umesh Rudrapatna S, Juchem C, Nixon TW, de Graaf RA. Dynamic multi-coil tailored excitation for transmit B1 correction at 7 Tesla. Magn Reson Med 2015. [PMID: 26223503 DOI: 10.1002/mrm.25856] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
PURPOSE Tailored excitation (TEx) based on interspersing multiple radio frequency pulses with linear gradient and higher-order shim pulses can be used to obtain uniform flip angle in the presence of large radio frequency transmission (B 1+) inhomogeneity. Here, an implementation of dynamic, multislice tailored excitation using the recently developed multi-coil nonlinear shim hardware (MC-DTEx) is reported. METHODS MC-DTEx was developed and tested both in a phantom and in vivo at 7 T, and its efficacy was quantitatively assessed. Predicted outcomes of MC-DTEx and DTEx based on spherical harmonic shims (SH-DTEx) were also compared. RESULTS For a planned 30 ° flip angle, in a phantom, the standard deviation in excitation improved from 28% (regular excitation) to 12% with MC-DTEx. The SD in in vivo excitation improved from 22 to 12%. The improvements achieved with experimental MC-DTEx closely matched the theoretical predictions. Simulations further showed that MC-DTEx outperforms SH-DTEx for both scenarios. CONCLUSION Successful implementation of multislice MC-DTEx is presented and is shown to be capable of homogenizing excitation over more than twofold B 1+ variations. Its benefits over SH-DTEx are also demonstrated. A distinct advantage of MC hardware over SH shim hardware is the absence of significant eddy current effects, which allows for a straightforward, multislice implementation of MC-DTEx. Magn Reson Med 76:83-93, 2016. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- S Umesh Rudrapatna
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| | - Christoph Juchem
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| | - Terence W Nixon
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| | - Robin A de Graaf
- Department of Diagnostic Radiology, Yale University School of Medicine, Magnetic Resonance Research Center, 300 Cedar Street, New Haven, Connecticut, USA
| |
Collapse
|
40
|
Li M, Jin J, Zuo Z, Liu F, Trakic A, Weber E, Zhuo Y, Xue R, Crozier S. In vivo sensitivity estimation and imaging acceleration with rotating RF coil arrays at 7 Tesla. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2015; 252:29-40. [PMID: 25635352 DOI: 10.1016/j.jmr.2014.12.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 12/11/2014] [Accepted: 12/13/2014] [Indexed: 06/04/2023]
Abstract
Using a new rotating SENSitivity Encoding (rotating-SENSE) algorithm, we have successfully demonstrated that the rotating radiofrequency coil array (RRFCA) was capable of achieving a significant reduction in scan time and a uniform image reconstruction for a homogeneous phantom at 7 Tesla. However, at 7 Tesla the in vivo sensitivity profiles (B1(-)) become distinct at various angular positions. Therefore, sensitivity maps at other angular positions cannot be obtained by numerically rotating the acquired ones. In this work, a novel sensitivity estimation method for the RRFCA was developed and validated with human brain imaging. This method employed a library database and registration techniques to estimate coil sensitivity at an arbitrary angular position. The estimated sensitivity maps were then compared to the acquired sensitivity maps. The results indicate that the proposed method is capable of accurately estimating both magnitude and phase of sensitivity at an arbitrary angular position, which enables us to employ the rotating-SENSE algorithm to accelerate acquisition and reconstruct image. Compared to a stationary coil array with the same number of coil elements, the RRFCA was able to reconstruct images with better quality at a high reduction factor. It is hoped that the proposed rotation-dependent sensitivity estimation algorithm and the acceleration ability of the RRFCA will be particularly useful for ultra high field MRI.
Collapse
Affiliation(s)
- Mingyan Li
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| | - Jin Jin
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Adnan Trakic
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ewald Weber
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Yan Zhuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
41
|
Hooijmans MT, Dzyubachyk O, Nehrke K, Koken P, Versluis MJ, Kan HE, Börnert P. Fast multistation water/fat imaging at 3T using DREAM-based RF shimming. J Magn Reson Imaging 2014; 42:217-23. [DOI: 10.1002/jmri.24775] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2014] [Accepted: 09/20/2014] [Indexed: 11/06/2022] Open
Affiliation(s)
- Melissa T. Hooijmans
- Department of Radiology; C.J. Gorter Center for High Field MRI, LUMC; Leiden the Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology; Division of Image Processing; LUMC; Leiden the Netherlands
| | - Kay Nehrke
- Philips Research Laboratories; Hamburg Germany
| | - Peter Koken
- Philips Research Laboratories; Hamburg Germany
| | - Maarten J. Versluis
- Department of Radiology; C.J. Gorter Center for High Field MRI, LUMC; Leiden the Netherlands
| | - Hermien E. Kan
- Department of Radiology; C.J. Gorter Center for High Field MRI, LUMC; Leiden the Netherlands
| | - Peter Börnert
- Department of Radiology; C.J. Gorter Center for High Field MRI, LUMC; Leiden the Netherlands
- Philips Research Laboratories; Hamburg Germany
| |
Collapse
|
42
|
Moody KL, Hollingsworth NA, Zhao F, Nielsen JF, Noll DC, Wright SM, McDougall MP. An eight-channel T/R head coil for parallel transmit MRI at 3T using ultra-low output impedance amplifiers. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 246:62-68. [PMID: 25072190 PMCID: PMC4165694 DOI: 10.1016/j.jmr.2014.06.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 06/25/2014] [Accepted: 06/25/2014] [Indexed: 06/03/2023]
Abstract
Parallel transmit is an emerging technology to address the technical challenges associated with MR imaging at high field strengths. When developing arrays for parallel transmit systems, one of the primary factors to be considered is the mechanism to manage coupling and create independently operating channels. Recent work has demonstrated the use of amplifiers to provide some or all of the channel-to-channel isolation, reducing the need for on-coil decoupling networks in a manner analogous to the use of isolation preamplifiers with receive coils. This paper discusses an eight-channel transmit/receive head array for use with an ultra-low output impedance (ULOI) parallel transmit system. The ULOI amplifiers eliminated the need for a complex lumped element network to decouple the eight-rung array. The design and construction details of the array are discussed in addition to the measurement considerations required for appropriately characterizing an array when using ULOI amplifiers. B1 maps and coupling matrices are used to verify the performance of the system.
Collapse
Affiliation(s)
- Katherine Lynn Moody
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA
| | - Neal A Hollingsworth
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA
| | - Feng Zhao
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Jon-Fredrik Nielsen
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Douglas C Noll
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Steven M Wright
- Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA; Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Radiology, Texas A&M Health Science Center, College Station, Texas, USA
| | - Mary Preston McDougall
- Department of Biomedical Engineering, Texas A&M University, College Station, TX, USA; Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX, USA.
| |
Collapse
|
43
|
Kurpad KN, Boskamp EB, Wright SM. Eight channel transmit array volume coil using on-coil radiofrequency current sources. Quant Imaging Med Surg 2014; 4:71-8. [PMID: 24834418 DOI: 10.3978/j.issn.2223-4292.2014.04.14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2014] [Accepted: 04/29/2014] [Indexed: 11/14/2022]
Abstract
BACKGROUND At imaging frequencies associated with high-field MRI, the combined effects of increased load-coil interaction and shortened wavelength results in degradation of circular polarization and B1 field homogeneity in the imaging volume. Radio frequency (RF) shimming is known to mitigate the problem of B1 field inhomogeneity. Transmit arrays with well decoupled transmitting elements enable accurate B1 field pattern control using simple, non-iterative algorithms. METHODS An eight channel transmit array was constructed. Each channel consisted of a transmitting element driven by a dedicated on-coil RF current source. The coil current distributions of characteristic transverse electromagnetic (TEM) coil resonant modes were non-iteratively set up on each transmitting element and 3T MRI images of a mineral oil phantom were obtained. RESULTS B1 field patterns of several linear and quadrature TEM coil resonant modes that typically occur at different resonant frequencies were replicated at 128 MHz without having to retune the transmit array. The generated B1 field patterns agreed well with simulation in most cases. CONCLUSIONS Independent control of current amplitude and phase on each transmitting element was demonstrated. The transmit array with on-coil RF current sources enables B1 field shimming in a simple and predictable manner.
Collapse
Affiliation(s)
- Krishna N Kurpad
- 1 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA ; 2 Department of Radiology, University of Wisconsin, Madison, WI 53705, USA ; 3 Applied Science Laboratory, GE Healthcare, Waukesha, WI 53188, USA ; 4 Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA ; 5 Department of Radiology, Texas A&M Health Sciences Center, Bryan, TX 77807, USA
| | - Eddy B Boskamp
- 1 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA ; 2 Department of Radiology, University of Wisconsin, Madison, WI 53705, USA ; 3 Applied Science Laboratory, GE Healthcare, Waukesha, WI 53188, USA ; 4 Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA ; 5 Department of Radiology, Texas A&M Health Sciences Center, Bryan, TX 77807, USA
| | - Steven M Wright
- 1 Department of Electrical and Computer Engineering, Texas A&M University, College Station, TX 77843, USA ; 2 Department of Radiology, University of Wisconsin, Madison, WI 53705, USA ; 3 Applied Science Laboratory, GE Healthcare, Waukesha, WI 53188, USA ; 4 Department of Biomedical Engineering, Texas A&M University, College Station, TX 77843, USA ; 5 Department of Radiology, Texas A&M Health Sciences Center, Bryan, TX 77807, USA
| |
Collapse
|
44
|
Soleimanifard S, Stuber M, Hays AG, Weiss RG, Schär M. Robust volume-targeted balanced steady-state free-precession coronary magnetic resonance angiography in a breathhold at 3.0 Tesla: a reproducibility study. J Cardiovasc Magn Reson 2014; 16:27. [PMID: 24758168 PMCID: PMC4006454 DOI: 10.1186/1532-429x-16-27] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Accepted: 03/28/2014] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Transient balanced steady-state free-precession (bSSFP) has shown substantial promise for noninvasive assessment of coronary arteries but its utilization at 3.0 T and above has been hampered by susceptibility to field inhomogeneities that degrade image quality. The purpose of this work was to refine, implement, and test a robust, practical single-breathhold bSSFP coronary MRA sequence at 3.0 T and to test the reproducibility of the technique. METHODS A 3D, volume-targeted, high-resolution bSSFP sequence was implemented. Localized image-based shimming was performed to minimize inhomogeneities of both the static magnetic field and the radio frequency excitation field. Fifteen healthy volunteers and three patients with coronary artery disease underwent examination with the bSSFP sequence (scan time = 20.5 ± 2.0 seconds), and acquisitions were repeated in nine subjects. The images were quantitatively analyzed using a semi-automated software tool, and the repeatability and reproducibility of measurements were determined using regression analysis and intra-class correlation coefficient (ICC), in a blinded manner. RESULTS The 3D bSSFP sequence provided uniform, high-quality depiction of coronary arteries (n = 20). The average visible vessel length of 100.5 ± 6.3 mm and sharpness of 55 ± 2% compared favorably with earlier reported navigator-gated bSSFP and gradient echo sequences at 3.0 T. Length measurements demonstrated a highly statistically significant degree of inter-observer (r = 0.994, ICC = 0.993), intra-observer (r = 0.894, ICC = 0.896), and inter-scan concordance (r = 0.980, ICC = 0.974). Furthermore, ICC values demonstrated excellent intra-observer, inter-observer, and inter-scan agreement for vessel diameter measurements (ICC = 0.987, 0.976, and 0.961, respectively), and vessel sharpness values (ICC = 0.989, 0.938, and 0.904, respectively). CONCLUSIONS The 3D bSSFP acquisition, using a state-of-the-art MR scanner equipped with recently available technologies such as multi-transmit, 32-channel cardiac coil, and localized B0 and B1+ shimming, allows accelerated and reproducible multi-segment assessment of the major coronary arteries at 3.0 T in a single breathhold. This rapid sequence may be especially useful for functional imaging of the coronaries where the acquisition time is limited by the stress duration and in cases where low navigator-gating efficiency prohibits acquisition of a free breathing scan in a reasonable time period.
Collapse
Affiliation(s)
- Sahar Soleimanifard
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Matthias Stuber
- Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
- Department of Radiology, Centre Hospitalier Universitaire Vaudois, Center for Biomedical Imaging (CIBM) and University of Lausanne, Lausanne, Switzerland
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, Johns Hopkins University, Baltimore, MD, USA
| | - Allison G Hays
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Robert G Weiss
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, Johns Hopkins University, Baltimore, MD, USA
- Department of Medicine, Division of Cardiology, Johns Hopkins University, Baltimore, MD, USA
| | - Michael Schär
- Russell H. Morgan Department of Radiology and Radiological Science, Division of Magnetic Resonance Research, Johns Hopkins University, Baltimore, MD, USA
- Philips Healthcare, Cleveland, OH, USA
- Barrow Neurological Institute, Keller Center for Imaging Innovation, 350 W. Thomas Rd, Phoenix, AZ 85013, USA
| |
Collapse
|
45
|
Li M, Zuo Z, Jin J, Xue R, Trakic A, Weber E, Liu F, Crozier S. Highly accelerated acquisition and homogeneous image reconstruction with rotating RF coil array at 7T-A phantom based study. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2014; 240:102-112. [PMID: 24365100 DOI: 10.1016/j.jmr.2013.11.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2013] [Revised: 11/01/2013] [Accepted: 11/05/2013] [Indexed: 06/03/2023]
Abstract
Parallel imaging (PI) is widely used for imaging acceleration by means of coil spatial sensitivities associated with phased array coils (PACs). By employing a time-division multiplexing technique, a single-channel rotating radiofrequency coil (RRFC) provides an alternative method to reduce scan time. Strategically combining these two concepts could provide enhanced acceleration and efficiency. In this work, the imaging acceleration ability and homogeneous image reconstruction strategy of 4-element rotating radiofrequency coil array (RRFCA) was numerically investigated and experimental validated at 7T with a homogeneous phantom. Each coil of RRFCA was capable of acquiring a large number of sensitivity profiles, leading to a better acceleration performance illustrated by the improved geometry-maps that have lower maximum values and more uniform distributions compared to 4- and 8-element stationary arrays. A reconstruction algorithm, rotating SENSitivity Encoding (rotating SENSE), was proposed to provide image reconstruction. Additionally, by optimally choosing the angular sampling positions and transmit profiles under the rotating scheme, phantom images could be faithfully reconstructed. The results indicate that, the proposed technique is able to provide homogeneous reconstructions with overall higher and more uniform signal-to-noise ratio (SNR) distributions at high reduction factors. It is hoped that, by employing the high imaging acceleration and homogeneous imaging reconstruction ability of RRFCA, the proposed method will facilitate human imaging for ultra high field MRI.
Collapse
Affiliation(s)
- Mingyan Li
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Zhentao Zuo
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Jin Jin
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Rong Xue
- State Key Laboratory of Brain and Cognitive Science, Beijing MRI Centre for Brain Research, Institute of Biophysics, Chinese Academy of Sciences, Beijing, China
| | - Adnan Trakic
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Ewald Weber
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Feng Liu
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia
| | - Stuart Crozier
- School of Information Technology and Electrical Engineering, The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
46
|
Lagemaat MW, Scheenen TWJ. Role of high-field MR in studies of localized prostate cancer. NMR IN BIOMEDICINE 2014; 27:67-79. [PMID: 23703839 DOI: 10.1002/nbm.2967] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2012] [Revised: 03/12/2013] [Accepted: 03/28/2013] [Indexed: 06/02/2023]
Abstract
Magnetic resonance imaging is attracting increasing attention from the uroradiological community as a modality to guide the management of prostate cancer. With the high incidence of prostate cancer it might come as a surprise that for a very long time (and in many places even at present) treatment decisions were being made without the use of detailed anatomical and functional imaging of the prostate gland at hand. Although T2 -weighted MRI can provide great anatomical detail, by itself it is not specific enough to discriminate cancer from benign disease, so other functional MRI techniques have been explored to aid in detection, localization, staging and risk assessment of prostate cancer. With the current evolution of clinical MR systems from 1.5 to 3 T it is important to understand the advantages and the challenges of the higher magnetic field strength for the different functional MR techniques most used in the prostate: T2 -weighted MRI, diffusion-weighted MRI, MR spectroscopic imaging and dynamic contrast-enhanced imaging. In addition to this, the use of the endorectal coil at different field strengths is discussed in this review, together with an outlook of the possibilities of ultra-high-field MR for the prostate.
Collapse
Affiliation(s)
- Miriam W Lagemaat
- Department of Radiology (766), Radboud University Nijmegen Medical Centre, The Netherlands
| | | |
Collapse
|
47
|
Zhao Y, Tang L, Rennaker R, Hutchens C, Ibrahim TS. Studies in RF power communication, SAR, and temperature elevation in wireless implantable neural interfaces. PLoS One 2013; 8:e77759. [PMID: 24223123 PMCID: PMC3819346 DOI: 10.1371/journal.pone.0077759] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 09/08/2013] [Indexed: 01/07/2023] Open
Abstract
Implantable neural interfaces are designed to provide a high spatial and temporal precision control signal implementing high degree of freedom real-time prosthetic systems. The development of a Radio Frequency (RF) wireless neural interface has the potential to expand the number of applications as well as extend the robustness and longevity compared to wired neural interfaces. However, it is well known that RF signal is absorbed by the body and can result in tissue heating. In this work, numerical studies with analytical validations are performed to provide an assessment of power, heating and specific absorption rate (SAR) associated with the wireless RF transmitting within the human head. The receiving antenna on the neural interface is designed with different geometries and modeled at a range of implanted depths within the brain in order to estimate the maximum receiving power without violating SAR and tissue temperature elevation safety regulations. Based on the size of the designed antenna, sets of frequencies between 1 GHz to 4 GHz have been investigated. As expected the simulations demonstrate that longer receiving antennas (dipole) and lower working frequencies result in greater power availability prior to violating SAR regulations. For a 15 mm dipole antenna operating at 1.24 GHz on the surface of the brain, 730 uW of power could be harvested at the Federal Communications Commission (FCC) SAR violation limit. At approximately 5 cm inside the head, this same antenna would receive 190 uW of power prior to violating SAR regulations. Finally, the 3-D bio-heat simulation results show that for all evaluated antennas and frequency combinations we reach FCC SAR limits well before 1 °C. It is clear that powering neural interfaces via RF is possible, but ultra-low power circuit designs combined with advanced simulation will be required to develop a functional antenna that meets all system requirements.
Collapse
Affiliation(s)
- Yujuan Zhao
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
| | - Lin Tang
- School of Electrical and Computer Engineering, The University of Oklahoma, Norman, Oklahoma, United States of America
| | - Robert Rennaker
- Behavioral and Brain Sciences, Erik Jonsson School of Engineering, University of Texas Dallas, Richardson, Texas, United States of America
| | - Chris Hutchens
- School of Electrical and Computer Engineering, Oklahoma State University, Stillwater, Oklahoma, United States of America
| | - Tamer S. Ibrahim
- Department of Bioengineering, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- Department of Radiology, University of Pittsburgh, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
48
|
Sprinkart AM, Nehrke K, Träber F, Block W, Gieseke J, Schmitz G, Willinek WA, Schild H, Börnert P. Ultrafast volumetric B1+mapping for improved radiofrequency shimming in 3 tesla body MRI. J Magn Reson Imaging 2013; 40:857-63. [DOI: 10.1002/jmri.24438] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2013] [Accepted: 09/07/2013] [Indexed: 11/09/2022] Open
Affiliation(s)
- Alois M. Sprinkart
- Department of Radiology; University of Bonn; Germany
- Institute of Medical Engineering; Ruhr-University Bochum; Germany
| | - Kay Nehrke
- Philips Research Laboratory; Hamburg Germany
| | - Frank Träber
- Department of Radiology; University of Bonn; Germany
| | | | | | - Georg Schmitz
- Institute of Medical Engineering; Ruhr-University Bochum; Germany
| | | | - Hans Schild
- Department of Radiology; University of Bonn; Germany
| | - Peter Börnert
- Philips Research Laboratory; Hamburg Germany
- Department of Radiology; LUMC; Leiden The Netherlands
| |
Collapse
|
49
|
Trakic A, Jin J, Li MY, McClymont D, Weber E, Liu F, Crozier S. A comparative numerical study of rotating and stationary RF coils in terms of flip angle and specific absorption rate for 7 T MRI. JOURNAL OF MAGNETIC RESONANCE (SAN DIEGO, CALIF. : 1997) 2013; 236:70-82. [PMID: 24076497 DOI: 10.1016/j.jmr.2013.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2013] [Revised: 08/29/2013] [Accepted: 08/30/2013] [Indexed: 06/02/2023]
Abstract
While high-field magnetic resonance imaging promises improved image quality and faster scan time, it is affected by non-uniform flip angle distributions and unsafe specific absorption rate levels within the patient, as a result of the complicated radiofrequency (RF) field-tissue interactions. This numerical study explored the possibility of using a single mechanically rotating RF coil for RF shimming and specific absorption rate management applications at 7 T. In particular, this new approach (with three different RF coil element arrangements) was compared against both an 8-channel parallel coil array and a birdcage volume coil, with and without RF current optimisation. The evaluation was conducted using an in-house developed and validated finite-difference time-domain method in conjunction with a tissue-equivalent human head model. It was found that, without current optimisation, the rotating RF coil method produced a more uniform flip angle distribution and a lower maximum global and local specific absorption rate compared to the 8-channel parallel coil array and birdcage resonator. In addition, due to the large number of degrees of freedom in the form of rotated sensitivity profiles, the rotating RF coil approach exhibited good RF shimming and specific absorption rate management performance. This suggests that the proposed method can be useful in the development of techniques that address contemporary RF issues associated with high-field magnetic resonance imaging.
Collapse
Affiliation(s)
- A Trakic
- The School of Information Technology and Electrical Engineering, The University of Queensland, 4072 QLD, Australia.
| | | | | | | | | | | | | |
Collapse
|
50
|
Yang S, Yang Z, Fischer K, Zhong K, Stadler J, Godenschweger F, Steiner J, Heinze HJ, Bernstein HG, Bogerts B, Mawrin C, Reutens DC, Speck O, Walter M. Integration of ultra-high field MRI and histology for connectome based research of brain disorders. Front Neuroanat 2013; 7:31. [PMID: 24098272 PMCID: PMC3784919 DOI: 10.3389/fnana.2013.00031] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/09/2013] [Indexed: 11/13/2022] Open
Abstract
Ultra-high field magnetic resonance imaging (MRI) became increasingly relevant for in vivo neuroscientific research because of improved spatial resolutions. However, this is still the unchallenged domain of histological studies, which long played an important role in the investigation of neuropsychiatric disorders. While the field of biological psychiatry strongly advanced on macroscopic levels, current developments are rediscovering the richness of immunohistological information when attempting a multi-level systematic approach to brain function and dysfunction. For most studies, histology sections lost information on three-dimensional reconstructions. Translating histological sections to 3D-volumes would thus not only allow for multi-stain and multi-subject alignment in post mortem data, but also provide a crucial step in big data initiatives involving the network analyses currently performed with in vivo MRI. We therefore investigated potential pitfalls during integration of MR and histological information where no additional blockface information is available. We demonstrated that strengths and requirements from both methods can be effectively combined at a spatial resolution of 200 μm. However, the success of this approach is heavily dependent on choices of hardware, sequence and reconstruction. We provide a fully automated pipeline that optimizes histological 3D reconstructions, providing a potentially powerful solution not only for primary human post mortem research institutions in neuropsychiatric research, but also to help alleviate the massive workloads in neuroanatomical atlas initiatives. We further demonstrate (for the first time) the feasibility and quality of ultra-high spatial resolution (150 μm isotopic) imaging of the entire human brain MRI at 7T, offering new opportunities for analyses on MR-derived information.
Collapse
Affiliation(s)
- Shan Yang
- Department of Biomedical Magnetic Resonance, Otto-von-Guericke University Magdeburg, Germany ; Leibniz Institute for Neurobiology Magdeburg, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|