1
|
Ermolenko Y, Antonova M, Polivanova A, Gelperina S. The method of capillary electrophoresis for quantitative determination of hydrophobized hyaluronic acid in its micellar forms. Anal Biochem 2024; 696:115684. [PMID: 39368683 DOI: 10.1016/j.ab.2024.115684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/07/2024]
Abstract
Micelles based on hydrophobized hyaluronic acid (HA) are frequently used in targeted drug delivery systems. Capillary zone electrophoresis (CZE) was utilized for the quantitative determination of hydrophobized and native HA. A universal methodology was developed, suitable for the quantitative analysis of amphiphilic derivatives of hyaluronan (oleyl hyaluronan and hyaluronan conjugate with naphthalimide fluorophore) and native HA with varying molecular weights (15, 150, and 800 kDa). Furthermore, methodologies were proposed for the simultaneous quantification of a drug substance and oleyl hyaluronan in micellar forms based on the latter. The CE technique was applied for analyzing oleyl-hyaluronan-based micellar forms of two poorly soluble drug substances with oppositely charged ionic forms (loperamide and rifabutin). The examples contained in the study demonstrate a range of analytical sensitivity (LOD) for hyaluronan from 11 to 40 μg/mL and for the drug substance from 0.4 to 0.6 μg/mL. The study also showcases the accurate quantitative determination of rifabutin and loperamide in oleyl-hyaluronan-based micellar forms without the need for sample preparation. Thus, the proposed methodologies can be used to quantify native HA or its amphiphilic derivatives and simultaneously determine drug substances of various nature.
Collapse
Affiliation(s)
- Yu Ermolenko
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia.
| | - M Antonova
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - A Polivanova
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| | - S Gelperina
- D. Mendeleev University of Chemical Technology of Russia, Moscow, Russia
| |
Collapse
|
2
|
Lee S, Lee SM, Lee SH, Choi WK, Park SJ, Kim DY, Oh SW, Oh J, Cho JY, Lee J, Chien PN, Nam SY, Heo CY, Lee YS, Kwak EA, Chung WJ. In situ photo-crosslinkable hyaluronic acid-based hydrogel embedded with GHK peptide nanofibers for bioactive wound healing. Acta Biomater 2023; 172:159-174. [PMID: 37832839 DOI: 10.1016/j.actbio.2023.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
A versatile hydrogel was developed for enhancing bioactive wound healing by introducing the amphiphilic GHK peptide (GHK-C16) into a photo-crosslinkable tyramine-modified hyaluronic acid (HA-Ty). GHK-C16 self-assembled into GHK nanofibers (GHK NF) in HA-Ty solution, which underwent in situ gelation after the wound area was filled with precursor solution. Blue light irradiation (460-490 nm), with riboflavin phosphate as a photoinitiator, was used to trigger crosslinking, which enhanced the stability of the highly degradable hyaluronic acid and enabled sustained release of the nanostructured GHK derivatives. The hydrogels provided a microenvironment that promoted the proliferation of dermal fibroblasts and the activation of cytokines, leading to reduced inflammation and increased collagen expression during wound healing. The complexation of Cu2+ into GHK nanofibers resulted in superior wound healing capabilities compared with non-lipidated GHK peptide with a comparable level of growth factor (EGF). Additionally, nanostructured Cu-GHK improved angiogenesis through vascular endothelial growth factor (VEGF) activation, which exerted a synergistic therapeutic effect. Furthermore, in vivo wound healing experiments revealed that the Cu-GHK NF/HA-Ty hydrogel accelerated wound healing through densely packed remodeled collagen in the dermis and promoting the growth of denser fibroblasts. HA-Ty hydrogels incorporating GHK NF also possessed improved mechanical properties and a faster wound healing rate, making them suitable for advanced bioactive wound healing applications. STATEMENT OF SIGNIFICANCE: By combining photo-crosslinkable tyramine-modified hyaluronic acid with self-assembled Cu-GHK-C16 peptide nanofibers (Cu-GHK NF), the Cu-GHK NF/HA-Ty hydrogel offers remarkable advantages over conventional non-structured Cu-GHK for wound healing. It enhances cell proliferation, migration, and collagen remodeling-critical factors in tissue regeneration. The incorporation of GHK nanofibers complexed with copper ions imparts potent anti-inflammatory effects, promoting cytokine activation and angiogenesis during wound healing. The Cu-GHK NF/hydrogel's unique properties, including in situ photo-crosslinking, ensure high customization and potency in tissue regeneration, providing a cost-effective alternative to growth factors. In vivo experiments further validate its efficacy, demonstrating significant wound closure, collagen remodeling, and increased fibroblast density. Overall, the Cu-GHK NF/HA-Ty hydrogel represents an advanced therapeutic option for wound healing applications.
Collapse
Affiliation(s)
- Seohui Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang Min Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sang Hyun Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Woong-Ku Choi
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sung-Jun Park
- School of Chemical and Biological Engineering, Seoul National University, 151-744, Seoul, Republic of Korea
| | - Do Yeon Kim
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Sae Woong Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jieun Oh
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Jongsung Lee
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea
| | - Pham Ngoc Chien
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Sun Young Nam
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea
| | - Chan Yeong Heo
- Department of Plastic and Reconstructive Surgery, Seoul National University Bundang Hospital, Seongnam, Republic of Korea; Department of Medical Device Development, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Yoon-Sik Lee
- School of Chemical and Biological Engineering, Seoul National University, 151-744, Seoul, Republic of Korea
| | - Eun-A Kwak
- Research Institute of Biomolecule Control, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea.
| | - Woo-Jae Chung
- Department of Integrative Biotechnology, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Research Institute of Biomolecule Control, Sungkyunkwan University, 2066 Seobu-ro, Jangan-gu, Suwon, Gyeonggi-do, 16419, Republic of Korea; Center for Biologics, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| |
Collapse
|
3
|
Gurrani S, Prakasham K, Pasupuleti RR, Wu MT, Dong CD, Ponnusamy VK. Rapid in-syringe-based ultrasonic-energy assisted salt-enhanced homogeneous liquid-liquid microextraction technique coupled with HPLC/low-temperature evaporative light-scattering detector for quantification of sodium hyaluronate in food products. Microchem J 2022. [DOI: 10.1016/j.microc.2021.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
4
|
Zapp C, Mundinger P, Boehm H. Natural Presentation of Glycosaminoglycans in Synthetic Matrices for 3D Angiogenesis Models. Front Cell Dev Biol 2021; 9:729670. [PMID: 34671601 PMCID: PMC8521059 DOI: 10.3389/fcell.2021.729670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 09/13/2021] [Indexed: 11/20/2022] Open
Abstract
Glycosaminoglycans (GAGs) are long, linear polysaccharides that occur in the extracellular matrix of higher organisms and are either covalently attached to protein cores, as proteoglycans or in free form. Dependent on their chemical composition and structure, GAGs orchestrate a wide range of essential functions in tissue homeostasis. Accordingly, GAG-based biomaterials play a major role in tissue engineering. Current biomaterials exploit crosslinks between chemically modified GAG chains. Due to modifications along the GAG chains, they are limited in their GAG-protein interactions and accessibility to dissect the biochemical and biophysical properties that govern GAG functions. Herein, a natural presentation of GAGs is achieved by a terminal immobilization of GAGs to a polyethylene glycol (PEG) hydrogel. A physicochemical characterization showed that different end-thiolated GAGs can be incorporated within physiological concentration ranges, while the mechanical properties of the hydrogel are exclusively tunable by the PEG polymer concentration. The functional utility of this approach was illustrated in a 3D cell culture application. Immobilization of end-thiolated hyaluronan enhanced the formation of capillary-like sprouts originating from embedded endothelial cell spheroids. Taken together, the presented PEG/GAG hydrogels create a native microenvironment with fine-tunable mechanobiochemical properties and are an effective tool for studying and employing the bioactivity of GAGs.
Collapse
Affiliation(s)
- Cornelia Zapp
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Patricia Mundinger
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| | - Heike Boehm
- Department of Cellular Biophysics, Max Planck Institute for Medical Research, Heidelberg, Germany.,Institute for Physical Chemistry, Heidelberg University, Heidelberg, Germany
| |
Collapse
|
5
|
Hyaluronic acid and chondroitin sulfate (meth)acrylate-based hydrogels for tissue engineering: Synthesis, characteristics and pre-clinical evaluation. Biomaterials 2020; 268:120602. [PMID: 33360302 DOI: 10.1016/j.biomaterials.2020.120602] [Citation(s) in RCA: 88] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/09/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
Hydrogels based on photocrosslinkable Hyaluronic Acid Methacrylate (HAMA) and Chondroitin Sulfate Methacrylate (CSMA) are presently under investigation for tissue engineering applications. HAMA and CSMA gels offer tunable characteristics such as tailorable mechanical properties, swelling characteristics, and enzymatic degradability. This review gives an overview of the scientific literature published regarding the pre-clinical development of covalently crosslinked hydrogels that (partially) are based on HAMA and/or CSMA. Throughout the review, recommendations for the next steps in clinical translation of hydrogels based on HAMA or CSMA are made and potential pitfalls are defined. Specifically, a myriad of different synthetic routes to obtain polymerizable hyaluronic acid and chondroitin sulfate derivatives are described. The effects of important parameters such as degree of (meth)acrylation and molecular weight of the synthesized polymers on the formed hydrogels are discussed and useful analytical techniques for their characterization are summarized. Furthermore, the characteristics of the formed hydrogels including their enzymatic degradability are discussed. Finally, a summary of several recent applications of these hydrogels in applied fields such as cartilage and cardiac regeneration and advanced tissue modelling is presented.
Collapse
|
6
|
Bachvarova V, Dierker T, Esko J, Hoffmann D, Kjellen L, Vortkamp A. Chondrocytes respond to an altered heparan sulfate composition with distinct changes of heparan sulfate structure and increased levels of chondroitin sulfate. Matrix Biol 2020; 93:43-59. [PMID: 32201365 DOI: 10.1016/j.matbio.2020.03.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 03/11/2020] [Accepted: 03/12/2020] [Indexed: 01/27/2023]
Abstract
Heparan sulfate (HS) regulates the activity of many signaling molecules critical for the development of endochondral bones. Even so, mice with a genetically altered HS metabolism display a relatively mild skeletal phenotype compared to the defects observed in other tissues and organs pointing to a reduced HS dependency of growth-factor signaling in chondrocytes. To understand this difference, we have investigated the glycosaminoglycan (GAG) composition in two mouse lines that produce either reduced levels of HS (Ext1gt/gt mice) or HS lacking 2-O-sulfation (Hs2st1-/- mice). Analysis by RPIP-HPLC revealed an increased level of sulfated disaccarides not affected by the mutation in both mouse lines indicating that chondrocytes attempt to restore a critical level of sulfation. In addition, in both mutant lines we also detected significantly elevated levels of CS. Size exclusion chromatography further demonstrated that Ext1gt/gt mutants produce more but shorter CS chains, while the CS chains produced by (Hs2st1-/- mice) mutants are of similar length to that of wild type littermates indicating that chondrocytes produce more rather than longer CS chains. Expression analysis revealed an upregulation of aggrecan, which likely carries most of the additionally produced CS. Together the results of this study demonstrate for the first time that not only a reduced HS synthesis but also an altered HS structure leads to increased levels of CS in mammalian tissues. Furthermore, as chondrocytes produce 100-fold more CS than HS the increased CS levels point to an active, precursor-independent mechanism that senses the quality of HS in a vast excess of CS. Interestingly, reducing the level of cell surface CS by chondroitinase treatment leads to reduced Bmp2 induced Smad1/5/9 phosphorylation. In addition, Erk phosphorylation is increased independent of Fgf18 treatment indicating that both, HS and CS, affect growth factor signaling in chondrocytes in distinct manners.
Collapse
Affiliation(s)
- Velina Bachvarova
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr 1-5,45117 Essen, Germany.
| | - Tabea Dierker
- Department of Medical Biochemistry and Microbiology, and Science for Life Laboratory, Uppsala University, Box 582, Uppsala, Sweden.
| | - Jeffrey Esko
- Department of Cellular and Molecular Medicine, UCSD, United States.
| | - Daniel Hoffmann
- Department of Bioinformatics and Computational Biophysics, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Germany.
| | - Lena Kjellen
- Department of Medical Biochemistry and Microbiology, and Science for Life Laboratory, Uppsala University, Box 582, Uppsala, Sweden.
| | - Andrea Vortkamp
- Department of Developmental Biology, Faculty of Biology and Centre for Medical Biotechnology, University of Duisburg-Essen, Universitätsstr 1-5,45117 Essen, Germany.
| |
Collapse
|
7
|
Iimaa T, Ikegami Y, Bual R, Shirakigawa N, Ijima H. Analysis of Sulfated Glycosaminoglycans in ECM Scaffolds for Tissue Engineering Applications: Modified Alcian Blue Method Development and Validation. J Funct Biomater 2019; 10:jfb10020019. [PMID: 31052349 PMCID: PMC6616524 DOI: 10.3390/jfb10020019] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Revised: 04/25/2019] [Accepted: 04/29/2019] [Indexed: 01/23/2023] Open
Abstract
Accurate determination of the amount of glycosaminoglycans (GAGs) in a complex mixture of extracellular matrix (ECM) is important for tissue morphogenesis and homeostasis. The aim of the present study was to investigate an accurate, simple and sensitive alcian blue (AB) method for quantifying heparin in biological samples. A method for analyzing heparin was developed and parameters such as volume, precipitation time, solvent component, and solubility time were evaluated. The AB dye and heparin samples were allowed to react at 4 ℃ for 24 h. The heparin-AB complex was dissolved in 25 N NaOH and 2-Aminoethanol (1:24 v/v). The optical density of the solution was analyzed by UV-Vis spectrometry at 620 nm. The modified AB method was validated in accordance with U.S. Food and Drug Administration guidelines. The limit of detection was found to be 2.95 µg/mL. Intraday and interday precision ranged between 2.14–4.83% and 3.16–7.02% (n = 9), respectively. Overall recovery for three concentration levels varied between 97 ± 3.5%, confirming good accuracy. In addition, this study has discovered the interdisciplinary nature of protein detection using the AB method. The basis for this investigation was that the fibrous protein inhibits heparin-AB complex whereas globular protein does not. Further, we measured the content of sulfated GAGs (sGAGs; expressed as heparin equivalent) in the ECM of decellularized porcine liver. In conclusion, the AB method may be used for the quantitative analysis of heparin in ECM scaffolds for tissue engineering applications.
Collapse
Affiliation(s)
- Tuyajargal Iimaa
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
- Department of Biochemistry and Laboratory Medicine, School of Biomedicine, Mongolian National University of Medical Sciences, Ulaanbaatar 14210, Mongolia.
| | - Yasuhiro Ikegami
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| | - Ronald Bual
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
- Department of Chemical Engineering & Technology, College of Engineering, Mindanao State University-Iligan Insititute of Technology, Iligan 9200, Philippines.
| | - Nana Shirakigawa
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| | - Hiroyuki Ijima
- Department of Chemical Engineering, Graduate School of Engineering, Kyushu University, 744 Motooka, Nishi-Ku, Fukuoka 819-0395, Japan.
| |
Collapse
|
8
|
Chen X, Li X, Zhang X, You L, Cheung PCK, Huang R, Xiao J. Antihyperglycemic and antihyperlipidemic activities of a polysaccharide fromPhysalis pubescensL. in streptozotocin (STZ)-induced diabetic mice. Food Funct 2019; 10:4868-4876. [PMID: 31334540 DOI: 10.1039/c9fo00687g] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
PP (Mw= 20.0 kDa) could effectively regulate glucose and lipid metabolism in diabetic mice, and is composed of Glc, Gal and Ara.
Collapse
Affiliation(s)
- Xiaoyong Chen
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center)
| | - Xiong Li
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center)
| | - Xiaobo Zhang
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center)
| | - Lijun You
- School of Food Science and Engineering
- South China University of Technology
- Guangzhou
- People's Republic of China
- Overseas Expertise Introduction Center for Food Nutrition and Human Health (111 Center)
| | - Peter Chi-Keung Cheung
- Food and Nutritional Sciences
- School of Life Sciences
- The Chinese University of Hong Kong
- Shatin
- Hong Kong SAR
| | - Riming Huang
- Guangdong Provincial Key Laboratory of Food Quality and Safety
- College of Food Science
- South China Agricultural University
- Guangzhou 510642
- China
| | - Jianbo Xiao
- Institute of Chinese Medical Sciences
- University of Macau
- Taipa
- Macau
| |
Collapse
|
9
|
Jung SW, Byun JH, Oh SH, Kim TH, Park JS, Rho GJ, Lee JH. Multivalent ion-based in situ gelling polysaccharide hydrogel as an injectable bone graft. Carbohydr Polym 2017; 180:216-225. [PMID: 29103499 DOI: 10.1016/j.carbpol.2017.10.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 09/28/2017] [Accepted: 10/06/2017] [Indexed: 11/30/2022]
Abstract
We prepared in situ gelling alginate (ALG)/hyaluronic acid (HA) hydrogels with a controllable gelation rate using CaSO4 as a crosslinking agent and Na2HPO4 as a crosslinking retardation agent. The ALG/HA hydrogels provided sustained release of bone morphogenetic protein-2 (BMP-2) immobilized in the hydrogels over 5 weeks. The BMP-2-immobilized ALG/HA hydrogels with different ALG/HA ratios were investigated for their in vitro osteogenic differentiation behavior of human bone marrow stem cells (hBMSCs) and in vivo bone regeneration behavior using an animal model (mandibular defect model of miniature pigs). Our findings from cell culture and animal study demonstrated that the osteogenic differentiation of hBMSCs was improved with increasing HA composition in the hydrogel. The hBMSCs/BMP-2-immobilized ALG/HA hydrogel allowed greatly enhanced osteogenic differentiation of hBMSCs (in vitro) and bone regeneration (in vivo) compared with the ALG/HA hydrogel itself and single hBMSCs- or BMP-2-immobilized hydrogel groups.
Collapse
Affiliation(s)
- Sun Woo Jung
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea
| | - June-Ho Byun
- Department of Oral and Maxillofacial Surgery, Institute of Health Sciences, Gyeongsang National University School of Medicine, Jinju 52727, Republic of Korea
| | - Se Heang Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan 31116, Republic of Korea; Department of Pharmaceutical Engineering, Dankook University, Cheonan 31116, Republic of Korea
| | - Tae Ho Kim
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea
| | - Ji-Sung Park
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Gyu-Jin Rho
- Department of Theriogenology and Biotechnology, College of Veterinary Medicine, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Jin Ho Lee
- Department of Advanced Materials and Chemical Engineering, Hannam University, Daejeon 34054, Republic of Korea.
| |
Collapse
|
10
|
Gamini A, Coslovi A, Toppazzini M, Rustighi I, Campa C, Vetere A, Paoletti S. Use of Capillary Electrophoresis for Polysaccharide Studies and Applications. Methods Mol Biol 2016; 1483:339-363. [PMID: 27645744 DOI: 10.1007/978-1-4939-6403-1_17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
CE applications to charged polysaccharides are briefly reported. A simple procedure is presented to determine the esterification degree of a hyaluronan derivative. In this case the degree of substitution was as low as 14 %.The molecular weight distribution of mannuronic oligosaccharides mixture produced by hydrolysis of native polymannuronic is readily calculated from peak area of the species resolved by CE on the basis of a specific degree of polymerization.The influence of the applied electric field strength on the free solution mobility of hyaluronan samples is briefly addressed for molar masses of the order of 10(5) and 10(6) g/mol. The data are compared with the results obtained for a 50 % galactose substituted HA.Mobility data obtained as a function of buffer pH for a native HA sample as well as for two galactose-amide HA derivatives, having slightly different degrees of substitution, are presented and discussed in terms of the polymer charge density parameters ξ.In most cases, more questions than answers arise from the application of CE to charged polysaccharides. However, perspectives are disclosed for a further understanding of the reliability of CE applied for the structural elucidation of such macromolecules.
Collapse
Affiliation(s)
- Amelia Gamini
- Department of Chemistry and Pharmaceutical Sciences, University of Trieste, Via L. Giorgieri 1, Trieste, 34127, Italy.
| | - Anna Coslovi
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Mila Toppazzini
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | - Isabella Rustighi
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Trieste, 34127, Italy
| | - Cristiana Campa
- GSK Vaccines, Manufacturing Science & Technology Bellaria di Rosia, Sovicille (Siena), Italy
| | | | - Sergio Paoletti
- Department of Life Sciences, University of Trieste, Via L. Giorgieri 1, Trieste, 34127, Italy
| |
Collapse
|
11
|
Dorsey SM, McGarvey JR, Wang H, Nikou A, Arama L, Koomalsingh KJ, Kondo N, Gorman JH, Pilla JJ, Gorman RC, Wenk JF, Burdick JA. MRI evaluation of injectable hyaluronic acid-based hydrogel therapy to limit ventricular remodeling after myocardial infarction. Biomaterials 2015; 69:65-75. [PMID: 26280951 DOI: 10.1016/j.biomaterials.2015.08.011] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Revised: 08/03/2015] [Accepted: 08/05/2015] [Indexed: 11/19/2022]
Abstract
Injectable biomaterials are an attractive therapy to attenuate left ventricular (LV) remodeling after myocardial infarction (MI). Although studies have shown that injectable hydrogels improve cardiac structure and function in vivo, temporal changes in infarct material properties after treatment have not been assessed. Emerging imaging and modeling techniques now allow for serial, non-invasive estimation of infarct material properties. Specifically, cine magnetic resonance imaging (MRI) assesses global LV structure and function, late-gadolinium enhancement (LGE) MRI enables visualization of infarcted tissue to quantify infarct expansion, and spatial modulation of magnetization (SPAMM) tagging provides passive wall motion assessment as a measure of tissue strain, which can all be used to evaluate infarct properties when combined with finite element (FE) models. In this work, we investigated the temporal effects of degradable hyaluronic acid (HA) hydrogels on global LV remodeling, infarct thinning and expansion, and infarct stiffness in a porcine infarct model for 12 weeks post-MI using MRI and FE modeling. Hydrogel treatment led to decreased LV volumes, improved ejection fraction, and increased wall thickness when compared to controls. FE model simulations demonstrated that hydrogel therapy increased infarct stiffness for 12 weeks post-MI. Thus, evaluation of myocardial tissue properties through MRI and FE modeling provides insight into the influence of injectable hydrogel therapies on myocardial structure and function post-MI.
Collapse
Affiliation(s)
- Shauna M Dorsey
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jeremy R McGarvey
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Hua Wang
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Amir Nikou
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA
| | - Leron Arama
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Kevin J Koomalsingh
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Norihiro Kondo
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph H Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - James J Pilla
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Radiology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Robert C Gorman
- Gorman Cardiovascular Research Group, Department of Surgery, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jonathan F Wenk
- Department of Mechanical Engineering, University of Kentucky, Lexington, KY 40506, USA; Department of Surgery, University of Kentucky, Lexington, KY 40506, USA
| | - Jason A Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
12
|
Determination of the presence of hyaluronic acid in preparations containing amino acids: the molecular weight characterization. Eur J Pharm Sci 2014; 63:199-203. [PMID: 25078662 DOI: 10.1016/j.ejps.2014.07.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2014] [Revised: 07/02/2014] [Accepted: 07/19/2014] [Indexed: 11/20/2022]
Abstract
Several pharmaceutical preparations contain hyaluronic acid in the presence of a large variety of low molecular weight charged molecules like amino acids. In these mixtures, it is particularly difficult to determine the concentration and the molecular weight of the hyaluronic acid fragments. In fact zwitterionic compounds in high concentration behave by masking the hyaluronic acid due to the electrostatic interactions between amino acids and hyaluronic acid. In such conditions the common colorimetric test of the hyaluronic acid determination appears ineffective and in the (1)H NMR spectra the peaks of the polymer disappear completely. By a simple separation procedure the presence of hyaluronic acid was revealed by the DMAB test and (1)H NMR while its average molecular weight in the final product was determined by DOSY NMR spectroscopy alone. The latter determination is very important due to the healthy effects of some sizes of this polymer's fragments.
Collapse
|
13
|
Matysiak J, Dereziński P, Urbaniak B, Klupczyńska A, Zalewska A, Kokot ZJ. A new method for determination of hyaluronidase activity in biological samples using capillary zone electrophoresis. Biomed Chromatogr 2013; 27:1070-8. [DOI: 10.1002/bmc.2909] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2013] [Revised: 02/26/2013] [Accepted: 02/26/2013] [Indexed: 11/10/2022]
Affiliation(s)
- Jan Matysiak
- Department of Inorganic and Analytical Chemistry; Poznan University of Medical Sciences; Grunwaldzka 6 Street; 60-780; Poznań; Poland
| | - Paweł Dereziński
- Department of Inorganic and Analytical Chemistry; Poznan University of Medical Sciences; Grunwaldzka 6 Street; 60-780; Poznań; Poland
| | - Bartosz Urbaniak
- Department of Inorganic and Analytical Chemistry; Poznan University of Medical Sciences; Grunwaldzka 6 Street; 60-780; Poznań; Poland
| | - Agnieszka Klupczyńska
- Department of Inorganic and Analytical Chemistry; Poznan University of Medical Sciences; Grunwaldzka 6 Street; 60-780; Poznań; Poland
| | - Anna Zalewska
- Department of Inorganic and Analytical Chemistry; Poznan University of Medical Sciences; Grunwaldzka 6 Street; 60-780; Poznań; Poland
| | - Zenon J. Kokot
- Department of Inorganic and Analytical Chemistry; Poznan University of Medical Sciences; Grunwaldzka 6 Street; 60-780; Poznań; Poland
| |
Collapse
|
14
|
Tous E, Weber HM, Lee MH, Koomalsingh KJ, Shuto T, Kondo N, Gorman JH, Lee D, Gorman RC, Burdick JA. Tunable hydrogel-microsphere composites that modulate local inflammation and collagen bulking. Acta Biomater 2012; 8:3218-27. [PMID: 22659176 PMCID: PMC3408556 DOI: 10.1016/j.actbio.2012.05.027] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2012] [Revised: 04/19/2012] [Accepted: 05/14/2012] [Indexed: 12/25/2022]
Abstract
Injectable biomaterials alone may alter local tissue responses, including inflammatory cascades and matrix production (e.g. stimulatory dermal fillers are used as volumizing agents that induce collagen production). To expand upon the available material compositions and timing of presentation, a tunable hyaluronic acid (HA) and poly(lactide-co-glycolide) (PLGA) microsphere composite system was formulated and assessed in subcutaneous and cardiac tissues. HA functionalized with hydroxyethyl methacrylate (HeMA) was used as a precursor to injectable and degradable hydrogels that carry PLGA microspheres (~50 μm diameter) to tissues, where the HA hydrogel degradation (~20 or 70 days) and quantity of PLGA microspheres (0-300 mgml(-1)) are readily varied. When implanted subcutaneously, faster hydrogel degradation and more microspheres (e.g. 75 mgml(-1)) generally induced more rapid tissue and cellular interactions and a greater macrophage response. In cardiac applications, tissue bulking may be useful to alter stress profiles and to stabilize the tissue after infarction, limiting left ventricular (LV) remodeling. When fast degrading HeMA-HA hydrogels containing 75 mgml(-1) microspheres were injected into infarcted tissue in sheep, LV dilation was limited and the thickness of the myocardial wall and the presence of vessels in the apical infarct region were increased ~35 and ~60%, respectively, compared to empty hydrogels. Both groups decreased volume changes and infarct areas at 8 weeks, compared to untreated controls. This work illustrates the importance of material design in expanding the application of tissue bulking composites to a range of biomedical applications.
Collapse
Affiliation(s)
- Elena Tous
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Heather M. Weber
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Myung Han Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Kevin J. Koomalsingh
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, Pennsylvania 19036, United States
| | - Takashi Shuto
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, Pennsylvania 19036, United States
| | - Norihiro Kondo
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, Pennsylvania 19036, United States
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, Pennsylvania 19036, United States
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, Pennsylvania 19036, United States
- Department of Surgery, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
15
|
Park TJ, Kim YS, Hwang T, Govindaiah P, Choi SW, Kim E, Won K, Lee SH, Kim JH. Preparation and characterization of heparinized multi-walled carbon nanotubes. Process Biochem 2012. [DOI: 10.1016/j.procbio.2011.10.017] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Tous E, Ifkovits JL, Koomalsingh KJ, Shuto T, Soeda T, Kondo N, Gorman JH, Gorman RC, Burdick JA. Influence of injectable hyaluronic acid hydrogel degradation behavior on infarction-induced ventricular remodeling. Biomacromolecules 2011; 12:4127-35. [PMID: 21967486 PMCID: PMC3246217 DOI: 10.1021/bm201198x] [Citation(s) in RCA: 103] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Increased myocardial wall stress after myocardial infarction (MI) initiates the process of adverse left ventricular (LV) remodeling that is manifest as progressive LV dilatation, loss of global contractile function, and symptomatic heart failure, and recent work has shown that reduction in wall stress through injectable bulking agents attenuates these outcomes. In this study, hyaluronic acid (HA) was functionalized to exhibit controlled and tunable mechanics and degradation once cross-linked, in an attempt to assess the temporal dependency of mechanical stabilization in LV remodeling. Specifically, two hydrolytically degrading (low and high HeMA-HA, degrading in ~3 and 10 weeks, respectively) and two stable (low and high MeHA, little mass loss even after 8 weeks) hydrogels with similar initial mechanics (low: ~7 kPa; high: ~35-40 kPa) were evaluated in an ovine model of MI. Generally, the more stable hydrogels maintained myocardial wall thickness in the apical and basilar regions more efficiently (low MeHA: apical: 6.5 mm, basilar: 7 mm, high MeHA: apical: 7.0 mm basilar: 7.2 mm) than the hydrolytically degrading hydrogels (low HeMA-HA: apical: 3.5 mm, basilar: 6.0 mm, high HeMA-HA: apical: 4.1 mm, basilar: 6.1 mm); however, all hydrogel groups were improved compared to infarct controls (IC) (apical: 2.2 mm, basilar: 4.6 mm). Histological analysis at 8 weeks demonstrated that although both degradable hydrogels resulted in increased inflammation, all treatments resulted in increased vessel formation compared to IC. Further evaluation revealed that while high HeMA-HA and high MeHA maintained reduced LV volumes at 2 weeks, high MeHA was more effective at 8 weeks, implying that longer wall stabilization is needed for volume maintenance. All hydrogel groups resulted in better cardiac output (CO) values than IC.
Collapse
Affiliation(s)
- Elena Tous
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Jamie L. Ifkovits
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, PA, 19036, USA
| | - Kevin J. Koomalsingh
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, PA, 19036, USA
| | - Takashi Shuto
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, PA, 19036, USA
| | - Toru Soeda
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, PA, 19036, USA
| | - Norihiro Kondo
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, PA, 19036, USA
| | - Joseph H. Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, PA, 19036, USA
| | - Robert C. Gorman
- Gorman Cardiovascular Research Group, University of Pennsylvania, Glenolden, PA, 19036, USA
| | - Jason A. Burdick
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, 19104, USA
| |
Collapse
|
17
|
Yin L, Lu B, Qi Y, Xu L, Han X, Xu Y, Peng J, Sun C. Simultaneous determination of 11 active components in two well-known traditional Chinese medicines by HPLC coupled with diode array detection for quality control. J Pharm Biomed Anal 2009; 49:1101-8. [PMID: 19264437 DOI: 10.1016/j.jpba.2009.01.039] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2008] [Revised: 01/29/2009] [Accepted: 01/31/2009] [Indexed: 11/18/2022]
Abstract
A simple and sensitive high-performance liquid chromatography coupled with diode array detection (HPLC-DAD) method was investigated for simultaneous determination of 11 components (chlorogenic acid, coptisine, epiberberine, jatrorrhizine, berberine, palmatine, baicalin, wogonoside, baicalein, wogonin and chrysin) in Qinhuanghouzheng (QHHZ) capsule and Xiaoerqingre (XEQR) tablet, for quality control of these two well-known traditional Chinese medicines (TCMs). The method was established using an Eclipse Plus C(18) (150 mm x 4.6 mm i.d., 5 microm) column. The mobile phase comprising methanol (A) 3% phosphoric acid (B) (pH 2.0, adjusted by triethylamine) was used to elute the targets in gradient elution mode. Flow rate and detection wavelength were set at 0.8 mL/min and 270 nm, respectively. All calibration curves showed good linearity with R(2) > 0.9995. Inter- and intra-day precisions for all investigated components expressed as relative standard deviation (R.S.D.) ranged from 0.26% to 1.77%. Recoveries measured at three concentrations were in the range of 95.0-103.0% with R.S.D. < or = 3%. The validated method is simple, reliable, and successfully applied to determine the contents of the selected compounds in QHHZ capsule and XEQR tablet for quality evaluation and control. The 11 main active marker compounds measured occur only in 2 or 3 plant species out of 7-10 species comprising the two TCMs. Additional procedures need to be developed for the quality control of plant materials other than Coptis chinensis Franch, Scutellaria baicalensis Georgi and Phellodendron amurense Rupr.
Collapse
Affiliation(s)
- Lianhong Yin
- College of Pharmacy, Dalian Medical University, Dalian, China
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Frazier SB, Roodhouse KA, Hourcade DE, Zhang L. The Quantification of Glycosaminoglycans: A Comparison of HPLC, Carbazole, and Alcian Blue Methods. ACTA ACUST UNITED AC 2008; 1:31-39. [PMID: 20640171 DOI: 10.2174/1875398100801010031] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides that are found in the extracellular matrix and biological fluids of animals where they interact with hundreds of proteins and perform a variety of critical roles. There are five classes of animal GAGs: heparan sulfate (HS), chondroitin sulfate (CS), dermatan sulfate (DS), keratan sulfate (KS), and hyaluronan (HA). Many biological functions can be monitored directly by their impact on GAG quantity. Thus, simple, sensitive, and robust GAG quantification methods are needed for the development of biomarkers. We have systematically compared three available GAG quantification assays including an HPLC-based assay, a simplified Alcian Blue assay, and a miniaturized carbazole assay. The carbazole and Alcian Blue assays were reproducible and simple to perform in general lab settings, but had important limitations: The carbazole assay could not detect KS and it overestimated GAGs that were contaminated with salts or dissolved in PBS. The Alcian Blue assay detected only those GAGs that were sulfated. In contrast, while the HPLC method was time-consuming, it was a robust and sensitive assay that not only detected all GAGs but also quantified glucosamine-GAGs and galactosamine-GAGs simultaneously. The HPLC assay was not affected by salt or level of GAG sulfation and it yielded reproducible values for all types of GAGs tested. These results suggest that an automated HPLC assay would be generally useful for the routine measurement of a panel of GAG-based biomarkers while the carbazole assay and the Alcian Blue assays could prove valuable for more specific purposes.
Collapse
Affiliation(s)
- Sarah B Frazier
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
19
|
Abstract
Complex natural polysaccharides, glycosaminoglycans (GAGs), are a class of ubiquitous macromolecules that exhibit a wide range of biological functions and participate and regulate multiple cellular events and (patho)physiological processes. They are generally present either as free chains (hyaluronic acid and bacterial acidic polysaccharides) or as side chains of proteoglycans (PGs; chondroitin/dermatan sulfate, heparin/heparan sulfate, and keratan sulfate) and are most often found in cell membranes and in the extracellular matrix. The recent emergence of modern analytical tools for their study has produced a virtual explosion in the field of glycomics. CE, due to its high resolving power and sensitivity, has been useful in the analysis of intact GAGs and GAG-derived oligosaccharides and disaccharides affording concentration and structural characterization data essential for understanding the biological functions of GAGs. In this review, novel off-line and on-line CE-MS and MS/MS methods for screening of GAG-derived oligosaccharides and disaccharides will be discussed.
Collapse
Affiliation(s)
- Nicola Volpi
- Department of Biologia Animale, Biological Chemistry Section, University of Modena and Reggio Emilia, Modena, Italy.
| | | | | |
Collapse
|
20
|
Knaup B, Kempf M, Fuchs J, Valotis A, Kahle K, Oehme A, Richling E, Schreier P. Model experiments mimicking the human intestinal transit and metabolism of D‐galacturonic acid and amidated pectin. Mol Nutr Food Res 2008; 52:840-8. [DOI: 10.1002/mnfr.200700510] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
21
|
Gamini A, Coslovi A, Rustighi I, Campa C, Vetere A, Paoletti S. Use of capillary electrophoresis for polysaccharide studies and applications. Methods Mol Biol 2008; 384:357-400. [PMID: 18392575 DOI: 10.1007/978-1-59745-376-9_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Capillary electrophoresis (CE) applications to charged polysaccharides are briefly reported. A simple procedure is presented to determine the esterification degree of a hyaluronan derivative. In this case, the degree of substitution was as low as 14%. The molecular weight distribution of mannuronic oligosaccharides mixture produced by hydrolysis of native polymannuronic is readily calculated from peak area of the species resolved by CE on the basis of a specific degree of polymerization. The influence of the applied electric field strength on the free solution mobility of hyaluronan samples is briefly addressed for molar masses of the order of 10(5) and 10(6) g/mol. The data are compared with the results obtained for a 50% galactose-substituted hyaluronic acid (HA). Mobility data obtained as a function of buffer pH for a native HA sample as well as for two galactose-amide HA derivatives, having slightly different degrees of substitution, are presented and discussed in terms of the polymer charge density parameters xi. In most cases, more questions than answers arise from the application of CE to charged polysaccharides. However, perspectives are disclosed for a further understanding of the reliability of CE applied for the structural elucidation of such macromolecules.
Collapse
Affiliation(s)
- Amelia Gamini
- Department of Biochemistry, Biophysics and Macromolecular Chemistry, University of Trieste, Trieste, Italy
| | | | | | | | | | | |
Collapse
|
22
|
Tang S, Vickers SM, Hsu HP, Spector M. Fabrication and characterization of porous hyaluronic acid-collagen composite scaffolds. J Biomed Mater Res A 2007; 82:323-35. [PMID: 17295240 DOI: 10.1002/jbm.a.30974] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Hyaluronic acid (HA) plays a vital role in many tissues, influencing water content and mechanical function, and has been shown to have positive biological effects on cell behavior in vitro. To begin to determine whether these benefits can be accessed if HA is incorporated into collagen-based scaffolds for tissue engineering, HA-collagen composite matrices were prepared and selected properties evaluated. HA-collagen scaffolds were cross-linked with carbodiimide and loss rates of HA in culture medium assessed. Scaffold pore structures were evaluated by light and electron microscopy. Adult canine chondrocytes were grown in selected HA-collagen scaffolds to assess the effects of HA on cell behavior. Homogenous HA-collagen slurries were achieved when polyionic complexes were suppressed. HA was uniformly distributed through the scaffolds, which demonstrated honeycomb-like pores with interconnectivity among pores increasing as HA content increased. Virtually all of the HA added to the collagen slurry was incorporated into the composite scaffolds that underwent a 7-day cross-linking protocol. After 5 days in culture medium, the HA content in the scaffolds was 5-7% regardless of initial HA loading. After only 2 weeks in culture cartilaginous tissue was found in the chondrocyte-seeded HA-collagen scaffolds. This study contributes to the understanding of the effects of HA content, pH, and cross-link treatment on pore characteristics and degradation behavior essential for the design of HA-collagen scaffolds. The demonstration that these scaffolds can be populated by chondrocytes and support in vitro formation of cartilaginous tissue warrants further investigation of this material system for tissue engineering.
Collapse
Affiliation(s)
- Shunqing Tang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, China
| | | | | | | |
Collapse
|
23
|
Tang S, Spector M. Incorporation of hyaluronic acid into collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis. Biomed Mater 2007; 2:S135-41. [PMID: 18458458 DOI: 10.1088/1748-6041/2/3/s10] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Hyaluronic acid (HA), a principal matrix molecule in many tissues, is present in high amounts in articular cartilage. HA contributes in unique ways to the physical behavior of the tissue, and has been shown to have beneficial effects on chondrocyte activity. The goal of this study was to incorporate graduated amounts of HA into type I collagen scaffolds for the control of chondrocyte-mediated contraction and chondrogenesis in vitro. The results demonstrated that the amount of contraction of HA/collagen scaffolds by adult canine articular chondrocytes increased with the HA content of the scaffolds. The greatest amount of chondrogenesis after two weeks was found in the scaffolds which had undergone the most contraction. HA can play a useful role in adjusting the mechanical behavior of tissue engineering scaffolds and chondrogenesis in chondrocyte-seeded scaffolds.
Collapse
Affiliation(s)
- Shunqing Tang
- Department of Biomedical Engineering, Jinan University, Guangzhou 510632, People's Republic of China.
| | | |
Collapse
|
24
|
Liao YH, Jones SA, Forbes B, Martin GP, Brown MB. Hyaluronan: pharmaceutical characterization and drug delivery. Drug Deliv 2006; 12:327-42. [PMID: 16253949 DOI: 10.1080/10717540590952555] [Citation(s) in RCA: 208] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022] Open
Abstract
Hyaluronic acid (HA), is a polyanionic polysaccharide that consists of N-acetyl-D-glucosamine and beta-glucoronic acid. It is most frequently referred to as hyaluronan because it exists in vivo as a polyanion and not in the protonated acid form. HA is distributed widely in vertebrates and presents as a component of the cell coat of many strains of bacteria. Initially the main functions of HA were believed to be mechanical as it has a protective, structure stabilizing and shock-absorbing role in the body. However, more recently the role of HA in the mediation of physiological functions via interaction with binding proteins and cell surface receptors including morphogenesis, regeneration, wound healing, and tumor invasion, as well as in the dynamic regulation of such interactions on cell signaling and behavior has been documented. The unique viscoelastic nature of hyaluronan along with its biocompatibility and nonimmunogenicity has led to its use in a number of cosmetic, medical, and pharmaceutical applications. More recently, HA has been investigated as a drug delivery agent for ophthalmic, nasal, pulmonary, parenteral, and dermal routes. The purpose of our review is to describe the physical, chemical, and biological properties of native HA together with how it can be produced and assayed along with a detailed analysis of its medical and pharmaceutical applications.
Collapse
Affiliation(s)
- Yong-Hong Liao
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | | | | | | | | |
Collapse
|
25
|
Studelska DR, Giljum K, McDowell LM, Zhang L. Quantification of glycosaminoglycans by reversed-phase HPLC separation of fluorescent isoindole derivatives. Glycobiology 2005; 16:65-72. [PMID: 16166601 DOI: 10.1093/glycob/cwj037] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Glycosaminoglycans (GAGs) are linear polysaccharides made by all animal cells. GAGs bind to hundreds of proteins, such as growth factors, cytokines, chemokines, extracellular matrix components, protease inhibitors, proteases, and lipoprotein lipase, through carbohydrate and protein interactions. These interactions control many multicellular processes. The increased use of GAGs isolated from cells and small tissue samples in bioassays and binding experiments demands a sensitive and robust quantification method. We have developed such a method, which is based on a popular assay for amino acid analysis. We have refined it to enhance GAG quantification. It allows the quantification of glucosamine- and galactosamine-containing GAGs after the reversed-phase separation of their fluorescent isoindole derivatives. The derivatives are created by the reaction of o-phthaldialdehyde and 3-mercaptopropionic acid (3MPA) with the amino group of hexosaminitol monosaccharides generated from GAG acid hydrolysis and sodium borohydride reduction. The advantages of our method include automatic derivitization, a simple chromatograph with clean separation of glucosaminitol and galactosaminitol derivatives from contaminating amino acids, excellent sensitivity with 0.04 pmol detection, and linearity from 2.5 to 1280 pmol. A major advantage is that it can be readily implemented in any laboratory with typical reversed-phase high performance liquid chromatography (HPLC) equipment.
Collapse
Affiliation(s)
- Daniel R Studelska
- Department of Pathology & Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | | | | | | |
Collapse
|
26
|
Hedberg EL, Shih CK, Solchaga LA, Caplan AI, Mikos AG. Controlled release of hyaluronan oligomers from biodegradable polymeric microparticle carriers. J Control Release 2004; 100:257-66. [PMID: 15544873 DOI: 10.1016/j.jconrel.2004.08.020] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2004] [Accepted: 08/27/2004] [Indexed: 10/26/2022]
Abstract
In the present study, biodegradable microparticles of blends of poly(DL-lactic-co-glycolic acid) (PLGA) and poly(ethylene glycol) (PEG) were explored as a potential carrier for the controlled release of polysaccharide oligomers. To this end, hyaluronan (HY) oligomers of varying molecular weights were incorporated into PLGA/PEG microparticles. Using a two-level fractional factorial experimental design, four microparticle formulation parameters, the amount of PEG included in the microparticles, the initial HY loading of the microparticles, the molecular weight of HY, and the molecular weight of PLGA, were studied for their influence on the incorporation and in vitro release of HY over the period of 28 days. The entrapment efficiencies were found to range between 10+/-1% and 24+/-2% depending on the initial loading and the molecular weight of the HY oligomer used in the fabrication of the microparticles. The HY was released in a multiphasic fashion including an initial burst release, followed by two separate periods of linear release. The normalized cumulative mass released during the burst release ranged from 25.1+/-9.2% to 93.0+/-0.7% and was found to be significantly influenced by the initial HY loading, the HY molecular weight, and the PLGA molecular weight. The initial period of linear release lasted from day 1 to day 14 and displayed normalized cumulative rates of release from 0.1+/-0.0%/day to 1.4+/-0.2%/day. During this period, PEG content of the microparticles and HY molecular weight exerted the greatest influence on the rate of release. Finally, the second period of linear release lasted through the final time-point at day 28. Here, the normalized cumulative rate of release values ranged from 0.2+/-0.1%/day to 3.6+/-0.7%/day and were dependent on all formulation parameters studied. These results demonstrate the potential of PLGA/PEG blend microparticles for the controlled release of HY oligomers.
Collapse
Affiliation(s)
- Elizabeth L Hedberg
- Department of Bioengineering, Rice University, P.O. Box 1892, MS-142, Houston, TX 77251-1892, USA
| | | | | | | | | |
Collapse
|
27
|
Kühn AV, Raith K, Sauerland V, Neubert RHH. Quantification of hyaluronic acid fragments in pharmaceutical formulations using LC-ESI-MS. J Pharm Biomed Anal 2003; 30:1531-7. [PMID: 12467925 DOI: 10.1016/s0731-7085(02)00544-7] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Three different hyaluronic acid fragment preparations (HAF) derived from hyaluronic acid (HA) by hyaluronate lyase digestion have been investigated. The amount of these fragment mixtures in pharmaceutical formulations was determined by liquid chromatography-electrospray tandem mass spectrometry (LC/MS/MS). HAF analysis was performed in less than 8 min using a Nucleosil 100-7 C2 column. Based on the assumption that the mass distribution is kept constant, which is confirmed by the calibration results, quantification can be carried out relating to the most intense fragments. For that purpose, the ratios of the peak areas of product ions of m/z=378 (tetramer, hexamer, octamer) to the peak area of m/z=83 ([2xmaltose-H(+)], internal standard) were calculated. Calibration was done for each HAF and good linearity from 5 to 80 microg/ml has been shown. To evaluate the molecular weight distribution of the fragment preparations used in this approach MALDI-TOF, mass spectra have been collected.
Collapse
Affiliation(s)
- Andrea V Kühn
- Institute of Pharmaceutics and Biopharmaceutics, Martin-Luther-University, Halle-Wittenberg, Wolfgang-Langenbeck-Street 4, Halle/Saale, Germany.
| | | | | | | |
Collapse
|
28
|
Kühn AV, Rüttinger HH, Neubert RHH, Raith K. Identification of hyaluronic acid oligosaccharides by direct coupling of capillary electrophoresis with electrospray ion trap mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2003; 17:576-582. [PMID: 12621620 DOI: 10.1002/rcm.950] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
A new method for the identification of oligosaccharides obtained by enzymatic digestion of hyaluronic acid (HA) with bacterial hyaluronidase (HA lyase, E.C. 4.2.2.1, from Streptococcus agalactiae) using online capillary electrophoresis/electrospray mass spectrometry (CE/ESI-MS) is presented. A fused-silica capillary coated with polyacrylamide was used with a 40 mM ammonium acetate buffer at pH 9.0 and a separation voltage of +30 kV applied to the inlet. Separation was achieved for oligosaccharides containing 4-16 monomers. The migration behavior follows the chain length of the oligomers, regardless of charge state. However, no linear relationship was found for the relation between mobility and chain length. Using an ion trap mass analyzer, complementary structural information was obtained by MS/MS and MS(n) experiments.
Collapse
Affiliation(s)
- Andrea V Kühn
- Institute of Pharmaceutics and Biopharmaceutics, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Str 4, 06120 Halle (S), Germany
| | | | | | | |
Collapse
|
29
|
Alkrad JA, Merstani Y, Neubert RHH. New approaches for quantifying hyaluronic acid in pharmaceutical semisolid formulations using HPLC and CZE. J Pharm Biomed Anal 2002; 30:913-9. [PMID: 12408880 DOI: 10.1016/s0731-7085(02)00329-1] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
HA was quantified in pharmaceutical formulations using HPLC-UV-detector and spectrophotometrically after the digestion with concentrated H(2)SO(4). Intact HA was quantified by capillary zone electrophoresis (CZE) using direct and indirect methods. The results were compared with the carbazole reaction established by Bitter et al. (Anal. Biochem. 4 (1997) 330) and with established method from Pläzer et al. (J. Pharm. Biomed. Anal. 21 (1997) 491) regarding detection limits, linearity, reproducibility and simplicity. The present results show that the investigation using HPLC and CZE led to a considerable improvement of the detection limit [0.3 ng/ml (HPLC1), 1 microgram/ml (HPLC2) and 5 microgram/ml (CE-D1)] compared with other methods (10 microgram/ml).
Collapse
Affiliation(s)
- Jamal Alyoussef Alkrad
- Institute of Pharmaceutics and Biopharmaceutics, Martin-Luther-University Halle-Wittenberg, Wolfgang-Langenbeck-Strasse 4, 06120, Halle/S., Germany
| | | | | |
Collapse
|
30
|
Mao W, Thanawiroon C, Linhardt RJ. Capillary electrophoresis for the analysis of glycosaminoglycans and glycosaminoglycan-derived oligosaccharides. Biomed Chromatogr 2002; 16:77-94. [PMID: 11857641 DOI: 10.1002/bmc.153] [Citation(s) in RCA: 61] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Glycosaminoglycans are a family of polydisperse, highly sulfated complex mixtures of linear polysaccharides that are involved in many life processes. Defining the structure of glycosaminoglycans is an important factor in elucidating their structure-activity relationship. Capillary electrophoresis has emerged as a highly promising technique consuming an extremely small amount of sample and capable of rapid, high-resolution separation, characterization and quantitation of analytes. Numerous capillary electrophoresis methods for analysis of intact glycosaminoglycans and glycosaminoglycan-derived oligosaccharides have been developed. These methods allow for both qualitative and quantitative analysis with a high level of sensitivity. This review is concerned with separation methods of capillary electrophoresis, detection methods and applications to several aspects of research into glycosaminoglycans and glycosaminoglycan-derived oligosaccharides. The importance of capillary electrophoresis in biological and pharmaceutical samples in glycobiology and carbohydrate biochemistry and its possible applications in disease diagnosis and monitoring chemical synthesis are described.
Collapse
Affiliation(s)
- Wenjun Mao
- Department of Chemistry, University of Iowa, Iowa City, Iowa 52242, USA
| | | | | |
Collapse
|