1
|
Franco ML, Nadezhdin KD, Light TP, Goncharuk SA, Soler-Lopez A, Ahmed F, Mineev KS, Hristova K, Arseniev AS, Vilar M. Interaction between the transmembrane domains of neurotrophin receptors p75 and TrkA mediates their reciprocal activation. J Biol Chem 2021; 297:100926. [PMID: 34216618 PMCID: PMC8327350 DOI: 10.1016/j.jbc.2021.100926] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/25/2021] [Accepted: 06/28/2021] [Indexed: 11/23/2022] Open
Abstract
The neurotrophin receptors p75 and tyrosine protein kinase receptor A (TrkA) play important roles in the development and survival of the nervous system. Biochemical data suggest that p75 and TrkA reciprocally regulate the activities of each other. For instance, p75 is able to regulate the response of TrkA to lower concentrations of nerve growth factor (NGF), and TrkA promotes shedding of the extracellular domain of p75 by α-secretases in a ligand-dependent manner. The current model suggests that p75 and TrkA are regulated by means of a direct physical interaction; however, the nature of such interaction has been elusive thus far. Here, using NMR in micelles, multiscale molecular dynamics, FRET, and functional studies, we identified and characterized the direct interaction between TrkA and p75 through their respective transmembrane domains (TMDs). Molecular dynamics of p75-TMD mutants suggests that although the interaction between TrkA and p75 TMDs is maintained upon mutation, a specific protein interface is required to facilitate TrkA active homodimerization in the presence of NGF. The same mutations in the TMD protein interface of p75 reduced the activation of TrkA by NGF as well as reducing cell differentiation. In summary, we provide a structural model of the p75-TrkA receptor complex necessary for neuronal development stabilized by TMD interactions.
Collapse
Affiliation(s)
- María L Franco
- Unit of Molecular Basis of Neurodegeneration, Institute of Biomedicine CSIC, València, Spain
| | - Kirill D Nadezhdin
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation
| | - Taylor P Light
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Sergey A Goncharuk
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation; Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Andrea Soler-Lopez
- Unit of Molecular Basis of Neurodegeneration, Institute of Biomedicine CSIC, València, Spain
| | - Fozia Ahmed
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Konstantin S Mineev
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation; Phystech School of Biological and Medical Physics, Moscow Institute of Physics and Technology, Moscow, Russian Federation
| | - Kalina Hristova
- Department of Materials Science and Engineering, Johns Hopkins University, Baltimore, Maryland, USA
| | - Alexander S Arseniev
- Department of Structural Biology, Laboratory of NMR-Spectroscopy, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, Moscow, Russian Federation.
| | - Marçal Vilar
- Unit of Molecular Basis of Neurodegeneration, Institute of Biomedicine CSIC, València, Spain.
| |
Collapse
|
2
|
Rubin L, Stabler CT, Schumacher-Klinger A, Marcinkiewicz C, Lelkes PI, Lazarovici P. Neurotrophic factors and their receptors in lung development and implications in lung diseases. Cytokine Growth Factor Rev 2021; 59:84-94. [PMID: 33589358 DOI: 10.1016/j.cytogfr.2021.01.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Accepted: 01/29/2021] [Indexed: 12/14/2022]
Abstract
Although lung innervation has been described by many studies in humans and rodents, the regulation of the respiratory system induced by neurotrophins is not fully understood. Here, we review current knowledge on the role of neurotrophins and the expression and function of their receptors in neurogenesis, vasculogenesis and during the embryonic development of the respiratory tree and highlight key implications relevant to respiratory diseases.
Collapse
Affiliation(s)
- Limor Rubin
- Allergy and Clinical Immunology Unit, Department of Medicine, Hadassah-Hebrew University Medical Center, Jerusalem, Israel.
| | - Collin T Stabler
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Adi Schumacher-Klinger
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| | - Cezary Marcinkiewicz
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Peter I Lelkes
- Department of Bioengineering, College of Engineering, Temple University, Philadelphia, PA, USA.
| | - Philip Lazarovici
- School of Pharmacy Institute for Drug Research, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 91120, Israel.
| |
Collapse
|
3
|
Kuhn KD, Edamura K, Bhatia N, Cheng I, Clark SA, Haynes CV, Heffner DL, Kabir F, Velasquez J, Spano AJ, Deppmann CD, Keeler AB. Molecular dissection of TNFR-TNFα bidirectional signaling reveals both cooperative and antagonistic interactions with p75 neurotrophic factor receptor in axon patterning. Mol Cell Neurosci 2020; 103:103467. [PMID: 32004684 PMCID: PMC7682658 DOI: 10.1016/j.mcn.2020.103467] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Revised: 12/18/2019] [Accepted: 01/13/2020] [Indexed: 11/25/2022] Open
Abstract
During neural development, complex organisms rely on progressive and regressive events whereby axons, synapses, and neurons are overproduced followed by selective elimination of a portion of these components. Tumor necrosis factor α (TNFα) together with its cognate receptor (Tumor necrosis factor receptor 1; TNFR1) have been shown to play both regressive (i.e. forward signaling from the receptor) and progressive (i.e. reverse signaling from the ligand) roles in sympathetic neuron development. In contrast, a paralog of TNFR1, p75 neurotrophic factor receptor (p75NTR) promotes mainly regressive developmental events in sympathetic neurons. Here we examine the interplay between these paralogous receptors in the regulation of axon branch elimination and arborization. We confirm previous reports that these TNFR1 family members are individually capable of promoting ligand-dependent suppression of axon growth and branching. Remarkably, p75NTR and TNFR1 physically interact and p75NTR requires TNFR1 for ligand-dependent axon suppression of axon branching but not vice versa. We also find that p75NTR forward signaling and TNFα reverse signaling are functionally antagonistic. Finally, we find that TNFα reverse signaling is necessary for nerve growth factor (NGF) dependent axon growth. Taken together these findings demonstrate several levels of synergistic and antagonistic interactions using very few signaling pathways and that the balance of these synergizing and opposing signals act to ensure proper axon growth and patterning.
Collapse
Affiliation(s)
- K D Kuhn
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - K Edamura
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - N Bhatia
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - I Cheng
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - S A Clark
- Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA
| | - C V Haynes
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - D L Heffner
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - F Kabir
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - J Velasquez
- Blue Ridge Virtual Governor's School, Palmyra, VA 22963, USA
| | - A J Spano
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA
| | - C D Deppmann
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA; Neuroscience Graduate Program, University of Virginia, Charlottesville, VA 22903, USA; Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22903, USA; Department of Cell Biology, University of Virginia, Charlottesville, VA 22903, USA.
| | - A B Keeler
- Department of Biology, University of Virginia, Charlottesville, VA 22903, USA.
| |
Collapse
|
4
|
Abstract
Mounting evidence suggests that prolonged exposure to general anesthesia (GA) during brain synaptogenesis damages the immature neurons and results in long-term neurocognitive impairments. Importantly, synaptogenesis relies on timely axon pruning to select axons that participate in active neural circuit formation. This process is in part dependent on proper homeostasis of neurotrophic factors, in particular brain-derived neurotrophic factor (BDNF). We set out to examine how GA may modulate axon maintenance and pruning and focused on the role of BDNF. We exposed post-natal day (PND)7 mice to ketamine using a well-established dosing regimen known to induce significant developmental neurotoxicity. We performed morphometric analyses of the infrapyramidal bundle (IPB) since IPB is known to undergo intense developmental modeling and as such is commonly used as a well-established model of in vivo pruning in rodents. When IPB remodeling was followed from PND10 until PND65, we noted a delay in axonal pruning in ketamine-treated animals when compared to controls; this impairment coincided with ketamine-induced downregulation in BDNF protein expression and maturation suggesting two conclusions: a surge in BDNF protein expression "signals" intense IPB pruning in control animals and ketamine-induced downregulation of BDNF synthesis and maturation could contribute to impaired IPB pruning. We conclude that the combined effects on BDNF homeostasis and impaired axon pruning may in part explain ketamine-induced impairment of neuronal circuitry formation.
Collapse
|
5
|
Abstract
Elucidating the mechanisms that regulate the life versus death of mammalian neurons is important not only for our understanding of the normal biology of the nervous system but also for our efforts to devise approaches to maintain neuronal survival in the face of traumatic injury or neurodegenerative disorders. Here, we review the emerging evidence that a key survival/death checkpoint in both peripheral and central neurons involves the p53 tumor suppressor and its newly discovered family members, p73 and p63. The full-length isoforms of these proteins function as proapoptotic proteins, whereas naturally occurring N-terminal truncated variants of p73 and p63 act as prosurvival proteins, at least partially by antagonizing the full-length family members. The authors propose that together, these isoforms comprise an upstream rheostat that sums different environmental cues to ultimately determine neuronal survival during development, during neuronal maintenance in adult animals, and even following traumatic injury.
Collapse
Affiliation(s)
- W Bradley Jacobs
- Developmental Biology and Cancer Research, Hospital for Sick Children, Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | | | | |
Collapse
|
6
|
Low-intensity repetitive transcranial magnetic stimulation improves abnormal visual cortical circuit topography and upregulates BDNF in mice. J Neurosci 2014; 34:10780-92. [PMID: 25100609 DOI: 10.1523/jneurosci.0723-14.2014] [Citation(s) in RCA: 92] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Repetitive transcranial magnetic stimulation (rTMS) is increasingly used as a treatment for neurological and psychiatric disorders. Although the induced field is focused on a target region during rTMS, adjacent areas also receive stimulation at a lower intensity and the contribution of this perifocal stimulation to network-wide effects is poorly defined. Here, we examined low-intensity rTMS (LI-rTMS)-induced changes on a model neural network using the visual systems of normal (C57Bl/6J wild-type, n = 22) and ephrin-A2A5(-/-) (n = 22) mice, the latter possessing visuotopic anomalies. Mice were treated with LI-rTMS or sham (handling control) daily for 14 d, then fluorojade and fluororuby were injected into visual cortex. The distribution of dorsal LGN (dLGN) neurons and corticotectal terminal zones (TZs) was mapped and disorder defined by comparing their actual location with that predicted by injection sites. In the afferent geniculocortical projection, LI-rTMS decreased the abnormally high dispersion of retrogradely labeled neurons in the dLGN of ephrin-A2A5(-/-) mice, indicating geniculocortical map refinement. In the corticotectal efferents, LI-rTMS improved topography of the most abnormal TZs in ephrin-A2A5(-/-) mice without altering topographically normal TZs. To investigate a possible molecular mechanism for LI-rTMS-induced structural plasticity, we measured brain derived neurotrophic factor (BDNF) in the visual cortex and superior colliculus after single and multiple stimulations. BDNF was upregulated after a single stimulation for all groups, but only sustained in the superior colliculus of ephrin-A2A5(-/-) mice. Our results show that LI-rTMS upregulates BDNF, promoting a plastic environment conducive to beneficial reorganization of abnormal cortical circuits, information that has important implications for clinical rTMS.
Collapse
|
7
|
Wyse RD, Dunbar GL, Rossignol J. Use of genetically modified mesenchymal stem cells to treat neurodegenerative diseases. Int J Mol Sci 2014; 15:1719-45. [PMID: 24463293 PMCID: PMC3958818 DOI: 10.3390/ijms15021719] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 12/18/2013] [Accepted: 01/14/2014] [Indexed: 01/01/2023] Open
Abstract
The transplantation of mesenchymal stem cells (MSCs) for treating neurodegenerative disorders has received growing attention recently because these cells are readily available, easily expanded in culture, and when transplanted, survive for relatively long periods of time. Given that such transplants have been shown to be safe in a variety of applications, in addition to recent findings that MSCs have useful immunomodulatory and chemotactic properties, the use of these cells as vehicles for delivering or producing beneficial proteins for therapeutic purposes has been the focus of several labs. In our lab, the use of genetic modified MSCs to release neurotrophic factors for the treatment of neurodegenerative diseases is of particular interest. Specifically, glial cell-derived neurotrophic factor (GDNF), nerve growth factor (NGF), and brain derived neurotrophic factor (BDNF) have been recognized as therapeutic trophic factors for Parkinson's, Alzheimer's and Huntington's diseases, respectively. The aim of this literature review is to provide insights into: (1) the inherent properties of MSCs as a platform for neurotrophic factor delivery; (2) the molecular tools available for genetic manipulation of MSCs; (3) the rationale for utilizing various neurotrophic factors for particular neurodegenerative diseases; and (4) the clinical challenges of utilizing genetically modified MSCs.
Collapse
Affiliation(s)
- Robert D Wyse
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Gary L Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Brain Research and Integrative Neuroscience Center, Program in Neuroscience, Central Michigan University, Mount Pleasant, MI 48859, USA.
| |
Collapse
|
8
|
An overview of brain-derived neurotrophic factor and implications for excitotoxic vulnerability in the hippocampus. INTERNATIONAL JOURNAL OF PEPTIDES 2011; 2011:654085. [PMID: 21966294 PMCID: PMC3182334 DOI: 10.1155/2011/654085] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Accepted: 07/26/2011] [Indexed: 01/19/2023]
Abstract
The present paper examines the nature and function of brain-derived neurotrophic factor (BDNF) in the hippocampal formation and the consequences of changes in its expression. The paper focuses on literature describing the role of BDNF in hippocampal development and neuroplasticity. BDNF expression is highly sensitive to developmental and environmental factors, and increased BDNF signaling enhances neurogenesis, neurite sprouting, electrophysiological activity, and other processes reflective of a general enhancement of hippocampal function. Such increases in activity may mediate beneficial effects such as enhanced learning and memory. However, the increased activity also comes at a cost: BDNF plasticity renders the hippocampus more vulnerable to hyperexcitability and/or excitotoxic damage. Exercise dramatically increases hippocampal BDNF levels and produces behavioral effects consistent with this phenomenon. In analyzing the literature regarding exercise-induced regulation of BDNF, this paper provides a theoretical model for how the potentially deleterious consequences of BDNF plasticity may be modulated by other endogenous factors. The peptide galanin may play such a role by regulating hippocampal excitability.
Collapse
|
9
|
Abstract
Autism spectrum disorders (ASDs) are pervasive developmental disorders that frequently involve a triad of deficits in social skills, communication and language. For the underlying neurobiology of these symptoms, disturbances in neuronal development and synaptic plasticity have been discussed. The physiological development, regulation and survival of specific neuronal populations shaping neuronal plasticity require the so-called 'neurotrophic factors' (NTFs). These regulate cellular proliferation, migration, differentiation and integrity, which are also affected in ASD. Therefore, NTFs have gained increasing attention in ASD research. This review provides an overview and explores the key role of NTFs in the aetiology of ASD. We have also included evidence derived from neurochemical investigations, gene association studies and animal models. By focussing on the role of NTFs in ASD, we intend to further elucidate the puzzling aetiology of these conditions.
Collapse
Affiliation(s)
- T Nickl-Jockschat
- Department of Psychiatry and Psychotherapy, RWTH Aachen University, Aachen, Germany
| | | |
Collapse
|
10
|
Hajebrahimi Z, Mowla SJ, Movahedin M, Tavallaei M. Gene expression alterations of neurotrophins, their receptors and prohormone convertases in a rat model of spinal cord contusion. Neurosci Lett 2008; 441:261-6. [PMID: 18585435 DOI: 10.1016/j.neulet.2008.06.046] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2008] [Revised: 06/14/2008] [Accepted: 06/18/2008] [Indexed: 12/17/2022]
Abstract
We have used a semi-quantitative RT-PCR approach to investigate the alterations in the expression of the main regulators of neuronal survival and death, neurotrophins (NTs), NT receptors, and prohormone convertases (PC), in a rat model of spinal cord contusion. Our results revealed that the expression of the members of NT family (Nerve-Growth Factor (NGF), Brain-Derived Neurotrophic Factor (BDNF), and Neurotrophin-3 (NT-3)) is significantly declined in the injured spinal cord, as early as 6h after the induction of the contusion. The expression was recovered afterward to that of the control levels. Furthermore, the expression of all NTs high-affinity Trk receptors decreased severely after the contusion. While the expression of TrkA and TrkC were completely shut down after 6 and 12h after injury respectively, the expression of TrkB receptor declined at 12h after injury and remained at this low level thereafter. In contrast to the pattern of Trk receptor expression, p75NTR receptor showed a significant upregulation after contusion. The expression of PC members functioning in the constitutive secretory pathway, i.e. furin, PACE4 and PC7, increased after damage, while the expression of PC members acting in regulated secretory pathway, PC1 and PC2, reduced after spinal cord injury. All together, the down-regulation of NTs, their designated Trk receptors and PC1/PC2 enzymes along with an upregulation of p75NTR promote neuronal death after injury. Our results suggest that either overexpression of NTs, Trk receptors and PC1/PC2 or interfering with the expression of p75NTR in host and/or grafted cells before transplantation could increase the success of the transplantation.
Collapse
Affiliation(s)
- Zahra Hajebrahimi
- Department of Genetics, Faculty of Basic Sciences, Tarbiat Modares University, P.O. Box: 14115-175, Tehran, Iran
| | | | | | | |
Collapse
|
11
|
The effects of selenium against cerebral ischemia-reperfusion injury in rats. Neurosci Lett 2008; 438:265-9. [DOI: 10.1016/j.neulet.2008.03.091] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2008] [Revised: 02/27/2008] [Accepted: 03/07/2008] [Indexed: 11/17/2022]
|
12
|
Developmental axon pruning mediated by BDNF-p75NTR-dependent axon degeneration. Nat Neurosci 2008; 11:649-58. [PMID: 18382462 DOI: 10.1038/nn.2114] [Citation(s) in RCA: 182] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2008] [Accepted: 03/25/2008] [Indexed: 02/04/2023]
Abstract
The mechanisms that regulate the pruning of mammalian axons are just now being elucidated. Here, we describe a mechanism by which, during developmental sympathetic axon competition, winning axons secrete brain-derived neurotrophic factor (BDNF) in an activity-dependent fashion, which binds to the p75 neurotrophin receptor (p75NTR) on losing axons to cause their degeneration and, ultimately, axon pruning. Specifically, we found that pruning of rat and mouse sympathetic axons that project to the eye requires both activity-dependent BDNF and p75NTR. p75NTR and BDNF are also essential for activity-dependent axon pruning in culture, where they mediate pruning by directly causing axon degeneration. p75NTR, which is enriched in losing axons, causes axonal degeneration by suppressing TrkA-mediated signaling that is essential for axonal maintenance. These data provide a mechanism that explains how active axons can eliminate less-active, competing axons during developmental pruning by directly promoting p75NTR-mediated axonal degeneration.
Collapse
|
13
|
Dimaras H, Gallie BL. The p75NTR neurotrophin receptor is a tumor suppressor in human and murine retinoblastoma development. Int J Cancer 2008; 122:2023-9. [DOI: 10.1002/ijc.23356] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
14
|
Yune TY, Lee JY, Jung GY, Kim SJ, Jiang MH, Kim YC, Oh YJ, Markelonis GJ, Oh TH. Minocycline alleviates death of oligodendrocytes by inhibiting pro-nerve growth factor production in microglia after spinal cord injury. J Neurosci 2007; 27:7751-61. [PMID: 17634369 PMCID: PMC6672884 DOI: 10.1523/jneurosci.1661-07.2007] [Citation(s) in RCA: 205] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Spinal cord injury (SCI) causes a permanent neurological disability, and no satisfactory treatment is currently available. After SCI, pro-nerve growth factor (proNGF) is known to play a pivotal role in apoptosis of oligodendrocytes, but the cell types producing proNGF and the signaling pathways involved in proNGF production are primarily unknown. Here, we show that minocycline improves functional recovery after SCI in part by reducing apoptosis of oligodendrocytes via inhibition of proNGF production in microglia. After SCI, the stress-responsive p38 mitogen-activated protein kinase (p38MAPK) was activated only in microglia, and proNGF was produced by microglia via the p38MAPK-mediated pathway. Minocycline treatment significantly reduced proNGF production in microglia in vitro and in vivo by inhibition of the phosphorylation of p38MAPK. Furthermore, minocycline treatment inhibited p75 neurotrophin receptor expression and RhoA activation after injury. Finally, minocycline treatment inhibited oligodendrocyte death and improved functional recovery after SCI. These results suggest that minocycline may represent a potential therapeutic agent for acute SCI in humans.
Collapse
Affiliation(s)
- Tae Y. Yune
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 130-701, Korea
| | - Jee Y. Lee
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 130-701, Korea
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
- Department of Biology, College of Science, Yonsei University, Seoul 120-749, Korea, and
| | - Gil Y. Jung
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 130-701, Korea
- Bioanalysis and Biotransformation Research Center, Korea Institute of Science and Technology, Seoul 136-791, Korea
- Department of Biology, College of Science, Yonsei University, Seoul 120-749, Korea, and
| | - Sun J. Kim
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 130-701, Korea
| | - Mei H. Jiang
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 130-701, Korea
| | - Young C. Kim
- College of Pharmacy, Seoul National University, Seoul 151-742, Korea
| | - Young J. Oh
- Department of Biology, College of Science, Yonsei University, Seoul 120-749, Korea, and
| | - George J. Markelonis
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland 21201
| | - Tae H. Oh
- Age-Related and Brain Diseases Research Center, Kyung Hee University, Seoul 130-701, Korea
| |
Collapse
|
15
|
Turrin NP, Rivest S. Molecular and cellular immune mediators of neuroprotection. Mol Neurobiol 2007; 34:221-42. [PMID: 17308354 DOI: 10.1385/mn:34:3:221] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2006] [Revised: 11/30/1999] [Accepted: 08/08/2006] [Indexed: 12/23/2022]
Abstract
Our view of the immune privileged status of the brain has dramatically changed during the past two decades. Even though systemic immune stimuli have the ability to activate different populations of neurons, cells of monocytic lineage also have access to the neuronal tissue and populate it as microglia. Although such a phenomenon is limited in intact brains, it is greatly increased during neurodegenerative processes associated with innate immunity and the release of pro-inflammatory molecules by either resident microglia or those derived from the bone marrow stem cells. The role of these events is currently a matter of great debate and controversy, especially as it relates to brain protection, repair, or further injury. In recent years, accumulating data have supported the notion that when immune molecules are timely released by microglia, they limit neuronal injury in the presence of pathogens and toxic agents, help clear debris from degenerated cells, and restore the cerebral environment for repair. It has been shown that alteration of the natural innate immune response by microglia has direct consequences in exacerbating the damages following acute injury to neurons. This article presents and discusses these data, supporting a powerful neuroprotective role for microglia and their innate immune reactions in response to pathogens and central nervous system insults.
Collapse
Affiliation(s)
- Nicolas P Turrin
- Laboratory of Molecular Endocrinology, CHUL Research Center and Department of Anatomy and Physiology, Laval University, Québec, Canada.
| | | |
Collapse
|
16
|
Parlato R, Otto C, Begus Y, Stotz S, Schütz G. Specific ablation of the transcription factor CREB in sympathetic neurons surprisingly protects against developmentally regulated apoptosis. Development 2007; 134:1663-70. [PMID: 17376811 DOI: 10.1242/dev.02838] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The cyclic-AMP response element-binding (CREB) protein family of transcription factors plays a crucial role in supporting the survival of neurons. However, a cell-autonomous role has not been addressed in vivo. To investigate the cell-specific role of CREB, we used as a model developing sympathetic neurons, whose survival in vitro is dependent on CREB activity. We generated mice lacking CREB in noradrenergic (NA) and adrenergic neurons and compared them with the phenotype of the germline CREB mutant. Whereas the germline CREB mutant revealed increased apoptosis of NA neurons and misplacement of sympathetic precursors, the NA neuron-specific mutation unexpectedly led to reduced levels of caspase-3-dependent apoptosis in sympathetic ganglia during the period of naturally occurring neuronal death. A reduced level of p75 neurotrophin receptor expression in the absence of CREB was shown to be responsible. Thus, our analysis indicates that the activity of cell-autonomous pro-survival signalling is operative in developing sympathetic neurons in the absence of CREB.
Collapse
Affiliation(s)
- Rosanna Parlato
- Department of Molecular Biology of the Cell I, German Cancer Research Center, Heidelberg, Germany
| | | | | | | | | |
Collapse
|
17
|
Pehar M, Cassina P, Vargas MR, Xie Y, Beckman JS, Massa SM, Longo FM, Barbeito L. Modulation of p75-dependent motor neuron death by a small non-peptidyl mimetic of the neurotrophin loop 1 domain. Eur J Neurosci 2007; 24:1575-80. [PMID: 17004921 DOI: 10.1111/j.1460-9568.2006.05040.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The p75 neurotrophin receptor (p75NTR) is expressed by degenerating spinal motor neurons in amyotrophic lateral sclerosis (ALS). The mature and pro-form of nerve growth factor (NGF) activate p75NTR to trigger motor neuron apoptosis. However, attempts to modulate p75NTR-mediated neuronal death in ALS models by downregulating or antagonizing p75NTR with synthetic peptides have led to only modest results. Recently, a novel ligand of p75NTR, compound LM11A-24, has been identified. It is a non-peptidyl mimetic of the neurotrophin loop 1 domain that promotes hippocampal neuron survival through p75NTR and exerts protection against p75NTR-mediated apoptosis of oligodendrocytes induced by proNGF. Thus, LM11A-24 appears to activate p75NTR-linked survival but not death mechanisms, and may interfere with the ability of neurotrophins to induce apoptosis. Given these findings, we hypothesized that LM11A-24 might be a particularly potent inhibitor of motor neuron degeneration. We examined the effects of LM11A-24 on apoptosis of cultured rat embryonic motor neurons. Interestingly, in contrast to the effects observed in hippocampal cultures, LM11A-24 was unable to prevent motor neuron apoptosis induced by trophic factor deprivation. However, picomolar concentrations of LM11A-24 prevented p75NTR-dependent motor neuron death induced by either exogenous addition of NGF or spinal cord extracts from symptomatic superoxide dismutase-1G93A mice, in the presence of low steady-state concentrations of nitric oxide. LM11A-24 also inhibited motor neuron death induced by NGF-producing reactive astrocytes in co-culture conditions. These studies suggest that modulation of p75NTR by small molecule ligands targeting this receptor might constitute a novel strategy for preventing motor neuron degeneration.
Collapse
Affiliation(s)
- Mariana Pehar
- Departamento de Neurobiología Celulary Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo 11600, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Pehar M, Vargas MR, Robinson KM, Cassina P, England P, Beckman JS, Alzari PM, Barbeito L. Peroxynitrite transforms nerve growth factor into an apoptotic factor for motor neurons. Free Radic Biol Med 2006; 41:1632-44. [PMID: 17145551 DOI: 10.1016/j.freeradbiomed.2006.08.010] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2006] [Revised: 07/22/2006] [Accepted: 08/03/2006] [Indexed: 11/19/2022]
Abstract
Nerve growth factor (NGF) overexpression and increased production of peroxynitrite occur in several neurodegenerative diseases. We investigated whether NGF could undergo posttranslational oxidative or nitrative modifications that would modulate its biological activity. Compared to native NGF, peroxynitrite-treated NGF showed an exceptional ability to induce p75(NTR)-dependent motor neuron apoptosis at physiologically relevant concentrations. Whereas native NGF requires an external source of nitric oxide (NO) to induce motor neuron death, peroxynitrite-treated NGF induced motor neuron apoptosis in the absence of exogenous NO. Nevertheless, NO potentiated the apoptotic activity of peroxynitrite-modified NGF. Blocking antibodies to p75(NTR) or downregulation of p75(NTR) expression by antisense treatment prevented motor neuron apoptosis induced by peroxynitrite-treated NGF. We investigated what oxidative modifications were responsible for inducing a toxic gain of function and found that peroxynitrite induced tyrosine nitration in a dose-dependent manner. Moreover, peroxynitrite triggered the formation of stable high-molecular-weight oligomers of NGF. Preventing tyrosine nitration by urate abolished the effect of peroxynitrite on NGF apoptotic activity. These results indicate that the oxidation of NGF by peroxynitrite enhances NGF apoptotic activity through p75(NTR) 10,000-fold. To our knowledge, this is the first known posttranslational modification that transforms a neurotrophin into an apoptotic agent.
Collapse
Affiliation(s)
- Mariana Pehar
- Departamento de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, 11600 Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Pehar M, Vargas MR, Cassina P, Barbeito AG, Beckman JS, Barbeito L. Complexity of astrocyte-motor neuron interactions in amyotrophic lateral sclerosis. NEURODEGENER DIS 2006; 2:139-46. [PMID: 16909019 DOI: 10.1159/000089619] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Neurons and surrounding glial cells compose a highly specialized functional unit. In amyotrophic lateral sclerosis (ALS) astrocytes interact with motor neurons in a complex manner to modulate neuronal survival. Experiments using chimeric mice expressing ALS-linked mutations to Cu,Zn superoxide dismutase (SOD-1) suggest a critical modulation exerted by neighboring non-neuronal cell types on disease phenotype. When perturbed by primary neuronal damage, e.g. expression of SOD-1 mutations, neurons can signal astrocytes to proliferate and become reactive. Fibroblast growth factor-1 (FGF-1) can be released by motor neurons in response to damage to induce astrocyte activation by signaling through the receptor FGFR1. FGF-1 stimulates nerve growth factor (NGF) expression and secretion, as well as activity of the nuclear factor erythroid 2-related factor 2 (Nrf2) transcription factor. Nrf2 leads to the expression of antioxidant and cytoprotective enzymes such as heme oxygenase-1 and a group of enzymes involved in glutathione metabolism that prevent motor neuron degeneration. However, prolonged stimulation with FGF-1 or SOD-mediated oxidative stress in astrocytes may disrupt the normal neuron-glia interactions and lead to progressive neuronal degeneration. The re-expression of p75 neurotrophin receptor and neuronal NOS in motor neurons in parallel with increased NGF secretion by reactive astrocytes may be a mechanism to eliminate critically damaged neurons. Consequently, astrocyte activation in ALS may have a complex pathogenic role.
Collapse
Affiliation(s)
- Mariana Pehar
- Departamento de Neurobiología Celular y Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | | |
Collapse
|
20
|
Moore K, MacSween M, Shoichet M. Immobilized concentration gradients of neurotrophic factors guide neurite outgrowth of primary neurons in macroporous scaffolds. ACTA ACUST UNITED AC 2006; 12:267-78. [PMID: 16548685 DOI: 10.1089/ten.2006.12.267] [Citation(s) in RCA: 179] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Neurotrophic factors present as concentration gradients are neurotropic cues that direct axonal growth toward their targets. Multiple factors work together in vivo to ensure axons reach the proper targets, likely interacting with one another via intracellular signalling pathways. Nerve growth factor (NGF) and neurotrophin-3 (NT-3) are neurotrophins known to guide axons as well as promote axonal growth following injury to both the spinal cord and peripheral nerve. These molecules interact with neurons through different tyrosine kinase receptors. In this study, the receptors for these growth factors were shown to be co-localized on E10 chick dorsal root ganglion (DRG) cells, providing an opportunity for synergism. Well-defined concentration gradients of NGF and NT-3 were immobilized for the first time in a cell-penetrable, cell-adhesive scaffold of poly(2-hydroxyethylmethacrylate) and poly(L-lysine). An NGF concentration gradient of 310 ng/mL/mm was required to guide chick DRG neurites. A lower concentration gradient of 200 ng/mL/mm of NGF was shown to elicit guidance when an NT-3 concentration gradient of 200 ng/mL/mm was also present, indicating a synergistic response in the DRG neurons. These gradient scaffolds may be useful for guided regeneration following injury to the spinal cord or peripheral nerve and may also elucidate the mechanism for intracellular signaling of neurotrophic factors.
Collapse
Affiliation(s)
- Kathryn Moore
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Ontario, Canada
| | | | | |
Collapse
|
21
|
Abstract
Neurotrophins are a unique family of polypeptide growth factors that influence the proliferation, differentiation, survival and death of neuronal and non-neuronal cells. They are essential for the health and well-being of the nervous system. NGF (nerve growth factor), BDNF (brain-derived neurotrophic factor), NT-3 (neurotrophin-3) and NT-4 (neurotrophin-4) also mediate additional higher-order activities, such as learning, memory and behaviour, in addition to their established functions for cell survival. The effects of neurotrophins depend upon their levels of availability, their affinity of binding to transmembrane receptors and the downstream signalling cascades that are stimulated after receptor activation. Alterations in neurotrophin levels have been implicated in neurodegenerative disorders, such as Alzheimer's disease and Huntington's disease, as well as psychiatric disorders, including depression and substance abuse. Difficulties in administering trophic factors have led to the consideration of using small molecules, such as GPCR (G-protein-coupled receptor) ligands, which can participate in transactivation events. In this review, we consider the signalling pathways activated by neurotrophins in both health and disease states.
Collapse
Affiliation(s)
- Moses V Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, New York 10016, USA.
| | | | | |
Collapse
|
22
|
Sáez ET, Pehar M, Vargas MR, Barbeito L, Maccioni RB. Production of nerve growth factor by β-amyloid-stimulated astrocytes induces p75NTR-dependent tau hyperphosphorylation in cultured hippocampal neurons. J Neurosci Res 2006; 84:1098-106. [PMID: 16862561 DOI: 10.1002/jnr.20996] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reactive astrocytes surround amyloid depositions and degenerating neurons in Alzheimer's disease (AD). It has been previously shown that beta-amyloid peptide induces inflammatory-like responses in astrocytes, leading to neuronal pathology. Reactive astrocytes up-regulate nerve growth factor (NGF), which can modulate neuronal survival by signaling through TrkA or p75 neurotrophin receptor (p75NTR). Here, we analyzed whether soluble Abeta peptide 25-35 (Abeta) stimulated astrocytic NGF expression, modulating the survival of cultured embryonic hippocampal neurons. Hippocampal astrocytes incubated with Abeta up-regulated NGF expression and release to the culture medium. Abeta-stimulated astrocytes increased tau phosphorylation and reduced the survival of cocultured hippocampal neurons. Neuronal death and tau phosphorylation were reproduced by conditioned media from Abeta-stimulated astrocytes and prevented by caspase inhibitors or blocking antibodies to NGF or p75NTR. Moreover, exogenous NGF was sufficient to induce tau hyperphosphorylation and death of hippocampal neurons, a phenomenon that was potentiated by a low steady-state concentration of nitric oxide. Our findings show that Abeta-activated astrocytes potently stimulate NGF secretion, which in turn causes the death of p75-expressing hippocampal neurons, through a mechanism regulated by nitric oxide. These results suggest a potential role for astrocyte-derived NGF in the progression of AD.
Collapse
Affiliation(s)
- Estefanía T Sáez
- Laboratory of Cellular, Molecular Biology and Neurosciences, Faculty of Sciences, Department Neurological Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | | | | | | | | |
Collapse
|
23
|
Abstract
The precise coordination of the many events in nervous system development is absolutely critical for the correct establishment of functional circuits. The postganglionic sympathetic neuron has been an amenable model for studying peripheral nervous system formation. Factors that control several developmental events, including multiple stages of axon extension, neuron survival and death, dendritogenesis, synaptogenesis, and establishment of functional diversity, have been identified in this neuron type. This knowledge allows us to integrate the various intricate processes involved in the formation of a functional sympathetic nervous system and thereby create a paradigm for understanding neuronal development in general.
Collapse
Affiliation(s)
- Natalia O Glebova
- Department of Neuroscience, Howard Hughes Medical Institute, The Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA.
| | | |
Collapse
|
24
|
Kalb R. The protean actions of neurotrophins and their receptors on the life and death of neurons. Trends Neurosci 2005; 28:5-11. [PMID: 15626491 DOI: 10.1016/j.tins.2004.11.003] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
At vanishingly low concentrations, factors of the neurotrophin family (NGF, BDNF, NT3 and NT4/5) can promote neuronal survival or death. Many investigations indicate that the survival-promoting signals of neurotrophins are generated by activation of Trk tyrosine kinase receptors and that their death-promoting signals are generated by activation of p75 neurotrophin receptors (p75(NTR)). Despite this, a body of work indicates that p75(NTR) can promote cell survival and Trk receptors can adversely affect neuron health. The potential mechanisms by which these receptors could have such diverse and antipodal effects are considered here.
Collapse
Affiliation(s)
- Robert Kalb
- Joseph Stokes, Jr Research Institute, Children's Hospital of Philadelphia, and Department of Neurology, University of Pennsylvania School of Medicine, 3615 Civic Center Boulevard, Philadelphia, PA 19104, USA.
| |
Collapse
|
25
|
Chang MS, Arevalo JC, Chao MV. Ternary complex with Trk, p75, and an ankyrin-rich membrane spanning protein. J Neurosci Res 2004; 78:186-92. [PMID: 15378608 DOI: 10.1002/jnr.20262] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Neurotrophins play many critical roles in regulating neuronal plasticity, survival, and differentiation in the nervous system. Neurotrophins recognize two different receptors, the Trk receptor tyrosine kinase and the p75 neurotrophin receptor, which are associated closely. Several adaptor proteins are associated with each receptor. An ankyrin-rich membrane spanning protein (ARMS), originally identified as a substrate for protein kinase D (Kidins220) and as a p75 interacting protein, serves as a novel downstream target of Trk receptor tyrosine kinases. Kidins220/ARMS is co-expressed frequently with Trk and p75 and represents the only membrane-associated protein known to interact with both receptors. We report here that a ternary complex can be formed between Trk, p75, and Kidins220/ARMS. The extracellular domains of the TrkA and the p75 receptors are necessary for their association, whereas the juxtamembrane region of p75 was responsible for the interaction with Kidins220/ARMS. Interestingly, increasing the level of Kidins220/ARMS expression resulted in a decreased association of TrkA with p75. These findings thus suggest that Kidins220/ARMS plays an important role in regulating interactions between Trk and p75 neurotrophin receptors.
Collapse
Affiliation(s)
- Mi-Sook Chang
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York, USA.
| | | | | |
Collapse
|
26
|
Pehar M, Cassina P, Vargas MR, Castellanos R, Viera L, Beckman JS, Estévez AG, Barbeito L. Astrocytic production of nerve growth factor in motor neuron apoptosis: implications for amyotrophic lateral sclerosis. J Neurochem 2004; 89:464-73. [PMID: 15056289 DOI: 10.1111/j.1471-4159.2004.02357.x] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Reactive astrocytes frequently surround degenerating motor neurons in patients and transgenic animal models of amyotrophic lateral sclerosis (ALS). We report here that reactive astrocytes in the ventral spinal cord of transgenic ALS-mutant G93A superoxide dismutase (SOD) mice expressed nerve growth factor (NGF) in regions where degenerating motor neurons expressed p75 neurotrophin receptor (p75(NTR)) and were immunoreactive for nitrotyrosine. Cultured spinal cord astrocytes incubated with lipopolysaccharide (LPS) or peroxynitrite became reactive and accumulated NGF in the culture medium. Reactive astrocytes caused apoptosis of embryonic rat motor neurons plated on the top of the monolayer. Such motor neuron apoptosis could be prevented when either NGF or p75(NTR) was inhibited with blocking antibodies. In addition, nitric oxide synthase inhibitors were also protective. Exogenous NGF stimulated motor neuron apoptosis only in the presence of a low steady state concentration of nitric oxide. NGF induced apoptosis in motor neurons from p75(NTR +/+) mouse embryos but had no effect in p75(NTR -/-) knockout embryos. Culture media from reactive astrocytes as well as spinal cord lysates from symptomatic G93A SOD mice-stimulated motor neuron apoptosis, but only when incubated with exogenous nitric oxide. This effect was prevented by either NGF or p75(NTR) blocking-antibodies suggesting that it might be mediated by NGF and/or its precursor forms. Our findings show that NGF secreted by reactive astrocytes induce the death of p75-expressing motor neurons by a mechanism involving nitric oxide and peroxynitrite formation. Thus, reactive astrocytes might contribute to the progressive motor neuron degeneration characterizing ALS.
Collapse
Affiliation(s)
- Mariana Pehar
- Departamento de Neurobiología Celular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Oderfeld-Nowak B, Orzyłowska-Sliwińska O, Sołtys Z, Zaremba M, Januszewski S, Janeczko K, Mossakowski M. Concomitant up-regulation of astroglial high and low affinity nerve growth factor receptors in the CA1 hippocampal area following global transient cerebral ischemia in rat. Neuroscience 2003; 120:31-40. [PMID: 12849738 DOI: 10.1016/s0306-4522(03)00289-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
We have examined the effect of global transient cerebral ischemia, evoked in rat by 10 min of cardiac arrest, upon the changes in the cellular expression of two nerve growth factor (NGF) receptors (TrkA and p75) in the hippocampus. We have used immunocytochemical procedures, including a quantitative analysis of staining, along with some quantitative morphological analyses. We have found, under ischemic conditions, a decrease of TrkA immunoreactivity in degenerating CA1 pyramidal neurons and in neuropil. On the other hand, a strong, ischemia-induced up-regulation of TrkA and p75 immunoreactivity was observed in the majority of reactive astroglia population in the adjacent CA1 hippocampal region. The colocalization of the two receptors in the same reactive astroglial cells was evidenced by double immunostaining and further supported by quantitative morphological analysis of TrkA and p75 immunoreactive glial cells. Our data implicate the involvement of NGF receptors in the postischemic regulation of astrocytic function; however, the lack of NGF receptor expression on some astrocytes suggests heterogeneity of astroglia population. Our results also indicate that the lack of neuroprotective action of astroglial NGF induced in the ischemic hippocampus [J Neurosci Res 41 (1995) 684; Acta Neurobiol Exp 57 (1997) 31; Neuroscience 91 (1999) 1027] is not caused by a paucity of NGF receptors but may rather be due to the counteraction of some proinflammatory substances, released simultaneously by glia cells. On the other hand, the up-regulated astroglial TrkA receptor may be an important target for exogenous NGF, which, as previously described [J Neurosci 11 (1991) 2914; Neurosci Lett 141 (1992) 161], exerts a neuroprotective effect in ischemia.
Collapse
Affiliation(s)
- B Oderfeld-Nowak
- Department of Molecular and Cellular Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 3 Pasteura Street, 02093 Warsaw, Poland.
| | | | | | | | | | | | | |
Collapse
|
28
|
Abstract
Genetic investigation of neuroblastoma has provided few clues to account for the variability in clinical phenotype which is such a characteristic feature of this tumour. Indeed, efforts to identify the primary genetic event(s) responsible for tumour development have been overwhelmed by the number and range of different genetic abnormalities observed, particularly in the more aggressive neuroblastoma subtypes. Since neuroblastoma is a consequence of aberrant development of the sympathetic nervous system (SNS), investigation of the genetic components known to be involved in the control of SNS developmental, may provide the key to understanding tumour behaviour. The neurotrophins and the glial family ligands both play very significant roles in different stages of SNS development and merit more detailed investigation as to how they might influence neuroblastoma tumorigenesis.
Collapse
Affiliation(s)
- Carmel M McConville
- Department of Paediatrics and Child Health, University of Birmingham, Vincent Drive, B15 2TT Birmingham, UK.
| | | |
Collapse
|
29
|
Abstract
Nerve growth factor was the first identified protein with anti-apoptotic activity on neurons. This prototypic neurotrophic factor, together with the three structurally and functionally related growth factors brain-derived neurotrophic factor (BDNF), neurotrophin-3 (NT3) and neurotrophin-4/5 (NT4/5), forms the neurotrophin protein family. Target T cells for neurotrophins include many neurons affected by neurodegenerative diseases such as Alzheimer's disease, Parkinson's disease, amyotrophic lateral sclerosis and peripheral polyneuropathies. In addition, the neurotrophins act on neurons affected by other neurological and psychiatric pathologies including ischemia, epilepsy, depression and eating disorders. Work with cell cultures and animal models provided solid support for the hypothesis that neurotrophins prevent neuronal death. While no evidence exists that a lack of neurotrophins underlies the etiology of any neurodegenerative disease, these studies have spurred on hopes that neurotrophins might be useful symptomatic-therapeutic agents. However first clinical trials led to variable results and severe side effects were observed. For future therapeutic use of the neurotrophins it is therefore crucial to expand our knowledge about their physiological functions as well as their pharmacokinetic properties. A major challenge is to develop methods for their application in effective doses and in a precisely timed and localized fashion.
Collapse
Affiliation(s)
- Georg Dechant
- Neurobiochemistry, Max-Planck-Institute of Neurobiology, Am Klopferspitz 18a, 82152 Martinsried, Germany
| | | |
Collapse
|
30
|
Chao MV. Neurotrophins and their receptors: a convergence point for many signalling pathways. Nat Rev Neurosci 2003; 4:299-309. [PMID: 12671646 DOI: 10.1038/nrn1078] [Citation(s) in RCA: 1698] [Impact Index Per Article: 77.2] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Moses V Chao
- Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, New York 10016, USA.
| |
Collapse
|
31
|
Abstract
Since the discovery of nerve growth factor, there has been accumulating evidence that neurotrophins (NTs) mediate various biological responses of peripheral and central neurons. NTs have been traditionally studied as the regulating factors of neuronal survival and differentiation. Recent data indicate that NTs can modify neuronal plasticity by specific changes in pre- and post-synaptic functions. Whether the NT action is pre- or post-synaptic, however, remains to be controversy. Here we review the recent advances of NTs involved in synaptic plasticity, as well as the pre- and post-synaptic arguments. We also review the recent discovery that proneurotrophins and mature NTs have the differential ability to bind selective receptors and mediate distinctive biological actions.
Collapse
|
32
|
Abstract
The neurotrophin, brain derived neurotrophic factor (BDNF), exerts multiple effects on the development and maintenance of the nervous system, including regulating synaptic plasticity and promoting neuron survival. Here we report the selective failure of BDNF-dependent survival in cultured hippocampal neurons from the trisomy 16 (Ts16) mouse, an animal model of Down syndrome. This failure is accompanied by overexpression of a truncated, kinase-deficient isoform (T1) of the BDNF receptor tyrosine receptor kinase B (trkB). Adenovirus-mediated introduction of exogenous full-length trkB into Ts16 neurons fully restored BDNF-dependent survival, whereas exogenous truncated trkB expression in normal, euploid neurons reproduced the Ts16 BDNF signaling failure. Thus, the failure of Ts16 neurons to respond to BDNF is caused by dysregulation of trkB isoform expression. Such a neurotrophin signaling defect could contribute to developmental and degenerative disorders of the nervous system.
Collapse
|
33
|
Abstract
The family of neurotrophic factors known as neurotrophins has yielded a series of surprises, both with regard to the broad extent of their functional roles and the remarkable complexity of their signaling mechanisms. The recent discovery that a neurotrophin precursor protein and its proteolytically processed products may differentially activate pro- and antiapoptotic cellular responses, through preferential activation of Trk or p75 receptors, promises to unveil yet another level of regulatory complexity.
Collapse
Affiliation(s)
- Moses V Chao
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, Department of Cell Biology, New York University School of Medicine, New York, NY 10016, USA.
| | | |
Collapse
|
34
|
Majdan M, Walsh GS, Aloyz R, Miller FD. TrkA mediates developmental sympathetic neuron survival in vivo by silencing an ongoing p75NTR-mediated death signal. J Cell Biol 2001; 155:1275-85. [PMID: 11756477 PMCID: PMC2199335 DOI: 10.1083/jcb.200110017] [Citation(s) in RCA: 88] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Developmental sympathetic neuron death is determined by functional interactions between the TrkA/NGF receptor and the p75 neurotrophin receptor (p75NTR). A key question is whether p75NTR promotes apoptosis by directly inhibiting or modulating TrkA activity, or by stimulating cell death independently of TrkA. Here we provide evidence for the latter model. Specifically, experiments presented here demonstrate that the presence or absence of p75NTR does not alter Trk activity or NGF- and NT-3-mediated downstream survival signaling in primary neurons. Crosses of p75NTR-/- and TrkA-/- mice indicate that the coincident absence of p75NTR substantially rescues TrkA-/- sympathetic neurons from developmental death in vivo. Thus, p75NTR induces death regardless of the presence or absence of TrkA expression. These data therefore support a model where developing sympathetic neurons are "destined to die" by an ongoing p75NTR-mediated apoptotic signal, and one of the major ways that TrkA promotes neuronal survival is by silencing this ongoing death signal.
Collapse
Affiliation(s)
- M Majdan
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Canada H3A 2B4
| | | | | | | |
Collapse
|
35
|
Szutowicz A. Aluminum, NO, and nerve growth factor neurotoxicity in cholinergic neurons. J Neurosci Res 2001; 66:1009-18. [PMID: 11746431 DOI: 10.1002/jnr.10040] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Several neurotoxic compounds, including Al, NO, and beta-amyloid may contribute to the impairment or loss of brain cholinergic neurons in the course of various neurodegenerative diseases. Genotype and phenotypic modifications of cholinergic neurons may determine their variable functional competency and susceptibility to reported neurotoxic insults. Hybrid, immortalized SN56 cholinergic cells from mouse septum may serve as a model for in vitro cholinotoxicity studies. Differentiation by various combinations of cAMP, retinoic acid, and nerve growth factor may provide cells of different morphologic maturity as well as activities of acetylcholine and acetyl-CoA metabolism. In general, differentiated cells appear to be more susceptible to neurotoxic signals than the non-differentiated ones, as evidenced by loss of sprouting and connectivity, decreases in choline acetyltransferase and pyruvate dehydrogenase activities, disturbances in acetyl-CoA compartmentation and metabolism, insufficient or excessive acetylcholine release, as well as increased expression of apoptosis markers. Each neurotoxin impaired both acetylcholine and acetyl-CoA metabolism of these cells. Activation of p75 or trkA receptors made either acetyl-CoA or cholinergic metabolism more susceptible to neurotoxic influences, respectively. Neurotoxins aggravated detrimental effects of each other, particularly in differentiated cells. Thus brain cholinergic neurons might display a differential susceptibility to Al and other neurotoxins depending on their genotype or phenotype-dependent variability of the cholinergic and acetyl-CoA metabolism.
Collapse
Affiliation(s)
- A Szutowicz
- Chair of Clinical Biochemistry, Department of Laboratory Medicine, Medical University of Gdańsk, Debinki 7, 80-211 Gdańsk, Poland.
| |
Collapse
|
36
|
A prosurvival function for the p75 receptor death domain mediated via the caspase recruitment domain receptor-interacting protein 2. J Neurosci 2001. [PMID: 11487608 DOI: 10.1523/jneurosci.21-16-05854.2001] [Citation(s) in RCA: 116] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
In addition to promoting cell survival, neurotrophins also can elicit apoptosis in restricted cell types. Recent results indicate that nerve growth factor (NGF) can induce Schwann cell death via engagement of the p75 neurotrophin receptor. Here we describe a novel interaction between the p75 receptor and receptor-interacting protein 2, RIP2 (RICK/CARDIAK), that accounts for the ability of neurotrophins to choose between a survival-versus-death pathway. RIP2, an adaptor protein with a serine threonine kinase and a caspase recruitment domain (CARD), is highly expressed in dissociated Schwann cells and displays an endogenous association with p75. RIP2 binds to the death domain of p75 via its CARD domain in an NGF-dependent manner. The introduction of RIP2 into Schwann cells deficient in RIP2 conferred NGF-dependent nuclear transcription factor-kappaB (NF-kappaB) activity and decreased the cell death induced by NGF. Conversely, the expression of a dominant-negative version of RIP2 protein resulted in a loss of NGF-induced NF-kappaB induction and increased NGF-mediated cell death. These results indicate that adaptor proteins like RIP2 can provide a bifunctional switch for cell survival or cell death decisions mediated by the p75 neurotrophin receptor.
Collapse
|
37
|
Hama T, Maruyama M, Katoh-Semba R, Takizawa M, Iwashima M, Nara K. Identification and molecular cloning of a novel brain-specific receptor protein that binds to brain injury-derived neurotrophic peptide. Possible role for neuronal survival. J Biol Chem 2001; 276:31929-35. [PMID: 11399754 DOI: 10.1074/jbc.m100617200] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Brain injury-derived neurotrophic peptide (BINP) is a synthetic 13-mer peptide that supports neuronal survival and protects hippocampal neurons in primary cultures from cell death caused by glutamate. We have developed a monoclonal antibody named mAb 6A22 against the 40-kDa BINP-binding protein, p40BBP. mAb 6A22 inhibits binding between BINP and rat brain synaptosomes and abolishes the protective effect of BINP. The antigen of mAb 6A22 should be the BINP-binding protein that mediates the neuroprotective action of BINP. Using an expression cloning approach with mAb 6A22, we isolated a cDNA encoding a novel receptor protein that shows binding activity of BINP. COS7 cells transfected with the cloned cDNA show binding of BINP and cell surfaces that are stained by 6A22. The mRNA for p40BBP is specific for the rat brain and is increased after birth. From immunohistochemical studies using mAb 6A22, p40BBP increased after kainic acid treatment in rat hippocampal neurons.
Collapse
Affiliation(s)
- T Hama
- Mitsubishi Kagaku Institute of Life Sciences, 11 Minamiooya, Machida-shi, Tokyo 194-8511, Japan.
| | | | | | | | | | | |
Collapse
|
38
|
Abstract
Neurotrophins rely on Trk tyrosine kinase and p75 receptors for signal transduction. Recently, other roles for these receptors have been identified. Many questions have been raised about the mechanism by which these receptors mediate diverse cellular functions. Studies indicate a great deal of neurotrophin signaling specificity may stem from ligand-receptor selectivity and intracellular protein recruitment.
Collapse
MESH Headings
- Animals
- Antigens, CD/drug effects
- Antigens, CD/physiology
- Antigens, Neoplasm
- Apoptosis/drug effects
- Apoptosis/physiology
- Cell Count
- DNA-Binding Proteins/physiology
- Humans
- Ligands
- Macromolecular Substances
- Membrane Proteins/physiology
- Neoplasm Proteins
- Nerve Growth Factors/physiology
- Nerve Tissue Proteins/physiology
- Neurons/metabolism
- Phosphoproteins
- Receptors, Nerve Growth Factor/classification
- Receptors, Nerve Growth Factor/drug effects
- Receptors, Nerve Growth Factor/physiology
- Receptors, Tumor Necrosis Factor/drug effects
- Receptors, Tumor Necrosis Factor/physiology
- Receptors, Tumor Necrosis Factor, Type II
- Schwann Cells/metabolism
- Signal Transduction/drug effects
- Signal Transduction/physiology
- Tumor Necrosis Factor-alpha/physiology
Collapse
Affiliation(s)
- F S Lee
- Weill Medical College of Cornell University Medical College, New York, New York 10021, USA
| | | | | | | |
Collapse
|
39
|
Miller FD, Pozniak CD, Walsh GS. Neuronal life and death: an essential role for the p53 family. Cell Death Differ 2000; 7:880-8. [PMID: 11279533 DOI: 10.1038/sj.cdd.4400736] [Citation(s) in RCA: 156] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Recent evidence indicates that the p53 tumor suppressor protein, and its related family member, p73, play an essential role in regulating neuronal apoptosis in both the developing and injured, mature nervous system. In the developing nervous system, they do so by regulating naturally-occurring cell death in neural progenitor cells and in postmitotic neurons, acting to ensure the apoptosis of cells that either do not appropriately undergo the progenitor to postmitotic neuron transition, or that fail to compete for sufficient quantities of trophic support. Somewhat surprisingly, in developing postmitotic neurons, p53 plays a proapoptotic role, while a naturally-occurring, truncated form of p73, DeltaNp73, antagonizes p53 and plays an anti-apoptotic role. In the mature nervous system, numerous studies indicate that p53 is essential for the neuronal death in response to a variety of insults, including DNA damage, ischemia and excitotoxicity. It is likely that all of these insults culminate in DNA damage, which may well be a common trigger for neuronal apoptosis. In this regard, the signaling pathways that are responsible for triggering p53-dependent neuronal apoptosis are starting to be elucidated, and involve cell cycle deregulation and activation of the JNK pathway. Finally, accumulating evidence indicates that p53 is perturbed in the CNS in a number of neurodegenerative disorders, leading to the hypothesis that longterm oxidative damage and/or excitotoxicity ultimately trigger p53-dependent apoptosis in the chronically degenerating nervous system.
Collapse
Affiliation(s)
- F D Miller
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, 3801 rue University, Montreal, Canada H3A 2B4.
| | | | | |
Collapse
|
40
|
Salehi AH, Roux PP, Kubu CJ, Zeindler C, Bhakar A, Tannis LL, Verdi JM, Barker PA. NRAGE, a novel MAGE protein, interacts with the p75 neurotrophin receptor and facilitates nerve growth factor-dependent apoptosis. Neuron 2000; 27:279-88. [PMID: 10985348 DOI: 10.1016/s0896-6273(00)00036-2] [Citation(s) in RCA: 232] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The mechanisms employed by the p75 neurotrophin receptor (p75NTR) to mediate neurotrophin-dependent apoptosis are poorly defined. Two-hybrid analyses were used to identify proteins involved in p75NTR apoptotic signaling, and a p75NTR binding partner termed NRAGE (for neurotrophin receptor-interacting MAGE homolog) was identified. NRAGE binds p75NTR in vitro and in vivo, and NRAGE associates with the plasma membrane when NGF is bound to p75NTR. NRAGE blocks the physical association of p75NTR with TrkA, and, conversely, TrkA overexpression eliminates NRAGE-mediated NGF-dependent death, indicating that interactions of NRAGE or TrkA with p75NTR are functionally and physically exclusive. NRAGE overexpression facilitates cell cycle arrest and permits NGF-dependent apoptosis within sympathetic neuron precursors cells. Our results show that NRAGE contributes to p75NTR-dependent cell death and suggest novel functions for MAGE family proteins.
Collapse
Affiliation(s)
- A H Salehi
- Centre for Neuronal Survival, Montreal Neurological Institute, McGill University, Quebec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
Neurotrophins use two types of receptors, the Trk tyrosine kinase receptors and the p75 neurotrophin receptor (p75NTR), to regulate the growth, development, survival and repair of the nervous system. These receptors can either collaborate with or inhibit each other's actions to mediate neurotrophin effects. The development and survival of neurons is thus based upon the functional interplay of the signals generated by Trk and p75NTR. In the past two years, the signaling pathways used by these receptors, including Akt and MAPK-induced signaling via Trk, and JNK, p53, and NF-kappaB signaling via p75NTR, have been identified. In addition, a number of novel p75NTR-interacting proteins have been identified that transmit growth, survival, and apoptotic signals.
Collapse
Affiliation(s)
- D R Kaplan
- Brain Tumor Research Center, Montreal Neurological Institute, Montreal, H3A 2B4, Canada.
| | | |
Collapse
|
42
|
Abstract
Nerve growth factor (NGF) initiates the majority of its biological effects by promoting the dimerization and activation of the tyrosine kinase receptor TrkA. In addition to rapid increases in the phosphorylation of phosphatidylinositol 3'-kinase (PI 3-kinase) and phospholipase C-gamma and increased ras activity, phosphorylation of c-Crk and paxillin proteins has been observed upon TrkA activation. The c-Abl tyrosine kinase is involved in the control of the axonal cytoskeleton and is known to interact with c-Crk proteins. Here we have tested the possibility that TrkA receptors might form an association with the c-Abl protein. After transfection in 293T cells, TrkA and c-Abl kinases could be coimmunoprecipitated. This interaction did not require TrkA receptors to be autophosphorylated. Mapping analysis indicated that the region of c-Abl association was confined to the juxtamembrane region of TrkA. The interaction of c-Abl with TrkA was also observed in differentiated pheochromocytoma PC12 cells. These results suggest that c-Abl may be recruited to the NGF receptor complex and be involved in regulating specific phosphorylation events that occur during neuronal differentiation.
Collapse
Affiliation(s)
- H Yano
- Molecular Neurobiology Program, Skirball Institute of Biomolecular Medicine, New York University School of Medicine, New York, NY 10016, USA
| | | | | | | | | |
Collapse
|
43
|
Vaillant A, Mazzoni I, Tudan C, Boudreau M, Kaplan D, Miller F. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase-Akt pathway to synergistically regulate neuronal survival. J Cell Biol 1999; 146:955-66. [PMID: 10477751 PMCID: PMC2169479 DOI: 10.1083/jcb.146.5.955] [Citation(s) in RCA: 205] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
In this report, we have examined the mechanisms whereby neurotrophins and neural activity coordinately regulate neuronal survival, focussing on sympathetic neurons, which require target-derived NGF and neural activity for survival during development. When sympathetic neurons were maintained in suboptimal concentrations of NGF, coincident depolarization with concentrations of KCl that on their own had no survival effect, synergistically enhanced survival. Biochemical analysis revealed that depolarization was sufficient to activate a Ras-phosphatidylinositol 3-kinase-Akt pathway (Ras-PI3-kinase-Akt), and function-blocking experiments using recombinant adenovirus indicated that this pathway was essential for approximately 50% of depolarization-mediated neuronal survival. At concentrations of NGF and KCl that promoted synergistic survival, these two stimuli converged to promote increased PI3-kinase-dependent Akt phosphorylation. This convergent PI3-kinase-Akt pathway was essential for synergistic survival. In contrast, inhibition of calcium/calmodulin-dependent protein kinase II revealed that, while this molecule was essential for depolarization-induced survival, it had no role in KCl- induced Akt phosphorylation, nor was it important for synergistic survival by NGF and KCl. Thus, NGF and depolarization together mediate survival of sympathetic neurons via intracellular convergence on a Ras-PI3-kinase-Akt pathway. This convergent regulation of Akt may provide a general mechanism for coordinating the effects of growth factors and neural activity on neuronal survival throughout the nervous system.
Collapse
Affiliation(s)
- A.R. Vaillant
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - I. Mazzoni
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
- Brain Tumor Research Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - C. Tudan
- Brain Tumor Research Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - M. Boudreau
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
- Brain Tumor Research Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - D.R. Kaplan
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
- Brain Tumor Research Center, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| | - F.D. Miller
- Center for Neuronal Survival, Montreal Neurological Institute, McGill University, Montreal, Quebec, Canada H3A 2B4
| |
Collapse
|
44
|
Aloyz R, Fawcett JP, Kaplan DR, Murphy RA, Miller FD. Activity-Dependent Activation of TrkB Neurotrophin Receptors in the Adult CNS. Learn Mem 1999. [DOI: 10.1101/lm.6.3.216] [Citation(s) in RCA: 23] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
In this paper we have investigated the hypothesis that neural activity causes rapid activation of TrkB neurotrophin receptors in the adult mammalian CNS. These studies demonstrate that kainic acid-induced seizures led to a rapid and transient activation of TrkB receptors in the cortex. Subcellular fractionation demonstrated that these activated Trk receptors were preferentially enriched in the synaptosomal membrane fraction that also contained postsynaptic glutamate receptors. The fast activation of synaptic TrkB receptors could be duplicated in isolated cortical synaptosomes with KCl, presumably as a consequence of depolarization-induced BDNF release. Importantly, TrkB activation was also observed following pharmacological activation of brain-stem noradrenergic neurons, which synthesize and anterogradely transport BDNF; treatment with yohimbine led to activation of cortical TrkB receptors within 30 min. Pharmacological blockade of the postsynaptic α1-adrenergic receptors with prazosin only partially inhibited this effect, suggesting that the TrkB activation was partially due to a direct effect on postsynaptic cortical neurons. Together, these data support the hypothesis that activity causes release of BDNF from presynaptic terminals, resulting in a rapid activation of postsynaptic TrkB receptors. This activity-dependent TrkB activation could play a major role in morphological growth and remodelling in both the developing and mature nervous systems.
Collapse
|