1
|
Zhang J, Yang Z, Zhang C, Gao S, Liu Y, Li Y, He S, Yao J, Du J, You B, Han Y. PALMD haploinsufficiency aggravates extracellular matrix remodeling in vascular smooth muscle cells and promotes calcification. Am J Physiol Cell Physiol 2024; 327:C1012-C1022. [PMID: 39246140 DOI: 10.1152/ajpcell.00217.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/20/2024] [Accepted: 08/23/2024] [Indexed: 09/10/2024]
Abstract
Reduced PALMD expression is strongly associated with the development of calcified aortic valve stenosis; however, the role of PALMD in vascular calcification remains unknown. Calcified arteries were collected from mice to detect PALMD expression. Heterozygous Palmd knockout (Palmd+/-) mice were established to explore the role of PALMD in subtotal nephrectomy-induced vascular calcification. RNA sequencing was applied to detect molecular changes in aortas from Palmd+/- mice. Primary Palmd+/- vascular smooth muscle cells (VSMCs) or PALMD-silenced VSMCs by short interfering RNA were used to analyze PALMD function in phenotypic changes and calcification. PALMD haploinsufficiency aggravated subtotal nephrectomy-induced vascular calcification. RNA sequencing analysis showed that loss of PALMD disturbed the synthesis and degradation of the extracellular matrix (ECM) in aortas, including collagens and matrix metalloproteinases (Col6a6, Mmp2, Mmp9, etc.). In vitro experiments revealed that PALMD-deficient VSMCs were more susceptible to high phosphate-induced calcification. Downregulation of SMAD6 expression and increased levels of p-SMAD2 were detected in Palmd+/- VSMCs, suggesting that transforming growth factor-β signaling may be involved in PALMD haploinsufficiency-induced vascular calcification. Our data revealed that PALMD haploinsufficiency causes ECM dysregulation in VSMCs and aggravates vascular calcification. Our findings suggest that reduced PALMD expression is also linked to vascular calcification, and PALMD may be a potential therapeutic target for this disease. NEW & NOTEWORTHY We found that PALMD haploinsufficiency causes extracellular matrix dysregulation, reduced PALMD expression links to vascular calcification, and PALMD mutations may lead to the risk of both calcific aortic valve stenosis and vascular calcification.
Collapse
Affiliation(s)
- Jichao Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Zhao Yang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Congcong Zhang
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Shijuan Gao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yan Liu
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yingkai Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Songyuan He
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jing Yao
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jie Du
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Bin You
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| | - Yingchun Han
- Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, China
| |
Collapse
|
2
|
Yu Y, Cai Y, Yang F, Yang Y, Cui Z, Shi D, Bai R. Vascular smooth muscle cell phenotypic switching in atherosclerosis. Heliyon 2024; 10:e37727. [PMID: 39309965 PMCID: PMC11416558 DOI: 10.1016/j.heliyon.2024.e37727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/25/2024] [Accepted: 09/09/2024] [Indexed: 09/25/2024] Open
Abstract
Atherosclerosis (AS) is a complex pathology process involving intricate interactions among various cells and biological processes. Vascular smooth muscle cells (VSMCs) are the predominant cell type in normal arteries, and under atherosclerotic stimuli, VSMCs respond to altered blood flow and microenvironment changes by downregulating contractile markers and switching their phenotype. This review overviews the diverse phenotypes of VSMCs, including the canonical contractile VSMCs, synthetic VSMCs, and phenotypes resembling macrophages, foam cells, myofibroblasts, osteoblasts/chondrocytes, and mesenchymal stem cells. We summarize their presumed protective and pro-atherosclerotic roles in AS development. Additionally, we underscore the molecular mechanisms and regulatory pathways governing VSMC phenotypic switching, encompassing transcriptional regulation, biochemical factors, plaque microenvironment, epigenetics, miRNAs, and the cytoskeleton, emphasizing their significance in AS development. Finally, we outline probable future research directions targeting VSMCs, offering insights into potential therapeutic strategies for AS management.
Collapse
Affiliation(s)
- Yanqiao Yu
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Yajie Cai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Furong Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Yankai Yang
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Zhuorui Cui
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
- Beijing University of Chinese Medicine, Beijing, 100029, China
| | - Dazhuo Shi
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| | - Ruina Bai
- Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, 100091, China
- National Clinical Research Center for Chinese Medicine Cardiology, Beijing, 100091, China
| |
Collapse
|
3
|
Mencke R, Al Ali L, de Koning MSLY, Pasch A, Minnion M, Feelisch M, van Veldhuisen DJ, van der Horst ICC, Gansevoort RT, Bakker SJL, de Borst MH, van Goor H, van der Harst P, Lipsic E, Hillebrands JL. Serum Calcification Propensity Is Increased in Myocardial Infarction and Hints at a Pathophysiological Role Independent of Classical Cardiovascular Risk Factors. Arterioscler Thromb Vasc Biol 2024; 44:1884-1894. [PMID: 38899469 DOI: 10.1161/atvbaha.124.320974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024]
Abstract
BACKGROUND Vascular calcification is associated with increased mortality in patients with cardiovascular disease. Secondary calciprotein particles are believed to play a causal role in the pathophysiology of vascular calcification. The maturation time (T50) of calciprotein particles provides a measure of serum calcification propensity. We compared T50 between patients with ST-segment-elevated myocardial infarction and control subjects and studied the association of T50 with cardiovascular risk factors and outcome. METHODS T50 was measured by nephelometry in 347 patients from the GIPS-III trial (Metabolic Modulation With Metformin to Reduce Heart Failure After Acute Myocardial Infarction: Glycometabolic Intervention as Adjunct to Primary Coronary Intervention in ST Elevation Myocardial Infarction: a Randomized Controlled Trial) and in 254 matched general population controls from PREVEND (Prevention of Renal and Vascular End-Stage Disease). We also assessed the association between T50 and left ventricular ejection fraction, as well as infarct size, the incidence of ischemia-driven reintervention during 5 years of follow-up, and serum nitrite as a marker of endothelial dysfunction. RESULTS Patients with ST-segment-elevated myocardial infarction had a significantly lower T50 (ie, higher serum calcification propensity) compared with controls (T50: 289±63 versus 338±56 minutes; P<0.001). In patients with ST-segment-elevated myocardial infarction, lower T50 was associated with female sex, lower systolic blood pressure, lower total cholesterol, lower LDL (low-density lipoprotein) cholesterol, lower triglycerides, and higher HDL (high-density lipoprotein) cholesterol but not with circulating nitrite or nitrate. Ischemia-driven reintervention was associated with higher LDL (P=0.03) and had a significant interaction term for T50 and sex (P=0.005), indicating a correlation between ischemia-driven reintervention and T50 above the median in men and below the median in women, between 150 days and 5 years of follow-up. CONCLUSIONS Serum calcification propensity is increased in patients with ST-segment-elevated myocardial infarction compared with the general population, and its contribution is more pronounced in women than in men. Its lack of/inverse association with nitrite and blood pressure confirms T50 to be orthogonal to traditional cardiovascular disease risk factors. Lower T50 was associated with a more favorable serum lipid profile, suggesting the involvement of divergent pathways of calcification stress and lipid stress in the pathophysiology of myocardial infarction.
Collapse
Affiliation(s)
- Rik Mencke
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| | - Lawien Al Ali
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Marie-Sophie L Y de Koning
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Andreas Pasch
- Calciscon AG, Biel, Switzerland (A.P.)
- Institute of Physiology and Pathophysiology, Johannes Kepler University Linz, Austria (A.P.)
| | - Magdalena Minnion
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (M.M., M.F.)
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton and University Hospital Southampton NHS Foundation Trust, United Kingdom (M.M., M.F.)
| | - Dirk J van Veldhuisen
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | | | - Ron T Gansevoort
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Stephan J L Bakker
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Martin H de Borst
- Department of Internal Medicine, Division of Nephrology (R.T.G., S.J.L.B., M.H.d.B.), University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| | - Pim van der Harst
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
- Department of Cardiology, Division Heart and Lungs, University Medical Center Utrecht, the Netherlands (P.v.d.H.)
| | - Erik Lipsic
- Department of Cardiology (L.A.A., M.-S.L.Y.d.K., D.J.v.V., P.v.d.H., E.L.), University Medical Center Groningen, the Netherlands
| | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, Division of Pathology (R.M., H.v.G., J.L.H.), University Medical Center Groningen, the Netherlands
| |
Collapse
|
4
|
Abushamat LA, Schauer IE, Low Wang CC, Mitchell S, Herlache L, Bridenstine M, Durbin R, Snell-Bergeon JK, Regensteiner JG, Reusch JE. Rosiglitazone improves insulin resistance but does not improve exercise capacity in individuals with impaired glucose tolerance: A randomized clinical study. J Investig Med 2024; 72:294-304. [PMID: 38148342 DOI: 10.1177/10815589231225183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Dysmetabolic states, such as type 2 diabetes (T2D), characterized by insulin resistance (IR), are associated with fatty liver, increased cardiovascular disease (CVD) risk, and decreased functional exercise capacity (FEC). Rosiglitazone (RO) improves exercise capacity and IR in T2D. However, the effects of RO on FEC and other markers of CVD risk in prediabetes are unknown. We hypothesized that insulin sensitization with RO would improve exercise capacity and markers of CVD risk in participants with impaired glucose tolerance (IGT). Exercise performance (peak oxygen consumption and oxygen uptake kinetics), IR (homeostasis model assessment of IR and quantitative insulin sensitivity check index), and surrogate cardiovascular endpoints (coronary artery calcium (CAC) volume and density and C-reactive protein (CRP)) were measured in participants with IGT after 12 and 18 months of RO or placebo (PL). RO did not significantly improve exercise capacity. Glycemic measures and IR were significantly lower in people on RO compared to PL at 18 months. CAC volume progression was not different between PL and RO groups. RO did not improve exercise capacity during an 18-month intervention despite improved IR and glycemia in people with IGT. Future studies should explore why effects on FEC with RO occur in T2D but not IGT. Understanding these questions may help in targeting therapeutic approaches in T2D and IGT.
Collapse
Affiliation(s)
- Layla A Abushamat
- Department of Medicine, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Irene E Schauer
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
- Endocrine Section, Denver Veterans Affairs Medical Center, Denver, CO, USA
- Ludeman Family Center for Women's Health Research, Aurora, CO, USA
| | - Cecilia C Low Wang
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | - Stacey Mitchell
- Endocrine Section, Denver Veterans Affairs Medical Center, Denver, CO, USA
- Denver Endocrinology, Diabetes and Thyroid Center, Englewood, CO, USA
| | - Leah Herlache
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
| | | | - Roy Durbin
- Arbor Family Medicine PC, Westminster, CO, USA
| | - Janet K Snell-Bergeon
- Barbara Davis Center for Diabetes, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- University of Colorado Anschutz Medical Campus School of Public Health, Aurora, CO, USA
| | - Judith G Regensteiner
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
- Ludeman Family Center for Women's Health Research, Aurora, CO, USA
| | - Jane Eb Reusch
- Department of Medicine, University of Colorado Anschutz Medical Campus School of Medicine, Aurora, CO, USA
- Endocrine Section, Denver Veterans Affairs Medical Center, Denver, CO, USA
- Ludeman Family Center for Women's Health Research, Aurora, CO, USA
| |
Collapse
|
5
|
McNeill MC, Li Mow Chee F, Ebrahimighaei R, Sala-Newby GB, Newby AC, Hathway T, Annaiah AS, Joseph S, Carrabba M, Bond M. Substrate stiffness promotes vascular smooth muscle cell calcification by reducing the levels of nuclear actin monomers. J Mol Cell Cardiol 2024; 187:65-79. [PMID: 38181546 DOI: 10.1016/j.yjmcc.2023.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/07/2024]
Abstract
BACKGROUND Vascular calcification (VC) is a prevalent independent risk factor for adverse cardiovascular events and is associated with diabetes, hypertension, chronic kidney disease, and atherosclerosis. However, the mechanisms regulating the osteogenic differentiation of vascular smooth muscle cells (VSMC) are not fully understood. METHODS Using hydrogels of tuneable stiffness and lysyl oxidase-mediated stiffening of human saphenous vein ex vivo, we investigated the role of substrate stiffness in the regulation of VSMC calcification. RESULTS We demonstrate that increased substrate stiffness enhances VSMC osteogenic differentiation and VSMC calcification. We show that the effects of substrate stiffness are mediated via a reduction in the level of actin monomer within the nucleus. We show that in cells interacting with soft substrate, elevated levels of nuclear actin monomer repress osteogenic differentiation and calcification by repressing YAP-mediated activation of both TEA Domain transcription factor (TEAD) and RUNX Family Transcription factor 2 (RUNX2). CONCLUSION This work highlights for the first time the role of nuclear actin in mediating substrate stiffness-dependent VSMC calcification and the dual role of YAP-TEAD and YAP-RUNX2 transcriptional complexes.
Collapse
Affiliation(s)
- M C McNeill
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - F Li Mow Chee
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - R Ebrahimighaei
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - G B Sala-Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A C Newby
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - T Hathway
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - A S Annaiah
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - S Joseph
- Bristol Heart Institute, University Hospital, Bristol NHS Foundation Trust, Bristol BS2 8HW, United Kingdom
| | - M Carrabba
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom
| | - M Bond
- Department of Translational Health Sciences, Bristol Medical School, Bristol BS2 8HW, United Kingdom.
| |
Collapse
|
6
|
Schade DS, Hickey M, Eaton RP. Interpreting the Coronary Artery Calcium Score - Critical Information for the Practicing Physician. Am J Med 2023; 136:1070-1075. [PMID: 37660746 DOI: 10.1016/j.amjmed.2023.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 09/05/2023]
Abstract
Coronary artery calcium scanning is a routine test for assessing the severity of atherosclerosis in asymptomatic individuals. This inexpensive, noninvasive test quantifies the calcium deposition in the 4 principal coronary arteries. Correct interpretation is important to the physician (for recommending therapy) and to the patient (for determining his or her lifetime risk of a cardiovascular event). A score of 0 indicates that a cardiovascular event is extremely unlikely in the next 5 years. In contrast, a score greater than 0 portends a coronary event. The higher the score, the greater the risk. Both the arterial location of the calcium and the number of coronary arteries involved alter the interpretation of the calcium score. At any given age, females have significantly lower scores than males. One-third of individuals with scores greater than 1000 will have a cardiovascular event within 3 years. For all elevated calcium scores, aggressive treatment is warranted, including significant lifestyle changes and medications to reduce low-density lipoprotein cholesterol. Understanding the importance of the coronary artery calcium score will result in improved therapy and patient compliance.
Collapse
Affiliation(s)
- David S Schade
- University of New Mexico Health Sciences Center, Albuquerque.
| | - Martin Hickey
- University of New Mexico Health Sciences Center, Albuquerque
| | - R Philip Eaton
- University of New Mexico Health Sciences Center, Albuquerque
| |
Collapse
|
7
|
Huang SS, Huang WC, Tsai CT, Chen YY, Lee SH, Lu TM. Plasma asymmetric dimethylarginine is associated with vulnerable plaque and long-term outcomes in stable coronary artery disease. Sci Rep 2023; 13:7541. [PMID: 37160906 PMCID: PMC10169809 DOI: 10.1038/s41598-023-32728-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 03/31/2023] [Indexed: 05/11/2023] Open
Abstract
Asymmetric dimethylarginine (ADMA) is considered to be an atherogenic molecule. We aimed to investigate the relationship between ADMA and plaque vulnerability assessed by optical coherence tomography (OCT) in patients with stable coronary artery disease (CAD). Two hundred and forty-five patients with stable CAD undergoing OCT-guided percutaneous coronary intervention were included in this study and were divided into two groups according to their ADMA levels. Micro-vessel, macrophage accumulation, thin-cap fibroatheroma, intra-plaque calcium and lipid core content, and vulnerable score (VS) were evaluated by OCT analysis. The patients with higher ADMA levels had significantly higher calcium and lipid content (p < 0.001, respectively). There were significantly more micro-vessel and macrophage (32.8%, p = 0.004 and 52.5%, p < 0.001, respectively) and higher VS (87.7 ± 17.6, p < 0.001) in the higher ADMA group. Moreover, plasma ADMA level was significantly correlated with the intra-plaque lipid, calcium content and VS (p < 0.001, respectively). Plasma ADMA level was identified as an independent predictor of future adverse cardiovascular events, following OCT-guided PCI. In patients with stable CAD, higher plasma ADMA levels were significantly associated with the presence of intra-plaque lipid, calcification, vulnerable plaque, and poor long-term outcomes.
Collapse
Affiliation(s)
- Shao-Sung Huang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Wei-Chieh Huang
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
- Department of Biomedical Engineering, National Taiwan University, Taipei, Taiwan, ROC
| | - Chuan-Tsai Tsai
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC
| | - Ying-Ying Chen
- Division of Nephrology, Department of Internal Medicine, MacKay Memorial Hospital, Taipei, Taiwan, ROC
| | - Sheng-Hua Lee
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC
| | - Tse-Min Lu
- Division of Cardiology, Department of Internal Medicine, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
- Department of Internal Medicine, School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, ROC.
- Department of Health Care Center, Taipei Veterans General Hospital, Taipei, Taiwan, ROC.
| |
Collapse
|
8
|
Wang M, Liu Y, Zhang L, Chen L, Zhao W, Zhang H, Wu H. A study of the relationship between brachial artery vasodilation and platelet/lymphocyte ratio in diabetic patients with coronary atherosclerosis. J Clin Lab Anal 2023; 37:e24935. [PMID: 37352165 PMCID: PMC10388224 DOI: 10.1002/jcla.24935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 04/11/2023] [Accepted: 06/11/2023] [Indexed: 06/25/2023] Open
Abstract
BACKGROUND To investigate the correlation between brachial artery flow-mediated endothelium-dependent dilation (FMD) and platelet-lymphocyte ratio (PLR) in peripheral blood and coronary atherosclerosis in diabetic patients. METHODS Seventy-five diabetic patients aged 62 ± 9 years, 68% male and 32% female, who underwent brachial artery endothelial function test and coronary CT scan were collected. Coronary artery calcification (CAC) was observed to assess the presence of coronary atherosclerosis, and high-resolution extravascular ultrasound was used to detect FMD. Platelet count and lymphocyte count were recorded by routine blood tests, and PLR was calculated for each study subject. Statistical methods were used to verify the association of FMD and PLR with CAC assessed by CT, respectively. RESULTS Patients with coronary atherosclerosis had decreased FMD and increased PLR compared with patients with normal coronary arteries. Univariate logistic regression analysis showed that CAC score was significantly associated with both FMD (odds ratio: 0.167; 95% confidence interval: 0.049-0.565; p = 0.002) and PLR (odds ratio: 0.127; 95% confidence interval: 0.033-0.484; p = 0.001) at FMD < 5.1% or PLR > 130. The area under the ROC curve of FMD and PLR alone was 0.760 and 0.763, respectively. In addition, combined diagnosis of FMD and PLR showed the highest area under the ROC curve (0.830). CONCLUSION FMD combined with PLR is expected to be a precise diagnostic modality for coronary artery calcification in diabetic patients.
Collapse
Affiliation(s)
- Meiling Wang
- Ultrasound DepartmentThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Yanjie Liu
- Ultrasound DepartmentThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Lei Zhang
- Ultrasound DepartmentThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Li Chen
- Ultrasound DepartmentThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Wei Zhao
- Ultrasound DepartmentThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| | - Hebin Zhang
- Ultrasound DepartmentThe Affiliated Hospital of Hangzhou Normal UniversityHangzhouChina
| | - Hao Wu
- Ultrasound DepartmentThe Second Affiliated Hospital of Zhejiang Chinese Medical UniversityHangzhouChina
| |
Collapse
|
9
|
Phadwal K, Koo E, Jones RA, Forsythe RO, Tang K, Tang Q, Corcoran BM, Caporali A, MacRae VE. Metformin protects against vascular calcification through the selective degradation of Runx2 by the p62 autophagy receptor. J Cell Physiol 2022; 237:4303-4316. [PMID: 36166694 DOI: 10.1002/jcp.30887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 09/04/2022] [Accepted: 09/06/2022] [Indexed: 11/09/2022]
Abstract
Vascular calcification is associated with aging, type 2 diabetes, and atherosclerosis, and increases the risk of cardiovascular morbidity and mortality. It is an active, highly regulated process that resembles physiological bone formation. It has previously been established that pharmacological doses of metformin alleviate arterial calcification through adenosine monophosphate-activated protein kinase (AMPK)-activated autophagy, however the specific pathway remains elusive. In the present study we hypothesized that metformin protects against arterial calcification through the direct autophagic degradation of runt-related transcription factor 2 (Runx2). Calcification was blunted in vascular smooth muscle cells (VSMCs) by metformin in a dose-dependent manner (0.5-1.5 mM) compared to control cells (p < 0.01). VSMCs cultured under high-phosphate (Pi) conditions in the presence of metformin (1 mM) showed a significant increase in LC3 puncta following bafilomycin-A1 (Baf-A; 5 nM) treatment compared to control cells (p < 0.001). Furthermore, reduced expression of Runx2 was observed in the nuclei of metformin-treated calcifying VSMCs (p < 0.0001). Evaluation of the functional role of autophagy through Atg3 knockdown in VSMCs showed aggravated Pi-induced calcification (p < 0.0001), failure to induce autophagy (punctate LC3) (p < 0.001) and increased nuclear Runx2 expression (p < 0.0001) in VSMCs cultured under high Pi conditions in the presence of metformin (1 mM). Mechanistic studies employing three-way coimmunoprecipitation with Runx2, p62, and LC3 revealed that p62 binds to both LC3 and Runx2 upon metformin treatment in VSMCs. Furthermore, immunoblotting with LC3 revealed that Runx2 specifically binds with p62 and LC3-II in metformin-treated calcified VSMCs. Lastly, we investigated the importance of the autophagy pathway in vascular calcification in a clinical setting. Ex vivo clinical analyses of calcified diabetic lower limb artery tissues highlighted a negative association between Runx2 and LC3 in the vascular calcification process. These studies suggest that exploitation of metformin and its analogues may represent a novel therapeutic strategy for clinical intervention through the induction of AMPK/Autophagy Related 3 (Atg3)-dependent autophagy and the subsequent p62-mediated autophagic degradation of Runx2.
Collapse
Affiliation(s)
- Kanchan Phadwal
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Eve Koo
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Ross A Jones
- Edinburgh Medical School, The University of Edinburgh, Edinburgh, UK
- Euan MacDonald Centre for Motor Neurone Disease Research, The University of Edinburgh, Edinburgh, UK
| | - Rachael O Forsythe
- Centre for Cardiovascular Science, The Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
- Department of Vascular Surgery, Edinburgh Royal Infirmary, Edinburgh, UK
| | - Keyi Tang
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Qiyu Tang
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Brendan M Corcoran
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| | - Andrea Caporali
- Centre for Cardiovascular Science, The Queens Medical Research Institute, University of Edinburgh, Edinburgh, UK
| | - Vicky E MacRae
- The Roslin Institute and R(D)SVS, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
10
|
Vascular calcification in different arterial beds in ex vivo ring culture and in vivo rat model. Sci Rep 2022; 12:11861. [PMID: 35831341 PMCID: PMC9279329 DOI: 10.1038/s41598-022-15739-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 06/28/2022] [Indexed: 11/08/2022] Open
Abstract
Vascular calcification is a risk factor for cardiovascular and kidney diseases. Medial calcification may differently affect the arterial tree depending on vessel location and smooth muscle injury. The aim was to map the anatomical distribution of vascular calcifications on different arteries and artery locations, in cultured artery rings (ex vivo) and in a rat model of elastocalcinosis (in vivo). Vascular calcification was assessed histologically (von Kossa staining of the media) and by calcium content measurement. Arteries of different sizes were harvested from untreated rats for ring culture and from the vitamin D3-nicotine (VDN) rat model for direct observation. When cultured in pro-calcifying conditions, thoracic aorta exhibited similar calcification from the arch to the diaphragm. Calcification increased in abdominal aorta along with the reduction in cross sectional area. Carotid and renal arteries exhibited similar ex vivo calcification. In VDN rats, calcification was greater in carotid artery than in aorta, and was accompanied by fibrosis and apoptosis. Ex vivo, calcification was increased by the induction of lesions on arteries. Along the vascular tree, calcification of the arterial wall increases with the narrowing of vessels in ex vivo ring culture and in vivo. The observed differences represent local susceptibility of the vessels to the calcifying processes.
Collapse
|
11
|
Kadıoğlu A, Bahadır S. Breast arterial calcifications as an indicator of atherosclerotic cardiovascular disease: comparative analysis of coronary computed tomography scoring systems and carotid intima-media thickness. Quant Imaging Med Surg 2022; 12:457-469. [PMID: 34993093 DOI: 10.21037/qims-21-98] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 05/27/2021] [Indexed: 11/06/2022]
Abstract
BACKGROUND Breast arterial calcification (BAC) is easily detected and commonly observed on screening mammography. That is more frequent among people with diabetes, and these people are at risk of coronary artery disease. The incidence of BAC increases with advancing age. We aimed to determine whether BAC detected by mammography is associated with the development of coronary atherosclerosis in asymptomatic women. It can help reduce morbidity and mortality secondary to atherosclerotic cardiovascular disease. METHODS We included one hundred and eighty women over the age of 40 who underwent mammography screening in this multi-modality study. Mammography evaluated the presence of calcifications, the number of involved arteries, and the distribution. We questioned the patients about cardiovascular risk factors such as hypertension and diabetes. The coronary artery disease severity was assessed according to both Agatston and calcium scores on coronary computed tomography (CT). Besides, the relationship between these scores and correlation with carotid artery intima-media thickness was investigated. We stated mean and standard deviation (SD) for continuous variables and reported frequency distributions and percentages. SPSS software version 25.0 was used to perform the analysis. RESULTS Overall, 302 of 3,600 cases were positive for BAC. However, 120 of them could be included in the study by the eligibility criteria of our research. In univariate analysis, age, hyperlipidemia, DM, HT, and smoking history were risk factors that significantly affected BAC development. The impact of age and diabetes were maintained in the logistic regression analysis (P<0.005), while the significant effect of the other variables was vanished (P>0.02). Furthermore, moderate and high BAC scores were correlated with higher coronary atherosclerosis scores. CONCLUSIONS BAC may predict an additional risk factor for coronary artery disease, particularly in patients having higher scores. That may be an accurate indicator for subsequent development of coronary arterial calcifications so that it may be possible to reduce morbidity and mortality associated with coronary atherosclerosis.
Collapse
Affiliation(s)
- Aykut Kadıoğlu
- Radiology Department, Başkent University Alanya Medical Research and Training Hospital, Antalya, Turkey
| | - Suzan Bahadır
- Radiology Department, Başkent University Alanya Medical Research and Training Hospital, Antalya, Turkey
| |
Collapse
|
12
|
Shafter AM, Shaikh K, Johanis A, Budoff MJ. De-risking primary prevention: role of imaging. Ther Adv Cardiovasc Dis 2021; 15:17539447211051248. [PMID: 34821189 PMCID: PMC8640319 DOI: 10.1177/17539447211051248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is a common disease among the general population, and includes four major areas: (1) coronary heart disease (CHD), manifested by stable angina, unstable angina, myocardial infarction (MI), heart failure, and coronary death; (2) cerebrovascular disease, manifested by transient ischemia attack and stroke; (3) peripheral vascular disease, manifested by claudication and critical limb ischemia; and (4) aortic atherosclerosis and aortic aneurysm (thoracic and abdominal). CHD remains the leading cause of death for both men and women in the United States. So, it is imperative to identify people at risk of CHD and provide appropriate medical treatment or intervention to prevent serious complications and outcomes including sudden cardiac death. Coronary artery calcification (CAC) is a marker of subclinical coronary artery disease. Therefore, coronary artery calcium score is an important screening method for Coronary artery disease (CAD). In this article, we performed a comprehensive review of current literatures and studies assessing the prognostic value of CAC for future cardiovascular disease (CVD) events. We searched PubMed, MEDLINE, Google Scholar, and Cochrane library. We also reviewed the 2018 American College of Cardiology (ACC)/American Heart Association (AHA) guideline on the assessment of CVD risk. A CAC score of zero corresponds to very low CVD event rates (∼1% per year) and hence a potent negative risk marker. This has been referred to as the ‘power of zero’ and affords the lowest risk of any method of risk calculation. It is now indicated in the 2018 ACC/AHA Cholesterol guidelines to be used to avoid statins for 5–10 years after a score of zero, and then re-assess the patient.
Collapse
Affiliation(s)
- Ahmed M Shafter
- Division of Cardiology, Department of Medicine, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Kashif Shaikh
- Division of Cardiology, Department of Medicine, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Amit Johanis
- Division of Cardiology, Department of Medicine, Los Angeles Biomedical Research Institute, Torrance, CA, USA
| | - Matthew J Budoff
- Division of Cardiology, Department of Medicine, Los Angeles Biomedical Research Institute, 1124 W Carson Street, Bldg RB-2, Torrance, CA 90502-2064, USA
| |
Collapse
|
13
|
Shen J, Zhao M, Zhang C, Sun X. IL-1β in atherosclerotic vascular calcification: From bench to bedside. Int J Biol Sci 2021; 17:4353-4364. [PMID: 34803503 PMCID: PMC8579452 DOI: 10.7150/ijbs.66537] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 10/11/2021] [Indexed: 01/19/2023] Open
Abstract
Atherosclerotic vascular calcification contributes to increased risk of death in patients with cardiovascular diseases. Assessing the type and severity of inflammation is crucial in the treatment of numerous cardiovascular conditions. IL-1β, a potent proinflammatory cytokine, plays diverse roles in the pathogenesis of atherosclerotic vascular calcification. Several large-scale, population cohort trials have shown that the incidence of cardiovascular events is clinically reduced by the administration of anti-IL-1β therapy. Anti-IL-1β therapy might reduce the incidence of cardiovascular events by affecting atherosclerotic vascular calcification, but the mechanism underlying this effect remains unclear. In this review, we summarize current knowledge on the role of IL-1β in atherosclerotic vascular calcification, and describe the latest results reported in clinical trials evaluating anti-IL-1β therapies for the treatment of cardiovascular diseases. This review will aid in improving current understanding of the pathophysiological roles of IL-1β and mechanisms underlying its activity.
Collapse
Affiliation(s)
- Jialing Shen
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Ming Zhao
- Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China
| | - Chunxiang Zhang
- Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Xiaolei Sun
- Department of General Surgery (Vascular Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Department of Interventional Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou 646000, China.,Laboratory of Nucleic Acids in Medicine for National high-level talents, Southwest Medical University, Luzhou 646000, China.,School of Cardiovascular Medicine and Sciences, King's College London British Heart Foundation Centre of Research Excellence, Faculty of Life Science and Medicine, King's College London, London SE5 9NU, United Kingdom.,Centre for Clinical Pharmacology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom.,Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China.,Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, 646000, China.,Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou 646000, China
| |
Collapse
|
14
|
Feng L, Que D, Li Z, Zhong X, Yan J, Wei J, Zhang X, Yang P, Ou C, Chen M. Dihydromyricetin ameliorates vascular calcification in chronic kidney disease by targeting AKT signaling. Clin Sci (Lond) 2021; 135:2483-2502. [PMID: 34643227 DOI: 10.1042/cs20210259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 10/08/2021] [Accepted: 10/12/2021] [Indexed: 12/29/2022]
Abstract
Vascular calcification is highly prevalent in chronic kidney disease (CKD), and is characterized by transdifferentiation from contractile vascular smooth muscle cells (VSMCs) into an osteogenic phenotype. However, no effective and therapeutic option to prevent vascular calcification is yet available. Dihydromyricetin (DMY), a bioactive flavonoid isolated from Ampelopsis grossedentata, has been found to inhibit VSMCs proliferation and the injury-induced neointimal formation. However, whether DMY has an effect on osteogenic differentiation of VSMCs and vascular calcification is still unclear. In the present study, we sought to investigate the effect of DMY on vascular calcification in CKD and the underlying mechanism. DMY treatment significantly attenuated calcium/phosphate-induced calcification of rat and human VSMCs in a dose-dependent manner, as shown by Alizarin Red S staining and calcium content assay, associated with down-regulation of osteogenic markers including type I collagen (COL I), Runt-related transcription factor 2 (RUNX2), bone morphogenetic protein 2 (BMP2) and osteocalcin (OCN). These results were further confirmed in aortic rings ex vivo. Moreover, DMY ameliorated vascular calcification in rats with CKD. Additionally, we found that AKT signaling was activated during vascular calcification, whereas significantly inhibited by DMY administration. DMY treatment significantly reversed AKT activator-induced vascular calcification. Furthermore, inhibition of AKT signaling efficiently attenuated calcification, which was similar to that after treatment with DMY alone, and DMY had a better inhibitory effect on calcification as compared with AKT inhibitor. The present study demonstrated that DMY has a potent inhibitory role in vascular calcification partially by inhibiting AKT activation, suggesting that DMY may act as a promising therapeutic candidate for patients suffering from vascular calcification.
Collapse
MESH Headings
- Animals
- Aorta/drug effects
- Aorta/enzymology
- Aorta/pathology
- Aortic Diseases/enzymology
- Aortic Diseases/etiology
- Aortic Diseases/pathology
- Aortic Diseases/prevention & control
- Cells, Cultured
- Disease Models, Animal
- Flavonols/pharmacology
- Humans
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/enzymology
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/enzymology
- Myocytes, Smooth Muscle/pathology
- Osteogenesis/drug effects
- Phosphorylation
- Proto-Oncogene Proteins c-akt/genetics
- Proto-Oncogene Proteins c-akt/metabolism
- Rats, Sprague-Dawley
- Renal Insufficiency, Chronic/complications
- Renal Insufficiency, Chronic/drug therapy
- Renal Insufficiency, Chronic/enzymology
- Renal Insufficiency, Chronic/pathology
- Signal Transduction
- Vascular Calcification/enzymology
- Vascular Calcification/etiology
- Vascular Calcification/pathology
- Vascular Calcification/prevention & control
- Rats
Collapse
Affiliation(s)
- Liyun Feng
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Dongdong Que
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Zehua Li
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xinglong Zhong
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jing Yan
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Jintao Wei
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Xiuli Zhang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Pingzhen Yang
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Caiwen Ou
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| | - Minsheng Chen
- Department of Cardiology, Laboratory of Heart Center, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
- Guangdong Provincial Biomedical Engineering Technology Research Center for Cardiovascular Disease, Guangzhou, P.R. China
- Sino-Japanese Cooperation Platform for Translational Research in Heart Failure, Zhujiang Hospital, Southern Medical University, Guangzhou, P.R. China
| |
Collapse
|
15
|
Zhang L, Li L, Feng G, Fan T, Jiang H, Wang Z. Advances in CT Techniques in Vascular Calcification. Front Cardiovasc Med 2021; 8:716822. [PMID: 34660718 PMCID: PMC8511450 DOI: 10.3389/fcvm.2021.716822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Accepted: 08/30/2021] [Indexed: 12/17/2022] Open
Abstract
Vascular calcification, a common pathological phenomenon in atherosclerosis, diabetes, hypertension, and other diseases, increases the incidence and mortality of cardiovascular diseases. Therefore, the prevention and detection of vascular calcification play an important role. At present, various techniques have been applied to the analysis of vascular calcification, but clinical examination mainly depends on non-invasive and invasive imaging methods to detect and quantify. Computed tomography (CT), as a commonly used clinical examination method, can analyze vascular calcification. In recent years, with the development of technology, in addition to traditional CT, some emerging types of CT, such as dual-energy CT and micro CT, have emerged for vascular imaging and providing anatomical information for calcification. This review focuses on the latest application of various CT techniques in vascular calcification.
Collapse
Affiliation(s)
- Lijie Zhang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lihua Li
- Department of Pathology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoquan Feng
- Department of Radiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Tingpan Fan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Han Jiang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
16
|
Cobb AM, Yusoff S, Hayward R, Ahmad S, Sun M, Verhulst A, D'Haese PC, Shanahan CM. Runx2 (Runt-Related Transcription Factor 2) Links the DNA Damage Response to Osteogenic Reprogramming and Apoptosis of Vascular Smooth Muscle Cells. Arterioscler Thromb Vasc Biol 2021; 41:1339-1357. [PMID: 33356386 DOI: 10.1161/atvbaha.120.315206] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 12/08/2020] [Indexed: 01/08/2023]
Abstract
[Figure: see text].
Collapse
MESH Headings
- Animals
- Apoptosis
- Cells, Cultured
- Cellular Reprogramming
- Core Binding Factor Alpha 1 Subunit/genetics
- Core Binding Factor Alpha 1 Subunit/metabolism
- DNA Damage
- Disease Models, Animal
- Female
- Histones/metabolism
- Humans
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Osteogenesis
- Phosphorylation
- Rats, Wistar
- Signal Transduction
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Mice
- Rats
Collapse
Affiliation(s)
- Andrew M Cobb
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Syabira Yusoff
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Robert Hayward
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Sadia Ahmad
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Mengxi Sun
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| | - Anja Verhulst
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Patrick C D'Haese
- Laboratory of Pathophysiology, Department of Biomedical Sciences, University of Antwerp, Wilrijk, Belgium (A.V., P.C.D.)
| | - Catherine M Shanahan
- BHF Centre of Research Excellence, School of Cardiovascular Medicine and Sciences, King's College London, The James Black Centre, United Kingdom (A.M.C., S.Y., R.H., S.A., M.S., C.M.S.)
| |
Collapse
|
17
|
Vidavsky N, Kunitake JAMR, Estroff LA. Multiple Pathways for Pathological Calcification in the Human Body. Adv Healthc Mater 2021; 10:e2001271. [PMID: 33274854 PMCID: PMC8724004 DOI: 10.1002/adhm.202001271] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/16/2020] [Indexed: 12/12/2022]
Abstract
Biomineralization of skeletal components (e.g., bone and teeth) is generally accepted to occur under strict cellular regulation, leading to mineral-organic composites with hierarchical structures and properties optimized for their designated function. Such cellular regulation includes promoting mineralization at desired sites as well as inhibiting mineralization in soft tissues and other undesirable locations. In contrast, pathological mineralization, with potentially harmful health effects, can occur as a result of tissue or metabolic abnormalities, disease, or implantation of certain biomaterials. This progress report defines mineralization pathway components and identifies the commonalities (and differences) between physiological (e.g., bone remodeling) and pathological calcification formation pathways, based, in part, upon the extent of cellular control within the system. These concepts are discussed in representative examples of calcium phosphate-based pathological mineralization in cancer (breast, thyroid, ovarian, and meningioma) and in cardiovascular disease. In-depth mechanistic understanding of pathological mineralization requires utilizing state-of-the-art materials science imaging and characterization techniques, focusing not only on the final deposits, but also on the earlier stages of crystal nucleation, growth, and aggregation. Such mechanistic understanding will further enable the use of pathological calcifications in diagnosis and prognosis, as well as possibly provide insights into preventative treatments for detrimental mineralization in disease.
Collapse
Affiliation(s)
- Netta Vidavsky
- Department of Chemical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, 8410501, Israel
| | - Jennie A M R Kunitake
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Lara A Estroff
- Department of Materials Science and Engineering, Cornell University, Ithaca, NY, 14853, USA
- Kavli Institute at Cornell for Nanoscale Science, Ithaca, NY, 14853, USA
| |
Collapse
|
18
|
Triglyceride Glucose-Waist Circumference Better Predicts Coronary Calcium Progression Compared with Other Indices of Insulin Resistance: A Longitudinal Observational Study. J Clin Med 2020; 10:jcm10010092. [PMID: 33383953 PMCID: PMC7795085 DOI: 10.3390/jcm10010092] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/21/2020] [Accepted: 12/25/2020] [Indexed: 12/16/2022] Open
Abstract
The triglyceride glucose (TyG) index, a product of triglyceride and fasting glucose, is a reliable marker for insulin resistance. We aimed to investigate the association between the TyG-related markers and coronary artery calcification (CAC) progression. We enrolled 1145 asymptomatic participants who underwent repeated CAC score measurements during routine health examinations. Homeostasis model assessment of insulin resistance (HOMA-IR), TyG index, TyG-BMI (body mass index), and TyG-WC (waist circumference) were calculated. Progression of CAC was defined as (1) incident CAC in a CAC-free population, or an (2) increase of ≥2.5 units between the baseline and final square root of the CAC scores in participants with detectable CAC. According to the quartiles of parameters, we stratified the subjects into four groups. The prevalence of progression increased with the TyG-WC quartile (15.0%, 24.1%, 31.0%, and 32.2% for each of the groups; p < 0.001). The multivariate-adjusted odds ratio (95% confidence interval) for CAC score progression was 1.66 (1.01–2.77) when the highest and lowest TyG-WC index quartiles were compared. Furthermore, the predictability of TyG-WC for CAC progression was better than the other indices in terms of the area under the curve. The TyG-WC index predicted CAC progression better than other indices and could be a potential marker of future coronary atherosclerosis.
Collapse
|
19
|
Holmar J, de la Puente-Secades S, Floege J, Noels H, Jankowski J, Orth-Alampour S. Uremic Toxins Affecting Cardiovascular Calcification: A Systematic Review. Cells 2020; 9:cells9112428. [PMID: 33172085 PMCID: PMC7694747 DOI: 10.3390/cells9112428] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 10/29/2020] [Accepted: 11/04/2020] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular calcification is highly prevalent and associated with increased morbidity in chronic kidney disease (CKD). This review examines the impact of uremic toxins, which accumulate in CKD due to a failing kidney function, on cardiovascular calcification. A systematic literature search identified 41 uremic toxins that have been studied in relation to cardiovascular calcification. For 29 substances, a potentially causal role in cardiovascular calcification was addressed in in vitro or animal studies. A calcification-inducing effect was revealed for 16 substances, whereas for three uremic toxins, namely the guanidino compounds asymmetric and symmetric dimethylarginine, as well as guanidinosuccinic acid, a calcification inhibitory effect was identified in vitro. At a mechanistic level, effects of uremic toxins on calcification could be linked to the induction of inflammation or oxidative stress, smooth muscle cell osteogenic transdifferentiation and/or apoptosis, or alkaline phosphatase activity. For all middle molecular weight and protein-bound uremic toxins that were found to affect cardiovascular calcification, an increasing effect on calcification was revealed, supporting the need to focus on an increased removal efficiency of these uremic toxin classes in dialysis. In conclusion, of all uremic toxins studied with respect to calcification regulatory effects to date, more uremic toxins promote rather than reduce cardiovascular calcification processes. Additionally, it highlights that only a relatively small part of uremic toxins has been screened for effects on calcification, supporting further investigation of uremic toxins, as well as of associated post-translational modifications, on cardiovascular calcification processes.
Collapse
Affiliation(s)
- Jana Holmar
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
| | - Sofia de la Puente-Secades
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
| | - Jürgen Floege
- Division of Nephrology, RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany;
| | - Heidi Noels
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Department of Biochemistry, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University, 6229 ER Maastricht, The Netherlands
| | - Joachim Jankowski
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Department of Pathology, Cardiovascular Research Institute Maastricht (CARIM), Maastricht University Medical Centre, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence: (J.J.); (S.O.-A.); Tel.: +49-241-80-80580 (J.J. & S.O.-A.)
| | - Setareh Orth-Alampour
- Institute for Molecular Cardiovascular Research (IMCAR), RWTH Aachen University, University Hospital Aachen, 52074 Aachen, Germany; (J.H.); (S.d.l.P.-S.); (H.N.)
- Correspondence: (J.J.); (S.O.-A.); Tel.: +49-241-80-80580 (J.J. & S.O.-A.)
| |
Collapse
|
20
|
Lim K, McGregor G, Coggan AR, Lewis GD, Moe SM. Cardiovascular Functional Changes in Chronic Kidney Disease: Integrative Physiology, Pathophysiology and Applications of Cardiopulmonary Exercise Testing. Front Physiol 2020; 11:572355. [PMID: 33041870 PMCID: PMC7522507 DOI: 10.3389/fphys.2020.572355] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Accepted: 08/21/2020] [Indexed: 12/24/2022] Open
Abstract
The development of cardiovascular disease during renal impairment involves striking multi-tiered, multi-dimensional complex alterations encompassing the entire oxygen transport system. Complex interactions between target organ systems involving alterations of the heart, vascular, musculoskeletal and respiratory systems occur in Chronic Kidney Disease (CKD) and collectively contribute to impairment of cardiovascular function. These systemic changes have challenged our diagnostic and therapeutic efforts, particularly given that imaging cardiac structure at rest, rather than ascertainment under the stress of exercise, may not accurately reflect the risk of premature death in CKD. The multi-systemic nature of cardiovascular disease in CKD patients provides strong rationale for an integrated approach to the assessment of cardiovascular alterations in this population. State-of-the-art cardiopulmonary exercise testing (CPET) is a powerful, dynamic technology that enables the global assessment of cardiovascular functional alterations and reflects the integrative exercise response and complex machinery that form the oxygen transport system. CPET provides a wealth of data from a single assessment with mechanistic, physiological and prognostic utility. It is an underutilized technology in the care of patients with kidney disease with the potential to help advance the field of cardio-nephrology. This article reviews the integrative physiology and pathophysiology of cardio-renal impairment, critical new insights derived from CPET technology, and contemporary evidence for potential applications of CPET technology in patients with kidney disease.
Collapse
Affiliation(s)
- Kenneth Lim
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| | - Gordon McGregor
- Coventry University Hospital, Coventry and Warwickshire NHS Trust, Coventry, United Kingdom.,Warwick Clinical Trials Unit, Warwick Medical School, University of Warwick, Coventry, United Kingdom
| | - Andrew R Coggan
- Department of Kinesiology, Indiana University - Purdue University, Indianapolis, IN, United States
| | - Gregory D Lewis
- Division of Cardiology, The Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Sharon M Moe
- Division of Nephrology, Indiana University School of Medicine, Indianapolis, IN, United States
| |
Collapse
|
21
|
Abrão SR, Campos CM, Cavalcante R, Eggermont J, Lemos P, Lederman A, da Silva ES, Aun R, Belczak SQ, Abizaid A, de Brito FS. Percutaneous endovascular delivery of calcium chloride to the intact porcine carotid artery: A novel animal model of arterial calcification. Catheter Cardiovasc Interv 2020; 96:E484-E492. [PMID: 32558228 DOI: 10.1002/ccd.29070] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 05/26/2020] [Indexed: 11/09/2022]
Abstract
OBJECTIVE The present study evaluated the effect of endovascular administration of calcium chloride to the carotid artery of swines, to create a model of arterial calcification. METHODS Fifteen Large White pigs were used for the study. Via endovascular treatment, carotid arteries were exposed during 9 min to either calcium chloride (experimental artery) or saline (control artery) with the use of the TAPAS catheter. Intravascular ultrasound (IVUS) imaging was obtained at baseline, postprocedure and at 30 days. Optical coherence tomography (OCT) imaging was obtained in vitro after carotids were harvested. Longitudinally cut parallel arterial segments were placed in a system of delicate clamps and underwent uniaxial strain test. All arteries underwent histopathological examination. RESULTS Calcium chloride treated segments showed extensive circumferential parietal calcification evident on both IVUS and OCT. Reduction in minimal lumen area on IVUS was evident in experimental arteries both at 24 hr and 30 days postprocedure. Histopathologic assessment (Von Kossa stain) confirmed medial calcification with mild intimal thickening. Biomechanical testing showed treated segments to have smaller breaking strength and less elastic deformation than controls. CONCLUSION We developed a nonexpensive, reproducible model of early carotid medial calcification in pigs. Our model has the potential to help the development of research to unravel mechanisms underlying arterial calcification, the use of current or new devices to treat calcified lesions as well as to serve as an option for training interventionalists on the use of such devices.
Collapse
Affiliation(s)
| | - Carlos M Campos
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil.,Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | | | | | - Pedro Lemos
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil.,Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | - Alex Lederman
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil.,Department of Vascular Surgery, University of São Paulo Medical School, Sao Paulo, Brazil
| | - Erasmo S da Silva
- Department of Vascular Surgery, University of São Paulo Medical School, Sao Paulo, Brazil
| | - Ricardo Aun
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil.,Department of Vascular Surgery, University of São Paulo Medical School, Sao Paulo, Brazil
| | - Sergio Q Belczak
- Hospital Israelita Albert Einstein, Sao Paulo, Brazil.,Hospital Sao Camilo, Sao Paulo, Brazil
| | - Alexandre Abizaid
- Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil
| | - Fabio Sandoli de Brito
- Heart Institute (InCor), University of São Paulo Medical School, Sao Paulo, Brazil.,Hospital Sao Camilo, Sao Paulo, Brazil
| |
Collapse
|
22
|
Kim JB, Zhao Q, Nguyen T, Pjanic M, Cheng P, Wirka R, Travisano S, Nagao M, Kundu R, Quertermous T. Environment-Sensing Aryl Hydrocarbon Receptor Inhibits the Chondrogenic Fate of Modulated Smooth Muscle Cells in Atherosclerotic Lesions. Circulation 2020; 142:575-590. [PMID: 32441123 DOI: 10.1161/circulationaha.120.045981] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND Smooth muscle cells (SMC) play a critical role in atherosclerosis. The Aryl hydrocarbon receptor (AHR) is an environment-sensing transcription factor that contributes to vascular development, and has been implicated in coronary artery disease risk. We hypothesized that AHR can affect atherosclerosis by regulating phenotypic modulation of SMC. METHODS We combined RNA-sequencing, chromatin immunoprecipitation followed by sequencing, assay for transposase-accessible chromatin using sequencing, and in vitro assays in human coronary artery SMCs, with single-cell RNA-sequencing, histology, and RNAscope in an SMC-specific lineage-tracing Ahr knockout mouse model of atherosclerosis to better understand the role of AHR in vascular disease. RESULTS Genomic studies coupled with functional assays in cultured human coronary artery SMCs revealed that AHR modulates the human coronary artery SMC phenotype and suppresses ossification in these cells. Lineage-tracing and activity-tracing studies in the mouse aortic sinus showed that the Ahr pathway is active in modulated SMCs in the atherosclerotic lesion cap. Furthermore, single-cell RNA-sequencing studies of the SMC-specific Ahr knockout mice showed a significant increase in the proportion of modulated SMCs expressing chondrocyte markers such as Col2a1 and Alpl, which localized to the lesion neointima. These cells, which we term "chondromyocytes," were also identified in the neointima of human coronary arteries. In histological analyses, these changes manifested as larger lesion size, increased lineage-traced SMC participation in the lesion, decreased lineage-traced SMCs in the lesion cap, and increased alkaline phosphatase activity in lesions in the Ahr knockout in comparison with wild-type mice. We propose that AHR is likely protective based on these data and inference from human genetic analyses. CONCLUSIONS Overall, we conclude that AHR promotes the maintenance of lesion cap integrity and diminishes the disease-related SMC-to-chondromyocyte transition in atherosclerotic tissues.
Collapse
Affiliation(s)
- Juyong Brian Kim
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA.,Cardiovascular Institute (J.B.K., P.C., R.W., T.Q.), Stanford University School of Medicine, CA
| | - Quanyi Zhao
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA
| | - Trieu Nguyen
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA
| | - Milos Pjanic
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA
| | - Paul Cheng
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA.,Cardiovascular Institute (J.B.K., P.C., R.W., T.Q.), Stanford University School of Medicine, CA
| | - Robert Wirka
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA.,Cardiovascular Institute (J.B.K., P.C., R.W., T.Q.), Stanford University School of Medicine, CA
| | - Stanislao Travisano
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA
| | - Manabu Nagao
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA
| | - Ramendra Kundu
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA
| | - Thomas Quertermous
- Division of Cardiovascular Medicine (J.B.K., Q.Z., T.N., M.P., P.C., R.W., S.T., M.N., R.K., T.Q.), Stanford University School of Medicine, CA.,Cardiovascular Institute (J.B.K., P.C., R.W., T.Q.), Stanford University School of Medicine, CA
| |
Collapse
|
23
|
Choi KS, Lee W, Jung JH, Park EA. Reproducibility of calcium scoring of the coronary arteries: comparison between different vendors and iterative reconstructions. Acta Radiol Open 2020; 9:2058460120922147. [PMID: 32426164 PMCID: PMC7218275 DOI: 10.1177/2058460120922147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Accepted: 04/03/2020] [Indexed: 11/16/2022] Open
Abstract
Background The coronary artery calcium scoring (CCS) has been widely used for cardiac risk stratification for asymptomatic patients. Purpose To assess the reproducibility of CCS performed on four different computed tomography (CT) scanners, and compare the variability between two reconstruction algorithms, filtered back projection (FBP), and iterative reconstruction (IR). Material and Methods A CCS phantom was made from agar and contained 23 pieces of chicken bones. The phantom was repeatedly scanned using four different CT scanners: Toshiba; GE; Philips; and Siemens. Images were reconstructed using FBP and IR. Agatston and volume scores of total bone fragments were calculated and the overall differences between the instruments were evaluated using the Friedman test. Comparison of the Agatston and volume scores between the two reconstruction algorithms, for each instrument, was evaluated using the Wilcoxon signed rank test. Results The difference in the Agatston scores was significantly different between the four machines (P = 0.001). The Toshiba scanner yielded the highest score followed by Philips, GE, and Siemens scanners. There was no difference in the CCS evaluated using the two reconstruction algorithms, except in case of the Siemens scanner (P = 0.032). Conclusion CCS performed on different scanners varied significantly. In the Toshiba, Philips, and GE scanners, there was no significant difference in the CCS determined using either an IR or the FBP algorithm. In the Siemens scanner, applying the IR algorithm resulted in a slightly different scores, which might not be clinically significant.
Collapse
Affiliation(s)
- Kyu Sung Choi
- Graduate School of Medical Science and Engineering, Korea Advanced Institute for Science and Technology (KAIST), Daejeon, Republic of Korea
| | - Whal Lee
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| | - Joon Hyung Jung
- Department of Neuropsychiatry, Seoul National University Hospital, Seoul, Republic of Korea
| | - Eun-Ah Park
- Department of Radiology, Seoul National University Hospital, Seoul, Republic of Korea.,Department of Radiology, Seoul National University College of Medicine, Seoul, Republic of Korea.,Institute of Radiation Medicine, Seoul National University Medical Research Center, Seoul, Republic of Korea
| |
Collapse
|
24
|
Florea A, Morgenroth A, Bucerius J, Schurgers LJ, Mottaghy FM. Locking and loading the bullet against micro-calcification. Eur J Prev Cardiol 2020; 28:1370-1375. [PMID: 33611501 DOI: 10.1177/2047487320911138] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 02/14/2020] [Indexed: 12/24/2022]
Abstract
AIMS Despite recent medical advances, cardiovascular disease remains the leading cause of death worldwide. As (micro)-calcification is a hallmark of atherosclerosis, this review will elaborately discuss advantages of sodium fluoride positron emission tomography (PET) as a reliable cardiovascular imaging technique for identifying the early onset of vascular calcification (i.e. locking onto the target). We assess state-of-the-art meta-analysis and clinical studies of possible treatment options and evaluate the concept of vitamin K supplementation to preserve vascular health (i.e. loading the bullet). METHODS AND RESULTS After a structured PubMed search, we identified 18F-sodium fluoride (18F-NaF) PET as the most suitable technique for detecting micro-calcification. Presenting the pros and cons of available treatments, vitamin K supplementation should be considered as a possible safe and cost-effective option to inhibit vascular (micro)-calcification. CONCLUSION This review demonstrates need for more extensive research in the concept of vitamin K supplementation (i.e. loading the bullet) and recommends monitoring the effects on vascular calcification using 18F-NaF PET (i.e. locking onto the target).
Collapse
Affiliation(s)
- Alexandru Florea
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Academic Hospital Maastricht, Maastricht, Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Netherlands
| | - Agnieszka Morgenroth
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
| | - Jan Bucerius
- Department of Radiology and Nuclear Medicine, Academic Hospital Maastricht, Maastricht, Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Netherlands
- Department of Nuclear Medicine, University of Göttingen, Göttingen, Germany
| | - Leon J Schurgers
- School for Cardiovascular Diseases (CARIM), Maastricht University, Netherlands
- Department of Biochemistry, Maastricht University, Maastricht, Netherlands
| | - Felix M Mottaghy
- Department of Nuclear Medicine, University Hospital RWTH Aachen, Aachen, Germany
- Department of Radiology and Nuclear Medicine, Academic Hospital Maastricht, Maastricht, Netherlands
- School for Cardiovascular Diseases (CARIM), Maastricht University, Netherlands
| |
Collapse
|
25
|
Millar SA, John SG, McIntyre CW, Ralevic V, Anderson SI, O'Sullivan SE. An Investigation Into the Role of Osteocalcin in Human Arterial Smooth Muscle Cell Calcification. Front Endocrinol (Lausanne) 2020; 11:369. [PMID: 32587575 PMCID: PMC7298126 DOI: 10.3389/fendo.2020.00369] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 05/11/2020] [Indexed: 12/30/2022] Open
Abstract
Osteocalcin (OCN) is a bone-derived protein that is detected within human calcified vascular tissue. Calcification is particularly prevalent in chronic kidney disease (CKD) patients but the role of OCN in calcification, whether active or passive, has not been elucidated. Part 1: The relationship between OCN, CKD and vascular calcification was assessed in CKD patients (n = 28) and age-matched controls (n = 19). Part 2: in vitro, we analyzed whether addition of uncarboxylated osteocalcin (ucOCN) influenced the rate or extent of vascular smooth muscle cell (VSMC) calcification. Human aortic VSMCs were cultured in control media or mineralisation inducing media (MM) containing increased phosphate with or without ucOCN (10 or 30 ng/mL) for up to 21 days. Markers of osteogenic differentiation and calcification were determined [alkaline phosphatase (ALP) activity, total intracellular OCN, Runx2 expression, α-SMA expression, alizarin red calcium staining, and calcium quantification]. Part 1 results: In our human population, calcification was present (mean age 76 years), but no differences were detected between CKD patients and controls. Plasma total OCN was increased in CKD patients compared to controls (14 vs. 9 ng/mL; p < 0.05) and correlated to estimated glomerular filtration rate (p < 0.05), however no relationship was detected between total OCN and calcification. Part 2 results: in vitro, ALP activity, α-SMA expression and calcium concentrations were significantly increased in MM treated VSMCs at day 21, but no effect of ucOCN was observed. Cells treated with control media+ucOCN for 21 days did not show increases in ALP activity nor calcification. In summary, although plasma total OCN was increased in CKD patients, this study did not find a relationship between OCN and calcification in CKD and non-CKD patients, and found no in vitro evidence of an active role of ucOCN in vascular calcification as assessed over 21 days. ucOCN appears not to be a mediator of vascular calcification, but further investigation is warranted.
Collapse
Affiliation(s)
- Sophie A. Millar
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
- *Correspondence: Sophie A. Millar
| | - Stephen G. John
- Department of Renal Medicine, Royal Derby Hospital, Derby, United Kingdom
| | - Christopher W. McIntyre
- Department of Renal Medicine, Royal Derby Hospital, Derby, United Kingdom
- London Health Sciences Centre, London, ON, Canada
| | - Vera Ralevic
- Division of Physiology, Pharmacology and Neuroscience, School of Life Sciences, Queen's Medical Centre, University of Nottingham, Nottingham, United Kingdom
| | - Susan I. Anderson
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| | - Saoirse E. O'Sullivan
- Division of Medical Sciences & Graduate Entry Medicine, School of Medicine, Royal Derby Hospital, University of Nottingham, Derby, United Kingdom
| |
Collapse
|
26
|
Ren JL, Hou YL, Ni XQ, Zhu Q, Chen Y, Zhang LS, Liu X, Xue CD, Wu N, Yu YR, Tang CS, Ning ZP, Chai SB, Qi YF. Intermedin1-53 Ameliorates Homocysteine-Promoted Atherosclerotic Calcification by Inhibiting Endoplasmic Reticulum Stress. J Cardiovasc Pharmacol Ther 2019; 25:251-264. [DOI: 10.1177/1074248419885633] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Aim: Vascular calcification (VC) is thought to be an independent predictor of cardiovascular morbidity and mortality. Intermedin1-53 (IMD) is a cardiovascular protective peptide and can inhibit vascular medial calcification in rats. In this study, we investigated the effect of IMD on atherosclerotic calcification induced by a high-fat diet plus homocysteine (Hcy) and the potential mechanisms. Methods: ApoE−/− mice were fed a high-fat diet with Hcy in drinking water to induce atherosclerotic calcification. Results: As compared to the high-fat diet alone, Hcy treatment significantly increased atherosclerotic lesion areas and the number of calcified nodules in aortic roots and was reduced by IMD infusion or 4-phenylbutyric acid (PBA) treatment. In vitro, as compared to calcifying medium alone, Hcy treatment further increased alkaline phosphatase activity, calcium content, and calcium nodule number in human aorta vascular smooth muscle cells (HA-VSMCs), all blocked by IMD or PBA pretreatment. Mechanistically, IMD or PBA significantly alleviated endoplasmic reticulum stress (ERS) activation compared with Hcy treatment. In parallel, IMD or PBA attenuated the messenger RNA levels of osteogenic markers and inflammatory cytokines in aortas and their protein levels in lesions of aortic roots. In vitro, Hcy treatment significantly increased the protein levels of osteoblast-like cell markers in primary rat VSMCs and inflammation markers in mouse peritoneal macrophages, all decreased with IMD or PBA pretreatment. Intermedin1-53 pretreatment also markedly reduced the protein levels of ERS markers in rat VSMCs and mouse peritoneal macrophages. Conclusions: Intermedin1-53 protects against Hcy-promoted atherosclerotic calcification in ApoE−/− mice by inhibiting ERS.
Collapse
Affiliation(s)
- Jin-Ling Ren
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yue-Long Hou
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xian-Qiang Ni
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Qing Zhu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Yao Chen
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Lin-Shuang Zhang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Xin Liu
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chang-Ding Xue
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Ning Wu
- Department of Gynaecology and Obstetrics, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yan-Rong Yu
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Chao-Shu Tang
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhong-Ping Ning
- Shanghai University of Medicine and Health Sciences, Shanghai University of Medicine and Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
| | - San-Bao Chai
- Department of Endocrinology, Peking University International Hospital, Beijing, China
| | - Yong-Fen Qi
- Laboratory of Cardiovascular Bioactive Molecule, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science, Ministry of Education, Peking University Health Science Center, Beijing, China
- Department of Pathogen Biology, School of Basic Medical Sciences, Peking University, Beijing, China
| |
Collapse
|
27
|
Huang WC, Teng HI, Chen HY, Wu CJ, Tsai CT, Hsueh CH, Chen YY, Hau WK, Lu TM. Association between asymmetric dimethylarginine and in-stent restenosis tissue characteristics assessed by optical coherence tomography. Int J Cardiol 2019; 289:131-137. [DOI: 10.1016/j.ijcard.2019.05.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 04/08/2019] [Accepted: 05/02/2019] [Indexed: 01/26/2023]
|
28
|
Navarrete-Hurtado S, Carvajal-Rivera JJ. Tomografía axial computarizada coronaria en la estratificación de riesgo. REVISTA COLOMBIANA DE CARDIOLOGÍA 2019. [DOI: 10.1016/j.rccar.2019.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
29
|
Brachial intima-media thickness is associated with coronary artery atherosclerosis in patients with diabetes mellitus. Heart Vessels 2019; 34:1405-1411. [PMID: 30834950 DOI: 10.1007/s00380-019-01371-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 03/01/2019] [Indexed: 01/07/2023]
Abstract
Coronary artery calcification (CAC) as measured by computed tomography is a strong predictor of coronary artery disease. The brachial intima-media thickness (IMT) was recently reported to be associated with cardiovascular risk factors. This study investigated the association of brachial IMT with CAC, which is a marker of coronary artery atherosclerosis, in patients with diabetes. We enrolled 292 patients with diabetes (mean age, 65 ± 12 years; 59% men) who underwent both endothelial function testing and computed tomography for risk assessment of coronary artery disease. Flow-mediated dilation (FMD) and IMT in the brachial artery were measured with a specialized machine. FMD was lower and brachial IMT was thicker in patients with than without CAC. The CAC score was significantly correlated with both brachial IMT and FMD, while the multivariate logistic analysis demonstrated that brachial IMT (> 0.32 mm) but not FMD (< 5.1%) was significantly associated with the presence of CAC (odds ratio, 2.03; 95% confidence interval, 1.10-3.77; p = 0.02). The receiver operating characteristic curve analysis showed that the area under the curve for discriminating patients with CAC was 0.67 for IMT (p < 0.001) and 0.62 for FMD (p < 0.001). When patients were classified into four groups based on brachial IMT and FMD, the CAC score was higher in patients with thicker brachial IMT and lower FMD than in patients of the other groups (p < 0.001). Measurement of brachial IMT could be useful for the risk assessment of patients with diabetes.
Collapse
|
30
|
Allam AHA, Thompson RC, Eskander MA, Mandour Ali MA, Sadek A, Rowan CJ, Sutherland ML, Sutherland JD, Frohlich B, Michalik DE, Finch CE, Narula J, Thomas GS, Samuel Wann L. Is coronary calcium scoring too late? Total body arterial calcium burden in patients without known CAD and normal MPI. J Nucl Cardiol 2018; 25:1990-1998. [PMID: 28547671 DOI: 10.1007/s12350-017-0925-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2016] [Accepted: 04/26/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Patients with normal myocardial perfusion imaging (MPI) have a good prognosis. However, pre-clinical coronary and extracoronary atherosclerosis may exist in the absence of myocardial ischemia. METHODS 154 Egyptian patients (mean age 53 years) underwent whole-body non-contrast CT following normal MPI. RESULTS Atherosclerosis in the form of calcification was observed in ≥1 vascular bed in 115 of 154 (75%) patients. This included the iliofemoral (62%), abdominal aorta (53%), thoracic aorta (47%), coronary (47%), and carotid (25%) vascular beds. Mean total body calcium score was 3172 ± 530 AU. Extracoronary atherosclerosis in patients with a zero coronary artery calcium (CAC) score was common, occurring in the above-listed beds 42%, 36%, 29%, and 7% of the time, respectively. CAC was rarely present without iliofemoral or abdominal aortic calcification. CONCLUSION Quantitative assessment of calcification in different vascular beds demonstrates that extracoronary atherosclerosis is common in patients who have normal MPI. Atherosclerotic calcifications are most common in the iliofemoral arteries and abdominal aorta, which typically predate coronary calcifications. An imaging strategy to detect extracoronary atherosclerosis could lead to greater understanding of the natural history of atherosclerosis in its long pre-clinical phase and possibly to earlier preventive strategies.
Collapse
Affiliation(s)
- Adel H A Allam
- Al Azhar University, Cairo, Egypt
- Alpha Scan, 45 Anas Ibn Malik Street, Mohandseen, Giza, Egypt
| | - Randall C Thompson
- Saint Luke's Mid America Heart Institute, Kansas City, MO, USA
- University of Missouri-Kansas City School of Medicine, Kansas City, MO, USA
| | | | | | | | - Chris J Rowan
- Renown Institute for Heart and Vascular Health, Reno, NV, USA
| | | | | | - Bruno Frohlich
- National Museum of Natural History Smithsonian Institution, Washington, DC, DC, USA
| | - David E Michalik
- University of California, Irvine School of Medicine, Irvine, CA, USA
- Miller Women's and Children's Hospital, Long Beach, CA, USA
| | - Caleb E Finch
- Leonard Davis School of Gerontology and Dornsife College, University of Southern California, Los Angeles, CA, USA
| | - Jagat Narula
- Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Gregory S Thomas
- Long Beach Memorial, Long Beach, CA, USA
- University of California, Irvine, Orange, CA, USA
| | | |
Collapse
|
31
|
Pesaro AE, Katz M, Liberman M, Pereira C, Mangueira CLP, de Carvalho AEZ, Carvalho KS, Nomura CH, Franken M, Serrano CV. Circulating osteogenic proteins are associated with coronary artery calcification and increase after myocardial infarction. PLoS One 2018; 13:e0202738. [PMID: 30138356 PMCID: PMC6107213 DOI: 10.1371/journal.pone.0202738] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Accepted: 08/08/2018] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Coronary artery calcification (CAC) and atherosclerotic inflammation associate with increased risk of myocardial infarction (MI). Vascular calcification is regulated by osteogenic proteins (OPs). It is unknown whether an association exists between CAC and plasma OPs and if they are affected by atherothrombotic inflammation. We tested the association of osteogenic and inflammatory proteins with CAC and assessed these biomarkers after MI. METHODS Circulating OPs (osteoprotegerin, RANKL, fetuin-A, Matrix Gla protein [MGP]) and inflammatory proteins (C-reactive protein, oxidized-LDL, tumoral necrosis factor-α, transforming growth factor [TGF]-β1) were compared between stable patients with CAC (CAC ≥ 100 AU, n = 100) and controls (CAC = 0 AU, n = 30). The association between biomarkers and CAC was tested by multivariate analysis. In patients with MI (n = 40), biomarkers were compared between acute phase and 1-2 months post-MI, using controls as a baseline. RESULTS MGP and fetuin-A levels were higher within individuals with CAC. Higher levels of MGP and RANKL were associated with CAC (OR 3.12 [95% CI 1.20-8.11], p = 0.02; and OR 1.75 [95% CI 1.04-2.94] respectively, p = 0.035). After MI, C-reactive protein, OPG and oxidized-LDL levels increased in the acute phase, whereas MGP and TGF-β1 increased 1-2 months post-MI. CONCLUSIONS Higher MGP and RANKL levels associate with CAC. These findings highlight the potential role of these proteins as modulators and markers of CAC. In addition, the post-MI increase in OPG and MGP, as well as of inflammatory proteins suggest that the regulation of these OPs is affected by atherothrombotic inflammation.
Collapse
Affiliation(s)
| | - Marcelo Katz
- Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
The Bioactive Substance Secreted by MSC Retards Mouse Aortic Vascular Smooth Muscle Cells Calcification. BIOMED RESEARCH INTERNATIONAL 2018; 2018:6053567. [PMID: 29967775 PMCID: PMC6008760 DOI: 10.1155/2018/6053567] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 05/07/2018] [Indexed: 12/13/2022]
Abstract
Background Vascular calcification, which is associated with low-level chronic inflammation, is a complication that occurs during aging, atherosclerosis, chronic kidney disease, diabetes mellitus, and hyperlipaemia. In this study, we used conditioned media from mesenchymal stem cells (MSC-CM), a source of autologous cytokines, to test the hypothesis that MSC-CM inhibits vascular smooth muscle cell (VSMC) calcification by suppressing inflammation and apoptosis. Methods VSMCs were treated with β-glycerophosphate (β-GP) to induce calcification and MSC-CM was used as a treatment. Calcium deposition was evaluated using alizarin red and von Kossa staining after a 7-day induction period. Intracellular calcium contents were measured via the o-cresolphthalein complexone method, and alkaline phosphatase (ALP) activity was determined using the para-nitrophenyl phosphate method. The expressions of specific-osteogenic markers, inflammatory cytokines, and apoptosis-associated genes/proteins were examined by real-time polymerase chain reaction or western blotting. Results MSC-CM inhibited β-GP-induced calcium deposition in VSMCs and decreased intracellular calcium content and ALP activity. Additionally, MSC-CM suppressed the β-GP-induced increases in BMP2, Msx2, Runx2, and osteocalcin expression. Additionally, MSC-CM decreased the expression of TNF-α, IL-1β, and IL-6 in VSMC. MSC-CM also partly blocked β-GP-induced VSMC apoptosis, which was associated with an increase in the Bcl-2/Bax expression ratio and a decrease in caspase-3 expression. Conclusion Our study results suggest that MSC-CM can inhibit VSMC calcification. This suggests a potential novel clinical application for MSCs in the treatment of vascular calcification and associated diseases.
Collapse
|
33
|
LeBlanc S, Coulombe F, Bertrand OF, Bibeau K, Pibarot P, Marette A, Alméras N, Lemieux I, Després JP, Larose E. Hypertriglyceridemic Waist: A Simple Marker of High-Risk Atherosclerosis Features Associated With Excess Visceral Adiposity/Ectopic Fat. J Am Heart Assoc 2018; 7:JAHA.117.008139. [PMID: 29654193 PMCID: PMC6015425 DOI: 10.1161/jaha.117.008139] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Background Subclinical atherosclerosis identification remains challenging; abdominal visceral adiposity may improve risk stratification beyond traditional cardiovascular risk factors. Hypertriglyceridemic waist, a visceral adiposity marker combining elevated triglycerides (≥2 mmol/L) and waist circumference (≥90 cm), has been related to carotid atherosclerosis, although associations with high‐risk features, including lipid‐rich necrotic core (LRNC), remain unknown. We tested the hypothesis that hypertriglyceridemic waist is an independent marker of high‐risk atherosclerosis features. Methods and Results In this cross‐sectional study including 467 white men (mean age, 45.9±14.8 years; range 19.4–77.6 years), carotid atherosclerosis characteristics were examined by magnetic resonance imaging and associations with hypertriglyceridemic waist and benefits beyond Framingham Risk Score (FRS) and Pathobiological Determinants of Atherosclerosis in Youth (PDAY) were determined. Subclinical carotid atherosclerosis was present in 61.9% of participants, whereas 50.1% had LRNC. Hypertriglyceridemic waist was associated with carotid maximum wall thickness (P=0.014), wall volume (P=0.025), normalized wall index (P=0.004), and Carotid Atherosclerosis Score (derived from wall thickness and LRNC; P=0.049). Hypertriglyceridemic waist was associated with carotid LRNC volume beyond FRS (P=0.037) or PDAY (P=0.015), contrary to waist circumference alone (both P>0.05). Although 69.7% and 62.0% of participants with carotid atherosclerosis and/or LRNC were not high‐risk by FRS or PDAY, respectively, hypertriglyceridemic waist correctly reclassified 9.7% and 4.5% of them, respectively. Combining hypertriglyceridemic waist with FRS (net reclassification improvement=0.17; P<0.001) or PDAY (net reclassification improvement=0.05; P=0.003) was superior to each score alone in identifying individuals with carotid atherosclerosis and/or LRNC. Conclusions Hypertriglyceridemic waist is an independent marker of carotid high‐risk atherosclerosis features in men, improving on FRS and PDAY risk score.
Collapse
Affiliation(s)
- Stéphanie LeBlanc
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - François Coulombe
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Olivier F Bertrand
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Karine Bibeau
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Philippe Pibarot
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - André Marette
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.,Département de Médecine, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Natalie Alméras
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.,Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Isabelle Lemieux
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada
| | - Jean-Pierre Després
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada.,Département de Kinésiologie, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| | - Eric Larose
- Centre de Recherche de l'Institut Universitaire de Cardiologie et de Pneumologie de Québec, Université Laval, Québec City, Québec, Canada .,Département de Médecine, Faculté de Médecine, Université Laval, Québec City, Québec, Canada
| |
Collapse
|
34
|
Pérez-Hernández N, Aptilon-Duque G, Blachman-Braun R, Vargas-Alarcón G, Rodríguez-Cortés AA, Azrad-Daniel S, Posadas-Sánchez R, Rodríguez-Pérez JM. Vascular Calcification: Current Genetics Underlying This Complex Phenomenon. Chin Med J (Engl) 2018; 130:1113-1121. [PMID: 28469108 PMCID: PMC5421183 DOI: 10.4103/0366-6999.204931] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
OBJECTIVE Vascular calcification is the consequence of the complex interaction between genetic, environmental, and vascular factors, which ultimately lead to the deposition of calcium in the tunica intima (atherosclerotic calcification) or tunica media (Mönckenberg's sclerosis). Vascular calcification is also closely related to other pathologies, such as diabetes mellitus, dyslipidemia, and chronic kidney disease. It has been concluded that the degree of vascular calcification may vary from person to person, even if the associated pathologies and environmental factors are the same. Therefore, this suggests an important genetic contribution to the development of vascular calcification. This review aimed to find the most recent evidence about vascular calcification pathophysiology regarding the genetic aspects and molecular pathways. DATA SOURCES We conducted an exhaustive search in Scopus, EBSCO, and PubMed with the keywords "genetics and vascular calcification", "molecular pathways, genetic and vascular calcification" and included the main articles from January 1995 up to August 2016. We focused on the most recent evidence about vascular calcification pathophysiology regarding the genetic aspects and molecular pathways. STUDY SELECTION The most valuable published original and review articles related to our objective were selected. RESULTS Vascular calcification is a multifactorial disease; thus, its pathophysiology cannot be explained by a single specific factor, rather than by the result of the association of several genetic variants, molecular pathway interactions, and environmental factors that promote its development. CONCLUSION Although several molecular aspects of this mechanism have been elucidated, there is still a need for a better understanding of the factors that predispose to this disease.
Collapse
Affiliation(s)
- Nonanzit Pérez-Hernández
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", México, Mexico City 14080, México
| | - Gad Aptilon-Duque
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", México, Mexico City 14080, México
| | - Ruben Blachman-Braun
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", México, Mexico City 14080, México
| | - Gilberto Vargas-Alarcón
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", México, Mexico City 14080, México
| | - Adrián Asael Rodríguez-Cortés
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", México, Mexico City 14080, México
| | - Shely Azrad-Daniel
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", México, Mexico City 14080, México
| | - Rosalinda Posadas-Sánchez
- Department of Endocrinology, National Institute of Cardiology "Ignacio Chávez", México, México City 14080, México
| | - José Manuel Rodríguez-Pérez
- Department of Molecular Biology, National Institute of Cardiology "Ignacio Chávez", México, Mexico City 14080, México
| |
Collapse
|
35
|
de Agustín JA, Gómez de Diego JJ, Marcos-Alberca P, Mahía P, Rodrigo JL, Luaces M, Núñez-Gil IJ, Ferreiros J, Bustos A, Cabeza B, García-Fernández MÁ, Macaya C, Pérez de Isla L. Impact of Calcium Score on Agreement Between Multidetector Computed Tomography and Invasive Coronary Angiography. REVISTA ESPANOLA DE CARDIOLOGIA (ENGLISH ED.) 2018; 71:105-109. [PMID: 28528881 DOI: 10.1016/j.rec.2017.04.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 04/04/2017] [Indexed: 06/07/2023]
Abstract
INTRODUCTION AND OBJECTIVES Multidetector computed tomography (MDCT) has been demonstrated as a feasible alternative to invasive coronary angiography (ICA). However, contradictory results have been reported regarding the effect of coronary artery calcium score (CS) on the diagnostic accuracy of MDCT. Our aim was to assess the agreement of MDCT and ICA and to evaluate the influence of CS on this agreement. METHODS We enrolled 266 consecutive patients who underwent evaluation with 64-slice MDCT and ICA. Standard CS software tools were used to calculate the Agatston score. Stenosis was qualitatively classified as mild, moderate, or severe by 1 blinded observer and the results were compared with those of ICA, which was used as the gold standard. RESULTS The mean age of the patients was 65.4 ± 11.2 years, and 188 patients (70.3%) were men. A total of 484 segments with coronary stenosis ≥ mild were qualitatively evaluated and quantified with MDCT. Noninvasive measurements were concordant with ICA in 402 stenoses (83.05%; Kappa, 0.684), with no significant differences between vessels and with no statistically significant influence of CS on this agreement (OR, 0.93; 95%CI, 0.76-1.09; P = .21). Multidetector computed tomography had high sensitivity, specificity, positive predictive value, and negative predictive value on a per-segment, per-vessel, and per-patient basis. CONCLUSIONS Non-ICA using MDCT showed good agreement with ICA in the qualitative quantification coronary stenosis and CS had no significant impact on this agreement.
Collapse
Affiliation(s)
| | | | | | - Patricia Mahía
- Instituto Cardiovascular, Hospital Universitario San Carlos, Madrid, Spain
| | - José Luis Rodrigo
- Instituto Cardiovascular, Hospital Universitario San Carlos, Madrid, Spain
| | - María Luaces
- Instituto Cardiovascular, Hospital Universitario San Carlos, Madrid, Spain
| | | | - Joaquín Ferreiros
- Departamento de Radiología, Hospital Universitario San Carlos, Madrid, Spain
| | - Ana Bustos
- Departamento de Radiología, Hospital Universitario San Carlos, Madrid, Spain
| | - Beatriz Cabeza
- Departamento de Radiología, Hospital Universitario San Carlos, Madrid, Spain
| | | | - Carlos Macaya
- Instituto Cardiovascular, Hospital Universitario San Carlos, Madrid, Spain
| | | |
Collapse
|
36
|
Impacto de la puntuación de calcio en la concordancia entre la tomografía computarizada con multidetectores y la coronariografía invasiva. Rev Esp Cardiol 2018. [DOI: 10.1016/j.recesp.2017.04.005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
37
|
Osawa K, Nakanishi R, Budoff M. Coronary Artery Calcification. Glob Heart 2018; 11:287-293. [PMID: 27741976 DOI: 10.1016/j.gheart.2016.08.001] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 07/26/2016] [Accepted: 08/01/2016] [Indexed: 11/28/2022] Open
Abstract
Coronary artery calcification (CAC) is an established marker of subclinical atherosclerosis and an independent predictor of future coronary heart disease in the asymptomatic primary prevention population, particularly in the intermediate risk cohort. CAC also helps in reclassifying those patients and their risk of cardiovascular events into higher or lower risk categories. MESA (Multi-Ethnic Study of Atherosclerosis) is a National Heart, Lung, and Blood Institute-sponsored population-based medical research study involving 6,814 men and women from 6 U.S. communities without a medical history of clinical cardiovascular disease. The evidence from this population cohort revealed that CAC scoring was independently predictive and highly effective at risk stratification of major adverse cardiac events. This review provides available data based on MESA. We focus on the utility of CAC for cardiovascular disease risk stratification of individuals, and we describe its diagnostic value in identifying patients at risk.
Collapse
Affiliation(s)
- Kazuhiro Osawa
- Los Angeles Biomedical Research Institute at Harbor, University of California-Los Angeles, Los Angeles, CA, USA
| | - Rine Nakanishi
- Los Angeles Biomedical Research Institute at Harbor, University of California-Los Angeles, Los Angeles, CA, USA
| | - Matthew Budoff
- Los Angeles Biomedical Research Institute at Harbor, University of California-Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
38
|
Alique M, Ruíz-Torres MP, Bodega G, Noci MV, Troyano N, Bohórquez L, Luna C, Luque R, Carmona A, Carracedo J, Ramírez R. Microvesicles from the plasma of elderly subjects and from senescent endothelial cells promote vascular calcification. Aging (Albany NY) 2017; 9:778-789. [PMID: 28278131 PMCID: PMC5391231 DOI: 10.18632/aging.101191] [Citation(s) in RCA: 76] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2016] [Accepted: 02/26/2017] [Indexed: 11/25/2022]
Abstract
Vascular calcification is commonly seen in elderly people, though it can also appear in middle-aged subjects affected by premature vascular aging. The aim of this work is to test the involvement of microvesicles (MVs) produced by senescent endothelial cells (EC) and from plasma of elderly people in vascular calcification. The present work shows that MVs produced by senescent cultured ECs, plus those found in the plasma of elderly subjects, promote calcification in vascular smooth muscle cells. Only MVs from senescent ECs, and from elderly subjects' plasma, induced calcification. This ability correlated with these types of MVs' carriage of: a) increased quantities of annexins (which might act as nucleation sites for calcification), b) increased quantities of bone-morphogenic protein, and c) larger Ca contents. The MVs of senescent, cultured ECs, and those present in the plasma of elderly subjects, promote vascular calcification. The present results provide mechanistic insights into the observed increase in vascular calcification-related diseases in the elderly, and in younger patients with premature vascular aging, paving the way towards novel therapeutic strategies.
Collapse
Affiliation(s)
- Matilde Alique
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - María Piedad Ruíz-Torres
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These authors contributed equally to this paper
| | - Guillermo Bodega
- Departamento de Biomedicina y Biotecnología, Facultad de Biología, Química y Ciencias Ambientales, Universidad de Alcalá. Alcalá de Henares, Madrid, Spain
| | - María Victoria Noci
- Unidad de Anestesia, Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain.,Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Nuria Troyano
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Lourdes Bohórquez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain
| | - Carlos Luna
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Rafael Luque
- Departamento de Química Orgánica, Universidad de Córdoba, Edificio Marie Curie (C-3), Carretera Nacional IV-A, Km 396, E14014, Córdoba, Andalucía, Spain
| | - Andrés Carmona
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC)/Hospital Universitario Reina Sofía/Universidad de Córdoba, Córdoba, Andalucía, Spain
| | - Julia Carracedo
- Departamento de Fisiología Animal (II), Facultad de Biología, Universidad Complutense de Madrid, Madrid, Spain.,Institute of Investigation, Hospital 12 de Octubre, Madrid, Spain.,These senior authors contributed equally to this paper
| | - Rafael Ramírez
- Departamento de Biología de Sistemas, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Madrid, Spain.,These senior authors contributed equally to this paper
| |
Collapse
|
39
|
Oguz C, Sen SK, Davis AR, Fu YP, O’Donnell CJ, Gibbons GH. Genotype-driven identification of a molecular network predictive of advanced coronary calcium in ClinSeq® and Framingham Heart Study cohorts. BMC SYSTEMS BIOLOGY 2017; 11:99. [PMID: 29073909 PMCID: PMC5659034 DOI: 10.1186/s12918-017-0474-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Accepted: 10/17/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND One goal of personalized medicine is leveraging the emerging tools of data science to guide medical decision-making. Achieving this using disparate data sources is most daunting for polygenic traits. To this end, we employed random forests (RFs) and neural networks (NNs) for predictive modeling of coronary artery calcium (CAC), which is an intermediate endo-phenotype of coronary artery disease (CAD). METHODS Model inputs were derived from advanced cases in the ClinSeq®; discovery cohort (n=16) and the FHS replication cohort (n=36) from 89 th -99 th CAC score percentile range, and age-matched controls (ClinSeq®; n=16, FHS n=36) with no detectable CAC (all subjects were Caucasian males). These inputs included clinical variables and genotypes of 56 single nucleotide polymorphisms (SNPs) ranked highest in terms of their nominal correlation with the advanced CAC state in the discovery cohort. Predictive performance was assessed by computing the areas under receiver operating characteristic curves (ROC-AUC). RESULTS RF models trained and tested with clinical variables generated ROC-AUC values of 0.69 and 0.61 in the discovery and replication cohorts, respectively. In contrast, in both cohorts, the set of SNPs derived from the discovery cohort were highly predictive (ROC-AUC ≥0.85) with no significant change in predictive performance upon integration of clinical and genotype variables. Using the 21 SNPs that produced optimal predictive performance in both cohorts, we developed NN models trained with ClinSeq®; data and tested with FHS data and obtained high predictive accuracy (ROC-AUC=0.80-0.85) with several topologies. Several CAD and "vascular aging" related biological processes were enriched in the network of genes constructed from the predictive SNPs. CONCLUSIONS We identified a molecular network predictive of advanced coronary calcium using genotype data from ClinSeq®; and FHS cohorts. Our results illustrate that machine learning tools, which utilize complex interactions between disease predictors intrinsic to the pathogenesis of polygenic disorders, hold promise for deriving predictive disease models and networks.
Collapse
Affiliation(s)
- Cihan Oguz
- Cardiovascular Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Shurjo K. Sen
- Cardiovascular Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Adam R. Davis
- Cardiovascular Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
| | - Yi-Ping Fu
- Office of Biostatistics Research, Division of Cardiovascular Sciences, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
- Framingham Heart Study, Boston University School of Medicine, Boston, MA USA
| | - Christopher J. O’Donnell
- Framingham Heart Study, Boston University School of Medicine, Boston, MA USA
- Center for Population Genomics, MAVERIC, VA Healthcare System, Boston, MA USA
- Cardiology Section Administration, VA Healthcare System, Boston, MA USA
- Department of Cardiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA USA
| | - Gary H. Gibbons
- Cardiovascular Disease Section, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD USA
- Office of the Director, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, MD USA
| |
Collapse
|
40
|
Matkar PN, Ariyagunarajah R, Leong-Poi H, Singh KK. Friends Turned Foes: Angiogenic Growth Factors beyond Angiogenesis. Biomolecules 2017; 7:biom7040074. [PMID: 28974056 PMCID: PMC5745456 DOI: 10.3390/biom7040074] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Revised: 09/15/2017] [Accepted: 09/22/2017] [Indexed: 12/13/2022] Open
Abstract
Angiogenesis, the formation of new blood vessels from pre-existing ones is a biological process that ensures an adequate blood flow is maintained to provide the cells with a sufficient supply of nutrients and oxygen within the body. Numerous soluble growth factors and inhibitors, cytokines, proteases as well as extracellular matrix proteins and adhesion molecules stringently regulate the multi-factorial process of angiogenesis. The properties and interactions of key angiogenic molecules such as vascular endothelial growth factors (VEGFs), fibroblast growth factors (FGFs) and angiopoietins have been investigated in great detail with respect to their molecular impact on angiogenesis. Since the discovery of angiogenic growth factors, much research has been focused on their biological actions and their potential use as therapeutic targets for angiogenic or anti-angiogenic strategies in a context-dependent manner depending on the pathologies. It is generally accepted that these factors play an indispensable role in angiogenesis. However, it is becoming increasingly evident that this is not their only role and it is likely that the angiogenic factors have important functions in a wider range of biological and pathological processes. The additional roles played by these molecules in numerous pathologies and biological processes beyond angiogenesis are discussed in this review.
Collapse
Affiliation(s)
- Pratiek N Matkar
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | | | - Howard Leong-Poi
- Division of Cardiology, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
| | - Krishna K Singh
- Institute of Medical Science, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Division of Vascular Surgery, Keenan Research Centre for Biomedical Science, St. Michael's Hospital, Toronto, ON M5B 1W8, Canada.
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, ON M5S 1A8, Canada.
- Department of Surgery, University of Toronto, Toronto, ON M5S 1A8, Canada.
| |
Collapse
|
41
|
Suppression of Wnt Signaling and Osteogenic Changes in Vascular Smooth Muscle Cells by Eicosapentaenoic Acid. Nutrients 2017; 9:nu9080858. [PMID: 28796175 PMCID: PMC5579651 DOI: 10.3390/nu9080858] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/04/2017] [Accepted: 08/07/2017] [Indexed: 01/01/2023] Open
Abstract
Vascular medial calcification is often observed in patients with arteriosclerosis. It is also associated with systolic hypertension, wide pulse pressure, and fluctuation of blood pressure, which results in cardiovascular events. Eicosapentaenoic acid (EPA) has been shown to suppress vascular calcification in previous animal experiments. We investigated the inhibitory effects of EPA on Wnt signaling, which is one of the important signaling pathways involved in vascular calcification. Intake of food containing 5% EPA resulted in upregulation of the mRNA expression of Klotho, an intrinsic inhibitor of Wnt signaling, in the kidneys of wild-type mice. Expression levels of β-catenin, an intracellular signal transducer in the Wnt signaling pathway, were increased in the aortas of Klotho mutant (kl/kl) mice compared to the levels in the aortas of wild-type mice. Wnt3a or BIO, a GSK-3 inhibitor that activates β-catenin signaling, upregulated mRNA levels of AXIN2 and LEF1, Wnt signaling marker genes, and RUNX2 and BMP4, early osteogenic genes, in human aorta smooth muscle cells. EPA suppressed the upregulation of AXIN2 and BMP4. The effect of EPA was cancelled by T0070907, a PPARγ inhibitor. The results suggested that EPA could suppress vascular calcification via the inhibition of Wnt signaling in osteogenic vascular smooth muscle cells via PPARγ activation.
Collapse
|
42
|
Abstract
PURPOSE OF REVIEW We give an update on the etiology and potential treatment options of rare inherited monogenic disorders associated with arterial calcification and calcific cardiac valve disease. RECENT FINDINGS Genetic studies of rare inherited syndromes have identified key regulators of ectopic calcification. Based on the pathogenic principles causing the diseases, these can be classified into three groups: (1) disorders of an increased extracellular inorganic phosphate/inorganic pyrophosphate ratio (generalized arterial calcification of infancy, pseudoxanthoma elasticum, arterial calcification and distal joint calcification, progeria, idiopathic basal ganglia calcification, and hyperphosphatemic familial tumoral calcinosis; (2) interferonopathies (Singleton-Merten syndrome); and (3) others, including Keutel syndrome and Gaucher disease type IIIC. Although some of the identified causative mechanisms are not easy to target for treatment, it has become clear that a disturbed serum phosphate/pyrophosphate ratio is a major force triggering arterial and cardiac valve calcification. Further studies will focus on targeting the phosphate/pyrophosphate ratio to effectively prevent and treat these calcific disease phenotypes.
Collapse
MESH Headings
- Abnormalities, Multiple/drug therapy
- Abnormalities, Multiple/genetics
- Abnormalities, Multiple/metabolism
- Aortic Diseases/drug therapy
- Aortic Diseases/genetics
- Aortic Diseases/metabolism
- Basal Ganglia Diseases/drug therapy
- Basal Ganglia Diseases/genetics
- Basal Ganglia Diseases/metabolism
- Calcinosis/drug therapy
- Calcinosis/genetics
- Calcinosis/metabolism
- Cartilage Diseases/drug therapy
- Cartilage Diseases/genetics
- Cartilage Diseases/metabolism
- Dental Enamel Hypoplasia/drug therapy
- Dental Enamel Hypoplasia/genetics
- Dental Enamel Hypoplasia/metabolism
- Diphosphates/metabolism
- Enzyme Replacement Therapy
- Gaucher Disease/drug therapy
- Gaucher Disease/genetics
- Gaucher Disease/metabolism
- Hand Deformities, Congenital/drug therapy
- Hand Deformities, Congenital/genetics
- Hand Deformities, Congenital/metabolism
- Humans
- Hyperostosis, Cortical, Congenital/drug therapy
- Hyperostosis, Cortical, Congenital/genetics
- Hyperostosis, Cortical, Congenital/metabolism
- Hyperphosphatemia/drug therapy
- Hyperphosphatemia/genetics
- Hyperphosphatemia/metabolism
- Interferons/metabolism
- Metacarpus/abnormalities
- Metacarpus/metabolism
- Muscular Diseases/drug therapy
- Muscular Diseases/genetics
- Muscular Diseases/metabolism
- Odontodysplasia/drug therapy
- Odontodysplasia/genetics
- Odontodysplasia/metabolism
- Osteoporosis/drug therapy
- Osteoporosis/genetics
- Osteoporosis/metabolism
- Phosphates/metabolism
- Progeria/drug therapy
- Progeria/genetics
- Progeria/metabolism
- Pseudoxanthoma Elasticum/drug therapy
- Pseudoxanthoma Elasticum/genetics
- Pseudoxanthoma Elasticum/metabolism
- Pulmonary Valve Stenosis/drug therapy
- Pulmonary Valve Stenosis/genetics
- Pulmonary Valve Stenosis/metabolism
- Vascular Calcification/drug therapy
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
Collapse
Affiliation(s)
- Yvonne Nitschke
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany
| | - Frank Rutsch
- Department of General Pediatrics, Münster University Children's Hospital, Albert-Schweitzer-Campus 1, D-48149, Münster, Germany.
| |
Collapse
|
43
|
Utility of coronary artery calcium scores in predicting coronary atherosclerosis amongst patients with moderate risk of coronary artery disease. ACTA ACUST UNITED AC 2017. [DOI: 10.1016/j.jicc.2017.04.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
44
|
McRobb LS, McGrath KCY, Tsatralis T, Liong EC, Tan JTM, Hughes G, Handelsman DJ, Heather AK. Estrogen Receptor Control of Atherosclerotic Calcification and Smooth Muscle Cell Osteogenic Differentiation. Arterioscler Thromb Vasc Biol 2017; 37:1127-1137. [PMID: 28473445 DOI: 10.1161/atvbaha.117.309054] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2016] [Accepted: 04/19/2017] [Indexed: 12/28/2022]
Abstract
OBJECTIVE Vascular calcification is associated with increased risk of myocardial infarction and stroke. The objective of this work was to examine the ability of 17β-estradiol (E2) to stimulate calcification of vascular smooth muscle cells (VSMC) in vivo, using aged apolipoprotein E-null mice with advanced atherosclerotic lesions, and subsequently to explore underlying mechanisms in vitro. APPROACH AND RESULTS Silastic E2 capsules were implanted into male and female apolipoprotein E-null mice aged 34 weeks. Plaque and calcified area were measured in the aortic sinus and innominate artery after 8 weeks. Immunohistochemical analysis examined expression of the estrogen receptors (estrogen receptor alpha and estrogen receptor beta [ERβ]). VSMC expression of osteogenic markers was examined using digital polymerase chain reaction. Advanced atherosclerotic lesions were present in all mice at the end of 8 weeks. In both male and female mice, E2 increased calcified area in a site-specific manner in the aortic sinus independently of plaque growth or lipid levels and occurred in association with a site-specific decrease in the proportion of ERβ-positive intimal cells. Calcified lesions expressed collagen I and bone sialoprotein, with decreased matrix Gla protein. In vitro, E2 suppressed ERβ expression and increased VSMC mineralization, demonstrating increased collagen I and II, osteocalcin and bone sialoprotein, and reduced matrix Gla protein and osteopontin. Antagonism or RNA silencing of estrogen receptor alpha, ERβ, or both further increased VSMC mineralization. CONCLUSIONS We have demonstrated that E2 can drive calcification in advanced atherosclerotic lesions by promoting the differentiation of VSMC to osteoblast-like cells, a process which is augmented by inhibition of estrogen receptor alpha or ERβ activity.
Collapse
MESH Headings
- Animals
- Apolipoproteins E/deficiency
- Apolipoproteins E/genetics
- Atherosclerosis/chemically induced
- Atherosclerosis/genetics
- Atherosclerosis/metabolism
- Atherosclerosis/pathology
- Calcium-Binding Proteins/metabolism
- Cattle
- Cell Differentiation/drug effects
- Cells, Cultured
- Collagen/metabolism
- Disease Models, Animal
- Drug Implants
- Estradiol/administration & dosage
- Estradiol/toxicity
- Estrogen Receptor Antagonists/pharmacology
- Estrogen Receptor alpha/agonists
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Estrogen Receptor beta/agonists
- Estrogen Receptor beta/genetics
- Estrogen Receptor beta/metabolism
- Extracellular Matrix Proteins/metabolism
- Female
- Genetic Predisposition to Disease
- Humans
- Integrin-Binding Sialoprotein/metabolism
- Male
- Mice, Knockout
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Muscle, Smooth, Vascular/pathology
- Myocytes, Smooth Muscle/drug effects
- Myocytes, Smooth Muscle/metabolism
- Myocytes, Smooth Muscle/pathology
- Neointima
- Osteocalcin/metabolism
- Osteogenesis/drug effects
- Osteopontin/metabolism
- Phenotype
- Plaque, Atherosclerotic
- RNA Interference
- Signal Transduction/drug effects
- Transfection
- Vascular Calcification/chemically induced
- Vascular Calcification/genetics
- Vascular Calcification/metabolism
- Vascular Calcification/pathology
- Matrix Gla Protein
Collapse
Affiliation(s)
- Lucinda S McRobb
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Kristine C Y McGrath
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Tania Tsatralis
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Eleanore C Liong
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Joanne T M Tan
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Gillian Hughes
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - David J Handelsman
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand
| | - Alison K Heather
- From the Heart Research Institute, Sydney, New South Wales, Australia (L.S.M., K.C.Y.M., T.T., E.C.L., J.T.M.T.); Department of Clinical Medicine, Faculty of Medicine and Health Sciences, Macquarie University, Sydney, New South Wales, Australia (L.S.M.); School of Life Sciences, Faculty of Science, University of Technology Sydney, New South Wales, Australia (K.C.Y.M.); Sydney Medical School (J.T.M.T.) and ANZAC Research Institute (D.J.H.), University of Sydney, New South Wales, Australia; and Department of Physiology, Otago School of Medical Sciences (G.H., A.K.H.) and HeartOtago (A.K.H.), University of Otago, Dunedin, New Zealand.
| |
Collapse
|
45
|
de Abajo FJ, Rodríguez-Martín S, Rodríguez-Miguel A, Gil MJ. Risk of Ischemic Stroke Associated With Calcium Supplements With or Without Vitamin D: A Nested Case-Control Study. J Am Heart Assoc 2017; 6:e005795. [PMID: 28522672 PMCID: PMC5524112 DOI: 10.1161/jaha.117.005795] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Accepted: 04/05/2017] [Indexed: 01/28/2023]
Abstract
BACKGROUND There is controversy surrounding the risk of ischemic stroke associated with the use of calcium supplements either in monotherapy or in combination with vitamin D. METHODS AND RESULTS A nested case-control study was performed with patients aged 40 to 89 years old, among whom a total of 2690 patients had a first episode of nonfatal ischemic stroke and for which 19 538 controls were randomly selected from the source population and frequency-matched with cases for age, sex, and calendar year. Logistic regression provided the odds ratios while adjusting for confounding factors. A sensitivity analysis was performed by restricting to patients who were new users of calcium supplements as either monotherapy or with vitamin D. Calcium supplementation with vitamin D was not associated with an increased risk of ischemic stroke (odds ratio 0.85; 95% confidence interval, 0.67-1.08) in the population as a whole or under any of the conditions examined (dose, duration, background cardiovascular risk, sex, or age). Calcium supplement monotherapy was not associated with an increased risk in the population as a whole (odds ratio 1.18; 95% confidence interval, 0.86-1.61), although a significant increased risk at high doses (≥1000 mg/day: odds ratio 2.09; 95% confidence interval, 1.25-3.49; <1000 mg: odds ratio 0.76; 95% confidence interval, 0.45-1.26) compared with nonuse was observed. The sensitivity analysis did not affect the inferences, with similar results observed among new users as to the overall study population. CONCLUSIONS This study suggests that calcium supplements given as monotherapy at high doses may increase the risk of ischemic stroke, whereas their combination with vitamin D seems to offset this hazard.
Collapse
Affiliation(s)
- Francisco J de Abajo
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares Madrid, Spain
- Departament of Biomedical Sciences (Pharmacology Sector), University of Alcalá, Alcalá de Henares Madrid, Spain
| | - Sara Rodríguez-Martín
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares Madrid, Spain
| | - Antonio Rodríguez-Miguel
- Clinical Pharmacology Unit, University Hospital Príncipe de Asturias, Alcalá de Henares Madrid, Spain
| | - Miguel J Gil
- Division of Pharmacoepidemiology and Pharmacovigilance, Spanish Agency for Medicines and Medical Devices, Madrid, Spain
| |
Collapse
|
46
|
Shobeiri N, Bendeck MP. Interleukin-1β Is a Key Biomarker and Mediator of Inflammatory Vascular Calcification. Arterioscler Thromb Vasc Biol 2017; 37:179-180. [DOI: 10.1161/atvbaha.116.308724] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Navid Shobeiri
- From the Department of Laboratory Medicine and Pathobiology and Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, ON, Canada
| | - Michelle P. Bendeck
- From the Department of Laboratory Medicine and Pathobiology and Translational Biology and Engineering Program, Ted Rogers Centre for Heart Research, University of Toronto, ON, Canada
| |
Collapse
|
47
|
Kim TK, Hong DM, Choi YH, Koo CH, Cho YJ, Park JB, Park KW, Kim HS, Jeon Y. Preoperative Serum Alkaline Phosphatase and Clinical Outcome of Off-Pump Coronary Artery Bypass Surgery. Circ J 2017; 81:799-805. [DOI: 10.1253/circj.cj-16-1288] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Tae Kyong Kim
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital
| | - Deok Man Hong
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital
| | - Yoon Hyeong Choi
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital
| | - Chang-Hoon Koo
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital
| | - Youn Joung Cho
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital
| | - Jun-Bean Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital
| | - Kyung Woo Park
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital
| | - Hyo-Soo Kim
- Department of Internal Medicine and Cardiovascular Center, Seoul National University Hospital
| | - Yunseok Jeon
- Department of Anesthesiology and Pain Medicine, Seoul National University Hospital
| |
Collapse
|
48
|
Millar SA, Patel H, Anderson SI, England TJ, O’Sullivan SE. Osteocalcin, Vascular Calcification, and Atherosclerosis: A Systematic Review and Meta-analysis. Front Endocrinol (Lausanne) 2017; 8:183. [PMID: 28824544 PMCID: PMC5534451 DOI: 10.3389/fendo.2017.00183] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 07/12/2017] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Osteocalcin (OC) is an intriguing hormone, concomitantly being the most abundant non-collagenous peptide found in the mineralized matrix of bone, and expanding the endocrine function of the skeleton with far-reaching extra-osseous effects. A new line of enquiry between OC and vascular calcification has emerged in response to observations that the mechanism of vascular calcification resembles that of bone mineralisation. To date, studies have reported mixed results. This systematic review and meta-analysis aimed to identify any association between OC and vascular calcification and atherosclerosis. METHODS AND RESULTS Databases were searched for original, peer reviewed human studies. A total of 1,453 articles were retrieved, of which 46 met the eligibility criteria. Overall 26 positive, 17 negative, and 29 neutral relationships were reported for assessments between OC (either concentration in blood, presence of OC-positive cells, or histological staining for OC) and extent of calcification or atherosclerosis. Studies that measured OC-positive cells or histological staining for OC reported positive relationships (11 studies). A higher percentage of Asian studies found a negative relationship (36%) in contrast to European studies (6%). Studies examining carboxylated and undercarboxylated forms of OC in the blood failed to report consistent results. The meta-analysis found no significant difference between OC concentration in the blood between patients with "atherosclerosis" and control (p = 0.13, n = 1,197). CONCLUSION No definitive association was determined between OC and vascular calcification or atherosclerosis; however, the presence of OC-positive cells and histological staining had a consistent positive correlation with calcification or atherosclerosis. The review highlighted several themes, which may influence OC within differing populations leading to inconclusive results. Large, longitudinal studies are required to further current understanding of the clinical relevance of OC in vascular calcification and atherosclerosis.
Collapse
Affiliation(s)
- Sophie A. Millar
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
- *Correspondence: Sophie A. Millar,
| | - Hinal Patel
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Susan I. Anderson
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Timothy J. England
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| | - Saoirse E. O’Sullivan
- Division of Medical Sciences and Graduate Entry Medicine, School of Medicine, University of Nottingham, Royal Derby Hospital, Derby, United Kingdom
| |
Collapse
|
49
|
Quantification of the focal progression of coronary atherosclerosis through automated co-registration of virtual histology-intravascular ultrasound imaging data. Int J Cardiovasc Imaging 2016; 33:13-24. [PMID: 27844239 DOI: 10.1007/s10554-016-0969-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 08/26/2016] [Indexed: 01/01/2023]
Abstract
The goal of this study was to evaluate the accuracy of a novel algorithm that circumferentially co-registers serial virtual histology-intravascular ultrasound (VH-IVUS) data for the focal assessment of coronary atherosclerosis progression. Thirty-three patients with an abnormal non-invasive cardiac stress test or stable angina underwent baseline and follow-up (6 or 12 months) invasive evaluation that included acquisition of VH-IVUS image data. Baseline and follow-up image pairs (n = 4194) were automatically co-registered in the circumferential direction via a multi-variate cross-correlation algorithm. Algorithm stability and accuracy were assessed by comparing results from multiple iterations of the algorithm (iteration 1 vs. iteration 2) and against values determined manually by two expert VH-IVUS readers (algorithm vs. two expert readers). Furthermore, focal plaque progression values were compared between the algorithm and expert readers following co-registration by the independently determined angles. Strong agreement in circumferential co-registration angles were observed across multiple iterations of the algorithm (stability) and between the algorithm and expert readers (accuracy; all concordance correlation coefficients >0.98). Furthermore, circumferential co-registration angles determined by the algorithm were not statistically when compared to values determined by two expert readers (p = 0. 99). Bland-Altman analysis indicated minimal bias when comparing focal VH-IVUS defined plaque progression in corresponding sectors following circumferential co-registration between the algorithm and expert readers. Finally, average differences in changes in total plaque and constituent areas between the algorithm and readers were within the average range of difference between readers (interobserver variability). We present a stable and validated algorithm to automatically circumferentially co-register serial VH-IVUS imaging data for the focal quantification of coronary atherosclerosis progression.
Collapse
|
50
|
Correlation between coronary artery calcium score and aortic diameter in a high-risk population of elderly male hypertensive patients. Coron Artery Dis 2016; 25:698-704. [PMID: 25051100 DOI: 10.1097/mca.0000000000000150] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
BACKGROUND Studies on the relationship between coronary artery calcium and aortic diameter are scarce. The aim of the current study was to evaluate the correlation between coronary artery calcium score (CACS) and maximal thoracic and abdominal aortic diameters in a population of elderly (>65 years) male hypertensive patients at high risk for coronary artery disease. PATIENTS AND METHODS From June 2012 to April 2013, we prospectively enrolled 393 male hypertensive patients older than 65 years of age who had no history of aortic aneurysm. Coronary artery calcium and maximal diameters of the ascending thoracic aorta (ATAmax), descending thoracic aorta (DTAmax), and abdominal aorta (AAmax) were measured using noncontrast computed tomography imaging. Aortic diameters are indexed to body surface area (BSA). Participants were divided into five groups according to CACS (0, 1-10, 10-100, 100-400, and >400). RESULTS The mean ATAmax/BSA, DTAmax/BSA, and AAmax/BSA were 22.0±2.7, 16.3±1.9, and 13.0±2.9 mm, respectively. On multivariate analysis, ATAmax/BSA was associated independently with age, diabetes, and history of aortic valve replacement (all P<0.001). DTAmax/BSA was associated independently with age (P<0.001). However, there were no significant correlations between thoracic aorta diameter and CACS. In contrast, AAmax/BSA was associated independently with CACS as well as age and history of smoking (P=0.014, 0.003, and 0.019, respectively). Abdominal aortic aneurysm (>30 mm) was more prevalent in patients with a CACS of 400 or more compared with the others (14 vs. 3%, P<0.001). CONCLUSION CACS was associated with increased abdominal aorta diameter, but not with thoracic aorta diameter. Therefore, screening for an abdominal aortic aneurysm is warranted in patients with a high risk of coronary artery disease and a high CACS. However, the necessity for thoracic aortic aneurysm screening is not clear in these patients.
Collapse
|