1
|
Kundi M, Nersesyan A, Schmid G, Hutter HP, Eibensteiner F, Mišík M, Knasmüller S. Mobile phone specific radiation disturbs cytokinesis and causes cell death but not acute chromosomal damage in buccal cells: Results of a controlled human intervention study. ENVIRONMENTAL RESEARCH 2024; 251:118634. [PMID: 38452915 DOI: 10.1016/j.envres.2024.118634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/15/2024] [Accepted: 03/04/2024] [Indexed: 03/09/2024]
Abstract
Several human studies indicate that mobile phone specific electromagnetic fields may cause cancer in humans but the underlying molecular mechanisms are currently not known. Studies concerning chromosomal damage (which is causally related to cancer induction) are controversial and those addressing this issue in mobile phone users are based on the use of questionnaires to assess the exposure. We realized the first human intervention trial in which chromosomal damage and acute toxic effects were studied under controlled conditions. The participants were exposed via headsets at one randomly assigned side of the head to low and high doses of a UMTS signal (n = 20, to 0.1 W/kg and n = 21 to 1.6 W/kg Specific Absorption Rate) for 2 h on 5 consecutive days. Before and three weeks after the exposure, buccal cells were collected from both cheeks and micronuclei (MN, which are formed as a consequence of structural and numerical chromosomal aberrations) and other nuclear anomalies reflecting mitotic disturbance and acute cytotoxic effects were scored. We found no evidence for induction of MN and of nuclear buds which are caused by gene amplifications, but a significant increase of binucleated cells which are formed as a consequence of disturbed cell divisions, and of karyolitic cells, which are indicative for cell death. No such effects were seen in cells from the less exposed side. Our findings indicate that mobile phone specific high frequency electromagnetic fields do not cause acute chromosomal damage in oral mucosa cells under the present experimental conditions. However, we found clear evidence for disturbance of the cell cycle and cytotoxicity. These effects may play a causal role in the induction of adverse long term health effects in humans.
Collapse
Affiliation(s)
- Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Gernot Schmid
- EMC & Optics, Seibersdorf Labor GmbH, 2444 Seibersdorf, Austria
| | - Hans-Peter Hutter
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Florian Eibensteiner
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Miroslav Mišík
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria
| | - Siegfried Knasmüller
- Center for Cancer Research, Medical University of Vienna, Borschkegasse 8a, A 1090 Vienna, Austria.
| |
Collapse
|
2
|
Campos Gudiño R, Rutherford KA, McManus KJ. Evaluating Chromosome Instability and Genotoxicity Through Single Cell Quantitative Imaging Microscopy. Methods Mol Biol 2024; 2825:309-331. [PMID: 38913318 DOI: 10.1007/978-1-0716-3946-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Across eukaryotes, genome stability is essential for normal cell function, physiology, and species survival. Aberrant expression of key genes or exposure to genotoxic agents can have detrimental effects on genome stability and contribute to the development of various diseases, including cancer. Chromosome instability (CIN), or ongoing changes in chromosome complements, is a frequent form of genome instability observed in cancer and is a driver of genetic and cell-to-cell heterogeneity that can be rapidly detected and quantitatively assessed using surrogate markers of CIN. For example, single cell quantitative imaging microscopy (QuantIM) can be used to simultaneously identify changes in nuclear areas and micronucleus formation. While changes in nuclear areas are often associated with large-scale changes in chromosome complements (i.e., ploidy), micronuclei are small extra-nuclear bodies found outside the primary nucleus that have previously been employed as a measure of genotoxicity of test compounds. Here, we present a facile QuantIM approach that allows for the rapid assessment and quantification of CIN associated phenotypes and genotoxicity. First, we provide protocols to optimize and execute CIN and genotoxicity assays. Secondly, we present the critical imaging settings, optimization steps, downstream statistical analyses, and data visualization strategies employed to obtain high quality and robust data. These approaches can be easily applied to assess the prevalence of CIN associated phenotypes and genotoxic stress for a myriad of experimental and clinical contexts ranging from direct tests to large-scale screens of various genetic contexts (i.e., aberrant gene expression) or chemical compounds. In summary, this QuantIM approach facilitates the identification of novel CIN genes and/or genotoxic agents that will provide greater insight into the aberrant genes and pathways underlying CIN and genotoxicity.
Collapse
Affiliation(s)
- Rubi Campos Gudiño
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kailee A Rutherford
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada
- Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada
| | - Kirk J McManus
- Paul Albrechtsen Research Institute, CancerCare Manitoba, Winnipeg, MB, Canada.
- Department of Biochemistry & Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, MB, Canada.
| |
Collapse
|
3
|
Sınacı C, Çelik A, Yetkin D, Çevik S, Güler G. Sulfoxaflor insecticide exhibits cytotoxic or genotoxic and apoptotic potential via oxidative stress-associated DNA damage in human blood lymphocytes cell cultures. Drug Chem Toxicol 2023; 46:972-983. [PMID: 36036091 DOI: 10.1080/01480545.2022.2114006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/27/2022] [Accepted: 06/08/2022] [Indexed: 11/03/2022]
Abstract
The need for foodstuff that emerged with the rapidly increasing world population made fertilizers and pesticides inevitable to obtain maximum efficiency from existing agricultural areas. Sulfoxaflor is currently the only member of the new sulfoximine insecticide subclass of nicotinic acetylcholine receptor agonists. In the study, it was aimed to determine the in vitro genetic, oxidative damage potential, genotoxic and apoptotic effects of three different concentrations (10 µg/mL, 20 µg/mL and 40 µg/mL) of sulfoxaflor insecticide in the cultures of blood lymphocytes. In this study, the single-cell gel electrophoresis (comet), Cytokinesis Block Micronuclues Test (MN test), flow cytometry and measurement of Catalase (CAT) enzyme activity were used to determine genotoxic, apoptotic effects and oxidative damage potential, respectively. It found that there is a decrease in CPBI values and Live cell numbers. It was observed an increase in late apoptotic and necrotic cell numbers, Micronucleus frequency, and Comet analysis parameters (GDI and DCP). There is a significant difference between negative control and all concentration of insecticide for Cytokinesis Block Proliferation Index (CBPI) values and late apoptotic, necrotic and viable cell counts. An increase in CAT enzyme levels was observed at 10 and 20 µg/mL concentrations compared to control., It is found that CAT enzyme activity was inhibited at concentrations of 40 µg/mL. This study is crucial as it is the first study to investigate the impact of Sulfoxaflor insecticide on peripheral blood lymphocyte cells. The genotoxic, oxidative damage, and apoptotic effects of Sulfoxafluor insecticide on the results obtained and its adverse effects on other organisms raise concerns about health and safety.
Collapse
Affiliation(s)
- Cebrail Sınacı
- Department of Biology, Graduate School of Natural and Applied Science, Mersin University, Mersin, Turkey
| | - Ayla Çelik
- Department of Biology, Faculty of Science and Letters, Mersin University, Mersin, Turkey
| | - Derya Yetkin
- Advanced Technology, Education, Research and Application Center, MersinUniversity, Mersin, Turkey
| | - Sertan Çevik
- Department of Molecular Biology and Genetic, Faculty of Science and Letters, Harran University, Şanlıurfa, Turkey
| | - Gizem Güler
- Department of Biology, Graduate School of Natural and Applied Science, Mersin University, Mersin, Turkey
| |
Collapse
|
4
|
Okumura M, Du J, Kageyama SI, Yamashita R, Hakozaki Y, Motegi A, Hojo H, Nakamura M, Hirano Y, Okuma Y, Okuma HS, Tsuchihara K, Akimoto T. Comprehensive screening for drugs that modify radiation-induced immune responses. Br J Cancer 2022; 126:1815-1823. [PMID: 35184156 PMCID: PMC9174493 DOI: 10.1038/s41416-021-01688-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Combination therapy based on radiotherapy and immune checkpoint inhibitors (ICIs) was recently reported as effective for various cancers. The radiation-induced immune response (RIIR) is an essential feature in ICI-combined radiotherapy; however, the effects of drugs used concomitantly with RIIR remain unclear. We screened for drugs that can modify RIIR to understand the mutual relationship between radiotherapy and combined drugs in ICI-combined radiotherapy. METHODS We established a high-throughput system with reporter gene assays for evaluating RIIR, focusing on factors acting downstream of the STING-IRF pathway, which can stimulate cancer cells, T cells, and dendritic cells. We further quantified the effects of 2595 drugs, including those approved by the Food and Drug Administration, on RIIR in vitro. RESULTS The reporter assay results correlated well with the expression of immune response proteins such as programmed death-ligand 1. This high-throughput system enabled the identification of drugs including cytotoxic agents, molecular-targeted agents, and other agents that activate or suppress RIIR. CONCLUSIONS Our study provides an encyclopedic catalogue of clinically approved drugs based on their effect on RIIR. In ICIs combined radiotherapy, activation of STING-IFN may improve the therapeutic effect and our result could form a biological basis for further clinical trials combining radiotherapy with ICIs.
Collapse
Affiliation(s)
- Masayuki Okumura
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
- Department of Radiology, Nagoya University Graduate School of Medicine, Nagoya, Aichi, Japan
| | - Junyan Du
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Shun-Ichiro Kageyama
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan.
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan.
| | - Riu Yamashita
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Yumi Hakozaki
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Atsushi Motegi
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Hidehiro Hojo
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Masaki Nakamura
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Yasuhiro Hirano
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
| | - Yusuke Okuma
- Department of Thoracic Oncology, National Cancer Center Hospital, Tokyo, Japan
| | - Hitomi S Okuma
- Department of Breast and Medical Oncology, Clinical Research Support Office, National Cancer Center Hospital, Tokyo, Japan
| | - Katsuya Tsuchihara
- Division of Translational Informatics, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| | - Tetsuo Akimoto
- Department of Radiation Oncology, National Cancer Center Hospital East, Chiba, Japan
- Division of Radiation Oncology and Particle Therapy, Exploratory Oncology Research and Clinical Trial Center, National Cancer Center, Chiba, Japan
| |
Collapse
|
5
|
Agustinus AS, Bakhoum S. Biochemical, genomic, and epigenomic profiling of isolated cancer cell lines’ micronuclei. Methods Cell Biol 2022; 172:51-66. [DOI: 10.1016/bs.mcb.2022.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
6
|
Lepage CC, Palmer MCL, Farrell AC, Neudorf NM, Lichtensztejn Z, Nachtigal MW, McManus KJ. Reduced SKP1 and CUL1 expression underlies increases in Cyclin E1 and chromosome instability in cellular precursors of high-grade serous ovarian cancer. Br J Cancer 2021; 124:1699-1710. [PMID: 33731859 PMCID: PMC8110794 DOI: 10.1038/s41416-021-01317-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 12/23/2020] [Accepted: 02/12/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND High-grade serous ovarian cancer (HGSOC) is the most common and lethal ovarian cancer histotype. Chromosome instability (CIN, an increased rate of chromosome gains and losses) is believed to play a fundamental role in the development and evolution of HGSOC. Importantly, overexpression of Cyclin E1 protein induces CIN, and genomic amplification of CCNE1 contributes to HGSOC pathogenesis in ~20% of patients. Cyclin E1 levels are normally regulated in a cell cycle-dependent manner by the SCF (SKP1-CUL1-FBOX) complex, an E3 ubiquitin ligase that includes the proteins SKP1 and CUL1. Conceptually, diminished SKP1 or CUL1 expression is predicted to underlie increases in Cyclin E1 levels and induce CIN. METHODS This study employs fallopian tube secretory epithelial cell models to evaluate the impact diminished SKP1 or CUL1 expression has on Cyclin E1 and CIN in both short-term (siRNA) and long-term (CRISPR/Cas9) studies. RESULTS Single-cell quantitative imaging microscopy approaches revealed changes in CIN-associated phenotypes and chromosome numbers and increased Cyclin E1 in response to diminished SKP1 or CUL1 expression. CONCLUSIONS These data identify SKP1 and CUL1 as novel CIN genes in HGSOC precursor cells that may drive early aetiological events contributing to HGSOC development.
Collapse
Affiliation(s)
- Chloe Camille Lepage
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Michaela Cora Lynn Palmer
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Ally Catherina Farrell
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Nicole Marie Neudorf
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Zelda Lichtensztejn
- grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| | - Mark William Nachtigal
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada ,grid.21613.370000 0004 1936 9609Department of Obstetrics, Gynecology & Reproductive Sciences, University of Manitoba, Winnipeg, Manitoba Canada
| | - Kirk James McManus
- grid.21613.370000 0004 1936 9609Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba Canada ,grid.419404.c0000 0001 0701 0170Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba Canada
| |
Collapse
|
7
|
Bungsy M, Palmer MCL, Jeusset LM, Neudorf NM, Lichtensztejn Z, Nachtigal MW, McManus KJ. Reduced RBX1 expression induces chromosome instability and promotes cellular transformation in high-grade serous ovarian cancer precursor cells. Cancer Lett 2020; 500:194-207. [PMID: 33290867 DOI: 10.1016/j.canlet.2020.11.051] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/26/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022]
Abstract
Despite high-grade serous ovarian cancer (HGSOC) being the most common and lethal gynecological cancer in women, the early etiological events driving disease development remain largely unknown. Emerging evidence now suggests that chromosome instability (CIN; ongoing changes in chromosome numbers) may play a central role in the development and progression of HGSOC. Importantly, genomic amplification of the Cyclin E1 gene (CCNE1) contributes to HGSOC pathogenesis in ~20% of patients, while Cyclin E1 overexpression induces CIN in model systems. Cyclin E1 levels are normally regulated by the SCF (SKP1-CUL1-FBOX) complex, an E3 ubiquitin ligase that includes RBX1 as a core component. Interestingly, RBX1 is heterozygously lost in ~80% of HGSOC cases and reduced expression corresponds with worse outcomes, suggesting it may be a pathogenic event. Using both short (siRNA) and long (CRISPR/Cas9) term approaches, we show that reduced RBX1 expression corresponds with significant increases in CIN phenotypes in fallopian tube secretory epithelial cells, a cellular precursor of HGSOC. Moreover, reduced RBX1 expression corresponds with increased Cyclin E1 levels and anchorage-independent growth. Collectively, these data identify RBX1 as a novel CIN gene with pathogenic implications for HGSOC.
Collapse
Affiliation(s)
- Manisha Bungsy
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Michaela C L Palmer
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Lucile M Jeusset
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Nicole M Neudorf
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Zelda Lichtensztejn
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Mark W Nachtigal
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Obstetrics, Gynecology & Reproductive Sciences, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Kirk J McManus
- Research Institute in Oncology & Hematology, Winnipeg, Manitoba, R3E 0V9, Canada; Department of Biochemistry and Medical Genetics, Rady Faculty of Health Sciences, University of Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada.
| |
Collapse
|
8
|
Wultsch G, Setayesh T, Kundi M, Kment M, Nersesyan A, Fenech M, Knasmüller S. Induction of DNA damage as a consequence of occupational exposure to crystalline silica: A review and meta-analysis. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2020; 787:108349. [PMID: 34083037 DOI: 10.1016/j.mrrev.2020.108349] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Revised: 11/12/2020] [Accepted: 11/16/2020] [Indexed: 01/23/2023]
Abstract
About 40 million workers are occupationally exposed to crystalline silica (CS) which was classified as a human carcinogen by the IARC. It is assumed that damage of the genetic material via inflammation and reactive oxygen species by CS lead to formation of malignant cells. We conducted a systematic literature search to find out if inhalation of CS containing dusts at workplaces causes damage of the genetic material. Thirteen studies were found eligible for this review, in most of them (n = 9) micronuclei (MN) which reflect structural/numerical chromosomal aberrations were monitored in lymphocytes and/or in exfoliated buccal cells. In 5 investigations DNA damage was measured in blood cells in single cell gel electrophoresis (comet) experiments. Frequently studied groups were potters, stone cutters, miners and construction workers. Results of meta-analyses show that exposure to CS causes formation of MN and DNA breaks, the overall ratio values were in exposed workers 2.06- and 1.96-fold higher than in controls, respectively. Two studies reported increased levels of oxidized guanine, and higher levels of DNA adducts with malondialdehyde indicating that exposure to CS leads to oxidative damage. The exposure of the workers to CS was quantified only in two studies, information concerning the size and chemical structures of the particles is lacking in most investigations. Therefore, it is not possible to use the results to derive occupational exposure limits of workers to CS which vary strongly in different countries. Nevertheless, the evaluation of the current state of knowledge shows that biomonitoring studies in which damage of the genetic material is measured in CS exposed workers can contribute to assess adverse health effects as consequence of DNA instability in specific occupations.
Collapse
Affiliation(s)
- Georg Wultsch
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Tahereh Setayesh
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Michael Kment
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| | - Michael Fenech
- School of Pharmacy and Medical Sciences, Division of Health Sciences, University of South Australia, Adelaide, Australia
| | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Medicine I, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
9
|
Ruiz MC, Kljun J, Turel I, Di Virgilio AL, León IE. Comparative antitumor studies of organoruthenium complexes with 8-hydroxyquinolines on 2D and 3D cell models of bone, lung and breast cancer. Metallomics 2020; 11:666-675. [PMID: 30839008 DOI: 10.1039/c8mt00369f] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
The purpose of this work was to screen the antitumor actions of two metal organoruthenium-8-hydroxyquinolinato (Ru-hq) complexes to find a potential novel agent for bone, lung and breast chemotherapies. We showed that ruthenium compounds (1 and 2) impaired the cell viability of human bone (MG-63), lung (A549) and breast (MCF7) cancer cells with greater selectivity and specificity than cisplatin. Besides, complexes 1 and 2 decreased proliferation, migration and invasion on cell monolayers at lower concentrations (2.5-10 μM). In addition, both compounds induced genotoxicity revealed by the micronucleus test, which led to G2/M cell cycle arrest and induced the tumor cells to undergo apoptosis. On the other hand, in multicellular 3D models (multicellular spheroids; MCS), 1 and 2 overcame CDDP presenting lower IC50 values only in MCS of lung origin. Moreover, 1 outperformed 2 in MCS of bone and breast origin. Finally, our findings revealed that both compounds inhibited the cell invasion of multicellular spheroids, showing that complex 1 exhibited the most important antimetastatic action. Taken together, these results indicate that compound 1 is an interesting candidate to be tested on in vivo models as a novel strategy for anticancer therapy.
Collapse
Affiliation(s)
- Maria C Ruiz
- Inorganic Chemistry Center (CEQUINOR, CONICET), Exact School Sciences, National University of La Plata, Bv 120 1465, 1900 La Plata, Argentina.
| | | | | | | | | |
Collapse
|
10
|
Vishwakarma R, McManus KJ. Chromosome Instability; Implications in Cancer Development, Progression, and Clinical Outcomes. Cancers (Basel) 2020; 12:cancers12040824. [PMID: 32235397 PMCID: PMC7226245 DOI: 10.3390/cancers12040824] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 03/27/2020] [Accepted: 03/28/2020] [Indexed: 12/15/2022] Open
Abstract
Chromosome instability (CIN) refers to an ongoing rate of chromosomal changes and is a driver of genetic, cell-to-cell heterogeneity. It is an aberrant phenotype that is intimately associated with cancer development and progression. The presence, extent, and level of CIN has tremendous implications for the clinical management and outcomes of those living with cancer. Despite its relevance in cancer, there is still extensive misuse of the term CIN, and this has adversely impacted our ability to identify and characterize the molecular determinants of CIN. Though several decades of genetic research have provided insight into CIN, the molecular determinants remain largely unknown, which severely limits its clinical potential. In this review, we provide a definition of CIN, describe the two main types, and discuss how it differs from aneuploidy. We subsequently detail its impact on cancer development and progression, and describe how it influences metastatic potential with reference to cancer prognosis and outcomes. Finally, we end with a discussion of how CIN induces genetic heterogeneity to influence the use and efficacy of several precision medicine strategies, including patient and risk stratification, as well as its impact on the acquisition of drug resistance and disease recurrence.
Collapse
Affiliation(s)
- Raghvendra Vishwakarma
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
| | - Kirk J. McManus
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, MB R3E 0V9, Canada;
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, MB R3E 0J9, Canada
- Correspondence: ; Tel.: +1-204-787-2833
| |
Collapse
|
11
|
The Potential Risk Assessment of Phenoxyethanol with a Versatile Model System. Sci Rep 2020; 10:1209. [PMID: 31988350 PMCID: PMC6985251 DOI: 10.1038/s41598-020-58170-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2019] [Accepted: 01/06/2020] [Indexed: 01/30/2023] Open
Abstract
In this study, the toxic effects of phenoxyethanol (Phy-Et), which is widely used in cosmetic industry, has been investigated with Allium test by means of physiological, cytogenetic, anatomical and biochemical parameters. To determine the changes in physiological reactions weight gain, relative injury rate, germination percentage and root length were investigated. Malondialdehyde, superoxide dismutase, glutathion and catalase levels were analyzed as biochemical parameters for determining the presence of oxidative stress. Mitotic index, micronucleus and chromosomal abnormality frequencies were studied as cytogenetic evaluation and the anatomical changes in root tip cells were investigated by cross sections. Changes in surface polarity and wettability were investigated by taking contact angle measurements of pressed root preparations. The mechanism of toxicity has been tried to be explained by these contact angles and this is the first study using contact angle measurements in toxicity tests. Consequently, exposure to Phy-Et resulted in a decrease in all measured physiological parameters and in mitotic index. In contrast, significant increases in the micronucleus and chromosomal abnormality frequencies were observed and the most significant toxic effect was found in 10 mM Phy-Et treated group. Phy-Et application induced oxidative damage and caused a significant increase in malondialdehyde level and a decrease in glutathione level compared to control group. Also a response occured against oxidative damage in superoxide dismutase and catalase activity and the activities increased in 2.5 mM and 5 mM Phy-Et treated groups and decreased in 10 mM Phy-Et treated groups. Furthermore, Phy-Et treatment resulted in some anatomical damages and changes such as necrosis, cell deformation and thickening of the cortex cell wall in root tip meristem cells of A. cepa. In the contact angle measurements taken against water, it was found that the wettability and hydrophilicity of the root preparations treated with Phy-Et were reduced, and this was the explanation of the growth abnormalities associated with water uptake. As a result, it was found that Phy-Et application caused toxic effects on many viability parameters and A. cepa test material was a reliable biomarker in determining these effects.
Collapse
|
12
|
Leylek TR, Jeusset LM, Lichtensztejn Z, McManus KJ. Reduced Expression of Genes Regulating Cohesion Induces Chromosome Instability that May Promote Cancer and Impact Patient Outcomes. Sci Rep 2020; 10:592. [PMID: 31953484 PMCID: PMC6969069 DOI: 10.1038/s41598-020-57530-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 01/03/2020] [Indexed: 12/15/2022] Open
Abstract
Chromosome instability (CIN), or continual changes in chromosome complements, is an enabling feature of cancer; however, the molecular determinants of CIN remain largely unknown. Emerging data now suggest that aberrant sister chromatid cohesion may induce CIN and contribute to cancer. To explore this possibility, we employed clinical and fundamental approaches to systematically assess the impact reduced cohesion gene expression has on CIN and cancer. Ten genes encoding critical functions in cohesion were evaluated and remarkably, each exhibits copy number losses in 12 common cancer types, and reduced expression is associated with worse patient survival. To gain mechanistic insight, we combined siRNA-based silencing with single cell quantitative imaging microscopy to comprehensively assess the impact reduced expression has on CIN in two karyotypically stable cell lines. We show that reduced expression induces CIN phenotypes, namely increases in micronucleus formation and nuclear areas. Subsequent direct tests involving a subset of prioritized genes also revealed significant changes in chromosome numbers with corresponding increases in moderate and severe cohesion defects within mitotic chromosome spreads. Collectively, our clinical and fundamental findings implicate reduced sister chromatid cohesion, resulting from gene copy number losses, as a key pathogenic event in the development and progression of many cancer types.
Collapse
Affiliation(s)
- Tarik R Leylek
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
| | - Lucile M Jeusset
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Zelda Lichtensztejn
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada
| | - Kirk J McManus
- Department of Biochemistry & Medical Genetics, University of Manitoba, Winnipeg, Manitoba, R3E 0J9, Canada.
- Research Institute in Oncology & Hematology, CancerCare Manitoba, Winnipeg, Manitoba, R3E 0V9, Canada.
| |
Collapse
|
13
|
Mišík M, Filipic M, Nersesyan A, Kundi M, Isidori M, Knasmueller S. Environmental risk assessment of widely used anticancer drugs (5-fluorouracil, cisplatin, etoposide, imatinib mesylate). WATER RESEARCH 2019; 164:114953. [PMID: 31404901 DOI: 10.1016/j.watres.2019.114953] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 07/31/2019] [Accepted: 08/03/2019] [Indexed: 05/21/2023]
Abstract
Anticancer drugs are among the most toxic chemicals, which are commercially produced; therefore, their release in aquatic ecosystems raised concerns in regard to potential adverse effects. This article describes the results of risk assessments concerning their environmental safety, which are based on data generated in the frame of a coordinated EU project ("Cytothreat"). Eight research institutions participated in the project and four widely used anticancer drugs with different mechanisms of therapeutic action (5-fluorouracil 5FU, cisplatin CDDP, imatinib mesylate IM and etoposide ET) were tested in a variety of indicator organisms (cyanobacteria, algae, higher plants, rotifers, crustacea, fish and also in human and fish derived cell lines) in acute/subacute/chronic toxicity assays. Furthermore, genotoxic effects in micronucleus assays, single cell gel electrophoresis experiments and γH2AX tests were studied in plants, crustacea, fish and in various cell lines. We used the results to calculate the predicted no effect concentrations (PNEC) and risk quotients (RQ) by comparing PNEC with predicted environmental concentrations (PEC values) and measured concentrations (MEC) in wastewaters. The most sensitive species in experiments concerning acute toxic and long term effects were in general crustacea (daphnids) after chronic treatment the most pronounced effects were detected with IM followed by CDDP and 5FU. Comparisons between PNEC and PEC values indicate that it is unlikely that the release of these drugs in the aquatic environments leads to adverse effects (RQ values < 1). However, when the assessments were performed with MEC found in highly contaminated municipal wastewaters and hospital effluents, RQ values were obtained which are indicative for moderate adverse effects of IM. Calculations with data from genotoxicity experiments and PEC values are indicative for increased RQ values for all compounds except ET. The most sensitive species were fish (Danio rerio) which were highly responsive towards 5FU and daphnids which were sensitive towards CDDP and IM. When environmental data (from waste waters) were used for the calculations, high RQ values (>100) were obtained for CDDP and IM. These overall conclusions were not substantially altered when the effects of other frequently used cytostatic drugs and combined effects of mixtures of anticancer drugs were taken into consideration. The results of these assessments underline the importance of efficient removal of these chemicals by improved sewage treatment strategies and the need for further investigations of adverse the long term effects of cytostatics in aquatic biota as a consequence of damage of the genetic material in highly sensitive species.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna, 1090, Austria
| | - Metka Filipic
- National Institute of Biology, Department for Genetic Toxicology and Cancer Biology, Večna pot 111, SI-1000, Ljubljana, Slovenia
| | - Armen Nersesyan
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna, 1090, Austria
| | - Michael Kundi
- Center for Public Health, Department of Environmental Health, Medical University of Vienna, Vienna, Austria
| | - Marina Isidori
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università della Campania "Luigi Vanvitelli", Via Vivaldi 43, I-81100, Caserta, Italy
| | - Siegfried Knasmueller
- Institute of Cancer Research, Department of Internal Medicine I, Borschkegasse 8a, Vienna, 1090, Austria.
| |
Collapse
|
14
|
Altmann S, Choroba K, Skonieczna M, Zygadło D, Raczyńska-Szajgin M, Maroń A, Małecki JG, Szłapa-Kula A, Tomczyk M, Ratuszna A, Machura B, Szurko A. Platinum(II) coordination compounds with 4'-pyridyl functionalized 2,2':6',2″-terpyridines as an alternative to enhanced chemotherapy efficacy and reduced side-effects. J Inorg Biochem 2019; 201:110809. [PMID: 31494527 DOI: 10.1016/j.jinorgbio.2019.110809] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 08/22/2019] [Accepted: 08/24/2019] [Indexed: 10/26/2022]
Abstract
Two platinum(II) coordination compounds, [PtCl(4'-R1-terpy)](SO3CF3) (1) and [PtCl(4'-R2-terpy)](SO3CF3) (2), with 4'-(2-pyridyl)-2,2':6',2″-terpyridine (4'-R1-terpy) or 4'-(3-pyridyl)-2,2':6',2″-terpyridine (4'-R2-terpy) were synthesized and the impact of the pendant pyridyl ring on the structure and cytotoxic activity of Pt(II)-terpyridine complexes was explored. The single-crystal X-ray diffraction analysis confirmed square planar coordination of the cations [PtCl(4'-Rn-terpy)]+. The mode of binding of 1 and 2 to calf thymus DNA was examined by UV-Vis absorption titration, ethidium displacement assay and reaction with 9-ethylguanine, and the mixed covalent-intercalative mode was demonstrated. The cytotoxicity of the Pt(II) complexes against six cancer cell lines and three normal ones was determined using MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium) assay and compared to cisplatin. The IC50 values for the compound 2 towards the cancer cell lines are in the low micromolar range. Most remarkably, 2 was over 4 times more effective than 1 and cisplatin against non-small lung adenocarcinoma (A549), and its selectivity index was ~60-80 times higher than that for 1 and cisplatin. The mechanisms underlying the loss of viability under treatment of 2 was further investigated including F-actin staining, mitotic index analysis, cytometric cell cycle analysis, Fluorescein isothiocyanate (FITC) -conjugated Annexin V antibody and propidium iodide (PI) staining, measurements of reactive oxygen species (ROS) in cells, analysis of changes in the mitochondrial mass and potential and quantitative real time polymerase chain reaction (qRT-PCR) genes analysis. The compound 2 was found to have a pro-oxidative effect by strong stimulation of cells for the production of reactive oxygen species and cytostatic effect through cell cycle arrest.
Collapse
Affiliation(s)
- Sandra Altmann
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Katarzyna Choroba
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland.
| | - Magdalena Skonieczna
- Systems Engineering Group, Silesian University of Technology, Institute of Automatic Control, Akademicka 16, 44-100 Gliwice, Poland; Biotechnology Centre, Silesian University of Technology, Krzywoustego 8, 44-100 Gliwice, Poland
| | - Dorota Zygadło
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Magdalena Raczyńska-Szajgin
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; Department of Biophysics and Morphogenesis of Plants, University of Silesia, Jagiellońska 28, 40-032 Katowice, Poland
| | - Anna Maroń
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Jan Grzegorz Małecki
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agata Szłapa-Kula
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Mateusz Tomczyk
- Faculty of Chemistry, Silesian University of Technology, Strzody 9, 44-100 Gliwice, Poland
| | - Alicja Ratuszna
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland
| | - Barbara Machura
- Department of Crystallography, Institute of Chemistry, University of Silesia, Szkolna 9, 40-006 Katowice, Poland
| | - Agnieszka Szurko
- Silesia Center for Education and Interdisciplinary Research, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland; August Chełkowski Institute of Physics, University of Silesia, 75. Pułku Piechoty 1A, 41-500 Chorzów, Poland.
| |
Collapse
|
15
|
Diminished Condensin Gene Expression Drives Chromosome Instability That May Contribute to Colorectal Cancer Pathogenesis. Cancers (Basel) 2019; 11:cancers11081066. [PMID: 31357676 PMCID: PMC6721357 DOI: 10.3390/cancers11081066] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/17/2019] [Accepted: 07/25/2019] [Indexed: 12/28/2022] Open
Abstract
Chromosome instability (CIN), or constantly evolving chromosome complements, is a form of genome instability implicated in the development and progression of many cancer types, however, the molecular determinants of CIN remain poorly understood. Condensin is a protein complex involved in chromosome compaction, and recent studies in model organisms show that aberrant compaction adversely impacts mitotic fidelity. To systematically assess the clinical and fundamental impacts that reduced condensin gene expression have in cancer, we first assessed gene copy number alterations of all eight condensin genes. Using patient derived datasets, we show that shallow/deep deletions occur frequently in 12 common cancer types. Furthermore, we show that reduced expression of each gene is associated with worse overall survival in colorectal cancer patients. To determine the overall impact that reduced condensin gene expression has on CIN, a comprehensive siRNA-based screen was performed in two karyotypically stable cell lines. Following gene silencing, quantitative imaging microscopy identified increases in CIN-associated phenotypes, including changes in nuclear areas, micronucleus formation, and chromosome numbers. Although silencing corresponded with increases in CIN phenotypes, the most pronounced phenotypes were observed following SMC2 and SMC4 silencing. Collectively, our clinical and fundamental findings suggest reduced condensin expression and function may be a significant, yet, underappreciated driver of colorectal cancer.
Collapse
|
16
|
Detecting Chromosome Instability in Cancer: Approaches to Resolve Cell-to-Cell Heterogeneity. Cancers (Basel) 2019; 11:cancers11020226. [PMID: 30781398 PMCID: PMC6406658 DOI: 10.3390/cancers11020226] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 02/11/2019] [Accepted: 02/13/2019] [Indexed: 02/07/2023] Open
Abstract
Chromosome instability (CIN) is defined as an increased rate of chromosome gains and losses that manifests as cell-to-cell karyotypic heterogeneity and drives cancer initiation and evolution. Current research efforts are aimed at identifying the etiological origins of CIN, establishing its roles in cancer pathogenesis, understanding its implications for patient prognosis, and developing novel therapeutics that are capable of exploiting CIN. Thus, the ability to accurately identify and evaluate CIN is critical within both research and clinical settings. Here, we provide an overview of quantitative single cell approaches that evaluate and resolve cell-to-cell heterogeneity and CIN, and discuss considerations when selecting the most appropriate approach to suit both research and clinical contexts.
Collapse
|
17
|
Carvalho da Cruz Brambilla CM, Hilario Garcia AL, Rabaioli da Silva F, Taffarel SR, Grivicich I, Picada JN, Scotti A, Dalberto D, Mišík M, Knasmüller S, da Silva J. Amido Black 10B a widely used azo dye causes DNA damage in pro- and eukaryotic indicator cells. CHEMOSPHERE 2019; 217:430-436. [PMID: 30439655 DOI: 10.1016/j.chemosphere.2018.11.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2018] [Revised: 10/27/2018] [Accepted: 11/02/2018] [Indexed: 06/09/2023]
Abstract
Acid Black 10B (AB10B) is widely used for the production of textiles, leather and prints. It is a representative of azo dyes and it is well documented that some of these compounds are mutagenic per se, and that cleavage products (in particular aromatic amines) may cause damage of the genetic material and cancer. Since no toxicological data on AB10B have been published, we evaluated its mutagenic activity in Salmonella/microsome assays and studied its acute toxic and genotoxic properties in a human derived liver cell line (HepG2) which retained the activities of drug metabolizing enzymes. The compound did not cause cytotoxicity (MTT assay), but clear genotoxic effects were detected in pro- and eukaryotic indicator cells. Dose dependent induction of his+ revertants was seen in strain TA98 which detects frameshift mutations without metabolic activation; a more pronounced effect was seen in its derivative YG1024 which overexpresses N-acetyltransferase. Induction of single/double strand breaks by Comet assay was detected with concentrations > 0.125 mg/mL in liver derived cells; as well as increased rates for micronucleus (reflecting structural and numeric chromosomal aberrations) and nuclear buds which are a consequence of gene amplifications were seen with a higher dose (2.0 mg/mL) (p < 0.05; Tukey's test). The mutational pattern which was observed in the bacterial tests indicates that the cleavage product p-nitroaniline may cause the genotoxic effects of the dye. Our findings indicate that exposure of humans and the release of the compound into the environment may lead to adverse effects due to its DNA damaging activity.
Collapse
Affiliation(s)
- Crislaine Maria Carvalho da Cruz Brambilla
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22 (4º Andar) 92425-900, Canoas, RS, Brazil
| | - Ana Leticia Hilario Garcia
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22 (4º Andar) 92425-900, Canoas, RS, Brazil; Laboratory of Ecotoxicology, Posgraduate Progam in Enviromental Quality, University Feevale, ERS-239, 2755, 93525-075, Novo Hamburgo, RS, Brazil
| | | | | | - Ivana Grivicich
- Laboratory of Cancer Biology, PPGBioSaúde, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22 (5º Andar) 92425-900, Canoas, RS, Brazil
| | - Jaqueline Nascimento Picada
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22 (4º Andar) 92425-900, Canoas, RS, Brazil
| | - Amanda Scotti
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22 (4º Andar) 92425-900, Canoas, RS, Brazil
| | - Daiana Dalberto
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22 (4º Andar) 92425-900, Canoas, RS, Brazil
| | - Miroslav Mišík
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Siegfried Knasmüller
- Institute of Cancer Research, Department of Internal Medicine I, Medical University of Vienna, Borschkegasse 8a, A-1090 Vienna, Austria
| | - Juliana da Silva
- Laboratory of Genetic Toxicology, PPGBioSaúde and PPGGTA, Lutheran University of Brazil (ULBRA), Av. Farroupilha 8001, Prédio 22 (4º Andar) 92425-900, Canoas, RS, Brazil.
| |
Collapse
|
18
|
Wultsch G, Nersesyan A, Kundi M, Al-Serori H, Knasmüller S. Induction of chromosomal damage in exfoliated buccal and nasal cells of road markers. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2019; 82:969-976. [PMID: 31596695 DOI: 10.1080/15287394.2019.1673578] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Road markers are exposed to various chemicals and particles. The aim of this study was to determine whether road worker exposure induceschromosomal damage which is indicative for increased cancer risks. Micronucleus (MN) cytome assays were thus conducted with exfoliated nasal and buccal cells collected from 42 workers and 42 matched controls. The frequencies of MN (reflecting chromosomal aberrations), nuclear buds (NBuds; reflecting gene amplifications) and binucleated cells (BN; reflecting disturbed mitosis) were scored. Further, the rates of nuclear anomalies indicative of acute cytotoxicity (condensed chromatin, karyorrhexis, karyolysis, pyknosis) were evaluated. Data demonstrated marked induction of MN, NBuds, and BN by 1.34-fold, 1.24-fold and 1.14-fold in buccal cells. In nasal cells, only MN frequencies were elevated, 1.23-fold. These effects were paralleled by increased rates of condensed chromatin, karyorrhexis and karyolysis in both cell types. The effects were more pronounced in individuals who had worked for more than 10 years while smoking did not produce synergistic responses. This is the first investigation concerning the induction of genetic damage in road markers and the results are suggestive for enhanced cancer risks. It is conceivable that exposure to silica dust (known to induce cancer and genetic damage) and/or benzoyl peroxide which forms reactive radicals may be associated with the observed genetic damage in road workers. Further investigations of the cancer risks of these workers are warranted.
Collapse
Affiliation(s)
- Georg Wultsch
- Institute of Cancer Research, Medical University of Vienna , Vienna , Austria
| | - Armen Nersesyan
- Institute of Cancer Research, Medical University of Vienna , Vienna , Austria
- Center for Public Health, Medical University of Vienna , Vienna , Austria
| | - Michael Kundi
- Institute of Cancer Research, Medical University of Vienna , Vienna , Austria
| | - Halh Al-Serori
- Institute of Cancer Research, Medical University of Vienna , Vienna , Austria
- Department of Analytical, Environmental and Forensic Sciences, MRC-PHE Centre for Environment and Health, King's College , London , UK
| | | |
Collapse
|
19
|
Cadavid-Vargas JF, Arnal PM, Mojica Sepúlveda RD, Rizzo A, Soria DB, Di Virgilio AL. Copper complex with sulfamethazine and 2,2'-bipyridine supported on mesoporous silica microspheres improves its antitumor action toward human osteosarcoma cells: cyto- and genotoxic effects. Biometals 2018; 32:21-32. [PMID: 30334122 DOI: 10.1007/s10534-018-0154-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 10/09/2018] [Indexed: 12/20/2022]
Abstract
Ideal drugs to cure cancer leave normal cells unharmed while selectively turning tumor cells unviable. Several copper complexes have been able to selectively slow down tumor proliferation. We hypothesized that Cu(smz)2(bipy)·H2O (1)-a copper-complex that has two ligands capable of interacting with DNA-would outperform Cu(smz)2(OH2)·2H2O (2), and also that supporting 1 on mesoporous silica spheres would decrease even further tumor cell viability in vitro. After exposing osteosarcoma cells (MG-63) and normal phenotype cells of bone origin (MC3T3-E1) to either complex, we studied their toxic effect and mechanisms of action. We determined cell viability (MTT assay) and quantified formation of reactive oxygen species (oxidation of DHR-123 to rhodamine). Moreover, we assessed genotoxicity from (i) formation of micronucleus (MN assay) and (ii) damage of DNA (Comet assay). After the exposure of 1 supported on silica spheres, we tested cell viability. Our results confirm our hypotheses: inhibition of tumor cells follows: supported 1 > dissolved 1 > 2. Future work that enhances the load of the complex exclusively in mesopores may improve the ability of 1 to further inhibit tumor cell viability.
Collapse
Affiliation(s)
- Juan Fernando Cadavid-Vargas
- CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Pablo Maximiliano Arnal
- CETMIC (Centro de Tecnología de Recursos Minerales y Cerámica), Cno Centenario y 506, CC 49, B1897ZCA, M.B. Gonnet, Buenos Aires, Argentina
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Ruth Dary Mojica Sepúlveda
- CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Andrea Rizzo
- CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Delia Beatriz Soria
- CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina
| | - Ana Laura Di Virgilio
- CEQUINOR (CONICET-UNLP), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
- Facultad de Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115, 1900, La Plata, Argentina.
| |
Collapse
|
20
|
Asbaghi Y, Thompson LL, Lichtensztejn Z, McManus KJ. KIF11 silencing and inhibition induces chromosome instability that may contribute to cancer. Genes Chromosomes Cancer 2017; 56:668-680. [PMID: 28510357 DOI: 10.1002/gcc.22471] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2017] [Revised: 05/04/2017] [Accepted: 05/04/2017] [Indexed: 12/25/2022] Open
Abstract
Understanding the aberrant pathways that contribute to oncogenesis and identifying the altered genes involved in these pathways is a critical first step to develop effective strategies to better combat cancer. Chromosome instability (CIN) is an aberrant phenotype that occurs in ∼80% of all cancer types and is associated with aggressive tumors, the acquisition of multidrug resistance and poor patient prognosis. Despite these associations however, the aberrant genes and molecular defects underlying CIN remain poorly understood. KIF11 is an evolutionarily conserved microtubule motor protein that functions in centrosome and chromosome dynamics in mitosis. Interestingly, the yeast ortholog of KIF11, namely CIN8 is a CIN gene and thus aberrant KIF11 expression and function is suspected to underlie CIN. In support of this possibility, KIF11 is somatically altered in a large number of cancer types. Using a complementary biochemical and genetic approach we examined whether KIF11 silencing with siRNAs or inhibition with monastrol was able to convert two distinct and karyotypically stable cell lines into karyotypically unstable cell lines. Indeed, quantitative imaging microscopy and flow cytometry revealed that KIF11 silencing induced increases in nuclear areas, micronucleus formation, DNA content and chromosome numbers relative to controls that was also observed following KIF11 inhibition. Collectively, this study identifies and validates KIF11 as an evolutionarily conserved CIN gene, and further suggests that aberrant expression and function may contribute to the pathogenesis of a subset of cancers.
Collapse
Affiliation(s)
- Yasamin Asbaghi
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Laura L Thompson
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Zelda Lichtensztejn
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| | - Kirk J McManus
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada.,Research Institute in Oncology and Hematology, CancerCare Manitoba, Winnipeg, Manitoba, Canada
| |
Collapse
|
21
|
Kokenek-Unal TD, Coban I. Micronuclei and nuclear buds: Highlighting overlooked indicators of chromosomal damage in thyroid aspiration smears. Diagn Cytopathol 2017; 45:673-680. [PMID: 28440063 DOI: 10.1002/dc.23738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 03/26/2017] [Accepted: 04/11/2017] [Indexed: 11/07/2022]
Abstract
BACKGROUND We aimed to examine the diagnostic utility of micronuclei (MN) and nuclear buds (NBs) in aspiration smears of the well-differentiated epithelial lesions of thyroid. METHODS One hundred five cases composed of 34 follicular nodular disease (FND), 31 Hashimoto's thyroiditis (HT), and 40 papillary thyroid carcinoma (PTC) were compiled retrospectively. May- Grünwald Giemsa (MGG) stained smears of each case were selected to count cells with nuclear protrusions (NPs) per 1000 cells. The frequency of cells with NPs (MN&NBs) was compared by using Mann-Whitney U test and Kruskal-Wallis tests when appropriate. Post-Hoc Tukey test was used for pairwise comparison of different diagnostic categories. By running a ROC curve analysis, diagnostic usefulness of the frequency of cells with NPs (MN&NBs) and their cut-off values to predict malignant behavior were calculated. P < 0.05 was regarded as significant. RESULTS NPs (MN&NBs) were significantly more frequent in malignant cases than benign ones. NBs were more frequent in conventional PTC compared to FV of PTC, but the frequency of MN did not significantly differ between these. ROC curve analysis revealed that evaluation of the frequency of cells with NPs (MN&NBs) was a highly specific, sensitive, and diagnostically useful method to identify malignant behavior. CONCLUSION To the best of our knowledge, this is the first study in the literature to evaluate the frequency of cells with NPs (MN&NBs) in human thyroid aspiration smears. Our results show that evaluation of NPs (MN&NBs) may be a useful diagnostic tool to detect PTC in thyroid aspiration smears. Diagn. Cytopathol. 2017;45:673-680. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Tuba Dilay Kokenek-Unal
- Department of Pathology, Kayseri Research and Training Hospital, University of Health Sciences, Istanbul, Turkey
| | - Ipek Coban
- Department of Pathology, Gayrettepe Florence Nightingale Hospital, Istanbul Bilim University, Istanbul, Turkey
| |
Collapse
|
22
|
Hintzsche H, Hemmann U, Poth A, Utesch D, Lott J, Stopper H. Fate of micronuclei and micronucleated cells. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:85-98. [PMID: 28342454 DOI: 10.1016/j.mrrev.2017.02.002] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 10/11/2016] [Indexed: 01/24/2023]
Abstract
The present review describes available evidence about the fate of micronuclei and micronucleated cells. Micronuclei are small, extranuclear chromatin bodies surrounded by a nuclear envelope. The mechanisms underlying the formation of micronuclei are well understood but not much is known about the potential fate of micronuclei and micronucleated cells. Many studies with different experimental approaches addressed the various aspects of the post-mitotic fate of micronuclei and micronucleated cells. These studies are reviewed here considering four basic possibilities for potential fates of micronuclei: degradation of the micronucleus or the micronucleated cell, reincorporation into the main nucleus, extrusion from the cell, and persistence in the cytoplasm. Two additional fates need to be considered: premature chromosome condensation/chromothripsis and the elimination of micronucleated cells by apoptosis, yielding six potential fates for micronuclei and/or micronucleated cells. The available data is still limited, but it can be concluded that degradation and extrusion of micronuclei might occur in rare cases under specific conditions, reincorporation during the next mitosis occurs more frequently, and the majority of the micronuclei persist without alteration at least until the next mitosis, possibly much longer. Overall, the consequences of micronucleus formation on the cellular level are still far from clear, but they should be investigated further because micronucleus formation may contribute to the initial and later steps of malignant cell transformation, by causing gain or loss of genetic material in the daughter cells and by the possibility of massive chromosome rearrangement in chromosomes entrapped within a micronucleus by the mechanisms of chromothripsis and chromoanagenesis.
Collapse
Affiliation(s)
- Henning Hintzsche
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany; Bavarian Health and Food Safety Authority, Erlangen, Germany.
| | - Ulrike Hemmann
- Sanofi-Aventis Deutschland GmbH, Frankfurt am Main, Germany
| | | | | | - Jasmin Lott
- Boehringer Ingelheim Pharma GmbH & Co KG, Biberach, Germany
| | - Helga Stopper
- Institut für Pharmakologie und Toxikologie, Universität Würzburg, Germany
| | | |
Collapse
|
23
|
Mišík M, Filipic M, Nersesyan A, Mišíková K, Knasmueller S, Kundi M. Analyses of combined effects of cytostatic drugs on micronucleus formation in the Tradescantia. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:14762-14770. [PMID: 26620864 DOI: 10.1007/s11356-015-5837-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2015] [Accepted: 11/18/2015] [Indexed: 06/05/2023]
Abstract
Recent experiments showed that 5-fluorouracil (5FU), cisplatin (CDDP), etoposide (ET), and imatinib mesylate (IM), which are currently among the most widely used anticancer drugs, cause damage of the genetic material in higher plants. The aim of the present study was to determine whether mixtures of these drugs cause synergistic or antagonistic effects which may have an impact on their environmental safety. Therefore, the effects of binary mixtures of these anticancer drugs on the induction of micronuclei (MN) which reflect structural and numerical chromosomal aberrations were assessed in Tradescantia tetrads. Synergistic/antagonistic effects were determined by comparison with single exposures that would be equally effective in a reference model of independent action. This comparison was performed at two distinct effect sizes. We found clear evidence for synergisms in combination experiments with IM and antagonism in a high-dose experiment with ET and 5FU. Our findings indicate that IM increases the genotoxic effects of other anticancer drugs. The maximal effects which we found were in the range between 19 and 38 % in the excess of effect sizes predicted under independent action. These effects may have an impact on the overall genotoxic activities of untreated hospital waste waters but not on the environment in general as the predicted environmental concentrations of the studied drugs are several orders of magnitude lower as the levels which are required to cause induction of MN in higher plants.
Collapse
Affiliation(s)
- Miroslav Mišík
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Metka Filipic
- Department for Genetic Toxicology and Cancer Biology, National Institute of Biology, Ljubljana, Slovenia
| | - Armen Nersesyan
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria
| | - Katarína Mišíková
- Department of Botany, Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Siegfried Knasmueller
- Institute for Cancer Research, Department of Internal Medicine I, Comprehensive Cancer Center, Medical University of Vienna, Borschkegasse 8a, A-1090, Vienna, Austria.
| | - Michael Kundi
- Medical University of Vienna, Institute of Environmental Health, Medical University of Vienna, Wien, Austria
| |
Collapse
|
24
|
DNA Damage in Chronic Kidney Disease: Evaluation of Clinical Biomarkers. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3592042. [PMID: 27313827 PMCID: PMC4897719 DOI: 10.1155/2016/3592042] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Accepted: 05/03/2016] [Indexed: 12/11/2022]
Abstract
Patients with chronic kidney disease (CKD) exhibit an increased cancer risk compared to a healthy control population. To be able to estimate the cancer risk of the patients and to assess the impact of interventional therapies thereon, it is of particular interest to measure the patients' burden of genomic damage. Chromosomal abnormalities, reduced DNA repair, and DNA lesions were found indeed in cells of patients with CKD. Biomarkers for DNA damage measurable in easily accessible cells like peripheral blood lymphocytes are chromosomal aberrations, structural DNA lesions, and oxidatively modified DNA bases. In this review the most common methods quantifying the three parameters mentioned above, the cytokinesis-block micronucleus assay, the comet assay, and the quantification of 8-oxo-7,8-dihydro-2′-deoxyguanosine, are evaluated concerning the feasibility of the analysis and regarding the marker's potential to predict clinical outcomes.
Collapse
|
25
|
Bianchi J, Cabral-de-Mello DC, Marin-Morales MA. Toxicogenetic effects of low concentrations of the pesticides imidacloprid and sulfentrazone individually and in combination in in vitro tests with HepG2 cells and Salmonella typhimurium. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 120:174-183. [PMID: 26074310 DOI: 10.1016/j.ecoenv.2015.05.040] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Revised: 05/22/2015] [Accepted: 05/26/2015] [Indexed: 06/04/2023]
Abstract
The insecticide imidacloprid and the herbicide sulfentrazone are two different classes of pesticides that are used for pest control in sugarcane agriculture. To evaluate the genotoxic potential of low concentrations of these two pesticides alone and in mixture, the comet assay and the micronucleus (MN) test employing fluorescence in situ hybridization (FISH) with a centromeric probe were applied in human hepatoma cell lines (HepG2), in a 24-h assay. Mutagenicity was assessed by Salmonella/microsome assay with TA98 and TA100 strains in the absence and presence of an exogenous metabolizing system (S9). The results showed significant inductions of MN in HepG2 cells by both pesticides, for all the tested concentrations. As evidenced in the comet assay, only the imidacloprid presented significant responses. When the two pesticides were associated, a significant induction of damage was observed in the HepG2 cells by the comet assay, but not by the MN test. Moreover, the MN induced by the mixtures of the pesticides appeared at lower levels than those induced by sulfentrazone and imidacloprid when tested alone. According to the FISH results, the damage induced by imidacloprid in the HepG2 cells resulted from a clastogenic action of this insecticide (76.6% of the MN did not present a centromeric signal). For the herbicide sulfentrazone and for the mixture of the pesticides, a similar frequency of MN with and without the presence of the centromeric signal (herbicide: 52.45% of the MN without centromeric signal and 47.54% of the MN with centromeric signal; mixture: 48.71% of the MN without centromeric signal and 51.42% of the MN with centromeric signal) was verified. Based on these results, it was concluded that each one of the pesticides evaluated interacts with the DNA of HepG2 cells and causes irreparable alterations in the cells. However, the combination of the pesticides showed an antagonistic effect on the cells and the damage induced was milder and not persistent in HepG2 cells. The results obtained by the Ames test did not point out significant results.
Collapse
Affiliation(s)
- Jaqueline Bianchi
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo CEP 13506-900, Brazil
| | - Diogo Cavalcanti Cabral-de-Mello
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo CEP 13506-900, Brazil
| | - Maria Aparecida Marin-Morales
- Department of Biology, Institute of Biosciences, São Paulo State University (UNESP), Av. 24A, 1515, Bela Vista, Rio Claro, São Paulo CEP 13506-900, Brazil.
| |
Collapse
|
26
|
Mazzeo DEC, Marin-Morales MA. Genotoxicity evaluation of environmental pollutants using analysis of nucleolar alterations. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:9796-9806. [PMID: 25639248 DOI: 10.1007/s11356-015-4134-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Accepted: 01/15/2015] [Indexed: 06/04/2023]
Abstract
Nucleolar alterations resulting from the action of either chemical or physical agents can serve as important genotoxicity biomarkers. In this study, the efficiency of AgNOR banding technique to identify the presence of nucleoli in micronucleus and assess nucleolar alterations in aberrant cells of Allium cepa was evaluated. Seeds of this plant were exposed to both water samples from a river that receives untreated urban effluent and to the trifluralin herbicide (0.84 mg/L concentration), both analyzed in two different seasons (summer and winter seasons). Samples induced significant frequencies of chromosomal and nuclear aberrations and micronuclei, as observed in cells submitted to conventional chromosomal staining. The herbicide caused a significant increase in the number of nucleoli and micronuclei, interpreted as due to the elimination of excessive nucleolar material resulting from polyploidization. The use of the AgNOR technique enabled the identification of both the presence of the nucleolus in some micronuclei and the nucleolar organizer region (NOR) behavior of aberrant cells. The NOR-banding technique showed to be an efficient tool for studying the genotoxic effects caused by a xenobiotics and a complex environmental sample.
Collapse
|
27
|
Thompson LL, McManus KJ. A novel multiplexed, image-based approach to detect phenotypes that underlie chromosome instability in human cells. PLoS One 2015; 10:e0123200. [PMID: 25893404 PMCID: PMC4404342 DOI: 10.1371/journal.pone.0123200] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2014] [Accepted: 02/19/2015] [Indexed: 11/30/2022] Open
Abstract
Chromosome instability (CIN) is characterized by a progressive change in chromosome numbers. It is a characteristic common to virtually all tumor types, and is commonly observed in highly aggressive and drug resistant tumors. Despite this information, the majority of human CIN genes have yet to be elucidated. In this study, we developed and validated a multiplexed, image-based screen capable of detecting three different phenotypes associated with CIN. Large-scale chromosome content changes were detected by quantifying changes in nuclear volumes following RNAi-based gene silencing. Using a DsRED-LacI reporter system to fluorescently label chromosome 11 within a human fibrosarcoma cell line, we were able to detect deviations from the expected number of two foci per nucleus (one focus/labelled chromosome) that occurred following CIN gene silencing. Finally, micronucleus enumeration was performed, as an increase in micronucleus formation is a classic hallmark of CIN. To validate the ability of each assay to detect phenotypes that underlie CIN, we silenced the established CIN gene, SMC1A. Following SMC1A silencing we detected an increase in nuclear volumes, a decrease in the number of nuclei harboring two DsRED-LacI foci, and an increase in micronucleus formation relative to controls (untreated and siGAPDH). Similar results were obtained in an unrelated human fibroblast cell line. The results of this study indicate that each assay is capable of detecting CIN-associated phenotypes, and can be utilized in future experiments to uncover novel human CIN genes, which will provide novel insight into the pathogenesis of cancer.
Collapse
Affiliation(s)
- Laura L. Thompson
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
| | - Kirk J. McManus
- Department of Biochemistry and Medical Genetics, University of Manitoba, Winnipeg, Manitoba, Canada
- Manitoba Institute of Cell Biology, Winnipeg, Manitoba, Canada
- * E-mail:
| |
Collapse
|
28
|
Yagci F, Kesim B. Cytotoxic and genotoxic effects on gingival fibroblasts from static magnetic fields produced by dental magnetic attachments. Gerodontology 2015; 33:421-7. [PMID: 25677331 DOI: 10.1111/ger.12191] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/09/2015] [Indexed: 11/28/2022]
Abstract
OBJECTIVE To investigate cytotoxic and genotoxic effects of static magnetic field (SMF) produced by dental magnetic attachments on human gingival fibroblasts in vitro. BACKGROUND Magnetic attachments have numerous roles in dental prosthesis fixation, but few reports evaluate possible biological effects of static magnetic field (SMF) on human gingival tissues, particular genotoxic effects. MATERIALS AND METHODS The Dyna (500-gr breakaway force) and Steco (173-gr breakaway force) dental magnetic attachments were embedded into autopolymerising acrylic resin in four different configurations each, including single and double magnets. Gingival biopsy was performed on 28 individuals during third molar extraction, and each sample was divided into two pieces for culture under SMF exposure or as a control. In total, seven test and seven control gingival fibroblast cultures were performed for each group resulting in 56 gingival fibroblast cultures. The test culture flasks were placed atop the magnet-embedded resin blocks. After cultures were terminated, mitotic index (MI) and micronucleus (MN) rates were analysed at a p = 0.05 significance level by Wilcoxon's test; intergroup differences were analysed with a Kruskal-Wallis test. RESULTS There was no significant difference in intragroup or intergroup MI rates. The double Dyna (p = 0.023) and double Steco (p = 0.016) groups had statistically significant intragroup differences in the MN rates. There were no statistically significant differences in MN rates in intergroup analyses. CONCLUSION In particular, higher magnetic fields from dental magnetic attachments might be toxic genetically to human gingival fibroblasts. However, there is need for further investigations from different aspects to detect any genotoxicity.
Collapse
Affiliation(s)
- Filiz Yagci
- Department of Prosthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| | - Bulent Kesim
- Department of Prosthodontics, Faculty of Dentistry, Erciyes University, Kayseri, Turkey
| |
Collapse
|
29
|
Affiliation(s)
- Girjesh Kumar
- Plant Genetics Laboratory, Department of Botany, University of Allahabad
| | - Nitu Chaudhary
- Plant Genetics Laboratory, Department of Botany, University of Allahabad
| |
Collapse
|
30
|
Leon IE, Porro V, Di Virgilio AL, Naso LG, Williams PAM, Bollati-Fogolín M, Etcheverry SB. Antiproliferative and apoptosis-inducing activity of an oxidovanadium(IV) complex with the flavonoid silibinin against osteosarcoma cells. J Biol Inorg Chem 2014; 19:59-74. [PMID: 24233155 DOI: 10.1007/s00775-013-1061-x] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Accepted: 10/29/2013] [Indexed: 01/02/2023]
Abstract
Flavonoids are a large family of polyphenolic compounds synthesized by plants. They display interesting biological effects mainly related to their antioxidant properties. On the other hand, vanadium compounds also exhibit different biological and pharmacological effects in cell culture and in animal models. Since coordination of ligands to metals can improve or change the pharmacological properties, we report herein, for the first time, a detailed study of the mechanisms of action of an oxidovanadium(IV) complex with the flavonoid silibinin, Na2[VO(silibinin)2]·6H2O (VOsil), in a model of the human osteosarcoma derived cell line MG-63. The complex inhibited the viability of osteosarcoma cells in a dose-dependent manner with a greater potency than that of silibinin and oxidovanadium(IV) (p < 0.01), demonstrating the benefit of complexation. Cytotoxicity and genotoxicity studies also showed a concentration effect for VOsil. The increase in the levels of reactive oxygen species and the decrease of the ratio of the amount of reduced glutathione to the amount of oxidized glutathione were involved in the deleterious effects of the complex. Besides, the complex caused cell cycle arrest and activated caspase 3, triggering apoptosis as determined by flow cytometry. As a whole, these results show the main mechanisms of the deleterious effects of VOsil in the osteosarcoma cell line, demonstrating that this complex is a promising compound for cancer treatments.
Collapse
|
31
|
Biocompatibility of core@shell particles: Cytotoxicity and genotoxicity in human osteosarcoma cells of colloidal silica spheres coated with crystalline or amorphous zirconia. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2014; 770:85-94. [DOI: 10.1016/j.mrgentox.2014.05.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2014] [Revised: 05/05/2014] [Accepted: 05/26/2014] [Indexed: 11/20/2022]
|
32
|
Leon IE, Di Virgilio AL, Porro V, Muglia CI, Naso LG, Williams PAM, Bollati-Fogolin M, Etcheverry SB. Antitumor properties of a vanadyl(IV) complex with the flavonoid chrysin [VO(chrysin)2EtOH]2 in a human osteosarcoma model: the role of oxidative stress and apoptosis. Dalton Trans 2013; 42:11868-80. [PMID: 23760674 DOI: 10.1039/c3dt50524c] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Flavonoids, a polyphenolic compound family, and the vanadium compounds have interesting biological, pharmacological, and medicinal properties. We report herein the antitumor actions of the complex [VO(chrysin)2EtOH]2 (VOchrys) on the MG-63 human osteosarcoma cell line. Oxovanadium(IV), chrysin and VOchrys caused a concentration-dependent inhibition of cell viability. The complex was the strongest antiproliferative agent (p < 0.05). Cytotoxicity and genotoxicity studies also showed a concentration effect. Reactive oxygen species (ROS) and the alterations in the GSH/GSSG ratio underlie the main mechanisms of action of VOchrys. Additions of ROS scavengers (vitamin C plus vitamin E) or GSH to the viability experiments demonstrated beneficial effects (p < 0.01). Besides, the complex triggered apoptosis, disruption of the mitochondria membrane potential (MMP), increased levels of caspase 3 and DNA fragmentation measured by the sub-G1 peak in cell cycle arrest experiments (p < 0.01). Collectively, VOchrys is a cell death modulator and a promissory complex to be used in cancer treatments.
Collapse
Affiliation(s)
- I E Leon
- Cátedra de Bioquímica Patológica, Facultad Ciencias Exactas, Universidad Nacional de La Plata, 47 y 115 (1900), La Plata, Argentina
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Sung CC, Hsu YC, Chen CC, Lin YF, Wu CC. Oxidative stress and nucleic acid oxidation in patients with chronic kidney disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2013; 2013:301982. [PMID: 24058721 PMCID: PMC3766569 DOI: 10.1155/2013/301982] [Citation(s) in RCA: 114] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/16/2013] [Accepted: 07/22/2013] [Indexed: 12/19/2022]
Abstract
Patients with chronic kidney disease (CKD) have high cardiovascular mortality and morbidity and a high risk for developing malignancy. Excessive oxidative stress is thought to play a major role in elevating these risks by increasing oxidative nucleic acid damage. Oxidative stress results from an imbalance between reactive oxygen/nitrogen species (RONS) production and antioxidant defense mechanisms and can cause vascular and tissue injuries as well as nucleic acid damage in CKD patients. The increased production of RONS, impaired nonenzymatic or enzymatic antioxidant defense mechanisms, and other risk factors including gene polymorphisms, uremic toxins (indoxyl sulfate), deficiency of arylesterase/paraoxonase, hyperhomocysteinemia, dialysis-associated membrane bioincompatibility, and endotoxin in patients with CKD can inhibit normal cell function by damaging cell lipids, arachidonic acid derivatives, carbohydrates, proteins, amino acids, and nucleic acids. Several clinical biomarkers and techniques have been used to detect the antioxidant status and oxidative stress/oxidative nucleic acid damage associated with long-term complications such as inflammation, atherosclerosis, amyloidosis, and malignancy in CKD patients. Antioxidant therapies have been studied to reduce the oxidative stress and nucleic acid oxidation in patients with CKD, including alpha-tocopherol, N-acetylcysteine, ascorbic acid, glutathione, folic acid, bardoxolone methyl, angiotensin-converting enzyme inhibitor, and providing better dialysis strategies. This paper provides an overview of radical production, antioxidant defence, pathogenesis and biomarkers of oxidative stress in patients with CKD, and possible antioxidant therapies.
Collapse
Affiliation(s)
- Chih-Chien Sung
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
- Graduate Institute of Medical Science, National Defense Medical Center, Taipei 114, Taiwan
| | - Yu-Chuan Hsu
- Division of Neurology, Department of Medicine, Taoyuan General Hospital, Ministry of Health and Welfare, Taoyuan 330, Taiwan
| | - Chun-Chi Chen
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
| | - Yuh-Feng Lin
- Division of Nephrology, Department of Medicine, Taipei Medical University-Shuang Ho Hospital, Ministry of Health and Welfare, New Taipei City 235, Taiwan
- Graduate Institute of Clinical Medical, Taipei Medical University, Taipei 110, Taiwan
| | - Chia-Chao Wu
- Division of Nephrology, Department of Medicine, Tri-Service General Hospital, National Defense Medical Center, No. 325, Section 2, Cheng-Kung Road, Neihu, Taipei 114, Taiwan
- Graduate Institute of Microbiology and Immunology, National Defense Medical Center, Taipei 114, Taiwan
| |
Collapse
|
34
|
Di Virgilio A, Maisuls I, Kleitz F, Arnal P. A new synthesis pathway for colloidal silica spheres coated with crystalline titanium oxide and its comparative cyto- and genotoxic study with titanium oxide nanoparticles in rat osteosarcoma (UMR106) cells. J Colloid Interface Sci 2013; 394:147-56. [DOI: 10.1016/j.jcis.2012.11.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2012] [Revised: 11/02/2012] [Accepted: 11/05/2012] [Indexed: 11/24/2022]
|
35
|
Bhatia A, Kumar Y. Cancer cell micronucleus: an update on clinical and diagnostic applications. APMIS 2012; 121:569-81. [PMID: 23278233 DOI: 10.1111/apm.12033] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Accepted: 10/25/2012] [Indexed: 12/15/2022]
Abstract
Micronucleus (MN) is the small nucleus that forms whenever a chromosome or its fragment is not incorporated into one of the daughter nuclei during cell division. Any form of genotoxic stress due to extraneous or internal factors leads to formation of a MN, which serves as an indicator of chromosomal instability. Chromosomal damage and formation of MN are believed to play a significant role in the pathogenesis of many malignancies. Studies have shown that MN assay can be used as a tool for risk prediction, screening, diagnosis, prognosis and as a treatment-response indicator in cancers. With the advancements in technology, greater details are becoming available regarding the molecular events in carcinogenesis. The micronuclei (MNi) in the cancer cells are now being used as tools to understand the pathogenetics of the malignancies. However, despite large number of studies on MNi in lymphocytes or exfoliated cells of cancer patients, the data regarding a cancer cell MN remain scarce. This review article tries to unleash some of the mysteries related to the formation of MN inside the cancer cell. Also, it discusses the possible effects and the events post MN formation in the cancer cell.
Collapse
Affiliation(s)
- Alka Bhatia
- Department of Experimental Medicine & Biotechnology, PGIMER, Chandigarh, India.
| | | |
Collapse
|
36
|
Di Virgilio AL, León IE, Franca CA, Henao I, Tobón G, Etcheverry SB. Cu(Nor)2·5H2O, a complex of Cu(II) with Norfloxacin: theoretic approach and biological studies. Cytotoxicity and genotoxicity in cell cultures. Mol Cell Biochem 2012; 376:53-61. [DOI: 10.1007/s11010-012-1548-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Accepted: 12/06/2012] [Indexed: 11/29/2022]
|
37
|
Tang T, Gminski R, Könczöl M, Modest C, Armbruster B, Mersch-Sundermann V. Investigations on cytotoxic and genotoxic effects of laser printer emissions in human epithelial A549 lung cells using an air/liquid exposure system. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:125-135. [PMID: 22069140 DOI: 10.1002/em.20695] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2011] [Accepted: 09/23/2011] [Indexed: 05/31/2023]
Abstract
Exposure to emissions from laser printers during the printing process is commonplace worldwide, both in the home and workplace environment. In the present study, cytotoxic and genotoxic effects of the emission from five low to medium-throughput laser printers were investigated with respect to the release of ozone (O(3) ), volatile organic compounds (VOC), particulate matter (PM), and submicrometer particles (SMP) during standby and operation. Experiments were conducted in a 1 m(3) emission chamber connected to a Vitrocell® exposure system. Cytotoxicity was determined by the WST-1 assay and genotoxicity by the micronucleus test in human A549 lung cells. The five laser printers emitted varying but generally small amounts of O(3) , VOC, and PM. VOC emissions included 13 compounds with total VOC concentrations ranging from 95 to 280 μg/m(3) (e.g., 2-butanone, hexanal, m,p-xylene, and o-xylene). Mean PM concentrations were below 2.4 μg/m(3). SMP number concentration levels during standby ranged from 9 to 26 particles/cm(3). However, three of the printers generated a 90 to 16 × 10(3) -fold increase of SMP during the printing process (maximum 294,460 particles/cm(3)). Whereas none of the printer emissions were found to cause cytotoxicity, emissions from two printers induced formation of micronuclei (P < 0.001), thus providing evidence for genotoxicity. As yet, differences in biological activity cannot be explained on the basis of the specific emission characteristics of the different printers. Because laser printing technology is widely used, studies with additional cytogenetic endpoints are necessary to confirm the DNA-damaging potency and to identify emission components responsible for genotoxicity.
Collapse
Affiliation(s)
- Tao Tang
- Department of Environmental Health Sciences, Freiburg University Medical Center, Institut für Umweltmedizin und Krankenhaushygiene, Freiburg im Breisgau, Germany
| | | | | | | | | | | |
Collapse
|
38
|
Shepherd GL, Somers CM. Adapting the buccal micronucleus cytome assay for use in wild birds: age and sex affect background frequency in pigeons. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2012; 53:136-144. [PMID: 22121057 DOI: 10.1002/em.21673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 10/28/2011] [Accepted: 10/31/2011] [Indexed: 05/31/2023]
Abstract
Micronucleus (MN) formation has been used extensively as a biomarker of damage from genotoxic exposures. The Buccal MN Cytome (BMCyt) assay provides a noninvasive means of quantifying MN frequency in humans, but it has not been developed for use in wildlife. We adapted the BMCyt assay for use in wild birds, with a focus on feral pigeons (Columba livia) as a potential indicator species. Five of six urban bird species sampled using oral cavity swabs produced sufficient buccal cells for the BMCyt assay. The body size of species sampled ranged almost 100-fold (~60 to 5,000 g), but was a not major factor influencing the number of buccal cells collected. Pigeon cells were stained and scored following published BMCyt assay protocols for humans, but with a modified fixation approach using heat and methanol. Pigeons had the same common nuclear abnormalities reported in human studies, and a similar background MN formation frequency of 0.88 MN/1,000 cells. Adult pigeons had on average a threefold higher rate of MN formation than juveniles, and males had a 1.4- to 2.2-fold higher frequency than females. Domestic and feral pigeons did not differ in overall MN frequency. Our results indicate that the BMCyt assay can be used on wild birds, and could provide a means of assessing environmental genotoxicity in pigeons, a useful indicator species. However, bird age and sex are important factors affecting background MN frequency, and thereby the design of environmental studies.
Collapse
Affiliation(s)
- G L Shepherd
- Department of Biology, University of Regina, Regina, SK, Canada
| | | |
Collapse
|
39
|
León IE, Di Virgilio AL, Barrio DA, Arrambide G, Gambino D, Etcheverry SB. Hydroxylamido–amino acid complexes of oxovanadium(v). Toxicological study in cell culture and in a zebrafish model. Metallomics 2012; 4:1287-96. [DOI: 10.1039/c2mt20091k] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
40
|
Kaivalya M, Nageshwar Rao BN, Satish Rao BS. Mangiferin: A xanthone attenuates mercury chloride induced cytotoxicity and genotoxicity in HepG2 cells. J Biochem Mol Toxicol 2011; 25:108-16. [PMID: 21308892 DOI: 10.1002/jbt.20366] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2010] [Revised: 06/29/2010] [Accepted: 07/07/2010] [Indexed: 12/30/2022]
Abstract
Mangiferin (MGN), a dietary C-glucosylxanthone present in Mangifera indica, is known to possess a spectrum of beneficial pharmacological properties. This study demonstrates antigenotoxic potential of MGN against mercuric chloride (HgCl2)-induced genotoxicity in HepG2 cell line. Treatment of HepG2 cells with various concentrations of HgCl2 for 3 h caused a dose-dependent increase in micronuclei frequency and elevation in DNA strand breaks (olive tail moment and tail DNA). Pretreatment with MGN significantly (p < 0.01) inhibited HgCl2 -induced (20 µM for 30 h) DNA damage. An optimal antigenotoxic effect of MGN, both in micronuclei and comet assay, was observed at a concentration of 50 µM. Furthermore, HepG2 cells treated with various concentrations of HgCl2 resulted in a dose-dependent increase in the dichlorofluorescein fluorescence, indicating an increase in the generation of reactive oxygen species (ROS). However, MGN by itself failed to generate ROS at a concentration of 50 µM, whereas it could significantly decrease HgCl2 -induced ROS. Our study clearly demonstrates that MGN pretreatment reduced the HgCl2-induced DNA damage in HepG2 cells, thus demonstrating the genoprotective potential of MGN, which is mediated mainly by the inhibition of oxidative stress.
Collapse
Affiliation(s)
- Mudholkar Kaivalya
- Division of Biotechnology, Manipal Life Sciences Centre, Manipal University, Manipal 576 104, India
| | | | | |
Collapse
|
41
|
Murley JS, Kataoka Y, Miller RC, Li JJ, Woloschak G, Grdina DJ. SOD2-mediated effects induced by WR1065 and low-dose ionizing radiation on micronucleus formation in RKO human colon carcinoma cells. Radiat Res 2010; 175:57-65. [PMID: 21175348 DOI: 10.1667/rr2349.1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
RKO36 cells exposed to either WR1065 or 10 cGy X rays show elevated SOD2 gene expression and SOD2 enzymatic activity. Cells challenged at this time with 2 Gy exhibit enhanced radiation resistance. This phenomenon has been identified as a delayed radioprotective effect or an adaptive response when induced by thiols or low-dose radiation, respectively. In this study we investigated the relative effectiveness of both WR1065 and low-dose radiation in reducing the incidence of radiation-induced micronucleus formation in binucleated RKO36 human colon carcinoma cells. The role of SOD2 in this process was assessed by measuring changes in enzymatic activity as a function of the inducing agent used, the level of protection afforded, and the inhibitory effects of short interfering RNA (SOD2 siRNA). Both WR1065 and 10 cGy X rays effectively induced a greater than threefold elevation in SOD2 activity 24 h after exposure. Cells irradiated at this time with 2 Gy exhibited a significant resistance to micronucleus formation (P < 0.05; Student's two-tailed t test). This protective effect was significantly inhibited in cells transfected with SOD2 siRNA. SOD2 played an important role in the adaptive/delayed radioprotective response by inhibiting the initiation of a superoxide anion-induced ROS cascade leading to enhanced mitochondrial and nuclear damages.
Collapse
Affiliation(s)
- Jeffrey S Murley
- Department of Radiation and Cellular Oncology, The University of Chicago, Chicago, Illinois 60637, USA
| | | | | | | | | | | |
Collapse
|
42
|
Hintzsche H, Stopper H. Micronucleus frequency in buccal mucosa cells of mobile phone users. Toxicol Lett 2010; 193:124-30. [DOI: 10.1016/j.toxlet.2009.12.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2009] [Revised: 12/17/2009] [Accepted: 12/19/2009] [Indexed: 10/20/2022]
|
43
|
Imle A, Polzer B, Alexander S, Klein CA, Friedl P. Genomic instability of micronucleated cells revealed by single-cell comparative genomic hybridization. Cytometry A 2009; 75:562-8. [DOI: 10.1002/cyto.a.20733] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
44
|
Lau A, Belanger CL, Winn LM. In utero and acute exposure to benzene: Investigation of DNA double-strand breaks and DNA recombination in mice. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2009; 676:74-82. [DOI: 10.1016/j.mrgentox.2009.04.001] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2008] [Revised: 03/27/2009] [Accepted: 04/01/2009] [Indexed: 11/26/2022]
|
45
|
Combes R, Grindon C, Cronin MTD, Roberts DW, Garrod JF. Integrated decision-tree testing strategies for mutagenicity and carcinogenicity with respect to the requirements of the EU REACH legislation. Altern Lab Anim 2009; 36 Suppl 1:43-63. [PMID: 19025331 DOI: 10.1177/026119290803601s05] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liverpool John Moores University and FRAME recently conducted a research project sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for using alternative methods (both in vitro and in silico) for mutagenicity (genotoxicity) and carcinogenicity testing--two toxicity endpoints, which, together with reproductive toxicity, are of pivotal importance for the REACH system. The manuscript critically discusses well-established testing approaches, and in particular, the requirement for short-term in vivo tests for confirming positive mutagenicity, and the need for the rodent bioassay for detecting non-genotoxic carcinogens. Recently-proposed testing strategies focusing on non-animal approaches are also considered, and our own testing scheme is presented and supported with background information. This scheme makes maximum use of pre-existing data, computer (in silico) and in vitro methods, with weight-of-evidence assessments at each major stage. The need for the improvement of in vitro methods, to reduce the generation of false-positive results, is also discussed. Lastly, ways in which reduction and refinement measures can be used are also considered, and some recommendations are made for future research to facilitate the implementation of the proposed testing scheme.
Collapse
|
46
|
Red cabbage anthocyanin extract alleviates copper-induced cytological disturbances in plant meristematic tissue and human lymphocytes. Biometals 2009; 22:479-90. [DOI: 10.1007/s10534-009-9205-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2008] [Accepted: 01/07/2009] [Indexed: 11/25/2022]
|
47
|
Schupp N, Dette EM, Schmid U, Bahner U, Winkler M, Heidland A, Stopper H. Benfotiamine reduces genomic damage in peripheral lymphocytes of hemodialysis patients. Naunyn Schmiedebergs Arch Pharmacol 2008; 378:283-91. [PMID: 18509620 DOI: 10.1007/s00210-008-0310-y] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2008] [Accepted: 04/30/2008] [Indexed: 12/28/2022]
Abstract
Hemodialysis patients have an elevated genomic damage in peripheral blood lymphocytes (PBLs) and an increased cancer incidence, possibly due to accumulation of uremic toxins like advanced glycation end products (AGEs). Because the vitamin B1 prodrug benfotiamine reduces AGE levels in experimental diabetes, and dialysis patients often suffer from vitamin B1 deficiency, we conducted two consecutive studies supplementing hemodialysis patients with benfotiamine. In both studies, genomic damage was measured as micronucleus frequency of PBLs before and at three time-points after initiation of benfotiamine supplementation. AGE-associated fluorescence in plasma, and in the second study additionally, the antioxidative capacity of plasma was analyzed. Benfotiamine significantly lowered the genomic damage of PBLs in hemodialysis patients of both studies independent of changes in plasma AGE levels. The second study gave a hint to the mechanism, as the antioxidative capacity of the plasma of the treated patients clearly increased, which might ameliorate the DNA damage.
Collapse
Affiliation(s)
- Nicole Schupp
- Department of Pharmacology and Toxicology, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
48
|
Sobol Z, Engel ME, Rubitski E, Ku WW, Aubrecht J, Schiestl RH. Genotoxicity profiles of common alkyl halides and esters with alkylating activity. MUTATION RESEARCH-GENETIC TOXICOLOGY AND ENVIRONMENTAL MUTAGENESIS 2007; 633:80-94. [PMID: 17644026 DOI: 10.1016/j.mrgentox.2007.05.004] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2006] [Revised: 04/25/2007] [Accepted: 05/04/2007] [Indexed: 11/15/2022]
Abstract
Drug synthesis and/or formulation can generate genotoxic impurities. For instance, strong acid/alcohol interactions during the process of drug salt formation produce alkylating agents such as alkyl halides and alkyl esters of alkyl sulfonic acids. The genotoxicity of a few classic alkylating agents such as methyl and ethyl methanesulfonate have been previously well characterized, whereas the majority of compounds from this class have only been tested in the Salmonella reversion assay. Therefore, the goal of this study was to investigate clastogenicity and DEL recombination profiles of 22 halogenated alkanes and alkylesters of sulfuric and alkane-, aryl-sulfonic acids using a battery of cellular and molecular assays. The in-vitro micronucleus assay in CHO cells was used to measure clastogenicity and the deletion recombination (DEL) assay in S. cerevisiae provided a measure of DNA deletions. We also examined the compounds' reactivity towards 4-(p-nitrobenzyl)pyridine (NBP), a surrogate molecule for biological ring nitrogens. Methylating agents were most potent in all three assays and the alkyl chlorides evaluated in our study were negative in all three assays. Also, a strong correlation was found between the MN, DEL and NBP assays. In summary, this study contributes to a better understanding of the genotoxic properties of common alkyl halides and alkyl esters with alkylating activity and might provide guidance for managing risk of genotoxic process-related impurities of drug substances and products.
Collapse
Affiliation(s)
- Z Sobol
- Department of Pathology, Geffen School of Medicine, UCLA, Los Angeles, CA 90095, USA
| | | | | | | | | | | |
Collapse
|
49
|
Combes R, Grindon C, Cronin MTD, Roberts DW, Garrod J. Proposed integrated decision-tree testing strategies for mutagenicity and carcinogenicity in relation to the EU REACH legislation. Altern Lab Anim 2007; 35:267-87. [PMID: 17559315 DOI: 10.1177/026119290703500201] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Liverpool John Moores University and FRAME recently conducted a research project sponsored by Defra, on the status of alternatives to animal testing with regard to the European Union REACH (Registration, Evaluation and Authorisation of Chemicals) system for the safety testing and risk assessment of chemicals. The project covered all the main toxicity endpoints associated with the REACH system. This paper focuses on the prospects for using alternative methods (both in vitro and in silico) for mutagenicity (genotoxicity) and carcinogenicity testing - two toxicity endpoints, which, together with reproductive toxicity, are of pivotal importance for the REACH system. The manuscript critically discusses well-established testing approaches, and in particular, the requirement for short-term in vivo tests for confirming positive mutagenicity, and the need for the rodent bioassay for detecting non-genotoxic carcinogens. Recently-proposed testing strategies focusing on non-animal approaches are also considered, and our own testing scheme is presented and supported with background information. This scheme makes maximum use of pre-existing data, computer (in silico) and in vitro methods, with weight-of-evidence assessments at each major stage. The need for the improvement of in vitro methods, to reduce the generation of false-positive results, is also discussed. Lastly, ways in which reduction and refinement measures can be used are also considered, and some recommendations are made for future research to facilitate the implementation of the proposed testing scheme.
Collapse
Affiliation(s)
- Robert Combes
- FRAME, Russell & Burch House, 96-98 North Sherwood Street, Nottingham, NG1 4EE, UK.
| | | | | | | | | |
Collapse
|
50
|
Stopper H, Schupp N, Klassen A, Sebekova K, Heidland A. Genomic damage in chronic renal failure--potential therapeutic interventions. J Ren Nutr 2006; 15:81-6. [PMID: 15648013 DOI: 10.1053/j.jrn.2004.09.017] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
In end-stage renal failure, genomic damage is enhanced. This has been shown both in the predialysis and dialysis phase by various biomarkers, such as micronuclei frequency and single cell gel electrophoresis in lymphocytes as well as with 8-hydroxy-2'-deoxyguanosine in leukocytes. There are also data about mitochondrial DNA deletions and chromosomal abnormalities. Genomic damage may be induced by a multitude of toxic factors and mutagens, in particular via enhanced generation of reactive oxygen species. In in vitro studies, incubation of tubular cells with various AGEs (carboxymethyllysine-BSA, AGE-BSA, and methylglyoxal-BSA) and angiotensin II resulted in a marked DNA damage. Coincubation with various antioxidants as well as the angiotensin II receptor blocker, candesartan, suppressed the toxic action. Moreover, an improved uremic state by daily hemodialysis ameliorated the genomic damage in lymphocytes, as compared to patients on conventional hemodialysis.
Collapse
Affiliation(s)
- Helga Stopper
- Department of Pharmacology and Toxicology, University of Wuerzburg, Wuerzburg, Germany
| | | | | | | | | |
Collapse
|