1
|
Gullace ME, Ortuño MV, Canteros TM, Bosco B, Rodriguez C, Giunta J, Costa L, Kozak A, de Miguel V, Grosembacher L. Evaluation of plasma cortisol during fasting test in patients with endogenous hyperinsulinemic hypoglycemia. Fifteen years experience. ENDOCRINOL DIAB NUTR 2023; 70:634-639. [PMID: 38016856 DOI: 10.1016/j.endien.2023.11.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Accepted: 09/24/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Endogenous hyperinsulinemic hypoglycemia (EHH) is a rare clinical condition. The aim of this study was to evaluate baseline plasma cortisol concentration and its concentration during hypoglycemic crisis in fasting tests (FT) performed in our center. Secondarily, the aim was to establish the relationship between baseline cortisol and the time of evolution of EHH. MATERIAL AND METHODS A retrospective, observational, descriptive study was carried out which included patients with hypoglycemic disorder with positive FT. RESULTS Of a total of 21 patients, 16 presented insulinoma, 1 nesidioblastosis, 2 malignant insulinoma and 2 EHH without pathological diagnosis. The time from the onset of symptoms to diagnosis was 2 years (Q1=1.5-Q2=5.5). The comparison between median baseline cortisol (BC)=11.8 mcg/dl (nmol/L 340.68) (Q1=9-Q3=14.1) and median cortisol during hypoglycemic episode (HC)=11.6 mcg/dl (nmol/L: 303.44) (Q1=7.8-Q3=16.1) showed no differences (Z=-0.08; P>.05). When correlating BC with HC, no significant relationship was observed (r=0.16; P>.05). When correlating the glycemic value in the crisis and the HC, a slight negative trend was found (r=-0.53; P=.01). In addition, we found that recurrent hypoglycemic disorder is associated with lower baseline cortisol values the longer the time of its evolution. CONCLUSION We confirmed that cortisol values remain low during hypoglycemic episodes, reinforcing the hypothesis of lack of response of this counterregulatory hormone in cases of recurrent hypoglycemia.
Collapse
Affiliation(s)
- María Eugenia Gullace
- Unidad de Endocrinología, Hospital Municipal de Agudos «Dr. Leónidas Lucero», Bahía Blanca, Argentina.
| | | | - Teresa Mabel Canteros
- Servicio de Endocrinología, Hospital Italiano de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Belén Bosco
- Servicio de Endocrinología, Hospital Italiano de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Cintia Rodriguez
- Servicio de Endocrinología, Hospital Italiano de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Javier Giunta
- Servicio de Endocrinología, Hospital Italiano de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Lucas Costa
- Unidad de Bioestadística, Facultad de Ciencias Médicas, Universidad Nacional del Litoral, Santa Fe, Argentina
| | - Andrea Kozak
- Servicio de Endocrinología, Hospital Italiano de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Valeria de Miguel
- Servicio de Endocrinología, Hospital Italiano de Buenos Aires, Ciudad de Buenos Aires, Argentina
| | - Luis Grosembacher
- Servicio de Endocrinología, Hospital Italiano de Buenos Aires, Ciudad de Buenos Aires, Argentina
| |
Collapse
|
2
|
Mendes SR, Gomis-Rüth FX, Goulas T. Frozen fresh blood plasma preserves the functionality of native human α 2-macroglobulin. Sci Rep 2023; 13:4579. [PMID: 36941303 PMCID: PMC10027685 DOI: 10.1038/s41598-023-31800-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2022] [Accepted: 03/17/2023] [Indexed: 03/23/2023] Open
Abstract
Human α2-macroglobulin (hα2M) is a large homotetrameric protein involved in the broad inhibition of endopeptidases. Following cleavage within a bait region, hα2M undergoes stepwise transitions from its native, expanded, highly flexible, active conformation to an induced, compact, triggered conformation. As a consequence, the peptidase is entrapped by an irreversible Venus flytrap mechanism. Given the importance of hα2M, biochemical studies galore over more than seven decades have attempted to ascertain its role, typically using authentic hα2M purified from frozen and non-frozen fresh blood plasma, and even outdated plasma. However, hα2M is sensitive once isolated and purified, and becomes heterogeneous during storage and/or freezing, raising concerns about the functional competence of frozen plasma-derived hα2M. We therefore used a combination of native and sodium dodecylsulfate polyacrylamide gel electrophoresis, affinity and ion-exchange chromatography, multi-angle laser light scattering after size-exclusion chromatography, free cysteine quantification, and peptidase inhibition assays with endopeptidases of two catalytic classes and three protein substrates, to characterize the biochemical and biophysical properties of hα2M purified ad hoc either from fresh plasma or frozen fresh plasma after thawing. We found no differences in the molecular or functional properties of the preparations, indicating that protective components in plasma maintain native hα2M in a functionally competent state despite freezing.
Collapse
Affiliation(s)
- Soraia R Mendes
- Proteolysis Lab, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac 15-21, 08028, Barcelona, Catalonia, Spain
| | - F Xavier Gomis-Rüth
- Proteolysis Lab, Molecular Biology Institute of Barcelona (CSIC), Barcelona Science Park, c/Baldiri Reixac 15-21, 08028, Barcelona, Catalonia, Spain.
| | - Theodoros Goulas
- Department of Food Science and Nutrition, School of Agricultural Sciences, University of Thessaly, 43100, Karditsa, Greece.
| |
Collapse
|
3
|
Mackert O, Wirth EK, Sun R, Winkler J, Liu A, Renko K, Kunz S, Spranger J, Brachs S. Impact of metabolic stress induced by diets, aging and fasting on tissue oxygen consumption. Mol Metab 2022; 64:101563. [PMID: 35944898 PMCID: PMC9418990 DOI: 10.1016/j.molmet.2022.101563] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/15/2022] [Accepted: 07/26/2022] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVE Alterations in mitochondrial function play an important role in the development of various diseases, such as obesity, insulin resistance, steatohepatitis, atherosclerosis and cancer. However, accurate assessment of mitochondrial respiration ex vivo is limited and remains highly challenging. Using our novel method, we measured mitochondrial oxygen consumption (OCR) and extracellular acidification rate (ECAR) of metabolically relevant tissues ex vivo to investigate the impact of different metabolic stressors on mitochondrial function. METHODS Comparative analyses of OCR and ECAR were performed in tissue biopsies of young mice fed 12 weeks standard-control (STD), high-fat (HFD), high-sucrose (HSD), or western diet (WD), matured mice with HFD, and 2year-old mice aged on STD with and without fasting. RESULTS While diets had only marginal effects on mitochondrial respiration, respiratory chain complexes II and IV were reduced in adipose tissue (AT). Moreover, matured HFD-fed mice showed a decreased hepatic metabolic flexibility and prolonged aging increased OCR in brown AT. Interestingly, fasting boosted pancreatic and hepatic OCR while decreasing weight of those organs. Furthermore, ECAR measurements in AT could indicate its lipolytic capacity. CONCLUSION Using ex vivo tissue measurements, we could extensively analyze mitochondrial function of liver, AT, pancreas and heart revealing effects of metabolic stress, especially aging.
Collapse
Affiliation(s)
- Olena Mackert
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Eva Katrin Wirth
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Rongwan Sun
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Jennifer Winkler
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany
| | - Aoxue Liu
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| | - Kostja Renko
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Berlin, Germany
| | - Séverine Kunz
- Technology Platform for Electron Microscopy at the Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Joachim Spranger
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany.
| | - Sebastian Brachs
- Department of Endocrinology and Metabolism, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Germany; DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, Germany
| |
Collapse
|
4
|
Tas E, Garibaldi L, Muzumdar R. Glucose Homeostasis in Newborns: An Endocrinology Perspective. Neoreviews 2020; 21:e14-e29. [PMID: 31894079 DOI: 10.1542/neo.21-1-e14] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Physiologic adaptations in the postnatal period, along with gradual establishment of enteral feeding, help maintain plasma glucose concentrations in the neonatal period. The definition of normal plasma glucose in the neonatal period has been a subject of debate because of a lack of evidence linking a set plasma or blood glucose concentration to clinical symptoms or predictors of short- and long-term outcomes. However, there is consensus that maintaining plasma glucose in the normal range for age is important to prevent immediate and long-term neurodevelopmental consequences of hypoglycemia or hyperglycemia. The specific management strategy for abnormal glucose levels in neonates depends on the underlying etiology, and interventions could include nutritional changes, medications, hormone therapy, or even surgery. Here, we will review the physiological processes that help maintain plasma glucose in newborns and discuss the approach to a newborn with disordered glucose homeostasis, with an emphasis on the endocrine basis of abnormal glucose homeostasis.
Collapse
Affiliation(s)
- Emir Tas
- Division of Endocrinology and Diabetes, Department of Pediatrics, Arkansas Children's Hospital, Little Rock, AR
| | - Luigi Garibaldi
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| | - Radhika Muzumdar
- Division of Endocrinology, Department of Pediatrics, Children's Hospital of Pittsburgh, University of Pittsburgh Medical Center, Pittsburgh, PA
| |
Collapse
|
5
|
Rat 90-day oral toxicity study of a novel coccidiostat - Ethanamizuril. Regul Toxicol Pharmacol 2019; 111:104550. [PMID: 31843591 DOI: 10.1016/j.yrtph.2019.104550] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 11/20/2019] [Accepted: 12/02/2019] [Indexed: 01/10/2023]
Abstract
In the current study, to support the safety assessment of ethanamizuril as a new potent anticoccidial agent of triazine compounds, a 90-day repeated-dose oral toxicity assay of ethanamizuril was investigated. Treatment related clinical signs of alopecia on back and neck have been observed in some male and female at the 65 and 130 mg/kg dose groups. The body weight and feed conversion efficacy of 65 and 130 mg/kg females and 65 mg/kg males were significantly increase than those of the control in treatment time, but noted decreased in the 130 mg/kg males. Dose related changes of hematologic and biochemical parameters such as MCV, MCH, TG, and the significant increased in the organ weight and the relative organ weight of the liver, kidney, heart, lung and spleen in both genders in the 65 and 130 mg/kg treated groups were observed. Furthermore, histopathological observations revealed that 65 and 130 mg/kg ethanamizuril induced pathological damage such as hepatocyte steatosis and focal necrosis, renal tubular atrophy, tubule protein casts. Fortunately, the observed toxicities were recoverable in convalescence. The results indicated that liver, kidneys and lung were the main target organs. The NOAEL of ethanamizuril for rats was estimated to be 20 mg/kg dietary dose level.
Collapse
|
6
|
Jun JE, Lee SE, Lee YB, Ahn JY, Kim G, Hur KY, Lee MK, Jin SM, Kim JH. Continuous glucose monitoring defined glucose variability is associated with cardiovascular autonomic neuropathy in type 1 diabetes. Diabetes Metab Res Rev 2019; 35:e3092. [PMID: 30345631 DOI: 10.1002/dmrr.3092] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/06/2018] [Accepted: 10/15/2018] [Indexed: 12/12/2022]
Abstract
BACKGROUND The purpose of this study was to establish the association between continuous glucose monitoring (CGM)-defined glycaemic variability (GV) and cardiovascular autonomic neuropathy (CAN) in type 1 diabetes independent of mean glucose and to examine the relative contribution of each internationally standardized CGM parameter to this association. MATERIALS AND METHODS This study included 80 adults with type 1 diabetes who underwent 3-day CGM and autonomic function tests within 3 months. The degree of association between internationally standardized CGM parameters and CAN, defined as at least two abnormal parasympathetic tests or the presence of orthostatic hypotension, were analysed by logistic regression, receiver operating characteristics (ROC), and dominance analysis. RESULTS A total of 36 subjects (45.0%) were diagnosed with CAN. When adjusted with mean glucose and clinical risk factors of CAN, standard deviation, coefficient of variation, mean amplitude of glycaemic excursion, percent time in level 1 (glucose 54-69 mg/dL) and level 2 (glucose < 54 mg/dL) hypoglycaemia, area under the curve in level 2 hypoglycaemia, low blood glucose index, high blood glucose index, and percent time in glucose 70 to 180 mg/dL were independently associated with CAN. Multivariable ROC analysis and dominance analysis revealed the highest relative contribution of percent time in level 2 hypoglycaemia to the independent associations between CGM parameters and presence of CAN. CONCLUSIONS CGM-defined GV was associated with CAN independent of mean glucose in adults with type 1 diabetes. Among internationally standardized CGM parameters, those describing the degree of level 2 hypoglycaemia were the most significant contributors to this association.
Collapse
Affiliation(s)
- Ji Eun Jun
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital at Gangdong, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Seung-Eun Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - You-Bin Lee
- Division of Endocrinology and Metabolism, Department of Internal Medicine, Korea University Guro Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Ji Yeon Ahn
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Gyuri Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Kyu Yeon Hur
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Moon-Kyu Lee
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Sang-Man Jin
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Jae Hyeon Kim
- Division of Endocrinology and Metabolism, Department of Medicine, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
- Department of Clinical Research Design & Evaluation, SAIHST, Sungkyunkwan University, Seoul, Republic of Korea
| |
Collapse
|
7
|
Gorjao R, Dos Santos CMM, Serdan TDA, Diniz VLS, Alba-Loureiro TC, Cury-Boaventura MF, Hatanaka E, Levada-Pires AC, Sato FT, Pithon-Curi TC, Fernandes LC, Curi R, Hirabara SM. New insights on the regulation of cancer cachexia by N-3 polyunsaturated fatty acids. Pharmacol Ther 2018; 196:117-134. [PMID: 30521881 DOI: 10.1016/j.pharmthera.2018.12.001] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cancer cachexia is a multifactorial syndrome that develops during malignant tumor growth. Changes in plasma levels of several hormones and inflammatory factors result in an intense catabolic state, decreased activity of anabolic pathways, anorexia, and marked weight loss, leading to cachexia development and/or accentuation. Inflammatory mediators appear to be related to the control of a highly regulated process of muscle protein degradation that accelerates the process of cachexia. Several mediators have been postulated to participate in this process, including TNF-α, myostatin, and activated protein degradation pathways. Some interventional therapies have been proposed, including nutritional (dietary, omega-3 fatty acid supplementation), hormonal (insulin), pharmacological (clenbuterol), and nonpharmacological (physical exercise) therapies. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs), especially eicosapentaenoic acid (EPA) and docosahexaenoic acid, are recognized for their anti-inflammatory properties and have been used in therapeutic approaches to treat or attenuate cancer cachexia. In this review, we discuss recent findings on cellular and molecular mechanisms involved in inflammation in the cancer cachexia syndrome and the effectiveness of n-3 PUFAs to attenuate or prevent cancer cachexia.
Collapse
Affiliation(s)
- Renata Gorjao
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | | | | | | | | | - Elaine Hatanaka
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil
| | | | - Fábio Takeo Sato
- Institute of Biology, State University of Campinas, Campinas, Brazil; School of Biomedical Sciences, Monash University, Melbourne, Australia
| | | | | | - Rui Curi
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Sandro Massao Hirabara
- Institute of Physical Activity Sciences and Sports, Cruzeiro do Sul University, Sao Paulo, Brazil; Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, Brazil.
| |
Collapse
|
8
|
Farngren J, Persson M, Ahrén B. Effects on the glucagon response to hypoglycaemia during DPP-4 inhibition in elderly subjects with type 2 diabetes: A randomized, placebo-controlled study. Diabetes Obes Metab 2018; 20:1911-1920. [PMID: 29645341 DOI: 10.1111/dom.13316] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 03/28/2018] [Accepted: 04/01/2018] [Indexed: 12/19/2022]
Abstract
AIMS Maintainance of glucagon response to hypoglycaemia is important as a safeguard against hypoglycaemia during glucose-lowering therapy in type 2 diabetes. During recent years, DPP-4 (dipeptidyl peptidase-4) inhibition has become more commonly used in elderly patients. However, whether DPP-4 inhibition affects the glucagon response to hypoglycaemia in the elderly is not known and was the aim of this study. METHODS In a single-centre, double-blind, randomized, placebo-controlled crossover study, 28 subjects with metformin-treated type 2 diabetes (17 male, 11 female; mean age, 74 years [range 65-86]; mean HbA1c, 51.5 mmol/mol [6.9%]) received sitagliptin (100 mg once daily) as add-on therapy or placebo for 4 weeks with a 4-week washout period in between. After each treatment period, the subjects underwent a standard breakfast test, followed by a 2-step hyperinsulinaemic hypoglycaemic clamp (target 3.5 and 3.0 mmol/L), followed by lunch. RESULTS Glucagon levels after breakfast and lunch, and the glucagon response at 3.5 mmol/L, were lower after sitagliptin than after placebo. However, the glucagon response to hypoglycaemia at 3.1 mmol/L did not differ significantly between the two. Similarly, the noradrenaline, adrenaline and cortisol responses were lower with sitagliptin than with placebo at 3.5 mmol/L, but not at 3.1 mmol/L glucose. Responses in pancreatic polypeptide did not differ between the two. CONCLUSIONS Elderly subjects with metformin-treated type 2 diabetes have lower glucagon levels at 3.5 mmol/L glucose, but maintain the glucagon response to hypoglycaemia at 3.1 mmol/L during DPP-4 inhibition, which safeguards against hypoglycaemia and may contribute to decreasing the risk of hypoglycaemia by DPP-4 inhibition in this age group.
Collapse
Affiliation(s)
- Johan Farngren
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| | | | - Bo Ahrén
- Department of Clinical Sciences Lund, Lund University, Lund, Sweden
| |
Collapse
|
9
|
Moscardó V, Bondia J, Ampudia-Blasco FJ, Fanelli CG, Lucidi P, Rossetti P. Plasma Insulin Levels and Hypoglycemia Affect Subcutaneous Interstitial Glucose Concentration. Diabetes Technol Ther 2018; 20:263-273. [PMID: 29638161 DOI: 10.1089/dia.2017.0219] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Continuous glucose monitoring (CGM) accuracy during hypoglycemia is suboptimal. This might be partly explained by insulin or hypoglycemia-induced changes in the plasma interstitial subcutaneous (SC) fluid glucose gradient. The aim of the present study was to assess the role of plasma insulin (PI) and hypoglycemia itself in the plasma and interstitial SC fluid glucose concentration in patients with type 1 diabetes mellitus. METHODS Eleven subjects with type 1 diabetes (age 36.5 ± 9.1 years, HbA1c 7.9 ± 0.4% [62.8 ± 2.02 mmol/mol]; mean ± standard deviation) were evaluated under hyperinsulinemic euglycemia and hypoglycemia. Each subject underwent two randomized crossover clamps with either a primed 0.3 (low insulin) or 1 mU/(kg·min) (high insulin) insulin infusion. The raw CGM signal was normalized with median preclamp values to obtain a standardized measure of the interstitial glucose (IG) concentration before statistical analysis. RESULTS The mean PI concentration was greater in high insulin studies (HISs) versus low insulin studies (LISs) (412.89 ± 13.63 vs. 177.22 ± 10.05 pmol/L). During hypoglycemia, glucagon, adrenaline, free fatty acids, glycerol, and beta-OH-butyrate were higher in the LIS (P < 0.0001). Likewise, the IG concentration was significantly different (P < 0.0001). This was due to lower IG concentration than plasma glucose (PG) concentration during the euglycemic hyperinsulinemic phases in the HIS. In contrast, no difference was observed during hypoglycemia. This was the result of an unchanged PG/IG gradient during the entire LIS, while in the HIS, this gradient increased during the hyperinsulinemic euglycemia phase. CONCLUSION Both PI levels and hypoglycemia affect the relationship between IG and PG concentration. ClinicalTrials.gov Identifier: NCT01714895.
Collapse
Affiliation(s)
- Vanessa Moscardó
- 1 Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València , València, Spain
| | - Jorge Bondia
- 1 Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València , València, Spain
- 2 Centro de Investigación Biomédica en Red de Diabetes y Enfermadades Metabólicas Asociadas (CIBERDEM) , Madrid, Spain
| | - Francisco J Ampudia-Blasco
- 2 Centro de Investigación Biomédica en Red de Diabetes y Enfermadades Metabólicas Asociadas (CIBERDEM) , Madrid, Spain
- 3 Department of Medicine, University of Valencia , Valencia, Spain
- 4 Department of Endocrinology and Nutrition, Clinic University Hospital of Valencia , Valencia, Spain
| | - Carmine G Fanelli
- 5 Clinica di Medicina Interna e Scienze Endocrine e Metaboliche, University Hospital Santa Maria della Misericordia, Perugia University School of Medicine , Perugia, Italy
| | - Paola Lucidi
- 5 Clinica di Medicina Interna e Scienze Endocrine e Metaboliche, University Hospital Santa Maria della Misericordia, Perugia University School of Medicine , Perugia, Italy
| | - Paolo Rossetti
- 2 Centro de Investigación Biomédica en Red de Diabetes y Enfermadades Metabólicas Asociadas (CIBERDEM) , Madrid, Spain
- 6 Department of Internal Medicine, Francesc de Borja Hospital , Gandia, Spain
| |
Collapse
|
10
|
Damrau C, Toshima N, Tanimura T, Brembs B, Colomb J. Octopamine and Tyramine Contribute Separately to the Counter-Regulatory Response to Sugar Deficit in Drosophila. Front Syst Neurosci 2018; 11:100. [PMID: 29379421 PMCID: PMC5775261 DOI: 10.3389/fnsys.2017.00100] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 12/22/2017] [Indexed: 11/13/2022] Open
Abstract
All animals constantly negotiate external with internal demands before and during action selection. Energy homeostasis is a major internal factor biasing action selection. For instance, in addition to physiologically regulating carbohydrate mobilization, starvation-induced sugar shortage also biases action selection toward food-seeking and food consumption behaviors (the counter-regulatory response). Biogenic amines are often involved when such widespread behavioral biases need to be orchestrated. In mammals, norepinephrine (noradrenalin) is involved in the counterregulatory response to starvation-induced drops in glucose levels. The invertebrate homolog of noradrenalin, octopamine (OA) and its precursor tyramine (TA) are neuromodulators operating in many different neuronal and physiological processes. Tyrosine-ß-hydroxylase (tßh) mutants are unable to convert TA into OA. We hypothesized that tßh mutant flies may be aberrant in some or all of the counter-regulatory responses to starvation and that techniques restoring gene function or amine signaling may elucidate potential mechanisms and sites of action. Corroborating our hypothesis, starved mutants show a reduced sugar response and their hemolymph sugar concentration is elevated compared to control flies. When starved, they survive longer. Temporally controlled rescue experiments revealed an action of the OA/TA-system during the sugar response, while spatially controlled rescue experiments suggest actions also outside of the nervous system. Additionally, the analysis of two OA- and four TA-receptor mutants suggests an involvement of both receptor types in the animals' physiological and neuronal response to starvation. These results complement the investigations in Apis mellifera described in our companion paper (Buckemüller et al., 2017).
Collapse
Affiliation(s)
- Christine Damrau
- Neurobiologie, Fachbereich Biologie-Chemie-Pharmazie, Institut für Biologie - Neurobiologie, Freie Universität Berlin, Berlin, Germany
| | - Naoko Toshima
- Division of Biological Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Teiichi Tanimura
- Division of Biological Sciences, Graduate School of Systems Life Sciences, Kyushu University, Fukuoka, Japan
| | - Björn Brembs
- Neurobiologie, Fachbereich Biologie-Chemie-Pharmazie, Institut für Biologie - Neurobiologie, Freie Universität Berlin, Berlin, Germany.,Institute of Zoology - Neurogenetics, University of Regensburg, Regensburg, Germany
| | - Julien Colomb
- Neurobiologie, Fachbereich Biologie-Chemie-Pharmazie, Institut für Biologie - Neurobiologie, Freie Universität Berlin, Berlin, Germany
| |
Collapse
|
11
|
Contreras GA, Strieder-Barboza C, De Koster J. Symposium review: Modulating adipose tissue lipolysis and remodeling to improve immune function during the transition period and early lactation of dairy cows. J Dairy Sci 2017; 101:2737-2752. [PMID: 29102145 DOI: 10.3168/jds.2017-13340] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Accepted: 08/27/2017] [Indexed: 11/19/2022]
Abstract
Despite major advances in our understanding of transition and early lactation cow physiology and the use of advanced dietary, medical, and management tools, at least half of early lactation cows are reported to develop disease and over half of cow deaths occur during the first week of lactation. Excessive lipolysis, usually measured as plasma concentrations of free fatty acids (FFA), is a major risk factor for the development of displaced abomasum, ketosis, fatty liver, and metritis, and may also lead to poor lactation performance. Lipolysis triggers adipose tissue (AT) remodeling that is characterized by enhanced humoral and cell-mediated inflammatory responses and changes in its distribution of cellular populations and extracellular matrix composition. Uncontrolled AT inflammation could perpetuate lipolysis, as we have observed in cows with displaced abomasum, especially in those animals with genetic predisposition for excessive lipolysis responses. Efficient transition cow management ensures a moderate rate of lipolysis that is rapidly reduced as lactation progresses. Limiting FFA release from AT benefits immune function as several FFA are known to promote dysregulation of inflammation. Adequate formulation of pre- and postpartum diet reduces the intensity of AT lipolysis. Additionally, supplementation with niacin, monensin, and rumen-protected methyl donors (choline and methionine) during the transition period is reported to minimize FFA release into systemic circulation. Targeted supplementation of energy sources during early lactation improves energy balance and increases insulin concentration, which limits AT lipolytic responses. This review elaborates on the mechanisms by which uncontrolled lipolysis triggers inflammatory disorders. Details on current nutritional and pharmacological interventions that aid the modulation of FFA release from AT and their effect on immune function are provided. Understanding the inherent characteristics of AT biology in transition and early lactation cows will reduce disease incidence and improve lactation performance.
Collapse
Affiliation(s)
- G Andres Contreras
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824.
| | | | - Jenne De Koster
- Department of Large Animal Clinical Sciences, Michigan State University, East Lansing 48824
| |
Collapse
|
12
|
Lourbopoulos A, Mamrak U, Roth S, Balbi M, Shrouder J, Liesz A, Hellal F, Plesnila N. Inadequate food and water intake determine mortality following stroke in mice. J Cereb Blood Flow Metab 2017; 37:2084-2097. [PMID: 27449604 PMCID: PMC5464703 DOI: 10.1177/0271678x16660986] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Experimental stroke models producing clinically relevant functional deficits are often associated with high mortality. Because the mechanisms that underlie post-stroke mortality are largely unknown, results obtained using these models are often difficult to interpret, thereby limiting their translational potential. Given that specific forms of post-stroke care reduce mortality in patients, we hypothesized that inadequate food and water intake may underlie mortality following experimental stroke. C57BL/6 mice were subjected to 1 h of intraluminal filament middle cerebral artery occlusion. Nutritional support beginning on the second day after filament middle cerebral artery occlusion reduced the 14-day mortality rate from 59% to 15%. The surviving mice in the post-stroke support group had the same infarct size as non-surviving control mice, suggesting that post-stroke care was not neuroprotective and that inadequate food and/or water intake are the main reasons for filament middle cerebral artery occlusion-induced mortality. This notion was supported by the presence of significant hypoglycemia, ketonemia, and dehydration in control mice. Taken together, these data suggest that post-filament middle cerebral artery occlusion mortality in mice is not primarily caused by ischemic brain damage, but secondarily by inadequate food and/or water intake. Thus, providing nutritional support following filament middle cerebral artery occlusion greatly minimizes mortality bias and allows the study of long-term morphological and functional sequelae of stroke in mice.
Collapse
Affiliation(s)
- Athanasios Lourbopoulos
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Uta Mamrak
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Stefan Roth
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Matilde Balbi
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Joshua Shrouder
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Arthur Liesz
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany.,2 Munich Cluster for Systems Neurology (Synergy), LMU Munich, Munich, Germany
| | - Farida Hellal
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany
| | - Nikolaus Plesnila
- 1 Laboratory of Experimental Stroke Research, Institute for Stroke and Dementia Research (ISD), University of Munich Medical Center, Munich, Germany.,2 Munich Cluster for Systems Neurology (Synergy), LMU Munich, Munich, Germany
| |
Collapse
|
13
|
Ratman D, Mylka V, Bougarne N, Pawlak M, Caron S, Hennuyer N, Paumelle R, De Cauwer L, Thommis J, Rider MH, Libert C, Lievens S, Tavernier J, Staels B, De Bosscher K. Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα. Nucleic Acids Res 2016; 44:10539-10553. [PMID: 27576532 PMCID: PMC5159533 DOI: 10.1093/nar/gkw742] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 08/08/2016] [Accepted: 08/15/2016] [Indexed: 12/21/2022] Open
Abstract
Adaptation to fasting involves both Glucocorticoid Receptor (GRα) and Peroxisome Proliferator-Activated Receptor α (PPARα) activation. Given both receptors can physically interact we investigated the possibility of a genome-wide cross-talk between activated GR and PPARα, using ChIP- and RNA-seq in primary hepatocytes. Our data reveal extensive chromatin co-localization of both factors with cooperative induction of genes controlling lipid/glucose metabolism. Key GR/PPAR co-controlled genes switched from transcriptional antagonism to cooperativity when moving from short to prolonged hepatocyte fasting, a phenomenon coinciding with gene promoter recruitment of phosphorylated AMP-activated protein kinase (AMPK) and blocked by its pharmacological inhibition. In vitro interaction studies support trimeric complex formation between GR, PPARα and phospho-AMPK. Long-term fasting in mice showed enhanced phosphorylation of liver AMPK and GRα Ser211. Phospho-AMPK chromatin recruitment at liver target genes, observed upon prolonged fasting in mice, is dampened by refeeding. Taken together, our results identify phospho-AMPK as a molecular switch able to cooperate with nuclear receptors at the chromatin level and reveal a novel adaptation mechanism to prolonged fasting.
Collapse
Affiliation(s)
- Dariusz Ratman
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Viacheslav Mylka
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Nadia Bougarne
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Michal Pawlak
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Sandrine Caron
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Nathalie Hennuyer
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Réjane Paumelle
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France
| | - Lode De Cauwer
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Jonathan Thommis
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium.,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| | - Mark H Rider
- de Duve Institute and Université catholique de Louvain, 1200 Brussels, Belgium
| | - Claude Libert
- Inflammation Research Center, VIB, 9052 Ghent, Belgium.,Department of Biomedical Molecular Biology, Ghent University, 9052 Ghent, Belgium
| | - Sam Lievens
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium.,Receptor Research Laboratories, Cytokine Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium
| | - Jan Tavernier
- Department of Biochemistry, Ghent University, 9000 Ghent, Belgium.,Receptor Research Laboratories, Cytokine Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium
| | - Bart Staels
- UNIV LILLE, 59000 Lille, France.,INSERM UMR 1011, 59000 Lille, France.,European Genomic Institute for Diabetes E.G.I.D., FR 3508, 59000 Lille, France.,Institut Pasteur de Lille, 59000 Lille, France.,CHU Lille, Department of Biology, 59000 Lille, France
| | - Karolien De Bosscher
- Receptor Research Laboratories, Nuclear Receptor Lab, Medical Biotechnology Center, VIB, 9000 Ghent, Belgium .,Department of Biochemistry, Ghent University, 9000 Ghent, Belgium
| |
Collapse
|
14
|
Verberne AJM, Korim WS, Sabetghadam A, Llewellyn-Smith IJ. Adrenaline: insights into its metabolic roles in hypoglycaemia and diabetes. Br J Pharmacol 2016; 173:1425-37. [PMID: 26896587 DOI: 10.1111/bph.13458] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2015] [Revised: 01/20/2016] [Accepted: 02/11/2016] [Indexed: 01/05/2023] Open
Abstract
Adrenaline is a hormone that has profound actions on the cardiovascular system and is also a mediator of the fight-or-flight response. Adrenaline is now increasingly recognized as an important metabolic hormone that helps mobilize energy stores in the form of glucose and free fatty acids in preparation for physical activity or for recovery from hypoglycaemia. Recovery from hypoglycaemia is termed counter-regulation and involves the suppression of endogenous insulin secretion, activation of glucagon secretion from pancreatic α-cells and activation of adrenaline secretion. Secretion of adrenaline is controlled by presympathetic neurons in the rostroventrolateral medulla, which are, in turn, under the control of central and/or peripheral glucose-sensing neurons. Adrenaline is particularly important for counter-regulation in individuals with type 1 (insulin-dependent) diabetes because these patients do not produce endogenous insulin and also lose their ability to secrete glucagon soon after diagnosis. Type 1 diabetic patients are therefore critically dependent on adrenaline for restoration of normoglycaemia and attenuation or loss of this response in the hypoglycaemia unawareness condition can have serious, sometimes fatal, consequences. Understanding the neural control of hypoglycaemia-induced adrenaline secretion is likely to identify new therapeutic targets for treating this potentially life-threatening condition.
Collapse
Affiliation(s)
- A J M Verberne
- Clinical Pharmacology and Therapeutics Unit, Department of Medicine, Austin Health, University of Melbourne, Heidelberg, VIC, Australia
| | - W S Korim
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - A Sabetghadam
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, Australia
| | - I J Llewellyn-Smith
- Cardiovascular Medicine and Human Physiology, Flinders University, Bedford Park, SA, Australia
| |
Collapse
|
15
|
Farhy LS, McCall AL. Optimizing reduction in basal hyperglucagonaemia to repair defective glucagon counterregulation in insulin deficiency. Diabetes Obes Metab 2011; 13 Suppl 1:133-43. [PMID: 21824267 PMCID: PMC3289058 DOI: 10.1111/j.1463-1326.2011.01455.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
In health, the pancreatic islet cells work as a network with highly co-ordinated signals over time to balance glycaemia within a narrow range. In type 1 diabetes (T1DM), with autoimmune destruction of the β-cells, lack of insulin is considered the primary abnormality and is the primary therapy target. However, replacing insulin alone does not achieve adequate glucose control and recent studies have focused on controlling the endogenous glucagon release as well. In T1DM, glucagon secretion is disordered but not absolutely deficient; it may be excessive postprandially yet it is characteristically insufficient and delayed in response to hypoglycaemia. We review our system-level analysis of the pancreatic endocrine network mechanisms of glucagon counterregulation (GCR) and their dysregulation in T1DM and focus on possible use of α-cell inhibitors (ACIs) to manipulate the glucagon axis to repair the defective GCR. Our results indicate that the GCR abnormalities are of 'network origin'. The lack of β-cell signalling is the primary deficiency that contributes to two separate network abnormalities: (i) absence of a β-cell switch-off trigger and (ii) increased intraislet basal glucagon. A strategy to repair these abnormalities with ACI is proposed, which could achieve better control of glycaemia with reduced hypoglycaemia risk.
Collapse
Affiliation(s)
- Leon S. Farhy
- Department of Medicine, PO Box 800735, University of Virginia, Charlottesville, Virginia, 22908, 434-924-2496, 434-982-3878 (fax)
| | - Anthony L. McCall
- Departments of Medicine, PO Box 801407, University of Virginia, Charlottesville, Virginia, 22908, 434-243-9373, 434-982-3796 (fax)
| |
Collapse
|
16
|
Farhy LS, McCall AL. Models of glucagon secretion, their application to the analysis of the defects in glucagon counterregulation and potential extension to approximate glucagon action. J Diabetes Sci Technol 2010; 4:1345-56. [PMID: 21129329 PMCID: PMC3005044 DOI: 10.1177/193229681000400608] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
This review analyzes an interdisciplinary approach to the pancreatic endocrine network-like relationships that control glucagon secretion and glucagon counterregulation (GCR). Using in silico studies, we show that a pancreatic feedback network that brings together several explicit interactions between islet peptides and blood glucose reproduces the normal GCR axis and explains its impairment in diabetes. An α-cell auto-feedback loop drives glucagon pulsatility and mediates triggering of GCR by hypoglycemia by a rapid switch-off of β-cell signals. The auto-feedback explains the enhancement of defective GCR in β-cell deficiency by a switch-off of signals in the pancreas that suppress α cells. Our models also predict that reduced β-cell activity decreases and delays the GCR. A key application of our models is the in silico simulation and testing of possible scenarios to repair defective GCR in β-cell deficiency. In particular, we predict that partial suppression of hyperglucagonemia may repair the impaired GCR. We also outline how the models can be extended and tested using human data to become a part of a larger construct including the regulation of the hepatic glucose output by the pancreas, circulating glucose, and incretins. In conclusion, a model of the normal GCR control mechanisms and their dysregulation in insulin-deficient diabetes is proposed and partially validated. The model components are clinically measurable, which permits its application to the study of the abnormalities of the human endocrine pancreas and their role in the progression of many diseases, including diabetes, metabolic syndrome, polycystic ovary syndrome, and others. It may also be used to examine therapeutic responses.
Collapse
Affiliation(s)
- Leon S Farhy
- Department of Medicine, Center for Biomathematical Technology, University of Virginia, Charlottesville, Virginia 22908, USA.
| | | |
Collapse
|
17
|
Lucidi P, Rossetti P, Porcellati F, Pampanelli S, Candeloro P, Andreoli AM, Perriello G, Bolli GB, Fanelli CG. Mechanisms of insulin resistance after insulin-induced hypoglycemia in humans: the role of lipolysis. Diabetes 2010; 59:1349-57. [PMID: 20299466 PMCID: PMC2874695 DOI: 10.2337/db09-0745] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
OBJECTIVE Changes in glucose metabolism occurring during counterregulation are, in part, mediated by increased plasma free fatty acids (FFAs), as a result of hypoglycemia-activated lipolysis. However, it is not known whether FFA plays a role in the development of posthypoglycemic insulin resistance as well. RESEARCH DESIGN AND METHODS We conducted a series of studies in eight healthy volunteers using acipimox, an inhibitor of lipolysis. Insulin action was measured during a 2-h hyperinsulinemic-euglycemic clamp (plasma glucose [PG] 5.1 mmo/l) from 5:00 p.m. to 7:00 p.m. or after a 3-h morning hyperinsulinemic-glucose clamp (from 10 a.m. to 1:00 p.m.), either euglycemic (study 1) or hypoglycemic (PG 3.2 mmol/l, studies 2-4), during which FFA levels were allowed to increase (study 2), were suppressed by acipimox (study 3), or were replaced by infusing lipids (study 4). [6,6-(2)H(2)]-Glucose was infused to measure glucose fluxes. RESULTS Plasma adrenaline, norepinephrine, growth hormone, and cortisol levels were unchanged (P > 0.2). Glucose infusion rates (GIRs) during the euglycemic clamp were reduced by morning hypoglycemia in study 2 versus study 1 (16.8 +/- 2.3 vs. 34.1 +/- 2.2 micromol/kg/min, respectively, P < 0.001). The effect was largely removed by blockade of lipolysis during hypoglycemia in study 3 (28.9 +/- 2.6 micromol/kg/min, P > 0.2 vs. study 1) and largely reproduced by replacement of FFA in study 4 (22.3 +/- 2.8 micromol/kg/min, P < 0.03 vs. study 1). Compared with study 2, blockade of lipolysis in study 3 decreased endogenous glucose production (2 +/- 0.3 vs. 0.85 +/- 0.1 micromol/kg/min, P < 0.05) and increased glucose utilization (16.9 +/- 1.85 vs. 28.5 +/- 2.7 micromol/kg/min, P < 0.05). In study 4, GIR fell by approximately 23% (22.3 +/- 2.8 micromol/kg/min, vs. study 3, P = 0.058), indicating a role of acipimox per se on insulin action. CONCLUSION Lipolysis induced by hypoglycemia counterregulation largely mediates posthypoglycemic insulin resistance in healthy subjects, with an estimated overall contribution of approximately 39%.
Collapse
Affiliation(s)
- Paola Lucidi
- From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Paolo Rossetti
- From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Francesca Porcellati
- From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Simone Pampanelli
- From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Paola Candeloro
- From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Anna Marinelli Andreoli
- From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Gabriele Perriello
- From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| | - Geremia B. Bolli
- From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy
- Corresponding author: Geremia B. Bolli,
| | - Carmine G. Fanelli
- From the Department of Internal Medicine, Section of Internal Medicine, Endocrinology and Metabolism, University of Perugia, Perugia, Italy
| |
Collapse
|
18
|
Balbo M, Leproult R, Van Cauter E. Impact of sleep and its disturbances on hypothalamo-pituitary-adrenal axis activity. Int J Endocrinol 2010; 2010:759234. [PMID: 20628523 PMCID: PMC2902103 DOI: 10.1155/2010/759234] [Citation(s) in RCA: 194] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2009] [Accepted: 03/27/2010] [Indexed: 11/25/2022] Open
Abstract
The daily rhythm of cortisol secretion is relatively stable and primarily under the influence of the circadian clock. Nevertheless, several other factors affect hypothalamo-pituitary-adrenal (HPA) axis activity. Sleep has modest but clearly detectable modulatory effects on HPA axis activity. Sleep onset exerts an inhibitory effect on cortisol secretion while awakenings and sleep offset are accompanied by cortisol stimulation. During waking, an association between cortisol secretory bursts and indices of central arousal has also been detected. Abrupt shifts of the sleep period induce a profound disruption in the daily cortisol rhythm, while sleep deprivation and/or reduced sleep quality seem to result in a modest but functionally important activation of the axis. HPA hyperactivity is clearly associated with metabolic, cognitive and psychiatric disorders and could be involved in the well-documented associations between sleep disturbances and the risk of obesity, diabetes and cognitive dysfunction. Several clinical syndromes, such as insomnia, depression, Cushing's syndrome, sleep disordered breathing (SDB) display HPA hyperactivity, disturbed sleep, psychiatric and metabolic impairments. Further research to delineate the functional links between sleep and HPA axis activity is needed to fully understand the pathophysiology of these syndromes and to develop adequate strategies of prevention and treatment.
Collapse
Affiliation(s)
- Marcella Balbo
- Sleep, Chronobiology and Neuroendocrinology Research Laboratory, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Rachel Leproult
- Sleep, Chronobiology and Neuroendocrinology Research Laboratory, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Eve Van Cauter
- Sleep, Chronobiology and Neuroendocrinology Research Laboratory, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
- *Eve Van Cauter:
| |
Collapse
|
19
|
Rex A, Bert B, Fink H, Voigt JP. Stimulus-dependent changes of extracellular glucose in the rat hippocampus determined by in vivo microdialysis. Physiol Behav 2009; 98:467-73. [PMID: 19660483 DOI: 10.1016/j.physbeh.2009.07.015] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2009] [Revised: 07/21/2009] [Accepted: 07/27/2009] [Indexed: 02/02/2023]
Abstract
Neuronal activity is tightly coupled with brain energy metabolism; and glucose is an important energy substrate for neurons. The present in vivo microdialysis study was aimed at investigating changes in extracellular glucose concentrations in the rat ventral hippocampus due to exposure to the elevated plus maze. Determination of basal hippocampal glucose and lactate/pyruvate ratio in male Wistar rats was conducted in the home cage using in vivo microdialysis. Rats were exposed to the elevated plus maze, a rodent model of anxiety-related behaviour, or to unspecific stress induced by white noise (95dB) as a control condition. Basal hippocampal levels of glucose, as determined by zero-net-flux, and the basal lactate/pyruvate ratio were 1.49+/-0.05mmol/l and 13.8+/-1.1, respectively. In rats without manipulation, glucose levels remained constant throughout the experiment (120min). By contrast, exposure to the elevated plus maze led to a temporary decline in hippocampal glucose (-33.2+/-4.4%) which returned to baseline level in the home cage. White noise caused only a non-significant decrease in extracellular glucose level (-9.3+/-3.5%). In all groups, the lactate/pyruvate ratio remained unchanged by the experimental procedures. Our microdialysis study demonstrates that exposure to the elevated plus maze induces a transient decrease in extracellular hippocampal glucose concentration. In contrast, an unspecific stimulus did not change hippocampal glucose. The latter suggests that only specific behavioural stimuli increase hippocampal glucose utilization in the ventral hippocampus.
Collapse
Affiliation(s)
- A Rex
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, 14195 Berlin, Germany.
| | | | | | | |
Collapse
|
20
|
Benedict C, Kern W, Schmid SM, Schultes B, Born J, Hallschmid M. Early morning rise in hypothalamic-pituitary-adrenal activity: a role for maintaining the brain's energy balance. Psychoneuroendocrinology 2009; 34:455-62. [PMID: 19038501 DOI: 10.1016/j.psyneuen.2008.10.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2008] [Revised: 10/10/2008] [Accepted: 10/13/2008] [Indexed: 11/26/2022]
Abstract
A profound rise in secretory activity in the early morning hours hallmarks the circadian regulation of the hypothalamic-pituitary-adrenal (HPA) stress axis. Functions and mechanisms underlying this regulation are barely understood. We tested the hypothesis that the early morning rise in HPA axis activity originates in part from a negative energy balance due to nocturnal fasting and concomitant increases in cerebral glucose demands. According to a 2x2 design, healthy men were infused with glucose (4.5mg/kgmin, 2300-0700h) and saline, respectively, during nocturnal sleep (n=9) or wakefulness (n=11). Circulating concentrations of ACTH, cortisol, glucose, insulin, and leptin were measured and food consumption in the next morning was assessed. Independent of sleep, glucose infusion reduced levels of ACTH (P<0.01) and cortisol (P<0.02) during the second night half. In the Sleep group, glucose infusion enhanced rapid eye movement (REM) sleep at the expense of sleep stage 2 (each P<0.05). Glucose infusion increased leptin levels in both groups (P<0.005) and reduced morning food intake in the Wake (P<0.02) but not in the Sleep group (P>0.46). Our findings support the view that increasing energy demands of the brain towards the end of the night essentially contribute to the early morning rise in HPA axis activity. Sleep is not critically involved in this glucose-glucocorticoid feedback loop but may reduce the brain's sensitivity to the anorexigenic effect of enhanced glucose supply.
Collapse
Affiliation(s)
- Christian Benedict
- Department of Neuroendocrinology, University of Lübeck, Ratzeburger Allee 160, 23538 Lübeck, Germany.
| | | | | | | | | | | |
Collapse
|
21
|
Farhy LS, McCall AL. Pancreatic network control of glucagon secretion and counterregulation. Methods Enzymol 2009; 467:547-581. [PMID: 19897107 PMCID: PMC3072828 DOI: 10.1016/s0076-6879(09)67021-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Glucagon counterregulation (GCR) is a key protection against hypoglycemia compromised in insulinopenic diabetes by an unknown mechanism. In this work, we present an interdisciplinary approach to the analysis of the GCR control mechanisms. Our results indicate that a pancreatic network which unifies a few explicit interactions between the major islet peptides and blood glucose (BG) can replicate the normal GCR axis and explain its impairment in diabetes. A key and novel component of this network is an alpha-cell auto-feedback, which drives glucagon pulsatility and mediates triggering of pulsatile GCR by hypoglycemia via a switch-off of the beta-cell suppression of the alpha-cells. We have performed simulations based on our models of the endocrine pancreas which explain the in vivo GCR response to hypoglycemia of the normal pancreas and the enhancement of defective pulsatile GCR in beta-cell deficiency by switch-off of intrapancreatic alpha-cell suppressing signals. The models also predicted that reduced insulin secretion decreases and delays the GCR. In conclusion, based on experimental data we have developed and validated a model of the normal GCR control mechanisms and their dysregulation in insulin deficient diabetes. One advantage of this construct is that all model components are clinically measurable, thereby permitting its transfer, validation, and application to the study of the GCR abnormalities of the human endocrine pancreas in vivo.
Collapse
Affiliation(s)
- Leon S. Farhy
- Departments of Medicine, Center for Biomathematical Technology, Center, Box 800735, University of Virginia, Charlottesville, Virginia, 22908, 434-924-2496, 434-982-3878 (fax),
| | - Anthony L. McCall
- Departments of Medicine, Center, Box 801407, University of Virginia, Charlottesville, Virginia, 22908, 434-243-9373, 434-982-3796 (fax),
| |
Collapse
|
22
|
Gonzales JC, Gentile CL, Pfaffenbach KT, Wei Y, Wang D, Pagliassotti MJ. Chemical induction of the unfolded protein response in the liver increases glucose production and is activated during insulin-induced hypoglycaemia in rats. Diabetologia 2008; 51:1920-9. [PMID: 18651128 PMCID: PMC2597049 DOI: 10.1007/s00125-008-1094-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2008] [Accepted: 06/06/2008] [Indexed: 01/28/2023]
Abstract
AIMS/HYPOTHESIS Endoplasmic reticulum (ER) stress and the unfolded protein response (UPR) can regulate insulin secretion, insulin action and in vitro hepatocyte glucose release. The aims of this study were to determine whether chemical agents that induce ER stress regulate glucose production in vivo and to identify a physiological setting in which this may be important. METHODS A pancreatic clamp test was performed in anaesthetised rats, and insulin and glucagon were replaced at basal levels. [6,6-(2)H(2)]Glucose was infused in the absence (CON, n = 10) or presence of ER stress-inducing agents, namely, tunicamycin (Tun, n = 10) or thapsigargin (Thap, n = 10). RESULTS Arterial insulin, glucagon, corticosterone and NEFA concentrations were constant throughout experiments and not different among groups. After 1 h, the glucose concentration was significantly increased in Tun and Thap rats (1.5 +/- 0.2 and 2.1 +/- 0.3 mmol/l, respectively; mean +/- SD), but did not change in CON rats. Glucose production increased (p < 0.05) by 11.0 +/- 1.6 and 13.2 +/- 2.2 micromol kg(-1) min(-1) in Tun and Thap rats, respectively, but did not change in CON rats. When glucose was infused in a fourth group (HYPER) to match the increase in glucose observed in the Tun and Thap rats, glucose production decreased by approximately 22 micromol kg(-1) min(-1). Liver phosphorylase activity was increased and glycogen decreased in the Tun and Thap groups compared with the CON and HYPER groups. Given that glucose deprivation induces ER stress in cells, we hypothesised that hypoglycaemia, a condition that elicits increased glucose production, would activate the UPR in the liver. Three hour hyperinsulinaemic (5 mU kg(-1) min(-1)) -euglycaemic (EUG, approximately 7.2 mmol/l, n = 6) or -hypoglycaemic (HYPO, approximately 2.8 mmol/l, n = 6) clamps were performed in conscious rats. Several biochemical markers of the UPR were significantly increased in the liver, but not in kidney or pancreas, in HYPO vs EUG rats. CONCLUSIONS/INTERPRETATION Based on our findings that the chemical induction of the UPR increased glucose production and that prolonged hypoglycaemia activated the UPR in the liver, we propose that the UPR in the liver may contribute to the regulation of glucose production during prolonged hypoglycaemia.
Collapse
Affiliation(s)
- J. C. Gonzales
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, USA
| | - C. L. Gentile
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
| | - K. T. Pfaffenbach
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
| | - Y. Wei
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
| | - D. Wang
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA
| | - M. J. Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, Gifford 234, Fort Collins, CO 80523-1571, USA, e-mail:
| |
Collapse
|
23
|
Nozdrachev AD, Telushkin PK. Liver glucose-6-phosphatase activity and blood fatty acid level in rats with insulin-induced hypoglycemia. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2008; 422:294-295. [PMID: 19024674 DOI: 10.1134/s0012496608050037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Affiliation(s)
- A D Nozdrachev
- St. Petersburg State University, Universitetskaya nab. 7, St. Petersburg 199034, Russia
| | | |
Collapse
|
24
|
Rossetti P, Porcellati F, Busciantella Ricci N, Candeloro P, Cioli P, Nair KS, Santeusanio F, Bolli GB, Fanelli CG. Effect of oral amino acids on counterregulatory responses and cognitive function during insulin-induced hypoglycemia in nondiabetic and type 1 diabetic people. Diabetes 2008; 57:1905-17. [PMID: 18390791 PMCID: PMC2453632 DOI: 10.2337/db08-0276] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/26/2008] [Accepted: 03/28/2008] [Indexed: 01/25/2023]
Abstract
OBJECTIVE Amino acids stimulate glucagon responses to hypoglycemia and may be utilized by the brain. The aim of this study was to assess the responses to hypoglycemia in nondiabetic and type 1 diabetic subjects after ingestion of an amino acid mixture. RESEARCH DESIGN AND METHODS Ten nondiabetic and 10 diabetic type 1 subjects were studied on three different occasions during intravenous insulin (2 mU . kg(-1) . min(-1)) plus variable glucose for 160 min. In two studies, clamped hypoglycemia (47 mg/dl plasma glucose for 40 min) was induced and either oral placebo or an amino acid mixture (42 g) was given at 30 min. In the third study, amino acids were given, but euglycemia was maintained. RESULTS Plasma glucose and insulin were no different in the hypoglycemia studies with both placebo and amino acids (P > 0.2). After the amino acid mixture, plasma amino acid concentrations increased to levels observed after a mixed meal (2.4 +/- 0.13 vs. placebo study 1.7 +/- 0.1 mmol/l, P = 0.02). During clamped euglycemia, ingestion of amino acids resulted in transient increases in glucagon concentrations, which returned to basal by the end of the study. During clamped hypoglycemia, glucagon response was sustained and increased more in amino acid studies versus placebo in nondiabetic and diabetic subjects (P < 0.05), but other counter-regulatory hormones and total symptom score were not different. Beta-OH-butyrate was less suppressed after amino acids (200 +/- 15 vs. 93 +/- 9 micromol/l, P = 0.01). Among the cognitive tests administered, the following indicated less deterioration after amino acids than placebo: Trail-Making part B, PASAT (Paced Auditory Serial Addition Test) (2 s), digit span forward, Stroop colored words, and verbal memory tests for nondiabetic subjects; and Trail-Making part B, digit span backward, and Stroop color tests for diabetic subjects. CONCLUSIONS Oral amino acids improve cognitive function in response to hypoglycemia and enhance the response of glucagon in nondiabetic and diabetic subjects.
Collapse
Affiliation(s)
- Paolo Rossetti
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | | | | | - Paola Candeloro
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | - Patrizia Cioli
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | | | | | - Geremia B. Bolli
- Department of Internal Medicine, University of Perugia, Perugia, Italy
| | | |
Collapse
|
25
|
Soros A, Zadik Z, Chalew S. Adaptive and maladaptive cortisol responses to pediatric obesity. Med Hypotheses 2008; 71:394-8. [PMID: 18547740 DOI: 10.1016/j.mehy.2008.04.020] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2008] [Revised: 04/11/2008] [Accepted: 04/17/2008] [Indexed: 01/25/2023]
Abstract
The recent unprecedented increase of childhood obesity has led to an alarming rise in type 2 diabetes mellitus (T2D) among these children. The process underlying the progression from simple obesity to T2D is not well understood. Cortisol is a candidate factor in the pathogenesis of T2D, as it can exacerbate insulin resistance and provoke other disturbances of the metabolic syndrome. The 24-h integrated concentration (IC) of cortisol is suppressed in non-diabetic obese children compared to lean children. This difference in IC-cortisol is not due to changes in cortisol binding globulin or plasma cortisol to cortisone ratio between groups. In obese individuals, IC-cortisol suppression disappears with age after adolescence, which corresponds with increasing occurrence of T2D and other metabolic disorders of obesity. We consider the IC-cortisol levels of lean insulin sensitive children to be metabolically inappropriate for obese insulin resistant children. Thus, we hypothesize that suppression of IC-cortisol is an important adaptive response to obesity (cortisol adaptive suppression) in childhood that prevents pediatric T2D while failure to suppress IC-cortisol (cortisol suppression failure) exacerbates insulin resistance and contributes to the development of T2D. In further support of this hypothesis is early pilot data suggesting that cortisol suppression failure occurs in obese children with impaired fasting glucose levels. The mechanism(s) underlying cortisol adaptive suppression, how and why these mechanism(s) fail are unknown. Elucidation of these mechanisms may lead to interventions to prevent the development of T2D and its complications in obese individuals.
Collapse
Affiliation(s)
- Arlette Soros
- Pediatric Endocrinology, Department of Pediatrics, Louisiana State University Health Sciences Center and the Children's Hospital of New Orleans, New Orleans, LA 70118, United States
| | | | | |
Collapse
|
26
|
Telushkin PK, Nozdrachev AD, Potapov PP. Parameters of energy and nitrogen metabolism in rats under insulin-induced hypoglycemia. BIOL BULL+ 2008. [DOI: 10.1134/s1062359008030084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Koivikko ML, Karsikas M, Salmela PI, Tapanainen JS, Ruokonen A, Seppänen T, Huikuri HV, Perkiömäki JS. Effects of controlled hypoglycaemia on cardiac repolarisation in patients with type 1 diabetes. Diabetologia 2008; 51:426-35. [PMID: 18097646 DOI: 10.1007/s00125-007-0902-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2007] [Accepted: 10/31/2007] [Indexed: 10/22/2022]
Abstract
AIMS/HYPOTHESIS Nocturnal hypoglycaemia may contribute to sudden death in diabetic patients. However, it is not well known why hypoglycaemia makes these patients prone to death. METHODS We assessed the effects of controlled hypoglycaemia on cardiac repolarisation using novel electrocardiographic descriptors of T-wave and QRS complex morphology in 16 type 1 diabetic patients and eight healthy counterparts. Several electrocardiographic variables characterising repolarisation were analysed from digitised 12-lead electrocardiograms during a euglycaemic and a hypoglycaemic clamp. RESULTS Hypoglycaemia did not result in significant changes either in the QT interval corrected for heart rate by the nomogram method or in QT dispersion. However, the morphology of the T-wave changed significantly during hypoglycaemia. The T-wave amplitude and area in precordial leads decreased significantly in both groups (p<0.05 to p<0.001). The spatial QRS-T angle (total cosine R to T) (p<0.05) and the height and the width of the T-wave loop (p<0.05 and p<0.01, respectively) were also reduced in the diabetic patients. The changes in the repolarisation parameters did not exhibit any significant association with changes in catecholamine levels or in heart rate variability in either group. CONCLUSIONS/INTERPRETATION Hypoglycaemia results in distinct alterations in cardiac repolarisation, which may increase the vulnerability to arrhythmic events.
Collapse
Affiliation(s)
- M L Koivikko
- Department of Internal Medicine, University of Oulu, P.O. Box 5000, (Kajaanintie 50), 90014 Oulu, Finland
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Insulin & C-peptide levels in sulfonylurea-induced hypoglycemia: a systematic review. J Med Toxicol 2008; 3:107-18. [PMID: 18072146 DOI: 10.1007/bf03160920] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
OBJECTIVES We will describe insulin and C-peptide levels observed in sulfonylurea-induced hypoglycemia and determine whether these levels differed if obtained before or after hypoglycemic therapy. METHODS We performed a systematic review of the English literature to identify Medline articles containing "sets" (glucose <60 mg/dL with insulin and C-peptide levels). These "sets" were categorized as being obtained BEFORE, AFTER, or UNKNOWN with respect to hypoglycemic therapy. RESULTS 22 articles, 76 patients, and 97 "sets" were included. Mean glucose (mg/dL), insulin (muIU/mL), and C-peptide (ng/mL) for all "sets' were 28.6 (+/-12.6; 26.1 to 31.2), 54.4 (+/-126.3; 28.3 to 80.5), 7.2 (+/-6.2; 5.9 to 8.5). The BEFORE measures were 24.3 (+/-7.3; 18.7 to 30.0), 36.6 (+/-26.2; 16.5 to 56.7), 5.4 (+/-4.6; 1.5 to 9.2). The AFTER measures were 33.1 (+/-9.8; 28.2 to 38.0), 126.7 (+/-278.1; 0 to 265.0), 10.3 (+/-10.5; 5.1 to 15.4). The UNKNOWN measures were 28.0 (+/-13.5; 24.7 to 31.3), 37.1 (+/-21.8; 31.7 to 42.5), 6.5 (+/-4.3; 5.4 to 7.6). Only one "set" (glucose 49 mg/dL) had insulin <3.9 muIU/mL and C-peptide <1.4 ng/mL. CONCLUSIONS Insulin > or =3.9 muIU/mL, C-peptide > or =1.4 ng/mL, and glucose <49 mg/dl are consistent with sulfonylurea-induced hypoglycemia. BEFORE levels were lower, but they were consistent with sulfonylurea-induced hypoglycemia.
Collapse
|
29
|
Abstract
Our understanding of the many different causes of hypoglycemia has vastly expanded in recent years. Most hypoglycemic disorders in infants and children are due to defects in the metabolic systems involved in fasting adaptation or the hormone control of these systems. As a result of these defects, infants and children have an abnormal adaptation to fasting, which results in hypoglycemia. The "critical sample" allows one to assess the integrity of the fasting systems when hypoglycemic. An understanding of the pathophysiology of these disorders establishes a foundation for a rational approach in evaluating the etiology of the hypoglycemia and developing the most appropriate management plan.
Collapse
Affiliation(s)
- Francis M Hoe
- The Children's Hospital, 13123 East 16th Avenue, B265, University of Colorado, Denver, USA.
| |
Collapse
|
30
|
Fleming A, Rosenberg L. Prospects and challenges for islet regeneration as a treatment for diabetes: a review of islet neogenesis associated protein. J Diabetes Sci Technol 2007; 1:231-44. [PMID: 19888412 PMCID: PMC2771469 DOI: 10.1177/193229680700100214] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Diabetes mellitus results from inadequate insulin action, which can be viewed as a consequence of the limited ability to restore beta cells after they are lost as the result of metabolic exhaustion, autoimmune destruction, or surgical insult. Arguably, a uniformly effective therapeutic pathway to address all forms of diabetes would be to reverse the restrictions on beta-cell and islet regeneration. The development from progenitor cells of islets with normal endocrine function does occur in adult humans; it is referred to as islet neogenesis. The induction of islet neogenesis is an important, if not essential, therapeutic approach for curing type 1 diabetes mellitus (T1DM) and could be valuable in the treatment of type 2 diabetes mellitus (T2DM) as well. Islet neogenesis associated protein (INGAP) is the first therapeutic candidate to be identified as the result of a purposeful search for an endogenous molecule with islet neogenic activity. It was found that partial obstruction of the pancreatic duct in hamsters induced islet neogenesis; under this condition, a neogenesis-promoting activity was identified and partially purified from a soluble tissue fraction. A 168-kDa protein product of the cloned gene was found to be responsible for the neogenesis activity. This molecule named INGAP contains an active core sequence of amino acids called INGAP peptide. Results from in vitro, animal, and human studies suggest that INGAP and INGAP peptide are neogenic in at least several vertebrate species, including humans. INGAP has since been found to be a member of the family of Reg proteins, which are found across and in multiple versions within species and are closely associated with embryonic and regenerative processes. Clinical results suggest that INGAP peptide can be a suitable neogenesis therapy, but optimization of the therapy and more data are required to fully access this potential. Understanding of the signaling pathways of INGAP and other related Reg proteins is a promising means of advancing therapeutic development for people with T1DM and T2DM. The quest for the fundamental restorative approach to lost insulin secretion is an enticing target for drug development.
Collapse
Affiliation(s)
- Alexander Fleming
- Kinexum Metabolics, Inc., Harpers Ferry, West Virginia, and formerly Supervisory Medical Officer, Division of Metabolic and Endocrine Drug Products, Food and Drug Administration, Montréal, Québec, Canada
| | - Lawrence Rosenberg
- Department of Surgery, McGill University, and Centre for Pancreatic Diseases, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| |
Collapse
|
31
|
Porcellati F, Pampanelli S, Rossetti P, Busciantella Ricci N, Marzotti S, Lucidi P, Santeusanio F, Bolli GB, Fanelli CG. Effect of the amino acid alanine on glucagon secretion in non-diabetic and type 1 diabetic subjects during hyperinsulinaemic euglycaemia, hypoglycaemia and post-hypoglycaemic hyperglycaemia. Diabetologia 2007; 50:422-30. [PMID: 17160672 DOI: 10.1007/s00125-006-0519-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2006] [Accepted: 09/18/2006] [Indexed: 11/25/2022]
Abstract
AIMS/HYPOTHESIS The aim of our study was to establish whether the well-known defective or absent secretion of glucagon in type 1 diabetes in response to hypoglycaemia is selective or includes lack of responses to other stimuli, such as amino acids. MATERIALS AND METHODS Responses of glucagon to hypoglycaemia were measured in eight patients with type 1 diabetes and six non-diabetic subjects during hyperinsulinaemic (insulin infusion 0.5 mU kg(-1) min(-1)) and eu-, hypo- and hyperglycaemic clamp studies (sequential steps of plasma glucose 5.0, 2.9, 5.0, 10 mmol/l). Subjects were studied on three randomised occasions with infusion of low- or high-dose alanine, or saline. RESULTS With saline, glucagon increased in hypoglycaemia in non-diabetic subjects but not in diabetic subjects. Glucagon increased further with low-dose (181 +/- 16 ng l(-1) min(-1)) and high-dose alanine (238 +/- 20 ng l(-1) min(-1)) in non-diabetic subjects, but only with high-dose alanine in diabetic subjects (area under curve 112 +/- 5 ng l(-1) min(-1)). The alanine-induced glucagon increase in diabetic subjects paralleled the spontaneous glucagon response to hypoglycaemia in non-diabetic subjects not receiving alanine. The greater responses of glucagon to hypoglycaemia with alanine infusion were offset by recovery of eu- or hyperglycaemia. CONCLUSIONS/INTERPRETATION In type 1 diabetes, the usually deficient responses of glucagon to hypoglycaemia may improve after increasing the concentration of plasma amino acids. Amino acid-enhanced secretion of glucagon in response to hypoglycaemia remains under physiological control since it is regulated primarily by the ambient plasma glucose concentration. These findings might be relevant to improving counter-regulatory defences against insulin-induced hypoglycaemia in type 1 diabetes.
Collapse
Affiliation(s)
- F Porcellati
- Department of Internal Medicine, University of Perugia, Via E. Dal Pozzo, 06126, Perugia, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Gromada J, Franklin I, Wollheim CB. Alpha-cells of the endocrine pancreas: 35 years of research but the enigma remains. Endocr Rev 2007; 28:84-116. [PMID: 17261637 DOI: 10.1210/er.2006-0007] [Citation(s) in RCA: 424] [Impact Index Per Article: 24.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Glucagon, a hormone secreted from the alpha-cells of the endocrine pancreas, is critical for blood glucose homeostasis. It is the major counterpart to insulin and is released during hypoglycemia to induce hepatic glucose output. The control of glucagon secretion is multifactorial and involves direct effects of nutrients on alpha-cell stimulus-secretion coupling as well as paracrine regulation by insulin and zinc and other factors secreted from neighboring beta- and delta-cells within the islet of Langerhans. Glucagon secretion is also regulated by circulating hormones and the autonomic nervous system. In this review, we describe the components of the alpha-cell stimulus secretion coupling and how nutrient metabolism in the alpha-cell leads to changes in glucagon secretion. The islet cell composition and organization are described in different species and serve as a basis for understanding how the numerous paracrine, hormonal, and nervous signals fine-tune glucagon secretion under different physiological conditions. We also highlight the pathophysiology of the alpha-cell and how hyperglucagonemia represents an important component of the metabolic abnormalities associated with diabetes mellitus. Therapeutic inhibition of glucagon action in patients with type 2 diabetes remains an exciting prospect.
Collapse
Affiliation(s)
- Jesper Gromada
- Novartis Institutes for BioMedical Research, 100 Technology Square, Cambridge, Massachusetts 02139, USA.
| | | | | |
Collapse
|
33
|
Huber J, Reiterer EE, Sudi K, Gallistl S, Friedl K, Weinhandl G, Aigner R, Borkenstein MH. Ghrelin does not regulate the GH response to insulin-induced hypoglycaemia in children but could be involved in the regulation of cortisol secretion. Clin Endocrinol (Oxf) 2007; 66:143-7. [PMID: 17201814 DOI: 10.1111/j.1365-2265.2006.02701.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
OBJECTIVE Ghrelin activates the growth hormone secretagogue receptor GHS-R. It strongly stimulates GH secretion and has a role in energy homeostasis. The relationship between plasma ghrelin and cortisol levels during insulin-induced hypoglycaemia in prepubertal and pubertal children has not yet been investigated. The aim of the present study was to establish whether insulin-induced hypoglycaemia stimulates ghrelin secretion and whether changes in ghrelin concentrations are related to changes in GH and cortisol in children. DESIGN AND PATIENTS We studied a group of 20 children and adolescents (five girls, 15 boys, mean age 10.8 +/- 3.7 years) undergoing insulin tolerance tests (ITTs) for clinical investigation of GH deficiency. MEASUREMENTS Stimulation tests were performed to investigate the relationship between ghrelin, GH, cortisol and glucose levels according to age and pubertal stage by determining the ghrelin profiles during insulin-induced hypoglycaemia (at 0, 60 and 120 min). RESULTS Ghrelin was significantly and inversely related to body weight, height, body mass index (BMI) and age of children (P < 0.05). Significant changes in ghrelin levels (P = 0.00013) were found after the insulin bolus, with a decline at 60 min and an increase to baseline values at 120 min. Changes in cortisol levels were negatively correlated with changes in ghrelin at 60 min (r = -0.59, P = 0.004) and at 120 min (r = -0.605, P = 0.003). CONCLUSIONS This study shows that ghrelin might not regulate the GH response to insulin-induced hypoglycaemia in prepubertal and pubertal children. A role for ghrelin in the regulation of cortisol secretion can be hypothesized concerning the negative correlation between changes in ghrelin and cortisol. Furthermore, the results imply that ghrelin secretion is age dependent and is a function of growth.
Collapse
Affiliation(s)
- J Huber
- Department of Paediatrics, Division of Endocrinology and Diabetes, Medical University Graz, Austria
| | | | | | | | | | | | | | | |
Collapse
|
34
|
Mayer CH, Fink H, Rex A, Voigt JP. Changes in extracellular hypothalamic glucose in relation to feeding. Eur J Neurosci 2006; 24:1695-701. [PMID: 17004933 DOI: 10.1111/j.1460-9568.2006.05042.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
The aim of the present in vivo microdialysis study was to investigate the relation between feeding and changes in glucose concentrations in the rat ventromedial hypothalamus (VMH). Absolute ambient glucose concentrations in VMH were 1.43 mm in non-deprived rats as compared to 0.94 mm after 24-h food deprivation. To examine whether feeding influences hypothalamic glucose, changes of glucose concentration over time were determined relative to a baseline. Experiments were conducted in relation to both, nutritional state (food-deprived rats vs. non-deprived rats) and feeding conditions throughout the experiment (freely feeding rats vs. rats without access to food). The results of this microdialysis study show clearly that glucose concentration in the VMH of rats increases significantly in relation to food intake. The data demonstrate that a 24-h food deprivation before the experiment further augments this increase (up to 350% from baseline) as compared to non-deprived conditions (up to 60% from baseline). However, the magnitude of food related increase in VMH glucose does not correlate with the individual amount of food eaten. In conclusion, the present study shows for the first time that VMH glucose concentrations increase with food intake in the early dark phase, indicating that such changes do not only occur after pharmacological treatment, but also under physiological feeding conditions. The results further indicate that the feeding related increase in VMH glucose depends on the nutritional state of the organism.
Collapse
Affiliation(s)
- C H Mayer
- Institute of Pharmacology and Toxicology, School of Veterinary Medicine, Freie Universität Berlin, Koserstr. 20, D-14195 Berlin, Germany
| | | | | | | |
Collapse
|
35
|
Lysy J, Israeli E, Strauss-Liviatan N, Goldin E. Relationships between hypoglycaemia and gastric emptying abnormalities in insulin-treated diabetic patients. Neurogastroenterol Motil 2006; 18:433-40. [PMID: 16700722 DOI: 10.1111/j.1365-2982.2006.00800.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
We hypothesize that hypoglycaemia in insulin-treated diabetic patients may result from gastric emptying abnormalities causing insulin and food absorption mismatching. We tested gastric emptying in insulin-treated diabetic patients with unexplained hypoglycaemia and without dyspepsia and in diabetic patients without hypoglycaemia, prospectively. Thirty-one diabetic patients with unexplained hypoglycaemic events within 2 h of insulin injection and 18 insulin-treated diabetic patients without hypoglycaemic events underwent gastric emptying breath tests, glycaemic control and autonomic nerve function. Gastric emptying tests were abnormal in 26 (83.9%) and in four (22.2%) patients with and without hypoglycaemia, respectively (P < 0.001). Gastric emptying was significantly slower in hypoglycaemic diabetic patients (t1/2 139.9 +/- 74.1 vs 77.8 +/- 23.3 and t(lag) 95.8 +/- 80.3 vs 32.84 +/- 16.95 min, P < 0.001 for both comparisons; t-tests). A significant association between hypoglycaemic patients and abnormal values of t1/2 and t(lag) was found (P < 0.001). Gastric emptying abnormalities were more frequent in hypoglycaemic patients. We suggest gastric emptying tests for diabetic patients with unexplained hypoglycaemic events.
Collapse
Affiliation(s)
- J Lysy
- Department of Gastroenterology, Hadassah University Hospital, Hebrew University School of Medicine, Jerusalem, Israel
| | | | | | | |
Collapse
|
36
|
Radikova Z, Penesova A, Cizmarova E, Huckova M, Kvetnansky R, Vigas M, Koska J. Decreased pituitary response to insulin-induced hypoglycaemia in young lean male patients with essential hypertension. J Hum Hypertens 2006; 20:510-6. [PMID: 16617309 DOI: 10.1038/sj.jhh.1002026] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Essential hypertension is associated with changes in central catecholaminergic pathways which might also be reflected in the pituitary response to stress stimuli. The aim of this study was to determine whether the response of pituitary hormones, cortisol, plasma renin activity, aldosterone and catecholamines to insulin-induced hypoglycaemia is changed in hypertension. We studied 22 young lean male patients with newly diagnosed untreated essential hypertension and 19 healthy normotensive, age- and body mass index (BMI)-matched controls. All subjects underwent an insulin tolerance test (0.1 IU insulin/kg body weight intravenously) with blood sampling before and 15, 30, 45, 60 and 90 min after insulin administration. Increased baseline levels of norepinephrine (P<0.05), increased response of norepinephrine (P<0.001) and decreased response of growth hormone (P<0.001), prolactin (P<0.001), adrenocorticotropic hormone (P<0.05) and cortisol (P<0.001) were found in hypertensive patients when compared to normotensive controls. Increased norepinephrine levels and a decreased pituitary response to metabolic stress stimuli may represent another manifestation of chronically increased sympathetic tone in early hypertension.
Collapse
Affiliation(s)
- Z Radikova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
37
|
Muñoz A, Hu M, Hussain K, Bryan J, Aguilar-Bryan L, Rajan AS. Regulation of glucagon secretion at low glucose concentrations: evidence for adenosine triphosphate-sensitive potassium channel involvement. Endocrinology 2005; 146:5514-21. [PMID: 16123162 DOI: 10.1210/en.2005-0637] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Glucagon is a potent counterregulatory hormone that opposes the action of insulin in controlling glycemia. The cellular mechanisms by which pancreatic alpha-cell glucagon secretion occurs in response to hypoglycemia are poorly known. SUR1/K(IR)6.2-type ATP-sensitive K(+) (K(ATP)) channels have been implicated in the glucagon counterregulatory response at central and peripheral levels, but their role is not well understood. In this study, we examined hypoglycemia-induced glucagon secretion in vitro in isolated islets and in vivo using Sur1KO mice lacking neuroendocrine-type K(ATP) channels and paired wild-type (WT) controls. Sur1KO mice fed ad libitum have normal glucagon levels and mobilize hepatic glycogen in response to exogenous glucagon but exhibit a blunted glucagon response to insulin-induced hypoglycemia. Glucagon release from Sur1KO and WT islets is increased at 2.8 mmol/liter glucose and suppressed by increasing glucose concentrations. WT islets increase glucagon secretion approximately 20-fold when challenged with 0.1 mmol/liter glucose vs. approximately 2.7-fold for Sur1KO islets. Glucagon release requires Ca(2+) and is inhibited by nifedipine. Consistent with a regulatory interaction between K(ATP) channels and intra-islet zinc-insulin, WT islets exhibit an inverse correlation between beta-cell secretion and glucagon release. Glibenclamide stimulated insulin secretion and reduced glucagon release in WT islets but was without effect on secretion from Sur1KO islets. The results indicate that loss of alpha-cell K(ATP) channels uncouples glucagon release from inhibition by beta-cells and reveals a role for K(ATP) channels in the regulation of glucagon release by low glucose.
Collapse
Affiliation(s)
- Alvaro Muñoz
- Departments of Medicine, Baylor College of Medicine, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
38
|
de Vries MG, Lawson MA, Beverly JL. Hypoglycemia-induced noradrenergic activation in the VMH is a result of decreased ambient glucose. Am J Physiol Regul Integr Comp Physiol 2005; 289:R977-81. [PMID: 16183631 DOI: 10.1152/ajpregu.00403.2005] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
During insulin-induced hypoglycemia, there is an increase in extracellular norepinephrine (NE) in the ventromedial hypothalamus (VMH). This brain area is known to play an important role in integrated hormonal and behavioral responses to systemic hypoglycemia. Selective glucoprivation restricted to the VMH is both necessary and sufficient to initiate secretion of counterregulatory hormones. The present study was designed to investigate whether increased release of NE in the VMH depends on detection of glucoprivation localized in this area. In awake, chronically catheterized male Sprague-Dawley rats, extracellular NE in the VMH was monitored using 1-mm microdialysis probes perfused with Krebs Ringer buffer (KRB) or KRB + 100 mM d-glucose (d-Glc). During insulin-induced hypoglycemia (glycemic nadir approximately 2.4 mM) extracellular NE was increased to >160% of baseline (P < 0.01) only in the KRB + insulin group. There was no increase in NE from baseline when glucose was added to the perfusate to maintain euglycemia at the periprobe environment. The sympathoadrenal response to hypoglycemia, present in the KRB + insulin group, was attenuated in the d-Glc + insulin group. The present results confirm that noradrenergic activation in the VMH during systemic hypoglycemia depends on detection of glucoprivation locally in this area. These data provide additional support for the importance of increased noradrenergic activity in the VMH in the counterregulatory hormonal responses to hypoglycemia.
Collapse
Affiliation(s)
- Martin G de Vries
- University of Illinois at Urbana-Champaign, 1207 W. Gregory Dr., Urbana, IL 61801, USA
| | | | | |
Collapse
|
39
|
Abstract
Spontaneous hypoglycaemia is not a diagnosis, but a manifestation of a disease process. It is important to recognize spontaneous hypoglycaemia, as treatment may be preventative or curative. It is equally important to avoid mislabelling healthy individuals as having hypoglycaemia as this may have a negative impact on the quality of life and use of scarce health-care resources.
Collapse
Affiliation(s)
- M J Griffiths
- Department of Clinical Chemistry, New Cross Hospital, Wolverhampton, West Midlands
| | | |
Collapse
|
40
|
Koivikko ML, Salmela PI, Airaksinen KEJ, Tapanainen JS, Ruokonen A, Mäkikallio TH, Huikuri HV. Effects of sustained insulin-induced hypoglycemia on cardiovascular autonomic regulation in type 1 diabetes. Diabetes 2005; 54:744-50. [PMID: 15734851 DOI: 10.2337/diabetes.54.3.744] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Effects of hypoglycemia on cardiac autonomic regulation may contribute to the occurrence of adverse cardiac events. This study assessed the effects of sustained hyperinsulinemic hypoglycemia on cardiovascular autonomic regulation in type 1 diabetic patients and their nondiabetic counterparts. The study consisted of 16 type 1 diabetic patients and 8 age-matched healthy control subjects who underwent euglycemic and hypoglycemic clamp procedures in a random order. Heart rate variability was measured from continuous electrocardiogram recordings by time and frequency domain methods, along with Poincare plot analysis during both a hyperinsulinemic-euglycemic and hypoglycemic clamp at three different glucose levels (4.5-5.5, 3.0-3.5, and 2.0-2.5 mmol/l). Controlled hypoglycemia resulted in an increase of supine heart rate in both the diabetic patients (from 72 +/- 9 to 80 +/- 11 bpm, P < 0.01) and the control subjects (from 59 +/- 5 to 65 +/- 5 bpm, P < 0.05) and progressive reductions of the high-frequency spectral component and beat-to-beat heart rate variability (SD1; P < 0.05 in the diabetic patients and P < 0.01 in control subjects). No significant changes in heart rate variability occurred during the euglycemic clamp. We conclude that hypoglycemia results in a reduction of cardiac vagal outflow in both diabetic and nondiabetic subjects. Altered autonomic regulation may contribute to the occurrence of cardiac events during hypoglycemia.
Collapse
Affiliation(s)
- Minna L Koivikko
- Department of Internal Medicine, University of Oulu, P.O. Box 5000 (Kajaanintie 50), FIN-90014 University of Oulu, Finland
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
The insulin receptor (IR) is expressed in various regions of the developing and adult brain, and its functions have become the focus of recent research. Insulin enters the central nervous system (CNS) through the blood-brain barrier by receptor-mediated transport to regulate food intake, sympathetic activity and peripheral insulin action through the inhibition of hepatic gluconeogenesis and reproductive endocrinology. On a molecular level, some of the effects of insulin converge with those of the leptin signaling machinery at the point of activation of phosphatidylinositol 3-kinase (PI3K), resulting in the regulation of ATP-dependent potassium channels. Furthermore, insulin inhibits neuronal apoptosis via activation of protein kinase B in vitro, and it regulates phosphorylation of tau, metabolism of the amyloid precursor protein and clearance of beta-amyloid from the brain in vivo. These findings indicate that neuronal IR signaling has a direct role in the link between energy homeostasis, reproduction and the development of neurodegenerative diseases.
Collapse
Affiliation(s)
- Leona Plum
- Institute for Genetics and Center for Molecular Medicine Cologne, Department of Mouse Genetics and Metabolism, University of Cologne, Weyertal 121, 50931 Cologne, Germany
| | | | | |
Collapse
|
42
|
Gremlich S, Nolan C, Roduit R, Burcelin R, Peyot ML, Delghingaro-Augusto V, Desvergne B, Michalik L, Prentki M, Wahli W. Pancreatic islet adaptation to fasting is dependent on peroxisome proliferator-activated receptor alpha transcriptional up-regulation of fatty acid oxidation. Endocrinology 2005; 146:375-82. [PMID: 15459119 DOI: 10.1210/en.2004-0667] [Citation(s) in RCA: 76] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The cellular response to fasting and starvation in tissues such as heart, skeletal muscle, and liver requires peroxisome proliferator-activated receptor-alpha (PPARalpha)-dependent up-regulation of energy metabolism toward fatty acid oxidation (FAO). PPARalpha null (PPARalphaKO) mice develop hyperinsulinemic hypoglycemia in the fasting state, and we previously showed that PPARalpha expression is increased in islets at low glucose. On this basis, we hypothesized that enhanced PPARalpha expression and FAO, via depletion of lipid-signaling molecule(s) for insulin exocytosis, are also involved in the normal adaptive response of the islet to fasting. Fasted PPARalphaKO mice compared with wild-type mice had supranormal ip glucose tolerance due to increased plasma insulin levels. Isolated islets from the PPARalpha null mice had a 44% reduction in FAO, normal glucose use and oxidation, and enhanced glucose-induced insulin secretion. In normal rats, fasting for 24 h increased islet PPARalpha, carnitine palmitoyltransferase 1, and uncoupling protein-2 mRNA expression by 60%, 62%, and 82%, respectively. The data are consistent with the view that PPARalpha, via transcriptionally up-regulating islet FAO, can reduce insulin secretion, and that this mechanism is involved in the normal physiological response of the pancreatic islet to fasting such that hypoglycemia is avoided.
Collapse
Affiliation(s)
- Sandrine Gremlich
- Center for Integrative Genomics, University of Lausanne, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Jackson L, Williams FLR, Burchell A, Coughtrie MWH, Hume R. Plasma catecholamines and the counterregulatory responses to hypoglycemia in infants: a critical role for epinephrine and cortisol. J Clin Endocrinol Metab 2004; 89:6251-6. [PMID: 15579785 DOI: 10.1210/jc.2004-0550] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
The purpose of this study was to define plasma catecholamine responses as part of the counterregulatory hormonal reaction to hypoglycemia in infants after a regular 3- to 4-h feed was omitted. Hormone levels were assessed once, at the end of the fast or at hypoglycemia. The 121 infants were subdivided into three groups for analysis: normoglycemia (n = 94, 78%); transient hypoglycemia (n = 11, 9%); or severe and persistent hypoglycemia (n = 16, 13%). The severe and persistent hypoglycemic group had significantly higher levels of cortisol and epinephrine than the normoglycemic group. Norepinephrine and glucagon levels did not differ between the groups. Human GH levels were higher in the transiently hypoglycemic group but not in the severe and persistent hypoglycemic group. Prefeed blood lactate levels differed significantly among the groups and were highest in the severe and persistent groups. Multiple regression analysis showed that cortisol levels were significantly higher in infants who had severe and persistent hypoglycemia. The counterregulatory hormonal response in infants to severe and persistent hypoglycemia was limited to elevations in only cortisol and epinephrine levels but did not involve glucagon or human GH. This limited hormonal response may also contribute to the frequent occurrence of hypoglycemia in these infants.
Collapse
Affiliation(s)
- Lesley Jackson
- Maternal and Child Health Sciences, University of Dundee, Dundee DD1 9SY, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
44
|
Pia A, Piovesan A, Tassone F, Razzore P, Visconti G, Magro G, Cesario F, Terzolo M, Borretta G. A rare case of adulthood-onset growth hormone deficiency presenting as sporadic, symptomatic hypoglycemia. J Endocrinol Invest 2004; 27:1060-4. [PMID: 15754739 DOI: 10.1007/bf03345310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
Abstract
Symptomatic hypoglycemia is described in children with severe GH deficiency (GHD), but is rare in adults with GHD. We describe the case of a 62- yr-old man, referred for recurrent hypoglycemic events. He reported a previous head trauma at the age of 20 yr and a diagnosis of reactive hypoglycemia at the age of 50 yr. In the last months, during a period of job-related stress, the hypoglycemic episodes became more frequent and severe (glucose <2.2 mmol/l), finally requiring hospitalization. On admission, the patient was in good general health, with normal renal and hepatic function. During hospitalization, no hypoglycemic episodes were recorded, also during a 72-h fasting test. Biochemical data and abdominal computed tomography (CT) excluded insulinoma. A tumor-induced hypoglycemia was ruled out. The 4-h oral glucose tolerance test (OGTT) showed an impaired glucose tolerance with a tendency toward asymptomatic hypoglycemia. Hormonal study disclosed low levels of GH (0.2 ng/ml) and IGF-I (51 ng/ml); the response of GH to GHRH plus arginine confirmed a severe GHD (GH peak 2.7 ng/ml). Other pituitary and counterregulation hormones were within the normal range and magnetic resonance imaging (MRI) of the pituitary gland was normal. Replacement therapy with a low dose of rhGH induced an increase of IGF-I up to low-normal values, accompanied by lasting regression of hypoglycemic events. In conclusion, hypoglycemia was the main clinical symptom of isolated adult onset GHD, in the present case. The possible pathogenesis of isolated adult onset GHD and the association of GHD with conditions predisposing to hypoglycemia are considered and discussed.
Collapse
Affiliation(s)
- A Pia
- Division of Endocrinology and Metabolism, University of Turin, S. Luigi, Orbassano, Turin, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
45
|
Imrich R, Rovensky J, Zlnay M, Radikova Z, Macho L, Vigas M, Koska J. Hypothalamic-pituitary-adrenal axis function in ankylosing spondylitis. Ann Rheum Dis 2004; 63:671-4. [PMID: 15140773 PMCID: PMC1755016 DOI: 10.1136/ard.2003.006940] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
OBJECTIVE To assess basal function and responsiveness of the hypothalamic-pituitary-adrenal (HPA) axis in patients with ankylosing spondylitis during dynamic testing. METHODS Insulin induced hypoglycaemia (IIH) (Actrapid HM 0.1 IU/kg, as intravenous bolus) was induced in 17 patients and 11 healthy controls matched for age, sex, and body mass index. Concentrations of glucose, adrenocorticotrophic hormone (ACTH), cortisol, insulin, dehydroepiandrosterone sulphate (DHEAS), 17alpha-hydroxyprogesterone, interleukin 6 (IL-6), and tumour necrosis factor alpha (TNFalpha) were determined in plasma. RESULTS Comparable basal cortisol levels were found in the two groups, with a trend to be lower in ankylosing spondylitis. In the ankylosing spondylitis group, there were higher concentrations of IL-6 (mean (SEM): 16.6 (2.8) pg/ml v 1.41 (0.66) pg/ml in controls; p<0.001) and TNFalpha (8.5 (1.74) pg/ml v 4.08 (0.42) pg/ml in controls; p<0.01). Glucose, insulin, ACTH, DHEAS, and 17alpha-hydroxyprogesterone did not differ significantly from control. The IIH test was carried out successfully in 11 of the 17 patients with ankylosing spondylitis, and the ACTH and cortisol responses were comparable with control. General linear modelling showed a different course of glycaemia (p = 0.041) in the ankylosing spondylitis patients who met the criteria for a successful IIH test compared with the controls. CONCLUSIONS The results suggest there is no difference in basal HPA axis activity and completely preserved responsiveness of the HPA axis in patients with ankylosing spondylitis. The interpretation of the different course of glycaemia during IIH in ankylosing spondylitis requires further investigation.
Collapse
Affiliation(s)
- R Imrich
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovakia.
| | | | | | | | | | | | | |
Collapse
|
46
|
Ksinantová L, Koska J, Martinkovic M, Vigas M, Macho L, Kvetnansky R. Effects of Space Flight and −6° Bed Rest on the Neuroendocrine Response to Metabolic Stress in Physically Fit Subjects. Ann N Y Acad Sci 2004; 1018:562-8. [PMID: 15240415 DOI: 10.1196/annals.1296.069] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
The aim of this study was to evaluate the association of plasma epinephrine (EPI) and norepinephrine (NE) responses to insulin-induced hypoglycemia (ITT) 3 weeks before the space flight (SF), on the fifth day of SF, on days 2 and 16 after landing in the first Slovak astronaut, and before and on the fifth day of prolonged bed rest (BR) in 15 military aircraft pilots, aged 33.5 +/- 1.4 years, body mass index (BMI) 26.5 +/- 0.7 kg/m(2), maximal oxygen uptake (VO(2max)) 55.2 +/- 2.4 mL/kg/min, who volunteered for the study. ITT was induced by i.v. administrations of 0.1 IU/kg body weight insulin (Actrapid HM) in a bolus. Insulin administration led to a comparable hypoglycemia in preflight, actual flight conditions, and before and after bed rest. ITT led to a pronounced increase in EPI levels and moderate increase in NE in preflight studies. However, an evidently reduced plasma elevation of EPI was found after insulin administration during SF and during BR. Thus, during the real microgravity in SF and simulated microgravity in BR, ITT activates the adrenomedullary system to less extent that at conditions of the Earth's gravitation. Post-flight changes in EPI and NE did not differ from those of preflight values, since SF was relatively short (8 days) and the readaptation to Earth's gravitation was fast. It seems that an increased blood flow in brain might be responsible for the reduced EPI response to insulin. Responses to ITT in physically fit subjects indicate the stimulus specificity of the deconditioning effect of 5 days of bed rest on the stress response.
Collapse
Affiliation(s)
- Lucia Ksinantová
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Vlarska 3, 833 06 Bratislava, Slovak Republic.
| | | | | | | | | | | |
Collapse
|
47
|
Heptulla RA, Allen HF, Gross TM, Reiter EO. Continuous glucose monitoring in children with type 1 diabetes: before and after insulin pump therapy. Pediatr Diabetes 2004; 5:10-5. [PMID: 15043684 DOI: 10.1111/j.1399-543x.2004.00035.x] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
OBJECTIVE The aim of continuous subcutaneous insulin infusion (CSII) therapy in patients with type 1 diabetes mellitus (T1DM) is to mimic as closely as possible the normal physiologic pattern seen in individuals without diabetes. This study was undertaken to determine the specific areas of improved glycemic control in subjects after initiation of insulin pump therapy and times where further improvement is needed. RESEARCH DESIGN AND METHODS Eight patients with T1DM (age 7.5-17 yr) wore the Continuous Glucose Monitoring System (CGMS) (Medtronic MiniMed, Northridge, CA, USA) for 3 d before and 3 months after initiation of insulin pump therapy. The CGMS, which measures inter- stitial glucose concentrations every 5 min for a 72-h period, was used to evaluate glucose profiles. Patients entered 4-5 fingerstick blood glucose measurements daily into the sensor for calibration. Detailed logs of food intake, exercise, and hypoglycemic symptoms were also recorded. RESULTS Hemoglobin A1c (HbA1C) was reduced (p < 0.007) following 3 months of insulin pump therapy. Post-CSII continuous glucose profiles demonstrated an overall improvement in hourly mean glucose over a 24-h period (p < 0.001) as well as a reduction in the area under the curve for glucose (27 +/- 4 prepump vs. 8.6 +/- 1.4 mg/dL/d postpump, p < 0.004). This improvement was a result of an attenuation of the maximal postprandial glycemic excursions. Postbreakfast 349 +/- 24 vs. 267 +/- 16 mg/dL, p < 0.003; lunch 340 +/- 16 vs. 217 +/- 20 mg/dL, p < 0.003. Postdinner average similarly decreased after 3 months of CSII by 22%, p < 0.04. CONCLUSIONS Pump therapy specifically improved the postprandial glucose excursions in children.
Collapse
Affiliation(s)
- Rubina A Heptulla
- Department of Pediatrics, Baylor College of Medicine, Texas Children's Hospital, Houston, TX 77030-2399, USA.
| | | | | | | |
Collapse
|
48
|
de Vries MG, Lawson MA, Beverly JL. Dissociation of hypothalamic noradrenergic activity and sympathoadrenal responses to recurrent hypoglycemia. Am J Physiol Regul Integr Comp Physiol 2004; 286:R910-5. [PMID: 14726425 DOI: 10.1152/ajpregu.00254.2002] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This study evaluated whether attenuation of sympathoadrenal responses to recurrent hypoglycemia is mediated by diminished noradrenergic activity in the hypothalamus. Male Sprague-Dawley rats received either once daily insulin (1.0 units/kg) injections or an equal administration of saline for 3 days. Both groups received an administration of insulin on the fourth day, during which blood glucose and plasma catecholamines were determined, and extracellular norepinephrine (NE) in the ventromedial hypothalamus (VMH) or paraventricular hypothalamic nucleus (PVN) was monitored with microdialysis. The peak response of plasma epinephrine to insulin-induced hypoglycemia (nadir approximately 3.2 mmol/l) was significantly reduced during the fourth hypoglycemic episode (774 +/- 134 pg/ml) compared with the first episode (2,561 +/- 410 pg/ml, P < 0.001). Baseline levels of extracellular NE were elevated approximately 25% (P = 0.07) in the VMH and approximately 46% (P = 0.03) in the PVN after multiple hypoglycemic episodes. There was no difference in noradrenergic activity during the first or fourth hypoglycemic episode in either brain area. The reduced sympathoadrenal output after recurrent hypoglycemia is likely postsynaptic from hypothalamic NE release or is mediated via a collateral pathway.
Collapse
Affiliation(s)
- Martin G de Vries
- University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801, USA
| | | | | |
Collapse
|
49
|
Porcellati F, Pampanelli S, Rossetti P, Cordoni C, Marzotti S, Scionti L, Bolli GB, Fanelli CG. Counterregulatory hormone and symptom responses to insulin-induced hypoglycemia in the postprandial state in humans. Diabetes 2003; 52:2774-83. [PMID: 14578296 DOI: 10.2337/diabetes.52.11.2774] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Plasma counterregulatory hormones and symptoms were measured during hypoglycemia in the postprandial and in the fasting state in humans to establish differences in physiological responses. We studied 8 nondiabetic subjects and 10 subjects with type 1 diabetes on two different occasions during clamped insulin-induced hypoglycemia (2.4 mmol/l) in the sitting position. On one occasion, subjects ate a standard mixed meal, and on the other they remained fasting. In response to postprandial as compared with fasting hypoglycemia, nondiabetic subjects exhibited lower total symptom scores (6.6 +/- 0.4 vs. 11.5 +/- 0.8, P = 0.001), which was due to less hunger (1.1 +/- 0.1 vs. 4.2 +/- 0.2), lower suppression of plasma C-peptide (0.23 +/- 0.1 vs. 0.08 +/- 0.07 nmol/l, P = 0.032), and greater responses of plasma glucagon (248 +/- 29 vs. 163 +/- 25 ng x l(-1) x min(-1), P = 0.018), plasma adrenaline (4.5 +/- 0.6 vs. 3.1 +/- 0.4 nmol x l(-1) x min(-1), P = 0.037), norepinephrine (3.8 +/- 0.3 vs. 3.2 +/- 0.2 nmol x l(-1) x min(-1), P = 0.037), and pancreatic polypeptide (217 +/- 12 vs. 159 +/- 22 pmol x l(-1) x min(-1), P = 0.08). Except for plasma C-peptide, responses in diabetic subjects were similarly affected. Notably, in diabetic subjects responses of glucagon, which were absent in the fasting state, nearly normalized after a meal. In conclusion, in the postprandial compared with the fasting hypoglycemic state, total symptoms are less, but counterregulatory hormones are greater and responses of glucagon nearly normalize in type 1 diabetic subjects.
Collapse
|
50
|
de Vries MG, Arseneau LM, Lawson ME, Beverly JL. Extracellular glucose in rat ventromedial hypothalamus during acute and recurrent hypoglycemia. Diabetes 2003; 52:2767-73. [PMID: 14578295 DOI: 10.2337/diabetes.52.11.2767] [Citation(s) in RCA: 152] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The activity of neurons in the ventromedial hypothalamus (VMH) important for initiating compensatory responses to hypoglycemia is influenced by ambient glucose concentration. In the present study, we used in vivo microdialysis to evaluate interstitial glucose concentrations in rat VMH under various glycemic conditions. Using the zero-net-flux method, steady-state glucose concentration in the VMH was approximately 20% of blood glucose (approximately 1.4 mmol/l) in fed rats but approximately 14% of blood glucose (approximately 0.7 mmol/l) in overnight-fasted rats. During moderate hypoglycemia VMH glucose declined in parallel with blood glucose; however, VMH glucose decreased to a greater degree than blood glucose during a more severe hypoglycemic episode, falling to 10 +/- 1.2% of blood levels (P < 0.01). To determine whether VMH glucose concentrations were influenced by recurrent episodes of hypoglycemia a second zero-net-flux study was conducted. Steady-state glucose concentrations in the VMH were approximately 20% lower after three episodes of recurrent hypoglycemia, a value 17.8 +/- 0.8% of blood glucose, although the relative change in VMH glucose levels during the first and fourth hypoglycemic episodes were similar. From these results, we conclude that interstitial glucose concentrations in the VMH are not maintained at a constant level and are more dynamic than previously proposed.
Collapse
Affiliation(s)
- Martin G de Vries
- Program in Neuroscience, University of Illinois at Urbana-Champaign, USA
| | | | | | | |
Collapse
|