1
|
Lowrey MK, Day H, Schilling KJ, Huynh KT, Franca CM, Schutt CE. Remote-Controlled Gene Delivery in Coaxial 3D-Bioprinted Constructs using Ultrasound-Responsive Bioinks. Cell Mol Bioeng 2024; 17:401-421. [PMID: 39513003 PMCID: PMC11538209 DOI: 10.1007/s12195-024-00818-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Accepted: 08/01/2024] [Indexed: 11/15/2024] Open
Abstract
Introduction Coaxial 3D bioprinting has advanced the formation of tissue constructs that recapitulate key architectures and biophysical parameters for in-vitro disease modeling and tissue-engineered therapies. Controlling gene expression within these structures is critical for modulating cell signaling and probing cell behavior. However, current transfection strategies are limited in spatiotemporal control because dense 3D scaffolds hinder diffusion of traditional vectors. To address this, we developed a coaxial extrusion 3D bioprinting technique using ultrasound-responsive gene delivery bioinks. These bioink materials incorporate echogenic microbubble gene delivery particles that upon ultrasound exposure can sonoporate cells within the construct, facilitating controllable transfection. Methods Phospholipid-coated gas-core microbubbles were electrostatically coupled to reporter transgene plasmid payloads and incorporated into cell-laden alginate bioinks at varying particle concentrations. These bioinks were loaded into the coaxial nozzle core for extrusion bioprinting with CaCl2 crosslinker in the outer sheath. Resulting bioprints were exposed to 2.25 MHz focused ultrasound and evaluated for microbubble activation and subsequent DNA delivery and transgene expression. Results Coaxial printing parameters were established that preserved the stability of ultrasound-responsive gene delivery particles for at least 48 h in bioprinted alginate filaments while maintaining high cell viability. Successful sonoporation of embedded cells resulted in DNA delivery and robust ultrasound-controlled transgene expression. The number of transfected cells was modulated by varying the number of focused ultrasound pulses applied. The size region over which DNA was delivered was modulated by varying the concentration of microbubbles in the printed filaments. Conclusions Our results present a successful coaxial 3D bioprinting technique designed to facilitate ultrasound-controlled gene delivery. This platform enables remote, spatiotemporally-defined genetic manipulation in coaxially bioprinted tissue constructs with important applications for disease modeling and regenerative medicine. Supplementary Information The online version contains supplementary material available at 10.1007/s12195-024-00818-x.
Collapse
Affiliation(s)
- Mary K. Lowrey
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR 97201 USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Holly Day
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR 97201 USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Kevin J. Schilling
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR 97201 USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Katherine T. Huynh
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR 97201 USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| | - Cristiane M. Franca
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
- Department of Oral Rehabilitation and Biosciences, School of Dentistry, Oregon Health and Science University, Portland, OR 97201 USA
| | - Carolyn E. Schutt
- Biomedical Engineering Department, Oregon Health and Science University, Portland, OR 97201 USA
- Cancer Early Detection Advanced Research Center, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
- Knight Cancer Precision Biofabrication Hub, Knight Cancer Institute, Oregon Health and Science University, Portland, OR 97201 USA
| |
Collapse
|
2
|
Yang S, Chen Q, Fan Y, Zhang C, Cao M. The essential role of dual-energy x-ray absorptiometry in the prediction of subclinical cardiovascular disease. Front Cardiovasc Med 2024; 11:1377299. [PMID: 39280034 PMCID: PMC11393745 DOI: 10.3389/fcvm.2024.1377299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Accepted: 08/15/2024] [Indexed: 09/18/2024] Open
Abstract
Subclinical cardiovascular disease (Sub-CVD) is an early stage of cardiovascular disease and is often asymptomatic. Risk factors, including hypertension, diabetes, obesity, and lifestyle, significantly affect Sub-CVD. Progress in imaging technology has facilitated the timely identification of disease phenotypes and risk categorization. The critical function of dual-energy x-ray absorptiometry (DXA) in predicting Sub-CVD was the subject of this research. Initially used to evaluate bone mineral density, DXA has now evolved into an indispensable tool for assessing body composition, which is a pivotal determinant in estimating cardiovascular risk. DXA offers precise measurements of body fat, lean muscle mass, bone density, and abdominal aortic calcification, rendering it an essential tool for Sub-CVD evaluation. This study examined the efficacy of DXA in integrating various risk factors into a comprehensive assessment and how the application of machine learning could enhance the early discovery and control of cardiovascular risks. DXA exhibits distinct advantages and constraints compared to alternative imaging modalities such as ultrasound, computed tomography, magnetic resonance imaging, and positron emission tomography. This review advocates DXA incorporation into cardiovascular health assessments, emphasizing its crucial role in the early identification and management of Sub-CVD.
Collapse
Affiliation(s)
- Sisi Yang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qin Chen
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yang Fan
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cuntai Zhang
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Cao
- Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
3
|
Bouakaz A, Michel Escoffre J. From concept to early clinical trials: 30 years of microbubble-based ultrasound-mediated drug delivery research. Adv Drug Deliv Rev 2024; 206:115199. [PMID: 38325561 DOI: 10.1016/j.addr.2024.115199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 01/03/2024] [Accepted: 02/02/2024] [Indexed: 02/09/2024]
Abstract
Ultrasound mediated drug delivery, a promising therapeutic modality, has evolved remarkably over the past three decades. Initially designed to enhance contrast in ultrasound imaging, microbubbles have emerged as a main vector for drug delivery, offering targeted therapy with minimized side effects. This review addresses the historical progression of this technology, emphasizing the pivotal role microbubbles play in augmenting drug extravasation and targeted delivery. We explore the complex mechanisms behind this technology, from stable and inertial cavitation to diverse acoustic phenomena, and their applications in medical fields. While the potential of ultrasound mediated drug delivery is undeniable, there are still challenges to overcome. Balancing therapeutic efficacy and safety and establishing standardized procedures are essential areas requiring attention. A multidisciplinary approach, gathering collaborations between researchers, engineers, and clinicians, is important for exploiting the full potential of this technology. In summary, this review highlights the potential of using ultrasound mediated drug delivery in improving patient care across various medical conditions.
Collapse
Affiliation(s)
- Ayache Bouakaz
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France.
| | | |
Collapse
|
4
|
Varadarajan V, Gidding S, Wu C, Carr J, Lima JA. Imaging Early Life Cardiovascular Phenotype. Circ Res 2023; 132:1607-1627. [PMID: 37289903 PMCID: PMC10501740 DOI: 10.1161/circresaha.123.322054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 04/30/2023] [Indexed: 06/10/2023]
Abstract
The growing epidemics of obesity, hypertension, and diabetes, in addition to worsening environmental factors such as air pollution, water scarcity, and climate change, have fueled the continuously increasing prevalence of cardiovascular diseases (CVDs). This has caused a markedly increasing burden of CVDs that includes mortality and morbidity worldwide. Identification of subclinical CVD before overt symptoms can lead to earlier deployment of preventative pharmacological and nonpharmacologic strategies. In this regard, noninvasive imaging techniques play a significant role in identifying early CVD phenotypes. An armamentarium of imaging techniques including vascular ultrasound, echocardiography, magnetic resonance imaging, computed tomography, noninvasive computed tomography angiography, positron emission tomography, and nuclear imaging, with intrinsic strengths and limitations can be utilized to delineate incipient CVD for both clinical and research purposes. In this article, we review the various imaging modalities used for the evaluation, characterization, and quantification of early subclinical cardiovascular diseases.
Collapse
Affiliation(s)
- Vinithra Varadarajan
- Division of Cardiology, Department of Medicine Johns Hopkins University, Baltimore, MD
| | | | - Colin Wu
- Department of Medicine, National Heart, Lung and Blood Institute, Bethesda, MD
| | - Jeffrey Carr
- Department Radiology and Radiological Sciences, Vanderbilt University, Nashville, TN
| | - Joao A.C. Lima
- Division of Cardiology, Department of Medicine Johns Hopkins University, Baltimore, MD
| |
Collapse
|
5
|
Mechanisms of the "No-Reflow" Phenomenon After Acute Myocardial Infarction: Potential Role of Pericytes. JACC Basic Transl Sci 2023; 8:204-220. [PMID: 36908667 PMCID: PMC9998747 DOI: 10.1016/j.jacbts.2022.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 11/20/2022]
Abstract
Pericytes contract during myocardial ischemia resulting in capillary constriction and no reflow. Reversing pericyte contraction pharmacologically reduces no reflow and infarct size. These findings open up an entire new venue of research aimed at altering pericyte function in myocardial ischemia and infarction.
Collapse
|
6
|
Joshi K, Sanwal R, Thu KL, Tsai SSH, Lee WL. Plug and Pop: A 3D-Printed, Modular Platform for Drug Delivery Using Clinical Ultrasound and Microbubbles. Pharmaceutics 2022; 14:pharmaceutics14112516. [PMID: 36432707 PMCID: PMC9695114 DOI: 10.3390/pharmaceutics14112516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/14/2022] [Accepted: 11/16/2022] [Indexed: 11/22/2022] Open
Abstract
Targeted drug and gene delivery using ultrasound and microbubbles (USMB) has the potential to treat several diseases. In vitro investigation of USMB-mediated delivery is of prime importance prior to in vivo studies because it is cost-efficient and allows for the rapid optimization of experimental parameters. Most in vitro USMB studies are carried out with non-clinical, research-grade ultrasound systems, which are not approved for clinical use and are difficult to replicate by other labs. A standardized, low-cost, and easy-to-use in vitro experimental setup using a clinical ultrasound system would facilitate the eventual translation of the technology to the bedside. In this paper, we report a modular 3D-printed experimental setup using a clinical ultrasound transducer that can be used to study USMB-mediated drug delivery. We demonstrate its utility for optimizing various cargo delivery parameters in the HEK293 cell line, as well as for the CMT167 lung carcinoma cell line, using dextran as a model drug. We found that the proportion of dextran-positive cells increases with increasing mechanical index and ultrasound treatment time and decreases with increasing pulse interval (PI). We also observed that dextran delivery is most efficient for a narrow range of microbubble concentrations.
Collapse
Affiliation(s)
- Kushal Joshi
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
| | - Rajiv Sanwal
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Kelsie L. Thu
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Scott S. H. Tsai
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Biomedical Engineering Graduate Program, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
| | - Warren L. Lee
- Department of Mechanical and Industrial Engineering, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Institute for Biomedical Engineering, Science and Technology (iBEST), Toronto, ON M5B 1T8, Canada
- Keenan Research Centre for Biomedical Science, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1T8, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
- Biomedical Engineering Graduate Program, Toronto Metropolitan University, Toronto, ON M5B 2K3, Canada
- Interdepartmental Division of Critical Care Medicine, University of Toronto, Toronto, ON M5S 1A1, Canada
- Correspondence:
| |
Collapse
|
7
|
Pyridine nucleotide redox potential in coronary smooth muscle couples myocardial blood flow to cardiac metabolism. Nat Commun 2022; 13:2051. [PMID: 35440632 PMCID: PMC9018695 DOI: 10.1038/s41467-022-29745-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 03/28/2022] [Indexed: 12/13/2022] Open
Abstract
Adequate oxygen delivery to the heart during stress is essential for sustaining cardiac function. Acute increases in myocardial oxygen demand evoke coronary vasodilation and enhance perfusion via functional upregulation of smooth muscle voltage-gated K+ (Kv) channels. Because this response is controlled by Kv1 accessory subunits (i.e., Kvβ), which are NAD(P)(H)-dependent aldo-keto reductases, we tested the hypothesis that oxygen demand modifies arterial [NAD(H)]i, and that resultant cytosolic pyridine nucleotide redox state influences Kv1 activity. High-resolution imaging mass spectrometry and live-cell imaging reveal cardiac workload-dependent increases in NADH:NAD+ in intramyocardial arterial myocytes. Intracellular NAD(P)(H) redox ratios reflecting elevated oxygen demand potentiate native coronary Kv1 activity in a Kvβ2-dependent manner. Ablation of Kvβ2 catalysis suppresses redox-dependent increases in Kv1 activity, vasodilation, and the relationship between cardiac workload and myocardial blood flow. Collectively, this work suggests that the pyridine nucleotide sensitivity and enzymatic activity of Kvβ2 controls coronary vasoreactivity and myocardial blood flow during metabolic stress. Physiological matching of blood flow to the demand for oxygen by the heart is required for sustained cardiac health, yet the underlying mechanisms are obscure. Here, the authors report a key role for acute modifications to the redox state of intracellular pyridine nucleotides in coronary smooth muscle and their impact on voltage-gated K + channels in metabolic vasodilation
Collapse
|
8
|
Ohanyan V, Raph SM, Dwenger MM, Hu X, Pucci T, Mack G, Moore JB, Chilian WM, Bhatnagar A, Nystoriak MA. Myocardial Blood Flow Control by Oxygen Sensing Vascular Kvβ Proteins. Circ Res 2021; 128:738-751. [PMID: 33499656 DOI: 10.1161/circresaha.120.317715] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Vahagn Ohanyan
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown (V.O., T.P., G.M., W.M.C.)
| | - Sean M Raph
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - Marc M Dwenger
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - Xuemei Hu
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - Thomas Pucci
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown (V.O., T.P., G.M., W.M.C.)
| | - Gregory Mack
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown (V.O., T.P., G.M., W.M.C.)
| | - Joseph B Moore
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - William M Chilian
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown (V.O., T.P., G.M., W.M.C.)
| | - Aruni Bhatnagar
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| | - Matthew A Nystoriak
- Division of Environmental Medicine, Department of Medicine, Diabetes and Obesity Center, University of Louisville, KY (S.M.R., M.M.D., X.H., J.B.M., A.B., M.A.N.)
| |
Collapse
|
9
|
Abstract
Gas-filled microbubbles are currently in clinical use as blood pool contrast agents for ultrasound imaging. The goal of this review is to discuss the trends and issues related to these relatively unusual intravascular materials, which are not small molecules per se, not polymers, not even nanoparticles, but larger micrometer size structures, compressible, flexible, elastic, and deformable. The intent is to connect current research and initial studies from 2 to 3 decades ago, tied to gas exchange between the bubbles and surrounding biological medium, in the following areas of focus: (1) parameters of microbubble movement in relation to vasculature specifics; (2) gas uptake and loss from the bubbles in the vasculature; (3) adhesion of microbubbles to target receptors in the vasculature; and (4) microbubble interaction with the surrounding vessels and tissues during insonation.Microbubbles are generally safe and require orders of magnitude lower material doses than x-ray and magnetic resonance imaging contrast agents. Application of microbubbles will soon extend beyond blood pool contrast and tissue perfusion imaging. Microbubbles can probe molecular and cellular biomarkers of disease by targeted contrast ultrasound imaging. This approach is now in clinical trials, for example, with the aim to detect and delineate tumor nodes in prostate, breast, and ovarian cancer. Imaging of inflammation, ischemia-reperfusion injury, and ischemic memory is also feasible. More importantly, intravascular microbubbles can be used for local deposition of focused ultrasound energy to enhance drug and gene delivery to cells and tissues, across endothelial barrier, especially blood-brain barrier.Overall, microbubble behavior, stability and in vivo lifetime, bioeffects upon the action of ultrasound and resulting enhancement of drug and gene delivery, as well as targeted imaging are critically dependent on the events of gas exchange between the bubbles and surrounding media, as outlined in this review.
Collapse
Affiliation(s)
- Alexander L Klibanov
- From the Cardiovascular Division, Department of Medicine and Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine; and Departments of Biomedical Engineering, and Radiology, University of Virginia, Charlottesville, VA
| |
Collapse
|
10
|
Cimorelli M, Flynn MA, Angel B, Reimold E, Fafarman A, Huneke R, Kohut A, Wrenn S. A Voltage-Sensitive Ultrasound Enhancing Agent for Myocardial Perfusion Imaging in a Rat Model. ULTRASOUND IN MEDICINE & BIOLOGY 2020; 46:2388-2399. [PMID: 32593498 DOI: 10.1016/j.ultrasmedbio.2020.05.015] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 05/13/2020] [Accepted: 05/19/2020] [Indexed: 06/11/2023]
Abstract
Echocardiographers with specialized expertise sometimes perform myocardial perfusion imaging using U.S. Food and Drug Administration-approved microbubbles in an off-label capacity, correlating microbubble replenishment in the near field with blood flow through the myocardium. This study reports the in vivo clinical feasibility of a voltage-sensitive ultrasound enhancing agent (UEA) for myocardial perfusion imaging. Four UEAs were injected into Sprague-Dawley rats while ultrasound images were collected to quantify brightness in the left ventricular (LV) cavity, septal wall, and posterior wall in systole and diastole. Formulation IV, a phase change agent nested within a negatively charged phospholipid bilayer, increased the tissue-to-cavity ratio in both systole and diastole in the septal wall, 6 dB, and in the posterior wall, 5 dB, while leaving the LV cavity at baseline. This outcome improves the signal of the myocardium relative to the LV cavity and shows promise as a myocardial perfusion UEA.
Collapse
Affiliation(s)
- Michael Cimorelli
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Michael A Flynn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Brett Angel
- Cardiology, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Emily Reimold
- University Laboratory Animal Resources, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Aaron Fafarman
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA
| | - Richard Huneke
- University Laboratory Animal Resources, Drexel University College of Medicine, Philadelphia, Pennsylvania, USA
| | - Andrew Kohut
- Cardiology, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Steven Wrenn
- Chemical and Biological Engineering, Drexel University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
11
|
Mathew RC, Bourque JM, Salerno M, Kramer CM. Cardiovascular Imaging Techniques to Assess Microvascular Dysfunction. JACC Cardiovasc Imaging 2020; 13:1577-1590. [PMID: 31607665 PMCID: PMC7148179 DOI: 10.1016/j.jcmg.2019.09.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 08/02/2019] [Accepted: 09/03/2019] [Indexed: 02/08/2023]
Abstract
The understanding of microvascular dysfunction without evidence of epicardial coronary artery disease pales in comparison with that of obstructive epicardial coronary artery disease. A primary limitation in the past had been the lack of development of noninvasive methods of detecting and quantifying microvascular dysfunction. This limitation has particularly affected the ability to study the pathophysiology, morbidity, and treatment of this disease. More recently, almost all of the noninvasive cardiac imaging modalities have been used to quantify blood flow and advance understanding of microvascular dysfunction.
Collapse
Affiliation(s)
- Roshin C Mathew
- Department of Medicine (Cardiology), University of Virginia Health System, Charlottesville, Virginia
| | - Jamieson M Bourque
- Department of Medicine (Cardiology), University of Virginia Health System, Charlottesville, Virginia; Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia
| | - Michael Salerno
- Department of Medicine (Cardiology), University of Virginia Health System, Charlottesville, Virginia; Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia; Department of Biomedical Engineering, University of Virginia Health System, Charlottesville, Virginia
| | - Christopher M Kramer
- Department of Medicine (Cardiology), University of Virginia Health System, Charlottesville, Virginia; Department of Radiology and Medical Imaging, University of Virginia Health System, Charlottesville, Virginia.
| |
Collapse
|
12
|
Love KM, Liu J, Regensteiner JG, Reusch JE, Liu Z. GLP-1 and insulin regulation of skeletal and cardiac muscle microvascular perfusion in type 2 diabetes. J Diabetes 2020; 12:488-498. [PMID: 32274893 PMCID: PMC8393916 DOI: 10.1111/1753-0407.13045] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 03/24/2020] [Accepted: 03/31/2020] [Indexed: 12/25/2022] Open
Abstract
Muscle microvasculature critically regulates skeletal and cardiac muscle health and function. It provides endothelial surface area for substrate exchange between the plasma compartment and the muscle interstitium. Insulin fine-tunes muscle microvascular perfusion to regulate its own action in muscle and oxygen and nutrient supplies to muscle. Specifically, insulin increases muscle microvascular perfusion, which results in increased delivery of insulin to the capillaries that bathe the muscle cells and then facilitate its own transendothelial transport to reach the muscle interstitium. In type 2 diabetes, muscle microvascular responses to insulin are blunted and there is capillary rarefaction. Both loss of capillary density and decreased insulin-mediated capillary recruitment contribute to a decreased endothelial surface area available for substrate exchange. Vasculature expresses abundant glucagon-like peptide 1 (GLP-1) receptors. GLP-1, in addition to its well-characterized glycemic actions, improves endothelial function, increases muscle microvascular perfusion, and stimulates angiogenesis. Importantly, these actions are preserved in the insulin resistant states. Thus, treatment of insulin resistant patients with GLP-1 receptor agonists may improve skeletal and cardiac muscle microvascular perfusion and increase muscle capillarization, leading to improved delivery of oxygen, nutrients, and hormones such as insulin to the myocytes. These actions of GLP-1 impact skeletal and cardiac muscle function and systems biology such as functional exercise capacity. Preclinical studies and clinical trials involving the use of GLP-1 receptor agonists have shown salutary cardiovascular effects and improved cardiovascular outcomes in type 2 diabetes mellitus. Future studies should further examine the different roles of GLP-1 in cardiac as well as skeletal muscle function.
Collapse
Affiliation(s)
- Kaitlin M. Love
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Jia Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| | - Judith G. Regensteiner
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado, Aurora, Colorado
| | - Jane E.B. Reusch
- Center for Women’s Health Research, University of Colorado School of Medicine, Aurora, Colorado
- Department of Medicine, University of Colorado, Aurora, Colorado
- Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, Colorado
| | - Zhenqi Liu
- Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia Health System, Charlottesville, Virginia
| |
Collapse
|
13
|
Roovers S, Segers T, Lajoinie G, Deprez J, Versluis M, De Smedt SC, Lentacker I. The Role of Ultrasound-Driven Microbubble Dynamics in Drug Delivery: From Microbubble Fundamentals to Clinical Translation. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2019; 35:10173-10191. [PMID: 30653325 DOI: 10.1021/acs.langmuir.8b03779] [Citation(s) in RCA: 135] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2023]
Abstract
In the last couple of decades, ultrasound-driven microbubbles have proven excellent candidates for local drug delivery applications. Besides being useful drug carriers, microbubbles have demonstrated the ability to enhance cell and tissue permeability and, as a consequence, drug uptake herein. Notwithstanding the large amount of evidence for their therapeutic efficacy, open issues remain. Because of the vast number of ultrasound- and microbubble-related parameters that can be altered and the variability in different models, the translation from basic research to (pre)clinical studies has been hindered. This review aims at connecting the knowledge gained from fundamental microbubble studies to the therapeutic efficacy seen in in vitro and in vivo studies, with an emphasis on a better understanding of the response of a microbubble upon exposure to ultrasound and its interaction with cells and tissues. More specifically, we address the acoustic settings and microbubble-related parameters (i.e., bubble size and physicochemistry of the bubble shell) that play a key role in microbubble-cell interactions and in the associated therapeutic outcome. Additionally, new techniques that may provide additional control over the treatment, such as monodisperse microbubble formulations, tunable ultrasound scanners, and cavitation detection techniques, are discussed. An in-depth understanding of the aspects presented in this work could eventually lead the way to more efficient and tailored microbubble-assisted ultrasound therapy in the future.
Collapse
Affiliation(s)
- Silke Roovers
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Tim Segers
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Guillaume Lajoinie
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Joke Deprez
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Michel Versluis
- Physics of Fluids Group, MESA+ Institute for Nanotechnology and Technical Medical (TechMed) Center , University of Twente , P.O. Box 217, 7500 AE Enschede , The Netherlands
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| | - Ine Lentacker
- Laboratory of General Biochemistry and Physical Pharmacy, Ghent Research Group on Nanomedicine, Faculty of Pharmaceutical Sciences , Ghent University , Ottergemsesteenweg 460 , Ghent , Belgium
| |
Collapse
|
14
|
Rasalingam R, Novak E, Rifkin RD. Improved differential diagnosis of intracardiac and extracardiac shunts using acoustic intensity mapping of saline contrast studies. Eur Heart J Cardiovasc Imaging 2019; 21:307-317. [DOI: 10.1093/ehjci/jez129] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/15/2019] [Indexed: 11/13/2022] Open
Abstract
Abstract
Aims
The aim of this study was to test the hypothesis that temporal patterns of saline contrast entry into, and exit from the left heart are significantly different in intra- and extra-cardiac shunts and can be used to differentiate the shunt mechanism when Valsalva manoeuvre cannot be performed, or is of uncertain quality. We propose a novel approach of mapping the temporal changes in acoustic intensity (AI) within the left and right heart to identify and define these unique patterns.
Methods and results
We screened cases of right to left shunting on resting agitated saline contrast echocardiograms with clinical criteria that identified the origin of shunting as either a patent foramen ovale or pulmonary arteriovenous malformation. Acoustic time-intensity curves were generated from the right and left heart chambers that reflected the change in saline contrast density over time. Several novel pre-specified parameters were measured from these curves, in addition to the standard heartbeat counting method, to characterize the entrance (wash-in) and exit (wash-out) patterns of saline contrast in the left heart. Statistical analysis showed that AI mapping provided superior differentiation of the two populations than did the traditional beat counting method.
Conclusion
Diagnosis of shunt mechanism from saline contrast studies can be improved over current methods through the use of AI mapping to define the rapidity that peak contrast effect develops, the speed that the contrast effect decays, and the contrast intensity late in the recording.
Collapse
Affiliation(s)
- Ravi Rasalingam
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, MO, USA
| | - Eric Novak
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, MO, USA
| | - Robert D Rifkin
- Division of Cardiology, Department of Medicine, Washington University in St. Louis, 660 S. Euclid Ave, MO, USA
| |
Collapse
|
15
|
Applications of Ultrasound to Stimulate Therapeutic Revascularization. Int J Mol Sci 2019; 20:ijms20123081. [PMID: 31238531 PMCID: PMC6627741 DOI: 10.3390/ijms20123081] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 06/20/2019] [Accepted: 06/21/2019] [Indexed: 12/13/2022] Open
Abstract
Many pathological conditions are characterized or caused by the presence of an insufficient or aberrant local vasculature. Thus, therapeutic approaches aimed at modulating the caliber and/or density of the vasculature by controlling angiogenesis and arteriogenesis have been under development for many years. As our understanding of the underlying cellular and molecular mechanisms of these vascular growth processes continues to grow, so too do the available targets for therapeutic intervention. Nonetheless, the tools needed to implement such therapies have often had inherent weaknesses (i.e., invasiveness, expense, poor targeting, and control) that preclude successful outcomes. Approximately 20 years ago, the potential for using ultrasound as a new tool for therapeutically manipulating angiogenesis and arteriogenesis began to emerge. Indeed, the ability of ultrasound, especially when used in combination with contrast agent microbubbles, to mechanically manipulate the microvasculature has opened several doors for exploration. In turn, multiple studies on the influence of ultrasound-mediated bioeffects on vascular growth and the use of ultrasound for the targeted stimulation of blood vessel growth via drug and gene delivery have been performed and published over the years. In this review article, we first discuss the basic principles of therapeutic ultrasound for stimulating angiogenesis and arteriogenesis. We then follow this with a comprehensive cataloging of studies that have used ultrasound for stimulating revascularization to date. Finally, we offer a brief perspective on the future of such approaches, in the context of both further research development and possible clinical translation.
Collapse
|
16
|
Bing C, Hong Y, Hernandez C, Rich M, Cheng B, Munaweera I, Szczepanski D, Xi Y, Bolding M, Exner A, Chopra R. Characterization of different bubble formulations for blood-brain barrier opening using a focused ultrasound system with acoustic feedback control. Sci Rep 2018; 8:7986. [PMID: 29789589 PMCID: PMC5964106 DOI: 10.1038/s41598-018-26330-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2017] [Accepted: 05/04/2018] [Indexed: 11/09/2022] Open
Abstract
Focused ultrasound combined with bubble-based agents serves as a non-invasive way to open the blood-brain barrier (BBB). Passive acoustic detection was well studied recently to monitor the acoustic emissions induced by the bubbles under ultrasound energy, but the ability to perform reliable BBB opening with a real-time feedback control algorithm has not been fully evaluated. This study focuses on characterizing the acoustic emissions of different types of bubbles: Optison, Definity, and a custom-made nanobubble. Their performance on reliable BBB opening under real-time feedback control based on acoustic detection was evaluated both in-vitro and in-vivo. The experiments were conducted using a 0.5 MHz focused ultrasound transducer with in-vivo focal pressure ranges from 0.1-0.7 MPa. Successful feedback control was achieved with all three agents when combining with infusion injection. Localized opening was confirmed with Evans blue dye leakage. Microscopic images were acquired to review the opening effects. Under similar total gas volume, nanobubble showed a more reliable opening effect compared to Optison and Definity (p < 0.05). The conclusions obtained from this study confirm the possibilities of performing stable opening using a feedback control algorithm combined with infusion injection. It also opens another potential research area of BBB opening using sub-micron bubbles.
Collapse
Affiliation(s)
- Chenchen Bing
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.
| | - Yu Hong
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | | | - Megan Rich
- Division of Advanced Medical Imaging Research, University of Alabama, Birmingham, AL, 35294, USA
| | - Bingbing Cheng
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Imalka Munaweera
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Debra Szczepanski
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Yin Xi
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Department of Clinical Science, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| | - Mark Bolding
- Division of Advanced Medical Imaging Research, University of Alabama, Birmingham, AL, 35294, USA
| | - Agata Exner
- Department of Radiology, Case Western Reserve University, Cleveland, OH, 44106, USA
| | - Rajiv Chopra
- Department of Radiology, UT Southwestern Medical Center, Dallas, TX, 75390, USA.,Advanced Imaging Research Center, UT Southwestern Medical Center, Dallas, TX, 75390, USA
| |
Collapse
|
17
|
Barrett EJ, Liu Z, Khamaisi M, King GL, Klein R, Klein BEK, Hughes TM, Craft S, Freedman BI, Bowden DW, Vinik AI, Casellini CM. Diabetic Microvascular Disease: An Endocrine Society Scientific Statement. J Clin Endocrinol Metab 2017; 102:4343-4410. [PMID: 29126250 PMCID: PMC5718697 DOI: 10.1210/jc.2017-01922] [Citation(s) in RCA: 327] [Impact Index Per Article: 40.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Accepted: 08/29/2017] [Indexed: 01/18/2023]
Abstract
Both type 1 and type 2 diabetes adversely affect the microvasculature in multiple organs. Our understanding of the genesis of this injury and of potential interventions to prevent, limit, or reverse injury/dysfunction is continuously evolving. This statement reviews biochemical/cellular pathways involved in facilitating and abrogating microvascular injury. The statement summarizes the types of injury/dysfunction that occur in the three classical diabetes microvascular target tissues, the eye, the kidney, and the peripheral nervous system; the statement also reviews information on the effects of diabetes and insulin resistance on the microvasculature of skin, brain, adipose tissue, and cardiac and skeletal muscle. Despite extensive and intensive research, it is disappointing that microvascular complications of diabetes continue to compromise the quantity and quality of life for patients with diabetes. Hopefully, by understanding and building on current research findings, we will discover new approaches for prevention and treatment that will be effective for future generations.
Collapse
Affiliation(s)
- Eugene J. Barrett
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Zhenqi Liu
- Division of Endocrinology, Department of Medicine, University of Virginia, Charlottesville, Virginia 22908
| | - Mogher Khamaisi
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - George L. King
- Section of Vascular Cell Biology, Joslin Diabetes Center, Harvard Medical School, Boston, Massachusetts 02215
| | - Ronald Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Barbara E. K. Klein
- Department of Ophthalmology and Visual Sciences, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin 53705
| | - Timothy M. Hughes
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Suzanne Craft
- Sticht Center for Healthy Aging and Alzheimer’s Prevention, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Barry I. Freedman
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Donald W. Bowden
- Divisions of Nephrology and Endocrinology, Department of Internal Medicine, Centers for Diabetes Research, and Center for Human Genomics and Personalized Medicine Research, Wake Forest School of Medicine, Winston-Salem, North Carolina 27157
| | - Aaron I. Vinik
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| | - Carolina M. Casellini
- EVMS Strelitz Diabetes Center, Eastern Virginia Medical Center, Norfolk, Virginia 23510
| |
Collapse
|
18
|
Verkaik M, van Poelgeest EM, Kwekkeboom RFJ, Ter Wee PM, van den Brom CE, Vervloet MG, Eringa EC. Myocardial contrast echocardiography in mice: technical and physiological aspects. Am J Physiol Heart Circ Physiol 2017; 314:H381-H391. [PMID: 29101165 DOI: 10.1152/ajpheart.00242.2017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Myocardial contrast echocardiography (MCE) offers the opportunity to study myocardial perfusion defects in mice in detail. The value of MCE compared with single-photon emission computed tomography, positron emission tomography, and computed tomography consists of high spatial resolution, the possibility of quantification of blood volume, and relatively low costs. Nevertheless, a number of technical and physiological aspects should be considered to ensure reproducibility among research groups. The aim of this overview is to describe technical aspects of MCE and the physiological parameters that influence myocardial perfusion data obtained with this technique. First, technical aspects of MCE discussed in this technical review are logarithmic compression of ultrasound data by ultrasound systems, saturation of the contrast signal, and acquisition of images during different phases of the cardiac cycle. Second, physiological aspects of myocardial perfusion that are affected by the experimental design are discussed, including the anesthesia regimen, systemic cardiovascular effects of vasoactive agents used, and fluctuations in body temperature that alter myocardial perfusion. When these technical and physiological aspects of MCE are taken into account and adequately standardized, MCE is an easily accessible technique for mice that can be used to study the control of myocardial perfusion by a wide range of factors.
Collapse
Affiliation(s)
- Melissa Verkaik
- Department of Nephrology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands.,Department of Physiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Erik M van Poelgeest
- Department of Physiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Rick F J Kwekkeboom
- Department of Physiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Piet M Ter Wee
- Department of Nephrology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Charissa E van den Brom
- Department of Anaesthesiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Marc G Vervloet
- Department of Nephrology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| | - Etto C Eringa
- Department of Physiology, Institute Cardiovascular Research VU, VU University Medical Centre , Amsterdam , The Netherlands
| |
Collapse
|
19
|
Wood RJ, Lee J, Bussemaker MJ. A parametric review of sonochemistry: Control and augmentation of sonochemical activity in aqueous solutions. ULTRASONICS SONOCHEMISTRY 2017. [PMID: 28633836 DOI: 10.1016/j.ultsonch.2017.03.030] [Citation(s) in RCA: 171] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
In this review the phenomenon of ultrasonic cavitation and associated sonochemistry is presented through system parameters. Primary parameters are defined and considered, namely; pressure amplitude, frequency and reactor design; including transducer type, signal type, vessel-transducer ratio, liquid flow, liquid height, liquid temperature and the presence of a reflective plate. Secondary parameters are similarly characterised and involve the use of gas and liquid additives to influence the chemical and physical environments. Each of the parameters are considered in terms of their effect on bubble characteristics and subsequent impact on sonochemical activity. Evidence suggests that via parametric variation, the reaction products and efficiency may be controlled. This is hypothesised to occur through manipulation of the structural stability of the bubble.
Collapse
Affiliation(s)
- Richard James Wood
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Judy Lee
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom
| | - Madeleine J Bussemaker
- Department of Chemical and Process Engineering, University of Surrey, Guildford, Surrey GU2 7XH, United Kingdom.
| |
Collapse
|
20
|
Low-frequency ultrasound-induced VEGF suppression and synergy with dendritic cell-mediated anti-tumor immunity in murine prostate cancer cells in vitro. Sci Rep 2017; 7:5778. [PMID: 28720900 PMCID: PMC5515892 DOI: 10.1038/s41598-017-06242-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2016] [Accepted: 06/12/2017] [Indexed: 01/07/2023] Open
Abstract
High tumor vascular endothelial growth factor (VEGF) levels are associated with poor treatment outcomes in prostate cancer (PCa), and immune deficiency in the PCa microenvironment, especially suppression of dendritic cell (DC) proliferation, has been confirmed. In this study, we (1) investigated whether VEGF participates in DC suppression in murine PCa cells (RM-1), (2) down-regulated VEGF expression using low-frequency ultrasound and microbubbles (UM), and (3) further explored any synergistic effect on immunological activation. DCs from the bone marrow of BALB/c mice were stimulated by the addition of cytokines (granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-4 (IL-4)), and we analyzed their proliferation status via flow cytometric recognition of the surface antigen markers CD11c and CD83. The results demonstrated that co-culture with RM-1 cells markedly inhibited expression of the general marker CD11c and the mature marker CD83; UM weakened this inhibition by down-regulating VEGF expression. T lymphocytes were extracted from murine spleens, and CD4 and CD8a were identified as the biomarkers of activated cells participating in the anti-tumor immune response. When DCs, T lymphocytes and RM-1 cells were co-cultured, cell migration and invasion assays and cytoactive detection showed that UM could not only directly suppress PCa cell evolution but also promote activation of anti-tumor immunocytes in the VEGF-inhibited microenvironment.
Collapse
|
21
|
Erikson JM, Valente AJ, Mummidi S, Kandikattu HK, DeMarco VG, Bender SB, Fay WP, Siebenlist U, Chandrasekar B. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. J Biol Chem 2017; 292:2345-2358. [PMID: 28053087 DOI: 10.1074/jbc.m116.764522] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- John M Erikson
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Anthony J Valente
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Srinivas Mummidi
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Hemanth Kumar Kandikattu
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Vincent G DeMarco
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Shawn B Bender
- the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and.,Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - William P Fay
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Ulrich Siebenlist
- Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Bysani Chandrasekar
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211, .,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and
| |
Collapse
|
22
|
Toumia Y, Domenici F, Orlanducci S, Mura F, Grishenkov D, Trochet P, Lacerenza S, Bordi F, Paradossi G. Graphene Meets Microbubbles: A Superior Contrast Agent for Photoacoustic Imaging. ACS APPLIED MATERIALS & INTERFACES 2016; 8:16465-75. [PMID: 27269868 DOI: 10.1021/acsami.6b04184] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Coupling graphene with a soft polymer surface offers the possibility to build hybrid constructs with new electrical, optical, and mechanical properties. However, the low reactivity of graphene is a hurdle in the synthesis of such systems which is often bypassed by oxidizing its carbon planar structure. However, the defects introduced with this process jeopardize the properties of graphene. In this paper we present a different approach, applicable to many different polymer surfaces, which uses surfactant assisted ultrasonication to exfoliate, and simultaneously suspend, graphene in water in its intact form. Tethering pristine graphene sheets to the surfaces is accomplished by using suitable reactive functional groups of the surfactant scaffold. We focused on applying this approach to the fabrication of a hybrid system, made of pristine graphene tethered to poly(vinyl alcohol) based microbubbles (PVA MBs), designed for enhancing photoacoustic signals. Photoacoustic imaging (PAI) is a powerful preclinical diagnostic tool which provides real time images at a resolution of 40 μm. The leap toward clinical imaging has so far been hindered by the limited tissues penetration of near-infrared (NIR) pulsed laser radiation. Many academic and industrial research laboratories have met this challenge by designing devices, each with pros and cons, to enhance the photoacoustic (PA) signal. The major advantages of the hybrid graphene/PVA MBs construct, however, are (i) the preservation of graphene properties, (ii) biocompatibility, a consequence of the robust anchoring of pristine graphene to the bioinert surface of the PVA bubble, and (iii) a very good enhancement in a NIR spectral region of the PA signal, which does not overlap with the signals of PA active endogenous molecules such as hemoglobin.
Collapse
Affiliation(s)
- Yosra Toumia
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata , Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Fabio Domenici
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata , Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Silvia Orlanducci
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata , Via della Ricerca Scientifica, 00133, Rome, Italy
| | - Francesco Mura
- CNIS, Università di Roma Sapienza , P.le Aldo Moro, 00185, Rome, Italy
| | - Dmitry Grishenkov
- KTH, Royal Institute of Technology , Alfred Nobels Allé 10, SE 141 152, Stockholm, Sweden
| | - Philippe Trochet
- FUJIFILM VisualSonics , Joop Geesinkweg 140, 1114 AB Amsterdam, The Netherlands
| | - Savino Lacerenza
- FUJIFILM VisualSonics , Joop Geesinkweg 140, 1114 AB Amsterdam, The Netherlands
| | - Federico Bordi
- Dipartimento di Fisica, Università di Roma Sapienza , P.le Aldo Moro, 00185, Rome, Italy
| | - Gaio Paradossi
- Dipartimento di Scienze e Tecnologie Chimiche, Università di Roma Tor Vergata , Via della Ricerca Scientifica, 00133, Rome, Italy
| |
Collapse
|
23
|
Porter TR, Arena C, Sayyed S, Lof J, High RR, Xie F, Dayton PA. Targeted Transthoracic Acoustic Activation of Systemically Administered Nanodroplets to Detect Myocardial Perfusion Abnormalities. Circ Cardiovasc Imaging 2016; 9:CIRCIMAGING.115.003770. [PMID: 26712160 DOI: 10.1161/circimaging.115.003770] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Liquid core nanodroplets containing condensed gaseous fluorocarbons can be vaporized at clinically relevant acoustic energies and have been hypothesized as an alternative ultrasound contrast agent instead of gas-core agents. The potential for targeted activation and imaging of these agents was tested with droplets formulated from liquid octafluoropropane (C3) and 1:1 mixtures of C3 with liquid decafluorobutane (C3C4). METHODS AND RESULTS In 8 pigs with recent myocardial infarction and variable degrees of reperfusion, transthoracic acoustic activation was attempted using 1.3 to 1.7 MHz low (0.2 mechanical index [MI]) or high MI (1.2 MI) imaging in real time (32-64 Hertz) or triggered 1:1 at end systole during a 20% C3 or C3C4 droplet infusion. Any perfusion defects observed were measured and correlated with delayed enhancement magnetic resonance imaging and postmortem staining. No myocardial contrast was produced with any imaging setting when using C3C4 droplets or C3 droplets during low MI real-time imaging. However, myocardial contrast was observed in all 8 pigs with C3 droplets when using triggered high MI imaging and in 5 of 6 pigs that had 1.7 MHz real time-high MI imaging. Although quantitative myocardial contrast was lower with real-time high MI imaging than 1:1 triggering, the correlation between real-time resting defect size and infarct size was good (r=0.97; P<0.001), as was the correlation with number of transmural infarcted segments by delayed enhancement imaging. CONCLUSIONS Targeted transthoracic acoustic activation of infused intravenous C3 nanodroplets is effective, resulting in echogenic and persistent microbubbles which provide real-time high MI visualization of perfusion defects.
Collapse
Affiliation(s)
- Thomas R Porter
- From the Department of Internal Medicine, University of Nebraska Medical Center, Omaha (T.R.P., S.S., J.L., R.R.H., F.X.); Department of Engineering, Elon University, NC (C.A.); and Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (P.A.D.).
| | - Christopher Arena
- From the Department of Internal Medicine, University of Nebraska Medical Center, Omaha (T.R.P., S.S., J.L., R.R.H., F.X.); Department of Engineering, Elon University, NC (C.A.); and Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (P.A.D.)
| | - Samer Sayyed
- From the Department of Internal Medicine, University of Nebraska Medical Center, Omaha (T.R.P., S.S., J.L., R.R.H., F.X.); Department of Engineering, Elon University, NC (C.A.); and Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (P.A.D.)
| | - John Lof
- From the Department of Internal Medicine, University of Nebraska Medical Center, Omaha (T.R.P., S.S., J.L., R.R.H., F.X.); Department of Engineering, Elon University, NC (C.A.); and Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (P.A.D.)
| | - Robin R High
- From the Department of Internal Medicine, University of Nebraska Medical Center, Omaha (T.R.P., S.S., J.L., R.R.H., F.X.); Department of Engineering, Elon University, NC (C.A.); and Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (P.A.D.)
| | - Feng Xie
- From the Department of Internal Medicine, University of Nebraska Medical Center, Omaha (T.R.P., S.S., J.L., R.R.H., F.X.); Department of Engineering, Elon University, NC (C.A.); and Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (P.A.D.)
| | - Paul A Dayton
- From the Department of Internal Medicine, University of Nebraska Medical Center, Omaha (T.R.P., S.S., J.L., R.R.H., F.X.); Department of Engineering, Elon University, NC (C.A.); and Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University (P.A.D.)
| |
Collapse
|
24
|
Kaul S. Assessment of Myocardial Collateral Blood Flow with Contrast Echocardiography. Korean Circ J 2015; 45:351-6. [PMID: 26413100 PMCID: PMC4580691 DOI: 10.4070/kcj.2015.45.5.351] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2015] [Accepted: 04/02/2015] [Indexed: 12/02/2022] Open
Abstract
Humans have pre-formed collateral vessels that enlarge with ischemia. In addition, new vessels can be formed within ischemic zones from pre-formed endocardial arcades of vessels providing rich collateral flow. Collateral flow under resting conditions (if >25% of normal) is enough to maintain myocardial viability, but may be insufficient to prevent myocardial ischemia under stress. Coronary angiography is a poor tool for collateral flow assessment. Myocardial contrast echocardiography is arguably the gold standard for experimental and clinical measurement of collateral flow. This review describes several experimental and clinical studies that highlight the importance of the collateral circulation in coronary artery disease.
Collapse
Affiliation(s)
- Sanjiv Kaul
- Knight Cardiovascular Institute, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
25
|
Belcik JT, Mott BH, Xie A, Zhao Y, Kim S, Lindner NJ, Ammi A, Linden JM, Lindner JR. Augmentation of limb perfusion and reversal of tissue ischemia produced by ultrasound-mediated microbubble cavitation. Circ Cardiovasc Imaging 2015; 8:CIRCIMAGING.114.002979. [PMID: 25834183 DOI: 10.1161/circimaging.114.002979] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Ultrasound can increase tissue blood flow, in part, through the intravascular shear produced by oscillatory pressure fluctuations. We hypothesized that ultrasound-mediated increases in perfusion can be augmented by microbubble contrast agents that undergo ultrasound-mediated cavitation and sought to characterize the biological mediators. METHODS AND RESULTS Contrast ultrasound perfusion imaging of hindlimb skeletal muscle and femoral artery diameter measurement were performed in nonischemic mice after unilateral 10-minute exposure to intermittent ultrasound alone (mechanical index, 0.6 or 1.3) or ultrasound with lipid microbubbles (2×10(8) IV). Studies were also performed after inhibiting shear- or pressure-dependent vasodilator pathways, and in mice with hindlimb ischemia. Ultrasound alone produced a 2-fold increase (P<0.05) in muscle perfusion regardless of ultrasound power. Ultrasound-mediated augmentation in flow was greater with microbubbles (3- and 10-fold higher than control for mechanical index 0.6 and 1.3, respectively; P<0.05), as was femoral artery dilation. Inhibition of endothelial nitric oxide synthase attenuated flow augmentation produced by ultrasound and microbubbles by 70% (P<0.01), whereas inhibition of adenosine-A2a receptors and epoxyeicosatrienoic acids had minimal effect. Limb nitric oxide production and muscle phospho-endothelial nitric oxide synthase increased in a stepwise fashion by ultrasound and ultrasound with microbubbles. In mice with unilateral hindlimb ischemia (40%-50% reduction in flow), ultrasound (mechanical index, 1.3) with microbubbles increased perfusion by 2-fold to a degree that was greater than the control nonischemic limb. CONCLUSIONS Increases in muscle blood flow during high-power ultrasound are markedly amplified by the intravascular presence of microbubbles and can reverse tissue ischemia. These effects are most likely mediated by cavitation-related increases in shear and activation of endothelial nitric oxide synthase.
Collapse
Affiliation(s)
- J Todd Belcik
- From the Knight Cardiovascular Center, Oregon Health and Science University, Portland (J.T.B., B.H.M., A.X., Y.Z., S.K., N.J.L., A.A., J.R.L.); and La Jolla Immunology and Allergy Institute, CA (J.M.L.)
| | - Brian H Mott
- From the Knight Cardiovascular Center, Oregon Health and Science University, Portland (J.T.B., B.H.M., A.X., Y.Z., S.K., N.J.L., A.A., J.R.L.); and La Jolla Immunology and Allergy Institute, CA (J.M.L.)
| | - Aris Xie
- From the Knight Cardiovascular Center, Oregon Health and Science University, Portland (J.T.B., B.H.M., A.X., Y.Z., S.K., N.J.L., A.A., J.R.L.); and La Jolla Immunology and Allergy Institute, CA (J.M.L.)
| | - Yan Zhao
- From the Knight Cardiovascular Center, Oregon Health and Science University, Portland (J.T.B., B.H.M., A.X., Y.Z., S.K., N.J.L., A.A., J.R.L.); and La Jolla Immunology and Allergy Institute, CA (J.M.L.)
| | - Sajeevani Kim
- From the Knight Cardiovascular Center, Oregon Health and Science University, Portland (J.T.B., B.H.M., A.X., Y.Z., S.K., N.J.L., A.A., J.R.L.); and La Jolla Immunology and Allergy Institute, CA (J.M.L.)
| | - Nathan J Lindner
- From the Knight Cardiovascular Center, Oregon Health and Science University, Portland (J.T.B., B.H.M., A.X., Y.Z., S.K., N.J.L., A.A., J.R.L.); and La Jolla Immunology and Allergy Institute, CA (J.M.L.)
| | - Azzdine Ammi
- From the Knight Cardiovascular Center, Oregon Health and Science University, Portland (J.T.B., B.H.M., A.X., Y.Z., S.K., N.J.L., A.A., J.R.L.); and La Jolla Immunology and Allergy Institute, CA (J.M.L.)
| | - Joel M Linden
- From the Knight Cardiovascular Center, Oregon Health and Science University, Portland (J.T.B., B.H.M., A.X., Y.Z., S.K., N.J.L., A.A., J.R.L.); and La Jolla Immunology and Allergy Institute, CA (J.M.L.)
| | - Jonathan R Lindner
- From the Knight Cardiovascular Center, Oregon Health and Science University, Portland (J.T.B., B.H.M., A.X., Y.Z., S.K., N.J.L., A.A., J.R.L.); and La Jolla Immunology and Allergy Institute, CA (J.M.L.).
| |
Collapse
|
26
|
High-frequency ultrasound-guided disruption of glycoprotein VI-targeted microbubbles targets atheroprogressison in mice. Biomaterials 2014; 36:80-9. [PMID: 25301636 DOI: 10.1016/j.biomaterials.2014.09.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Accepted: 09/16/2014] [Indexed: 01/25/2023]
Abstract
Targeted contrast-enhanced ultrasound (CEU) using microbubble agents is a promising non-invasive imaging technique to evaluate atherosclerotic lesions. In this study, we decipher the diagnostic and therapeutic potential of targeted-CEU with soluble glycoprotein (GP)-VI in vivo. Microbubbles were conjugated with the recombinant fusion protein GPVI-Fc (MBGPVI) that binds with high affinity to atherosclerotic lesions. MBGPVI or control microbubbles (MBC) were intravenously administered into ApoE(-/-) or wild type mice and binding of the microbubbles to the vessel wall was visualized by high-resolution CEU. CEU molecular imaging signals of MBGPVI were substantially enhanced in the aortic arch and in the truncus brachiocephalicus in ApoE(-/-) as compared to wild type mice. High-frequency ultrasound (HFU)-guided disruption of MBGPVI enhanced accumulation of GPVI in the atherosclerotic lesions, which may interfere with atheroprogression. Thus, we establish targeted-CEU with soluble GPVI as a novel non-invasive molecular imaging method for atherosclerosis. Further, HFU-guided disruption of GPVI-targeted microbubbles is an innovate therapeutic approach that potentially prevents progression of atherosclerotic disease.
Collapse
|
27
|
Cardozo S, Gunasekaran P, Patel H, McGorisk T, Toosi M, Faraz H, Zalawadiya S, Alesh I, Kottam A, Afonso L. Is bacteriostatic saline superior to normal saline as an echocardiographic contrast agent? Int J Cardiovasc Imaging 2014; 30:1483-9. [PMID: 25017710 DOI: 10.1007/s10554-014-0493-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2014] [Accepted: 07/05/2014] [Indexed: 11/27/2022]
Abstract
Objective data on the performance characteristics and physical properties of commercially available saline formulations [normal saline (NS) vs. bacteriostatic normal saline (bNS)] are sparse. This study sought to compare the in vitro physical properties and in vivo characteristics of two commonly employed echocardiographic saline contrast agents in an attempt to assess superiority. Nineteen patients undergoing transesophageal echocardiograms were each administered agitated regular NS and bNS injections in random order and in a blinded manner according to a standardized protocol. Video time-intensity (TI) curves were constructed from a representative region of interest, placed paraseptally within the right atrium, in the bicaval view. TI curves were analyzed for maximal plateau acoustic intensity (Vmax, dB) and dwell time (DT, s), defined as time duration between onset of Vmax and decay of video intensity below clinically useful levels, reflecting the duration of homogenous opacification of the right atrium. To further characterize the physical properties of the bubbles in vitro, fixed aliquots of similarly agitated saline were injected into a glass well slide-cover slip assembly and examined using an optical microscope to determine bubble diameter in microns (µm) and concentration [bubble count/high power field (hpf)]. A higher acoustic intensity (a less negative dB level), higher bubble concentration and longer DT were considered properties of a superior contrast agent. For statistical analysis, a paired t test was conducted to evaluate the differences in means of Vmax and DT. Compared to NS, bNS administration was associated with superior opacification (video intensity -8.69 ± 4.7 vs. -10.46 ± 4.1 dB, P = 0.002), longer DT (17.3 ± 6.1 vs. 10.2 ± 3.7 s) in vivo and smaller mean bubble size (43.4 vs. 58.6 μm) and higher bubble concentration (1,002 vs. 298 bubble/hpf) in vitro. bNS provides higher intensity and more sustained opacification of the right atrium compared to NS. Higher bubble concentration and stability appear to be additional desirable rheological characteristics favoring bNS as a contrast agent.
Collapse
Affiliation(s)
- Shaun Cardozo
- Division of Cardiology, Department of Internal Medicine, Detroit Medical Center, Harper University Hospital, Wayne State University, 3990 John R, 8 Brush, Detroit, MI, 48201, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Bishop CV, Molskness TA, Xu F, Belcik JT, Lindner JR, Slayden OD, Stouffer RL. Quantification of dynamic changes to blood volume and vascular flow in the primate corpus luteum during the menstrual cycle. J Med Primatol 2014; 43:445-54. [PMID: 24948037 DOI: 10.1111/jmp.12132] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2014] [Indexed: 01/28/2023]
Abstract
BACKGROUND The objective of the current study was to determine changes to vascular parameters of nonhuman primate dominant ovarian structures by dynamic contrast-enhanced ultrasound (DCE-US). MATERIALS AND METHODS Dynamic contrast-enhanced ultrasound with intravenous microbubble infusion was performed on the rhesus macaque ovary bearing the pre-ovulatory follicle and corpus luteum (CL) sequentially during the natural luteal phase (n = 8) and GnRH antagonist (antide)-induced luteal regression (n = 6). RESULTS Changes in luteal blood volume (BV) and vascular flow (VF) were observed between stages of the luteal phase Luteal BV was highest in early stage CL, before decreasing 2.5-fold in late stage CL (P < 0.06); in contrast, luteal VF peaked at mid luteal stage (P < 0.01). Two females identified with luteal insufficiency trended toward lower peak BV, compared to typical CLs. Another female was identified with a luteal cyst on the contralateral ovary, and a CL that regressed before P levels declined. After 72 hours of antide exposure, BV was reduced 2.3-fold (P = 0.03). CONCLUSIONS DCE-US provides a sensitive, non-invasive measurement of the dynamics of blood volume and flow in dominant ovarian structures.
Collapse
Affiliation(s)
- Cecily V Bishop
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Beaverton, OR, USA
| | | | | | | | | | | | | |
Collapse
|
29
|
Ultrasound induced cancer immunotherapy. Adv Drug Deliv Rev 2014; 72:144-53. [PMID: 24680708 DOI: 10.1016/j.addr.2014.03.004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2013] [Revised: 02/14/2014] [Accepted: 03/18/2014] [Indexed: 12/21/2022]
Abstract
Recently, the use of ultrasound (US) has been shown to have potential in cancer immunotherapy. High intensity focused US destruction of tumors may lead to immunity forming in situ in the body by immune cells being exposed to the tumor debris and immune stimulatory substances that are present in the tumor remains. Another way of achieving anti-cancer immune responses is by using US in combination with microbubbles and nanobubbles to deliver genes and antigens into cells. US leads to bubble destruction and the forces released to direct delivery of the substances into the cytoplasm of the cells thus circumventing the natural barriers. In this way tumor antigens and antigen-encoding genes can be delivered to immune cells and immune response stimulating genes can be delivered to cancer cells thus enhancing immune responses. Combination of bubbles with cell-targeting ligands and US provides an even more sophisticated delivery system whereby the therapy is not only site specific but also cell specific. In this review we describe how US has been used to achieve immunity and discuss the potential and possible obstacles in future development.
Collapse
|
30
|
Jung SY, Park HW, Lee SJ. Simultaneous measurement of bubble size, velocity and void fraction in two-phase bubbly flows with time-resolved X-ray imaging. JOURNAL OF SYNCHROTRON RADIATION 2014; 21:424-429. [PMID: 24562565 DOI: 10.1107/s1600577513034760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2013] [Accepted: 12/28/2013] [Indexed: 06/03/2023]
Abstract
Key parameters of two-phase flows, such as void fraction and microscale bubble size, shape and velocity, were simultaneously measured using time-resolved X-ray imaging. X-ray phase-contrast imaging was employed to obtain those parameters on microbubbles. The void fraction was estimated from X-ray absorption. The radii of the measured microbubbles were mostly smaller than 20 µm, and the maximum velocity was 39.442 mm s(-1), much higher than that in previous studies. The spatial variations of the void fraction were consecutively obtained with a small time interval. This technique would be useful in the experimental analysis of bubbly flows in which microbubbles move at high speed.
Collapse
Affiliation(s)
- Sung Yong Jung
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyojadong, Pohang 790-784, Republic of Korea
| | - Han Wook Park
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyojadong, Pohang 790-784, Republic of Korea
| | - Sang Joon Lee
- Department of Mechanical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyojadong, Pohang 790-784, Republic of Korea
| |
Collapse
|
31
|
Abstract
Insulin increases microvascular perfusion and substrate exchange surface area in muscle, which is pivotal for hormone action and substrate exchange, by activating insulin signaling cascade in the endothelial cells to produce nitric oxide. This action of insulin is closely coupled with its metabolic action and type 2 diabetes is associated with both metabolic and microvascular insulin resistance. Muscle microvascular perfusion/volume can be assessed by 1-methylxanthine metabolism, contrast-enhanced ultrasound and positron emission tomography. In addition to insulin, several factors have been shown to recruit muscle microvasculature, including exercise or muscle contraction, mixed meals, glucagon-like peptide 1 and angiotensin II type 1 receptor (AT(1)R) blocker. On the other hand, factors that cause metabolic insulin resistance, such as inflammatory cytokines, free fatty acids, and selective activation of the AT(1)R, are capable of causing microvascular insulin resistance. Therapies targeting microvascular insulin resistance may help prevent or control diabetes and decrease the associated cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Zhenqi Liu
- Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Seung-Hyun Ko
- Division of Endocrinology & Metabolism, Department of Internal Medicine, The Catholic University of Korea College of Medicine, Suwon, Korea
| | - Weidong Chai
- Division of Endocrinology & Metabolism, Department of Internal Medicine, University of Virginia Health System, Charlottesville, VA, USA
| | - Wenhong Cao
- Department of Nutrition, Gillings School of Global Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
32
|
Abstract
Ultrasound contrast agents have considerably expanded the range of ultrasound diagnostics. Up to date ultrasound machines with contrast-specific software allow the selective demonstration and quantification of contrast agents in real-time based on the specific signal signature of oscillating contrast agent microbubbles. After intravenous injection the microbubbles are transported with the bloodstream and distributed purely intravascularly. This allows an artefact-free representation of the vascular architecture and delineation of the vascular lumen, independent of blood flow velocity and with high spatial resolution. Traumatic lesions and active bleeding can be detected with high sensitivity. Blood volume in vessels and organs can be assessed qualitatively and quantitatively. The possibility of short-term destruction of microbubbles within the ultrasound field allows the measurement of blood flow velocity during replenishment and based on that the assessment of perfusion in parenchymal tissue. Target-specific microbubbles for imaging of molecular surface structures as well as drug-loaded microbubbles for local ultrasound-mediated therapy are under development.
Collapse
|
33
|
Madu EC, Potu C, Baugh D, Tulloch-Reid E. Myocardial Contrast Echocardiography in the Evaluation of Hypertensive Heart Disease. Cardiol Res 2011; 2:259-268. [PMID: 28352393 PMCID: PMC5358253 DOI: 10.4021/cr93w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/23/2011] [Indexed: 11/20/2022] Open
Abstract
Myocardial contrast echocardiography (MCE) has an established role in left ventricular assessment by improving the ventricular opacification and endocardial border definition especially in patients with sub-optimal echocardiographic images. With advances in cardiac ultrasound imaging technology and the development of new contrast agents, the clinical utility of this technique has greatly expanded to include assessment of coronary reperfusion in the setting of acute myocardial infarction, determination of myocardial viability within infarct zones as well as assessment of coronary microcirculation and flow reserve in patients with microvascular coronary disease. Improvements in image quality with intravenous contrast agents can facilitate image acquisition and enhance delineation of regional wall motion abnormalities at peak levels of exercise. Numerous studies have confirmed the clinical utility of contrast enhancement during echocardiographic studies, particularly in patients undergoing stress testing. In this paper, we explore the evidence in support of MCE and its potential clinical applications. Our review aims to summarize (1) the basic principles of myocardial contrast echocardiography including recent advances in the ultrasound technology and contrast agents (2) its clinical applications in the diagnosis of cardiovascular diseases and finally, (3) its potential role in risk stratification and assessment of microvascular perfusion in patients with hypertensive heart disease.
Collapse
Affiliation(s)
- Ernest C Madu
- Department of Medicine, Division of Cardiovascular Medicine, Heart Institute of the Caribbean, Kingston, Jamaica; Center of Excellence for Cardiovascular Medicine and Sports Physiology, University of Technology, Kingston, Jamaica
| | - Chiranjivi Potu
- Department of Medicine, Division of Cardiovascular Medicine, Heart Institute of the Caribbean, Kingston, Jamaica; Center of Excellence for Cardiovascular Medicine and Sports Physiology, University of Technology, Kingston, Jamaica
| | - Dainia Baugh
- Department of Medicine, Division of Cardiovascular Medicine, Heart Institute of the Caribbean, Kingston, Jamaica; Center of Excellence for Cardiovascular Medicine and Sports Physiology, University of Technology, Kingston, Jamaica
| | - Edwin Tulloch-Reid
- Department of Medicine, Division of Cardiovascular Medicine, Heart Institute of the Caribbean, Kingston, Jamaica; Center of Excellence for Cardiovascular Medicine and Sports Physiology, University of Technology, Kingston, Jamaica
| |
Collapse
|
34
|
Wei K. Future applications of contrast ultrasound. J Cardiovasc Ultrasound 2011; 19:107-14. [PMID: 22073319 PMCID: PMC3209588 DOI: 10.4250/jcu.2011.19.3.107] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2011] [Revised: 08/04/2011] [Accepted: 08/17/2011] [Indexed: 12/13/2022] Open
Abstract
Contrast agents are currently used during echocardiography for enhancement of structure and function, as well as for perfusion imaging. The next frontiers in contrast ultrasonography are targeted imaging, and using microbubbles for therapeutic purposes. Targeted imaging is the detection of specific components of cardiovascular disease in vivo, with microbubbles which may non-specifically attach to diseased endothelial cells, or with microbubbles which have been specifically designed to detect a pathologic process. Therapeutic applications of contrast ultrasonography include the use of microbubbles to enhance delivery of agents (like drugs, genes, growth factors, etc.) to the endothelium or perivascular cells. This review will discuss differences in contrast agents used for current applications versus targeted imaging, technical considerations required to achieve site-specific imaging, and potential applications of this technology. The potential for contrast ultrasonography to enhance drug and gene delivery to tissue will also be discussed.
Collapse
Affiliation(s)
- Kevin Wei
- Cardiovascular Division, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|
35
|
Chan A, Kovatchev BP, Anderson SM, Breton MD. Systematic method to assess microvascular recruitment using contrast-enhanced ultrasound. Application to insulin-induced capillary recruitment in subjects with T1DM. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2011; 102:219-26. [PMID: 20434788 PMCID: PMC2916075 DOI: 10.1016/j.cmpb.2010.03.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/19/2009] [Revised: 03/10/2010] [Accepted: 03/13/2010] [Indexed: 05/29/2023]
Abstract
Contrast-enhanced ultrasound (CEU) is an ultrasound imaging technique used to assess tissue perfusion. Analysis of microvascular recruitment necessitates the definition of a region of interest (ROI) containing exclusively the tissues to be studied. Conventional ROI selection requires examining the images and drawing the ROI by hand, making the analysis of CEU images non-reproducible and analyst-dependent. We have designed a systematic ROI selection method that is both reproducible and analyst-independent. Microvascular blood volume (MBV) assessed in 21 sequences of images was used to correlate the systematic ROI selection method with the conventional method performed by two independent analysts (correlation of 0.88 and 0.87 respectively) and the MBV sample distribution from the systematic method was not significantly different from those obtained from the conventional one. Using the systematic method, we found no significant insulin-induced capillary recruitment in subjects with type 1 diabetes mellitus, which might be related to the observed low glucose uptake during the hyperinsulinemic euglycemic clamp compared to healthy patients.
Collapse
Affiliation(s)
- Alice Chan
- Diabetes Technology Center, University of Virginia Health System, P.O. 400 888, Charlottesville, VA 22908-4888, USA.
| | | | | | | |
Collapse
|
36
|
Aracil Sanus E, Vila i Coll R, Leal J, Fontcuberta J, Riera Vázquez R, Merino Mairal O. Guía de seguimiento no invasivo del tratamiento endovascular del aneurisma de aorta abdominal. ANGIOLOGIA 2011. [DOI: 10.1016/j.angio.2011.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
37
|
Chadderdon SM, Kaul S. Myocardial contrast echocardiography in coronary artery disease. J Cardiovasc Echogr 2011. [DOI: 10.1016/j.jcecho.2011.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
|
38
|
|
39
|
Modonesi E, Balbi M, Bezante GP. Limitations and potential clinical application on contrast echocardiography. Curr Cardiol Rev 2010; 6:24-30. [PMID: 21286275 PMCID: PMC2845791 DOI: 10.2174/157340310790231653] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2009] [Revised: 07/29/2009] [Accepted: 08/03/2009] [Indexed: 01/25/2023] Open
Abstract
Myocardial contrast echocardiography (MCE) is a relatively simple myocardial perfusion imaging technique which should be used in different clinical settings. The ability of MCE to provide a comprehensive assessment of cardiac structure, function, and perfusion is likely to make it the technique of choice for non-invasive cardiac imaging.Contrast agents are encapsulated microbubbles (MB) filled with either air or high-molecular-weight gas. They are innocuous, biologically inert and when administered intravasculary, the sound backscatter from the blood poll is enhanced because MB have the enormous reflective ability due to a large acoustic impedance mismatch between the bubble gas and surrounding blood.MCE is an ideal imaging tool for the assessment of left heart contrast and the myocardial microcirculation. MCE detects contrast MB at the capillary level within the myocardium and, thus, has the potential to assess tissue viability and the duration of the contrast effect. MCE was equivalent to SPECT for the detection of CAD with a tendency toward higher sensitivity of MCE compared with SPECT in microvascular disease and CAD. MCE is also a bedside technique that can be used early in patients presenting with acute heart failure to rapidly assess LV function (regional and global) and perfusion (rest and stress).
Collapse
Affiliation(s)
| | | | - Gian Paolo Bezante
- Department of Cardionephrology and Department of Internal Medicine, University of Genoa, Genoa, Italy
| |
Collapse
|
40
|
Shiina Y, Funabashi N, Teramoto K, Uehara M, Takaoka H, Mikami Y, Takahashi A, Saito M, Daimon M, Lee K, Kawakubo M, Sekine Y, Takahashi M, Yajima R, Tani A, Komuro I. Suitable solutions for reconstituting the ultrasound contrast agent "Levovist" used in contrast echocardiogram: in vitro and in vivo evaluation of the influence of osmotic pressure. Int J Cardiol 2009; 136:335-40. [PMID: 18678422 DOI: 10.1016/j.ijcard.2008.05.043] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2008] [Accepted: 05/10/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE To evaluate the influence of the osmotic pressure of solutions used for reconstituting the ultrasound contrast agent "Levovist" on the degree of video intensity of the enhancement and video intensity decay in contrast echocardiogram, we used 6 solutions with different osmotic pressures in both vitro and in vivo experiments. MATERIALS AND METHODS In the in vitro experiments, Levovist was reconstituted with 6 kinds of solutions with different osmotic pressures (Lactate Ringer's solution, 2.5%, 5%, 7.5%, and 20% glucose and distilled water) and peak video intensities and video intensity decay were measured. In the in vivo experiments, contrast echocardiography was performed in 7 adult volunteers, following the intravenous injections of Levovist, previously reconstituted with one of 2 solutions (5% glucose or distilled water). RESULTS In vitro, at peak time, Levovist reconstituted with either Lactate Ringer's solution, 2.5% glucose, 5% glucose, or distilled water had good peak video intensities. At 30 s after peak time, Levovist reconstituted with Lactate Ringer's solution had greater enhancement and less decay than the other 5 solutions (P<0.001). In vivo, at 180 heart beats after peak time, the video intensity decay with 5% glucose was greater than that with distilled water (150+/-13 dB, 123+/-25 dB, respectively, P<0.05). CONCLUSION In this study, among various (2.5-20%) glucose solutions, the stability of the microbubbles differed, depending on the degree of osmotic pressure of the respective solutions; 5% glucose was the best. However, overall, the most suitable solution for reconstituting Levovist, was Lactate Ringer's solution. These findings could lead to effective strategies for better contrast echocardiography using Levovist by changing the current solution of choice to Lactate Ringer's solution or 5% glucose.
Collapse
Affiliation(s)
- Yumi Shiina
- Department of Cardiovascular Science and Medicine, Chiba University Graduate School of Medicine, Chiba City, Chiba, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Endoleaks after endovascular repair of abdominal aortic aneurysm: value of CEUS. ACTA ACUST UNITED AC 2009; 35:106-14. [DOI: 10.1007/s00261-009-9526-7] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2009] [Accepted: 04/19/2009] [Indexed: 11/26/2022]
|
42
|
Vancraeynest D, Havaux X, Pasquet A, Gerber B, Beauloye C, Rafter P, Bertrand L, Vanoverschelde JL. Myocardial injury induced by ultrasound-targeted microbubble destruction: evidence for the contribution of myocardial ischemia. ULTRASOUND IN MEDICINE & BIOLOGY 2009; 35:672-679. [PMID: 19110365 DOI: 10.1016/j.ultrasmedbio.2008.10.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2008] [Revised: 07/22/2008] [Accepted: 10/09/2008] [Indexed: 05/27/2023]
Abstract
Ultrasound-targeted microbubble destruction (UTMD) can cause left ventricular (LV) dysfunction and tissue alterations in rats when high ultrasound (US) energy and long duration of imaging are used. However, the mechanism underlying these alterations remains unclear. The aim of the present work was to investigate the possible role of ischemia in the pathogenesis of the UTMD-induced LV damages in rats. To address this issue, rat hearts were exposed in situ to perfluorocarbon-enhanced sonicated dextrose albumin (PESDA) and US at peak negative pressures of 0.6, 1.2 or 1.8 MPa for 1, 3, 9, 15 or 30 min. Blood pressure and electrocardiogram were continuously recorded during insonation. LV function was assessed before and immediately after US exposure, as well as at 24 h and 7 d. At each time point, groups of rats were euthanized and their hearts were harvested for morphologic analysis. Rats exposed to either PESDA alone or US alone showed no functional or morphologic abnormalities. By contrast, rats exposed to both PESDA and US exhibited transient LV dysfunction, transient ST-segment elevation, premature ventricular contractions, microvascular ruptures, contraction band necrosis and morphologic tissue damage. These bio-effects were spontaneously and completely reversible by one week, except in the groups exposed to the highest peak negative pressure for the longest duration, in which mild dysfunction persisted and interstitial fibrosis developed. In conclusion, simultaneous exposure of rat hearts to PESDA and US in vivo results in significant bio-effects that are similar to myocardial ischemia, including transient regional LV dysfunction, transient ST-segment elevation and myocyte contraction band necrosis.
Collapse
Affiliation(s)
- David Vancraeynest
- Division of Cardiology, Université Catholique de Louvain, School of Medicine, Brussels, Belgium
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Optical microscopic findings of the behavior of perflubutane microbubbles outside and inside Kupffer cells during diagnostic ultrasound examination. Invest Radiol 2009; 43:829-36. [PMID: 19002054 DOI: 10.1097/rli.0b013e3181852719] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
PURPOSE To investigate the behavior of perflubutane microbubbles outside and inside Kupffer cells during diagnostic ultrasound (US) examination, and to determine the thresholds of the acoustic pressure of different kinds of behavior. METHODS Acoustic behavior of perflubutane microbubbles inside and outside Kupffer cells in an acoustic field induced by a clinical US transducer and equipment was optically observed in vitro. The acoustic pressure was measured simultaneously by a calibrated hydrophone and an oscilloscope. RESULTS The acoustic behavior of microbubbles was optically categorized as stabilization, oscillation, transposition, shrinkage, and destruction. The mechanical index (MI) displayed on the US equipment correlated well with the acoustic pressure at the level of microbubbles measured hydrophonically. At a frame rate of 15 Hz with a frequency of 3.5 MHz and pulse repetition frequency of 3 KHz, the thresholds in term of MI for free microbubbles to begin oscillation, reach best oscillation, transposition, shrinkage, and destruction were 0.21, 0.44, 0.53, 0.75, and 1.03, respectively. Although adherent and phagocytosed microbubbles showed more stability enduring insonation compared with free microbubbles, the thresholds of shrinkage and destruction were MI 1.03 and 1.18 for adherent microbubbles, and 1.18 and 1.37 for phagocytosed microbubbles, respectively. Neither oscillation nor transposition of microbubbles inside Kupffer cells was observed microscopically. No cell damage because of microbubbles destruction was found in the present study. CONCLUSION Perflubutane microbubbles outside and inside Kupffer cells respond to external US insonation with same parameters of a clinical contrast-enhanced US study according to the acoustic pressure. Free microbubbles behave as stabilization, oscillation, transposition, shrinkage, and destruction under insonation. The adherent and phagocytosed microbubbles are more stable under insonation than free microbubbles, but still respond showing shrinkage and destruction when MI is over 1.03.
Collapse
|
44
|
Masuda K, Nakamoto R, Muramatsu Y, Miyamoto Y, Kim K, Chiba T. Active control of microcapsules in artificial blood vessel by producing local acoustic radiation force. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2009; 2009:295-298. [PMID: 19963959 DOI: 10.1109/iembs.2009.5333150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Micrometer-sized microcapsules collapse upon exposure to ultrasound. Use of this phenomenon for a drug delivery system (DDS), not only for local delivery of medication but also for gene therapy, should be possible. However, enhancing the efficiency of medication is limited because capsules in suspension diffuse in the human body after injection, since the motion of capsules in blood flow cannot be controlled. To control the behavior of microcapsules, acoustic radiation force was introduced. We detected local changes in microcapsule density by producing acoustic radiation force in an artificial blood vessel. Furthermore, we theoretically estimated the conditions required for active path selection of capsules at a bifurcation point in the artificial blood vessel. We observed the difference in capsule density at both in the bifurcation point and in alternative paths downstream of the bifurcation point for different the acoustic radiation forces. Also we confirmed the microcapsules are trapped against flow with the condition when the acoustic radiation force is more than fluid resistance of the capsules. The possibility of controlling capsule flow towards a specific point in a blood vessel was demonstrated.
Collapse
Affiliation(s)
- Kohji Masuda
- Graduate School of Bio-Applications and Systems Engineering, Tokyo University of Agriculture and Technology, Koganei, Tokyo, 184-8588 Japan.
| | | | | | | | | | | |
Collapse
|
45
|
Affiliation(s)
- Sanjiv Kaul
- Division of Cardiovascular Medicine, Oregon Health and Science University, UHN62, 3181 SW Sam Jackson Park Rd, Portland, OR 97239, USA.
| |
Collapse
|
46
|
Ultrasonic gene and drug delivery to the cardiovascular system. Adv Drug Deliv Rev 2008; 60:1177-92. [PMID: 18474407 DOI: 10.1016/j.addr.2008.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2008] [Accepted: 03/04/2008] [Indexed: 11/22/2022]
Abstract
Ultrasound targeted microbubble destruction has evolved as a promising tool for organ specific gene and drug delivery. This technique has initially been developed as a method in myocardial contrast echocardiography, destroying intramyocardial microbubbles to characterize refill kinetics. When loading similar microbubbles with a bioactive substance, ultrasonic destruction of microbubbles may release the transported substance in the targeted organ. Furthermore, high amplitude oscillations of microbubbles lead to increased capillary and cell membrane permeability, thus facilitating tissue and cell penetration of the released substance. While this technique has been successfully used in many organs, its application in the cardiovascular system has dominated so far. Drug delivery using microbubbles has played a minor role in the cardiovascular system. In contrast, gene transfer has been successfully achieved in many studies. Both viral and non-viral vectors were used for loading on microbubbles. This review article will give an overview on studies that have applied ultrasound targeted microbubble destruction to deliver substances in the heart and blood vessels. It will show potential therapeutic targets, especially for gene therapy, describe feasible substances that can be loaded on microbubbles, and critically discuss prospects and limitations of this technique.
Collapse
|
47
|
Sboros V. Response of contrast agents to ultrasound. Adv Drug Deliv Rev 2008; 60:1117-36. [PMID: 18486270 DOI: 10.1016/j.addr.2008.03.011] [Citation(s) in RCA: 146] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Accepted: 03/04/2008] [Indexed: 11/29/2022]
Abstract
Microbubbles are used as ultrasonic contrast agents that enhance the ultrasound signals of the vascular bed. The recent development of site-targeted microbubbles opened up the possibility for molecular imaging as well as localised drug and gene delivery. Initially the microbubbles' physical properties and their response to the ultrasound beam were not fully understood. However, the introduction of fast acquisition microscopy has allowed the observation of the microbubble behaviour in the presence of ultrasound. In addition, acoustical techniques can determine the scatter of single microbubbles. Sonoporation experiments promise high-specificity drug and gene delivery, but the responsible physical mechanisms, particularly for in vivo applications, are not fully understood. An improvement of microbubble technology may address variability related problems in both imaging and drug/gene delivery.
Collapse
Affiliation(s)
- Vassilis Sboros
- Medical Physics, University of Edinburgh, Chancellor's Building, 49 Little France Crescent, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
48
|
Hernot S, Klibanov AL. Microbubbles in ultrasound-triggered drug and gene delivery. Adv Drug Deliv Rev 2008; 60:1153-66. [PMID: 18486268 PMCID: PMC2720159 DOI: 10.1016/j.addr.2008.03.005] [Citation(s) in RCA: 675] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2008] [Accepted: 03/04/2008] [Indexed: 12/12/2022]
Abstract
Ultrasound contrast agents, in the form of gas-filled microbubbles, are becoming popular in perfusion monitoring; they are employed as molecular imaging agents. Microbubbles are manufactured from biocompatible materials, they can be injected intravenously, and some are approved for clinical use. Microbubbles can be destroyed by ultrasound irradiation. This destruction phenomenon can be applied to targeted drug delivery and enhancement of drug action. The ultrasonic field can be focused at the target tissues and organs; thus, selectivity of the treatment can be improved, reducing undesirable side effects. Microbubbles enhance ultrasound energy deposition in the tissues and serve as cavitation nuclei, increasing intracellular drug delivery. DNA delivery and successful tissue transfection are observed in the areas of the body where ultrasound is applied after intravascular administration of microbubbles and plasmid DNA. Accelerated blood clot dissolution in the areas of insonation by cooperative action of thrombolytic agents and microbubbles is demonstrated in several clinical trials.
Collapse
Affiliation(s)
- Sophie Hernot
- Cardiovascular Division, Department of Medicine, University of Virginia School of Medicine, P.O. Box 800158, RM1026, Hospital Drive, Cobb Hall, Charlottesville VA 22908-0158 USA; (434)243-9773; (434)982-3183 (fax);
- Laboratory of In Vivo Cellular and Molecular Imaging, Vrije Universiteit Brussel, Brussels, Belgium
| | - Alexander L. Klibanov
- Cardiovascular Division, Department of Medicine, University of Virginia School of Medicine, P.O. Box 800158, RM1026, Hospital Drive, Cobb Hall, Charlottesville VA 22908-0158 USA; (434)243-9773; (434)982-3183 (fax);
| |
Collapse
|
49
|
Lee SH, Suh JS, Shin MJ, Kim SM, Kim N, Suh SH. Quantitative assessment of synovial vascularity using contrast-enhanced power Doppler ultrasonography: correlation with histologic findings and mr imaging findings in arthritic rabbit knee model. Korean J Radiol 2008; 9:45-53. [PMID: 18253075 PMCID: PMC2627181 DOI: 10.3348/kjr.2008.9.1.45] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Objective To validate contrast-enhanced power Doppler ultrasonography (PD US) for the evaluation of synovial vascularity in an arthritic rabbit knee model in correlation with MR and histological findings. Materials and Methods Power Doppler ultrasonography was performed for carrageenin-induced arthritic left knee and control right knee of 13 rabbits, first without and then with sonic contrast agent enhancement (Levovist, Schering, Berlin Germany), followed by gadolinium-enhanced MR imaging. Synovial vascularity was quantitatively assessed by calculating the color pixel area in power Doppler sonography using a computer-aided image analysis program and by grading the enhancement on MR images: grade 1, enhancement of knee joint is less than one-third of the area; grade 2, one-third to two-thirds enhancement; and grade 3, more than two-thirds enhancement. Microvessel density (MVD) was measured on slides stained immunohistochemically for CD31 antigen for histological assessment. Results The mean area of color pixels in PD US changed from 4.37 to 16.42 mm2 in the arthritic knee after enhancement (p < 0.05), whereas it changed from 0.77 to 2.31 mm2 in the control knee (p < 0.05). Arthritic knees had greater power Doppler signal than control knees both before and after contrast administration (p < 0.05). The average MVD was 88 in arthritic knees and 46 in control knees. MVDs correlated with color pixel areas of contrast-enhanced power Doppler imaging in arthritic knees. In MR grading of arthritic knees, five were grade 2 and eight were grade 3. MVD and PD US revealed no significant difference between grade 2 and 3 arthritic knees (p > 0.05). Conclusion Sonic contrast-enhanced PD US improves the visualization of synovial vascularity and allows quantitative measurement in experimentally induced rabbit arthritic knees.
Collapse
Affiliation(s)
- Sang Hoon Lee
- Department of Radiology and Research Institute of Radiology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | | | | | | | | | | |
Collapse
|
50
|
Sonoperméabilisation : alternative thérapeutique par ultrasons et microbulles. ACTA ACUST UNITED AC 2007; 88:1777-86. [DOI: 10.1016/s0221-0363(07)73957-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|