1
|
Yang X, Liu Y, Wang Z, Jin Y, Gu W. Ferroptosis as a new tool for tumor suppression through lipid peroxidation. Commun Biol 2024; 7:1475. [PMID: 39521912 PMCID: PMC11550846 DOI: 10.1038/s42003-024-07180-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024] Open
Abstract
As a newly defined type of programmed cell death, ferroptosis is considered a potent weapon against tumors due to its distinct mechanism from other types of programmed cell death. Ferroptosis is triggered by the uncontrolled accumulation of hydroperoxyl polyunsaturated fatty acid-containing phospholipids, also called lipid peroxidation. The lipid peroxidation, generated through enzymatic and non-enzymatic mechanisms, drives changes in cell morphology and the destruction of membrane integrity. Here, we dissect the mechanisms of ferroptosis induced enzymatically or non-enzymatically, summarize the major metabolism pathways in modulating lipid peroxidation, and provide insights into the relationship between ferroptosis and tumor suppression. In this review, we discuss the recent advances of ferroptosis in tumor microenvironments and the prospect of potential therapeutic application.
Collapse
Affiliation(s)
- Xin Yang
- Suzhou Ninth Hospital Affiliated to Soochow University, The Institutes of Biology and Medical Sciences, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China.
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| | - Yanqing Liu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Zhe Wang
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA
| | - Ying Jin
- Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou Ninth People's Hospital, Suzhou Medical College, Soochow University, Suzhou, Jiangsu, China
| | - Wei Gu
- Institute for Cancer Genetics, and Herbert Irving Comprehensive Cancer Center, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
- Department of Pathology and Cell Biology, Vagelos College of Physicians & Surgeons, Columbia University, New York, NY, USA.
| |
Collapse
|
2
|
McDonald CM, Reid EK, Pohl JF, Yuzyuk TK, Padula LM, Vavrina K, Altman K. Cystic fibrosis and fat malabsorption: Pathophysiology of the cystic fibrosis gastrointestinal tract and the impact of highly effective CFTR modulator therapy. Nutr Clin Pract 2024; 39 Suppl 1:S57-S77. [PMID: 38429959 DOI: 10.1002/ncp.11122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 11/28/2023] [Accepted: 12/28/2023] [Indexed: 03/03/2024] Open
Abstract
Cystic fibrosis (CF) is a progressive, genetic, multi-organ disease affecting the respiratory, digestive, endocrine, and reproductive systems. CF can affect any aspect of the gastrointestinal (GI) tract, including the esophagus, stomach, small intestine, colon, pancreas, liver, and gall bladder. GI pathophysiology associated with CF results from CF membrane conductance regulator (CFTR) dysfunction. The majority of people with CF (pwCF) experience exocrine pancreatic insufficiency resulting in malabsorption of nutrients and malnutrition. Additionally, other factors can cause or worsen fat malabsorption, including the potential for short gut syndrome with a history of meconium ileus, hepatobiliary diseases, and disrupted intraluminal factors, such as inadequate bile salts, abnormal pH, intestinal microbiome changes, and small intestinal bacterial overgrowth. Signs and symptoms associated with fat malabsorption, such as abdominal pain, bloating, malodorous flatus, gastroesophageal reflux, nausea, anorexia, steatorrhea, constipation, and distal intestinal obstruction syndrome, are seen in pwCF despite the use of pancreatic enzyme replacement therapy. Given the association of poor nutrition status with lung function decline and increased mortality, aggressive nutrition support is essential in CF care to optimize growth in children and to achieve and maintain a healthy body mass index in adults. The introduction of highly effective CFTR modulator therapy and other advances in CF care have profoundly changed the course of CF management. However, GI symptoms in some pwCF may persist. The use of current knowledge of the pathophysiology of the CF GI tract as well as appropriate, individualized management of GI symptoms continue to be integral components of care for pwCF.
Collapse
Affiliation(s)
| | - Elizabeth K Reid
- Cystic Fibrosis Center, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania, USA
| | - John F Pohl
- Pediatric Gastroenterology, Primary Children's Hospital, Salt Lake City, Utah, USA
| | - Tatiana K Yuzyuk
- Pathology, University of Utah School of Medicine, Salt Lake City, Utah, USA
- ARUP Institute for Clinical & Experimental Pathology, Salt Lake City, Utah, USA
| | - Laura M Padula
- Pediatric Specialty, University Health, San Antonio, Texas, USA
| | - Kay Vavrina
- Pediatric Specialty, University Health, San Antonio, Texas, USA
| | - Kimberly Altman
- Gunnar Esiason Adult Cystic Fibrosis and Lung Center, Columbia University Medical Center, New York, New York, USA
| |
Collapse
|
3
|
Aaseth JO, Alehagen U, Opstad TB, Alexander J. Vitamin K and Calcium Chelation in Vascular Health. Biomedicines 2023; 11:3154. [PMID: 38137375 PMCID: PMC10740993 DOI: 10.3390/biomedicines11123154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 11/17/2023] [Accepted: 11/24/2023] [Indexed: 12/24/2023] Open
Abstract
The observation that the extent of artery calcification correlates with the degree of atherosclerosis was the background for the alternative treatment of cardiovascular disease with chelator ethylenediamine tetraacetate (EDTA). Recent studies have indicated that such chelation treatment has only marginal impact on the course of vascular disease. In contrast, endogenous calcium chelation with removal of calcium from the cardiovascular system paralleled by improved bone mineralization exerted, i.e., by matrix Gla protein (MGP) and osteocalcin, appears to significantly delay the development of cardiovascular diseases. After post-translational vitamin-K-dependent carboxylation of glutamic acid residues, MGP and other vitamin-K-dependent proteins (VKDPs) can chelate calcium through vicinal carboxyl groups. Dietary vitamin K is mainly provided in the form of phylloquinone from green leafy vegetables and as menaquinones from fermented foods. Here, we provide a review of clinical studies, addressing the role of vitamin K in cardiovascular diseases, and an overview of vitamin K kinetics and biological actions, including vitamin-K-dependent carboxylation and calcium chelation, as compared with the action of the exogenous (therapeutic) chelator EDTA. Consumption of vitamin-K-rich foods and/or use of vitamin K supplements appear to be a better preventive strategy than EDTA chelation for maintaining vascular health.
Collapse
Affiliation(s)
- Jan O. Aaseth
- Research Department, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, P.O. Box 400, N-2418 Elverum, Norway
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden;
| | - Trine Baur Opstad
- Oslo Centre for Clinical Heart Research Laboratory, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway;
- Faculty of Medicine, University of Oslo, N-0370 Oslo, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222, N-0213 Oslo, Norway;
| |
Collapse
|
4
|
Lal N, Seifan M, Ebrahiminezhad A, Berenjian A. The Effect of Iron Oxide Nanoparticles on the Menaquinone-7 Isomer Composition and Synthesis of the Biologically Significant All- Trans Isomer. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:1825. [PMID: 37368255 DOI: 10.3390/nano13121825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/05/2023] [Accepted: 06/07/2023] [Indexed: 06/28/2023]
Abstract
Menaquinone-7 (MK-7) is the most therapeutically valuable K vitamin owing to its excellent bioavailability. MK-7 occurs as geometric isomers, and only all-trans MK-7 is bioactive. The fermentation-based synthesis of MK-7 entails various challenges, primarily the low fermentation yield and numerous downstream processing steps. This raises the cost of production and translates to an expensive final product that is not widely accessible. Iron oxide nanoparticles (IONPs) can potentially overcome these obstacles due to their ability to enhance fermentation productivity and enable process intensification. Nevertheless, utilisation of IONPs in this regard is only beneficial if the biologically active isomer is achieved in the greatest proportion, the investigation of which constituted the objective of this study. IONPs (Fe3O4) with an average size of 11 nm were synthesised and characterised using different analytical techniques, and their effect on isomer production and bacterial growth was assessed. The optimum IONP concentration (300 μg/mL) improved the process output and resulted in a 1.6-fold increase in the all-trans isomer yield compared to the control. This investigation was the first to evaluate the role of IONPs in the synthesis of MK-7 isomers, and its outcomes will assist the development of an efficient fermentation system that favours the production of bioactive MK-7.
Collapse
Affiliation(s)
- Neha Lal
- School of Engineering, The University of Waikato, Hamilton 3240, New Zealand
| | - Mostafa Seifan
- School of Engineering, The University of Waikato, Hamilton 3240, New Zealand
| | - Alireza Ebrahiminezhad
- Biotechnology Research Center, Shiraz University of Medical Sciences, Shiraz P.O. Box 71348-14336, Iran
| | - Aydin Berenjian
- School of Engineering, The University of Waikato, Hamilton 3240, New Zealand
- Department of Chemical and Biological Engineering, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
5
|
Yang Q, Zheng Z, Wang P, Wang L, Wang H, Zhang M, Zhao G. Insights into Regulating Mechanism of Mutagenesis Strains of Elizabethkingia meningoseptica sp. F2 by Omics Analysis. Curr Microbiol 2023; 80:183. [PMID: 37055590 DOI: 10.1007/s00284-023-03270-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 03/14/2023] [Indexed: 04/15/2023]
Abstract
Vitamin K2 plays an important role in electron transport, blood coagulation, and calcium homeostasis, and researchers have been trying to use microbes to produce it. Although our previous studies have shown that gradient radiation, breeding, and culture acclimation can improve vitamin K2 production in Elizabethkingia meningoseptica, the mechanism is still unclear. This study is the first which performs genome sequencing of E. meningoseptica sp. F2 as a basis for subsequent experiments and further comparative analyses with other strains. Comparative metabolic pathway analysis of E. meningoseptica sp. F2, E. coli, Bacillus subtilis, and other vitamin K2 product strains revealed that the mevalonate pathway of E. meningoseptica sp. F2 is different in bacteria at the system level. The expressions of menA, menD, menH, and menI in the menaquinone pathway and idi, hmgR, and ggpps in the mevalonate pathway were higher than those in the original strain. A total of 67 differentially expressed proteins involved in the oxidative phosphorylation metabolic pathway and citric acid cycle (TCA cycle) were identified. Our results reveal that combined gradient radiation breeding and culture acclimation can promote vitamin K2 accumulation probably by regulating the vitamin K2 pathway, oxidative phosphorylation metabolism pathway, and the citrate cycle (TCA cycle).
Collapse
Affiliation(s)
- Qiang Yang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Zhiming Zheng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| | - Peng Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Li Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
| | - Han Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Mengxue Zhang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China
- University of Science and Technology of China, Hefei, 230026, People's Republic of China
| | - Genhai Zhao
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, People's Republic of China.
| |
Collapse
|
6
|
The impact of key fermentation parameters on the production of the all-trans isomer of menaquinone-7. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102548] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
7
|
Braasch-Turi MM, Koehn JT, Crans DC. Chemistry of Lipoquinones: Properties, Synthesis, and Membrane Location of Ubiquinones, Plastoquinones, and Menaquinones. Int J Mol Sci 2022; 23:12856. [PMID: 36361645 PMCID: PMC9656164 DOI: 10.3390/ijms232112856] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 07/30/2023] Open
Abstract
Lipoquinones are the topic of this review and are a class of hydrophobic lipid molecules with key biological functions that are linked to their structure, properties, and location within a biological membrane. Ubiquinones, plastoquinones, and menaquinones vary regarding their quinone headgroup, isoprenoid sidechain, properties, and biological functions, including the shuttling of electrons between membrane-bound protein complexes within the electron transport chain. Lipoquinones are highly hydrophobic molecules that are soluble in organic solvents and insoluble in aqueous solution, causing obstacles in water-based assays that measure their chemical properties, enzyme activities and effects on cell growth. Little is known about the location and ultimately movement of lipoquinones in the membrane, and these properties are topics described in this review. Computational studies are particularly abundant in the recent years in this area, and there is far less experimental evidence to verify the often conflicting interpretations and conclusions that result from computational studies of very different membrane model systems. Some recent experimental studies have described using truncated lipoquinone derivatives, such as ubiquinone-2 (UQ-2) and menaquinone-2 (MK-2), to investigate their conformation, their location in the membrane, and their biological function. Truncated lipoquinone derivatives are soluble in water-based assays, and hence can serve as excellent analogs for study even though they are more mobile in the membrane than the longer chain counterparts. In this review, we will discuss the properties, location in the membrane, and syntheses of three main classes of lipoquinones including truncated derivatives. Our goal is to highlight the importance of bridging the gap between experimental and computational methods and to incorporate properties-focused considerations when proposing future studies relating to the function of lipoquinones in membranes.
Collapse
Affiliation(s)
| | - Jordan T. Koehn
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
| | - Debbie C. Crans
- Chemistry Department, Colorado State University, Fort Collins, CO 80523, USA
- Cell & Molecular Biology Program, Colorado State University, Fort Collins, CO 80523, USA
| |
Collapse
|
8
|
Liu S, Shen G, Li W. Structural and cellular basis of vitamin K antagonism. J Thromb Haemost 2022; 20:1971-1983. [PMID: 35748323 DOI: 10.1111/jth.15800] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/15/2022] [Accepted: 06/20/2022] [Indexed: 11/30/2022]
Abstract
Vitamin K antagonists (VKAs), such as warfarin, are oral anticoagulants widely used to treat and prevent thromboembolic diseases. Therapeutic use of these drugs requires frequent monitoring and dose adjustments, whereas overdose often causes severe bleeding. Addressing these drawbacks requires mechanistic understandings at cellular and structural levels. As the target of VKAs, vitamin K epoxide reductase (VKOR) generates the active, hydroquinone form of vitamin K, which in turn drives the γ-carboxylation of several coagulation factors required for their activity. Crystal structures revealed that VKAs inhibit VKOR via mimicking its catalytic process. At the active site, two strong hydrogen bonds that facilitate the catalysis also afford the binding specificity for VKAs. Binding of VKAs induces a global change from open to closed conformation. Similar conformational change is induced by substrate binding to promote an electron transfer process that reduces the VKOR active site. In the cellular environment, reducing partner proteins or small reducing molecules may afford electrons to maintain the VKOR activity. The catalysis and VKA inhibition require VKOR in different cellular redox states, explaining the complex kinetics behavior of VKAs. Recent studies also revealed the mechanisms underlying warfarin resistance, warfarin dose variation, and antidoting by vitamin K. These mechanistic understandings may lead to improved anticoagulation strategies targeting the vitamin K cycle.
Collapse
Affiliation(s)
- Shixuan Liu
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Guomin Shen
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
- Henan International Joint Laboratory of Thrombosis and Hemostasis, School of Basic Medical Science, Henan University of Science and Technology, Luoyang, China
- Department of Cell Biology, Harbin Medical University, Harbin, China
| | - Weikai Li
- Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
9
|
Sankararaman S, Hendrix SJ, Schindler T. Update on the management of vitamins and minerals in cystic fibrosis. Nutr Clin Pract 2022; 37:1074-1087. [PMID: 35997322 PMCID: PMC9544449 DOI: 10.1002/ncp.10899] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 06/27/2022] [Accepted: 07/16/2022] [Indexed: 11/10/2022] Open
Abstract
Advancements in respiratory and nutrition management have significantly improved the survival of patients with cystic fibrosis (CF). With the availability of several nutrition interventions such as oral/enteral nutrition supplements, enteric‐coated pancreatic enzymes, and water‐miscible CF‐specific vitamin supplements, frank vitamin deficiencies—with the exception of vitamin D—are rarely encountered in current clinical practice. Whereas they were previously considered as micronutrients, our current understanding of fat‐soluble vitamins and minerals as antioxidants, immunomodulators, and disease biomarkers has been evolving. The impact of highly effective modulators on the micronutrient status of patients with CF remains elusive. This narrative review focuses on the updates on the management of fat‐soluble vitamins and other micronutrients in CF in the current era and identifies the gaps in our knowledge.
Collapse
Affiliation(s)
- Senthilkumar Sankararaman
- Department of Pediatrics, Division of Pediatric Gastroenterology, UH Rainbow Babies & Children's Hospital, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Sara J Hendrix
- Department of Nutrition Services, Medical University of South Carolina, Charleston, South Carolina, USA
| | - Terri Schindler
- Department of Pediatrics, Division of Pediatric Pulmonology, UH Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| |
Collapse
|
10
|
Lal N, Seifan M, Berenjian A. Optimisation of the fermentation media to enhance the production of the bioactive isomer of vitamin menaquinone-7. Bioprocess Biosyst Eng 2022; 45:1371-1390. [PMID: 35864383 PMCID: PMC9302956 DOI: 10.1007/s00449-022-02752-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/22/2022] [Indexed: 11/30/2022]
Abstract
Menaquinone-7 (MK-7) offers significant health benefits; however, only the all-trans form is biologically active. MK-7 produced through fermentation can occur as all-trans and cis isomers, and the therapeutic value of the resulting MK-7 is exclusively determined by the quantity of the all-trans isomer. Therefore, this study aimed to investigate the effect of the media composition on the isomer profile obtained from fermentation and determine the optimum media combination to increase the concentration of the all-trans isomer and diminish the production of cis MK-7. For this purpose, design of experiments (DOE) was used to screen the most effective nutrients, and a central composite face-centred design (CCF) was employed to optimise the media components. The optimum media consisted of 1% (w/v) glucose, 2% (w/v) yeast extract, 2% (w/v) soy peptone, 2% (w/v) tryptone, and 0.1% (w/v) CaCl2. This composition resulted in an average all-trans and cis isomer concentration of 36.366 mg/L and 1.225 mg/L, respectively. In addition, the optimised media enabled an all-trans isomer concentration 12.2-fold greater and a cis isomer concentration 2.9-fold less than the unoptimised media. This study was the first to consider the development of an optimised fermentation media to enhance the production of the bioactive isomer of MK-7 and minimise the concentration of the inactive isomer. Furthermore, this media is commercially promising, as it will improve the process productivity and reduce the costs associated with the industrial fermentation of the vitamin.
Collapse
Affiliation(s)
- Neha Lal
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Mostafa Seifan
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand
| | - Aydin Berenjian
- School of Engineering, The University of Waikato, Hamilton, 3240, New Zealand.
- Department of Agricultural and Biological Engineering, Pennsylvania State University, 221 Agricultural Engineering Building, University Park, PA, 16802, USA.
| |
Collapse
|
11
|
Nopp S, Kraemmer D, Ay C. Factor XI Inhibitors for Prevention and Treatment of Venous Thromboembolism: A Review on the Rationale and Update on Current Evidence. Front Cardiovasc Med 2022; 9:903029. [PMID: 35647061 PMCID: PMC9133368 DOI: 10.3389/fcvm.2022.903029] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 04/12/2022] [Indexed: 12/12/2022] Open
Abstract
Although anticoagulation therapy has evolved from non-specific drugs (i.e., heparins and vitamin K antagonists) to agents that directly target specific coagulation factors (i.e., direct oral anticoagulants, argatroban, fondaparinux), thrombosis remains a leading cause of death worldwide. Direct oral anticoagulants (i.e., factor IIa- and factor Xa-inhibitors) now dominate clinical practice because of their favorable pharmacological profile and ease of use, particularly in venous thromboembolism (VTE) treatment and stroke prevention in atrial fibrillation. However, despite having a better safety profile than vitamin K antagonists, their bleeding risk is not insignificant. This is true for all currently available anticoagulants, and a high bleeding risk is considered a contraindication to anticoagulation. As a result, ongoing research focuses on developing future anticoagulants with an improved safety profile. Several promising approaches to reduce the bleeding risk involve targeting the intrinsic (or contact activation) pathway of coagulation, with the ultimate goal of preventing thrombosis without impairing hemostasis. Based on epidemiological data on hereditary factor deficiencies and preclinical studies factor XI (FXI) emerged as the most promising candidate target. In this review, we highlight unmet clinical needs of anticoagulation therapy, outlay the rationale and evidence for inhibiting FXI, discuss FXI inhibitors in current clinical trials, conduct an exploratory meta-analysis on their efficacy and safety, and provide an outlook on the potential clinical application of these novel anticoagulants.
Collapse
Affiliation(s)
| | | | - Cihan Ay
- Clinical Division of Hematology and Hemostaseology, Department of Medicine I, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Liu Y, Charamis N, Boeren S, Blok J, Lewis AG, Smid EJ, Abee T. Physiological Roles of Short-Chain and Long-Chain Menaquinones (Vitamin K2) in Lactococcus cremoris. Front Microbiol 2022; 13:823623. [PMID: 35369466 PMCID: PMC8965153 DOI: 10.3389/fmicb.2022.823623] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/17/2022] [Indexed: 01/07/2023] Open
Abstract
Lactococcus cremoris and L. lactis are well known for their occurrence and applications in dairy fermentations, but their niche extends to a range of natural and food production environments. L. cremoris and L. lactis produce MKs (vitamin K2), mainly as the long-chain forms represented by MK-9 and MK-8, and a detectable number of short-chain forms represented by MK-3. The physiological significance of the different MK forms in the lifestyle of these bacterial species has not been investigated extensively. In this study, we used L. cremoris MG1363 to construct mutants producing different MK profiles by deletion of genes encoding (i) a menaquinone-specific isochorismate synthase, (ii) a geranyltranstransferase, and (iii) a prenyl diphosphate synthase. These gene deletions resulted in (i) a non-MK producer (ΔmenF), (ii) a presumed MK-1 producer (ΔispA), and (iii) an MK-3 producer (Δllmg_0196), respectively. By examining the phenotypes of the MG1363 wildtype strain and respective mutants, including biomass accumulation, stationary phase survival, oxygen consumption, primary metabolites, azo dye/copper reduction, and proteomes, under aerobic, anaerobic, and respiration-permissive conditions, we could infer that short-chain MKs like MK-1 and MK-3 are preferred to mediate extracellular electron transfer and reaction with extracellular oxygen, while the long-chain MKs like MK-9 and MK-8 are more efficient in aerobic respiratory electron transport chain. The different electron transfer routes mediated by short-chain and long-chain MKs likely support growth and survival of L. cremoris in a range of (transiently) anaerobic and aerobic niches including food fermentations, highlighting the physiological significance of diverse MKs in L. cremoris.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Nikolaos Charamis
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Joost Blok
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | | | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
13
|
Chetot T, Benoit E, Lambert V, Lattard V. Overexpression of protein disulfide isomerase enhances vitamin K epoxide reductase activity. Biochem Cell Biol 2022; 100:152-161. [PMID: 35007172 DOI: 10.1139/bcb-2021-0441] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Vitamin K epoxide reductase (VKOR) activity is catalyzed by the VKORC1 enzyme. It is the target of vitamin K antagonists (VKA). Numerous mutations of VKORC1 have been reported and have been suspected to confer resistance to VKA and/or affect its velocity. Nevertheless, the results between studies have been conflicting, the functional characterization of these mutations in a cell system being complex due to the interweaving of VKOR activity in the vitamin K cycle. In this study, a new cellular approach was implemented to globally evaluate the vitamin K cycle in the HEK293 cells. This global approach was based on the vitamin K quinone/vitamin K epoxide (K/KO) balance. In the presence of VKA or when the VKORC1/VKORC1L1 were knocked out, the K/KO balance decreased significantly due to an accumulation of vitamin KO. On the contrary, when VKORC1 was overexpressed, the balance remained unchanged, demonstrating a limitation of the VKOR activity. This limitation was shown to be due to an insufficient expression of the activation partner of VKORC1, as overexpressing the protein disulfide isomerase (PDI) overcomes the limitation. This study is the first to demonstrate a functional interaction between VKORC1 and the PDI enzyme.
Collapse
Affiliation(s)
| | | | | | - Virginie Lattard
- VetAgro Sup, 88622, USC1233 INRAe-VetAgroSup, Marcy-l'Etoile, France, 69280;
| |
Collapse
|
14
|
Mokgalaboni K, Nkambule BB, Ntamo Y, Ziqubu K, Nyambuya TM, Mazibuko-Mbeje SE, Gabuza KB, Chellan N, Cirilli I, Tiano L, Dludla PV. Vitamin K: A vital micronutrient with the cardioprotective potential against diabetes-associated complications. Life Sci 2021; 286:120068. [PMID: 34688697 DOI: 10.1016/j.lfs.2021.120068] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/12/2021] [Accepted: 10/17/2021] [Indexed: 12/14/2022]
Abstract
Cardiovascular disease (CVD) remains the leading cause of mortality in patients with type 2 diabetes (T2D). The conventional therapies seem to offer minimal long-term cardioprotection against diabetes-related complications in patients living with T2D. There is a growing interest in understanding the therapeutic effects of food-derived bioactive compounds in protecting or managing these metabolic diseases. This includes uncovering the therapeutic potential of fat-soluble micronutrients such as vitamin K, which are abundantly found in green leafy vegetables. We searched the major electronic databases including PubMed, Web of Sciences, Scopus, Google Scholar and Science direct. The search retrieved randomized clinical trials and preclinical studies, reporting on the impact of vitamin K on CVD-related complications in T2D. The current review updates clinical evidence on the therapeutic benefits of vitamin K by attenuating CVD-risk factors such as blood lipid profiles, blood pressure, as well as markers of oxidative stress and inflammation in patients with T2D. Importantly, the summarized preclinical evidence provides a unique perspective into the pathophysiological mechanisms that could be targeted by vitamin K in the primary prevention of T2D-related complications. Lastly, this review further explores the controversies related to the cardioprotective effects of vitamin K, and also provides the basic information such as the source and bioavailability profile of this micronutrient is covered to highlight its therapeutic potential.
Collapse
Affiliation(s)
- Kabelo Mokgalaboni
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Bongani B Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban 4001, South Africa
| | - Yonela Ntamo
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Khanyisani Ziqubu
- Department of Biochemistry, North West University, Mafikeng Campus, Mmabatho 2735, South Africa
| | - Tawanda M Nyambuya
- Department of Health Sciences, Namibia University of Science and Technology, Windhoek 9000, Namibia
| | | | - Kwazikwakhe B Gabuza
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa
| | - Nireshni Chellan
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa; Division of Medical Physiology, Faculty of Health Sciences, Stellenbosch University, Tygerberg 7505, South Africa
| | - Ilenia Cirilli
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy; School of Pharmacy, University of Camerino, Camerino 62032, Italy
| | - Luca Tiano
- Department of Life and Environmental Sciences, Polytechnic University of Marche, Ancona 60131, Italy
| | - Phiwayinkosi V Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg 7505, South Africa.
| |
Collapse
|
15
|
Liu Y, de Groot A, Boeren S, Abee T, Smid EJ. Lactococcus lactis Mutants Obtained From Laboratory Evolution Showed Elevated Vitamin K2 Content and Enhanced Resistance to Oxidative Stress. Front Microbiol 2021; 12:746770. [PMID: 34721346 PMCID: PMC8551700 DOI: 10.3389/fmicb.2021.746770] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/23/2021] [Indexed: 12/30/2022] Open
Abstract
Vitamin K2 is an important vitamin for human health. Vitamin K2 enrichment in the human diet is possible by using vitamin K2-producing bacteria such as Lactococcus lactis in food fermentations. Based on previous observations that aerated cultivation conditions improved vitamin K2 content in L. lactis, we performed laboratory evolution on L. lactis MG1363 by cultivating this strain in a shake flask in a sequential propagation regime with transfers to a fresh medium every 72h. After 100 generations of propagation, we selected three evolved strains that showed improved stationary phase survival in oxygenated conditions. In comparison to the original strain MG1363, the evolved strains showed 50-110% increased vitamin K2 content and exhibited high resistance against hydrogen peroxide-induced oxidative stress. Genome sequencing of the evolved strains revealed common mutations in the genes ldh and gapB. Proteomics analysis revealed overproduction of glyceraldehyde 3-phosphate dehydrogenase (GapA), universal stress protein A2 (UspA2), and formamidopyrimidine-DNA glycosylase (MutM) under aerated conditions in evolved strains, proteins with putative functions in redox reactions, universal stress response, and DNA damage repair, all of which could contribute to the enhanced oxidative stress resistance. The mechanisms underlying elevated vitamin K2 content in the evolved strains remain to be elucidated. Two out of the three evolved strains performed similar to the original strain MG1363 in terms of growth and acidification of culture media. In conclusion, this study demonstrated a natural selection approach without genetic manipulations to obtain vitamin K2 overproducers that are highly relevant for food applications and contributed to the understanding of oxidative stress resistance in L. lactis.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Anteun de Groot
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Sjef Boeren
- Laboratory of Biochemistry, Wageningen University and Research, Wageningen, Netherlands
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, Wageningen, Netherlands
| |
Collapse
|
16
|
Meihandoest T, Studt JD, Mendez A, Alberio L, Fontana P, Wuillemin WA, Schmidt A, Graf L, Gerber B, Maeder GM, Bovet C, Sauter TC, Nagler M. Automated Thrombin Generation Assay for Rivaroxaban, Apixaban, and Edoxaban Measurements. Front Cardiovasc Med 2021; 8:717939. [PMID: 34568459 PMCID: PMC8459937 DOI: 10.3389/fcvm.2021.717939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 08/16/2021] [Indexed: 11/13/2022] Open
Abstract
Background: The thrombin generation assay (TG) is a promising approach to measure the degree of anticoagulation in patients treated with direct oral anticoagulants (DOAC). A strong association with plasma drug concentrations would be a meaningful argument for the potential use to monitor DOAC. Objectives: We aimed to study the correlation of TG with rivaroxaban, apixaban, and edoxaban drug concentrations in a large, prospective multicenter cross-sectional study. Methods: Five-hundred and fifty-nine patients were included in nine tertiary hospitals. The Technothrombin® TG was conducted in addition to an anti-Xa assay; LC-MS/MS was performed as the reference standard. Results: Correlation (rs) between thrombin generation measurements and drug concentrations was -0.72 for peak thrombin generation (95% confidence interval, CI, -0.77, -0.66), -0.55 for area under the curve (AUC; 95% CI -0.61, -0.48), and 0.80 for lag time (95% CI 0.75, 0.84). In contrast, rs was 0.96 with results of the anti-Xa activity (95% CI 0.95-0.97). Sensitivity with regard to the clinically relevant cut-off value of 50 μgL-1 was 49% in case of peak thrombin generation (95% CI, 44, 55), 29% in case of AUC (95% CI, 24, 34), and 64% in case of lag time (95% CI, 58, 69). Sensitivity of the anti-Xa assay was 95% (95% CI, 92, 97). Conclusions: The correlation of thrombin generation measurements with DOAC drug concentrations was weak, and clinically relevant drug levels were not predicted correctly. Our results do not support an application of TG in the monitoring of DOAC.
Collapse
Affiliation(s)
- Tamana Meihandoest
- Department of Epidemiology, Maastricht University, Maastricht, Netherlands.,Department of Clinical Chemistry, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Jan-Dirk Studt
- Division of Medical Oncology and Hematology, University and University Hospital Zurich, Zurich, Switzerland
| | - Adriana Mendez
- Department of Laboratory Medicine, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Lorenzo Alberio
- Service and Central Laboratory of Hematology, CHUV, Lausanne University Hospital, Lausanne, Switzerland
| | - Pierre Fontana
- Division of Angiology and Hemostasis, Geneva University Hospital, Geneva, Switzerland
| | - Walter A Wuillemin
- Division of Hematology and Central Hematology Laboratory, Cantonal Hospital of Lucerne and University of Bern, Bern, Switzerland
| | - Adrian Schmidt
- Clinic of Medical Oncology and Hematology and Institute of Laboratory Medicine, City Hospital Waid and Triemli, Zurich, Switzerland
| | - Lukas Graf
- Centre for Laboratory Medicine St. Gallen, St. Gallen, Switzerland
| | - Bernhard Gerber
- Clinic of Hematology, Oncology Institute of Southern Switzerland, Bellinzona, Switzerland.,University of Zurich, Zurich, Switzerland
| | - Gabriela Monika Maeder
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Cédric Bovet
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland
| | - Thomas C Sauter
- Department of Emergency Medicine, Inselspital, Bern University Hospital, Bern, Switzerland
| | - Michael Nagler
- Department of Clinical Chemistry, Inselspital, Bern University Hospital, and University of Bern, Bern, Switzerland.,Department of Hematology, Inselspital, Bern University Hospital, Bern, Switzerland
| |
Collapse
|
17
|
Mladěnka P, Macáková K, Kujovská Krčmová L, Javorská L, Mrštná K, Carazo A, Protti M, Remião F, Nováková L. Vitamin K - sources, physiological role, kinetics, deficiency, detection, therapeutic use, and toxicity. Nutr Rev 2021; 80:677-698. [PMID: 34472618 PMCID: PMC8907489 DOI: 10.1093/nutrit/nuab061] [Citation(s) in RCA: 71] [Impact Index Per Article: 23.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Vitamin K is traditionally connected with blood coagulation, since it is needed for the posttranslational modification of 7 proteins involved in this cascade. However, it is also involved in the maturation of another 11 or 12 proteins that play different roles, encompassing in particular the modulation of the calcification of connective tissues. Since this process is physiologically needed in bones, but is pathological in arteries, a great deal of research has been devoted to finding a possible link between vitamin K and the prevention of osteoporosis and cardiovascular diseases. Unfortunately, the current knowledge does not allow us to make a decisive conclusion about such a link. One possible explanation for this is the diversity of the biological activity of vitamin K, which is not a single compound but a general term covering natural plant and animal forms of vitamin K (K1 and K2) as well as their synthetic congeners (K3 and K4). Vitamin K1 (phylloquinone) is found in several vegetables. Menaquinones (MK4–MK13, a series of compounds known as vitamin K2) are mostly of a bacterial origin and are introduced into the human diet mainly through fermented cheeses. Current knowledge about the kinetics of different forms of vitamin K, their detection, and their toxicity are discussed in this review.
Collapse
Affiliation(s)
- Přemysl Mladěnka
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Kateřina Macáková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | - Lenka Kujovská Krčmová
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Lenka Javorská
- Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Kristýna Mrštná
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic.,Department of Clinical Biochemistry and Diagnostics, University Hospital Hradec Králové, Hradec Králové, Czech Republic
| | - Alejandro Carazo
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic. K. Macáková is with the Department of Pharmacognosy, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republicv
| | - Michele Protti
- M. Protti is with the Research Group of Pharmaco-Toxicological Analysis (PTA Lab), Department of Pharmacy and Biotechnology (FaBiT), Alma Mater Studiorum-University of Bologna, Bologna, Italy
| | - Fernando Remião
- F. Remião is with the UCIBIO-REQUIMTE, Laboratory of Toxicology, The Biological Sciences Department, Faculty of Pharmacy, University of Porto, Rua Jorge Viterbo Ferreira, Porto, Portugal
| | - Lucie Nováková
- Department of Analytical Chemistry, Faculty of Pharmacy in Hradec Králové, Charles University, Hradec Králové, Czech Republic
| | | |
Collapse
|
18
|
Garg M, Sharma A, Vats S, Tiwari V, Kumari A, Mishra V, Krishania M. Vitamins in Cereals: A Critical Review of Content, Health Effects, Processing Losses, Bioaccessibility, Fortification, and Biofortification Strategies for Their Improvement. Front Nutr 2021; 8:586815. [PMID: 34222296 PMCID: PMC8241910 DOI: 10.3389/fnut.2021.586815] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 04/28/2021] [Indexed: 12/19/2022] Open
Abstract
Around the world, cereals are stapled foods and good sources of vitamins A, B, and E. As cereals are inexpensive and consumed in large quantities, attempts are being made to enrich cereals using fortification and biofortification in order to address vitamin deficiency disorders in a vulnerable population. The processing and cooking of cereals significantly affect vitamin content. Depending on grain structure, milling can substantially reduce vitamin content, while cooking methods can significantly impact vitamin retention and bioaccessibility. Pressure cooking has been reported to result in large vitamin losses, whereas minimal vitamin loss was observed following boiling. The fortification of cereal flour with vitamins B1, B2, B3, and B9, which are commonly deficient, has been recommended; and in addition, region-specific fortification using either synthetic or biological vitamins has been suggested. Biofortification is a relatively new concept and has been explored as a method to generate vitamin-rich crops. Once developed, biofortified crops can be utilized for several years. A recent cereal biofortification success story is the enrichment of maize with provitamin A carotenoids.
Collapse
Affiliation(s)
- Monika Garg
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anjali Sharma
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Shreya Vats
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vandita Tiwari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Anita Kumari
- Agri-Biotechnology, National Agri-Food Biotechnology Institute (NABI), Mohali, India
| | - Vibhu Mishra
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| | - Meena Krishania
- Food Engineering and Nutrition, Center of Innovative and Applied Bioprocessing, Mohali, India
| |
Collapse
|
19
|
Takeda K, Ikenaka Y, Fourches D, Tanaka KD, Nakayama SMM, Triki D, Li X, Igarashi M, Tanikawa T, Ishizuka M. The VKORC1 ER-luminal loop mutation (Leu76Pro) leads to a significant resistance to warfarin in black rats (Rattus rattus). PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 173:104774. [PMID: 33771253 DOI: 10.1016/j.pestbp.2021.104774] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 12/10/2020] [Accepted: 01/04/2021] [Indexed: 06/12/2023]
Abstract
Well-known 4-hydroxycoumarin derivatives, such as warfarin, act as inhibitors of the vitamin K epoxide reductase (VKOR) and are used as anticoagulants. Mutations of the VKOR enzyme can lead to resistance to those compounds. This has been a problem in using them as medicine or rodenticide. Most of these mutations lie in the vicinity of potential warfarin-binding sites within the ER-luminal loop structure (Lys30, Phe55) and the transmembrane helix (Tyr138). However, a VKOR mutation found in Tokyo in warfarin-resistant rats does not follow that pattern (Leu76Pro), and its effect on VKOR function and structure remains unclear. We conducted both in vitro kinetic analyses and in silico docking studies to characterize the VKOR mutant. On the one hand, resistant rats (R-rats) showed a 37.5-fold increased IC50 value to warfarin when compared to susceptible rats (S-rats); on the other hand, R-rats showed a 16.5-fold lower basal VKOR activity (Vmax/Km). Docking calculations exhibited that the mutated VKOR of R-rats has a decreased affinity for warfarin. Molecular dynamics simulations further revealed that VKOR-associated warfarin was more exposed to solvents in R-rats and key interactions between Lys30, Phe55, and warfarin were less favored. This study concludes that a single mutation of VKOR at position 76 leads to a significant resistance to warfarin by modifying the types and numbers of intermolecular interactions between the two.
Collapse
Affiliation(s)
- Kazuki Takeda
- Laboratory of Toxicology, Department of Environmental Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Yoshinori Ikenaka
- Laboratory of Toxicology, Department of Environmental Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan; Water Research Group, Unit for Environmental Sciences and Management, North-West University, Potchefstroom, South Africa
| | - Denis Fourches
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Kazuyuki D Tanaka
- Technical Research Laboratory, IKARI SHODOKU CO., Ltd., Narashino, Chiba, Japan
| | - Shouta M M Nakayama
- Laboratory of Toxicology, Department of Environmental Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan
| | - Dhoha Triki
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Xinhao Li
- Department of Chemistry, Bioinformatics Research Center, North Carolina State University, Raleigh, NC, USA
| | - Manabu Igarashi
- Division of Global Epidemiology, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan; Global Station for Zoonosis Control, Global Institution for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Tsutomu Tanikawa
- Technical Research Laboratory, IKARI SHODOKU CO., Ltd., Narashino, Chiba, Japan
| | - Mayumi Ishizuka
- Laboratory of Toxicology, Department of Environmental Sciences, Faculty of Veterinary Medicine, Hokkaido University, Kita-18 Nishi-9, Kita-ku, Sapporo 060-0818, Japan.
| |
Collapse
|
20
|
The effect of aeration and mixing in developing a dairy-based functional food rich in menaquinone-7. Bioprocess Biosyst Eng 2020; 43:1773-1780. [PMID: 32377942 DOI: 10.1007/s00449-020-02366-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 04/24/2020] [Indexed: 12/17/2022]
Abstract
Vitamin menaquinone-7 (MK-7) supplementation improves bone health and reduces the incidence of osteoporosis. Despite the recent developments in MK-7 fermentation using Bacillus subtilis natto, low fermentation yields, as well as complicated downstream processing steps, are still the main reasons for the expensive final product. To overcome these issues, developing a fermented dairy-based product rich in MK-7 by avoiding costly downstream steps and optimising the fermentation operating conditions to enhance the MK-7 concentration would be an alternative approach. The present study, therefore, aims to evaluate the role of agitation and aeration as the key operating conditions on MK-7 production by Bacillus subtilis natto using a milk media. The agitation and aeration rates of 525 RPM and 5 VVM were found to be the optimum levels leading to the production of 3.54 mg/L of MK-7. Further, the sensory evaluation was performed to compare the sensory properties of the freeze-dried fermented samples with non-fermented milk samples. The results illustrated that the fermented samples had a significant saltiness with intense aroma resulting in the less acceptability of them by the panellists.
Collapse
|
21
|
Liu Y, van Bennekom EO, Zhang Y, Abee T, Smid EJ. Long-chain vitamin K2 production in Lactococcus lactis is influenced by temperature, carbon source, aeration and mode of energy metabolism. Microb Cell Fact 2019; 18:129. [PMID: 31387603 PMCID: PMC6683496 DOI: 10.1186/s12934-019-1179-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 07/30/2019] [Indexed: 12/13/2022] Open
Abstract
Background Vitamin K2 (menaquinone, MK-n) is a lipid-soluble vitamin that functions as a carboxylase co-factor for maturation of proteins involved in many vital physiological processes in humans. Notably, long-chain vitamin K2 is produced by bacteria, including some species and strains belonging to the group of lactic acid bacteria (LAB) that play important roles in food fermentation processes. This study was performed to gain insights into the natural long-chain vitamin K2 production capacity of LAB and the factors influencing vitamin K2 production during cultivation, providing a basis for biotechnological production of vitamin K2 and in situ fortification of this vitamin in food products. Results We observed that six selected Lactococcus lactis strains produced MK-5 to MK-10, with MK-8 and MK-9 as the major MK variant. Significant diversities between strains were observed in terms of specific concentrations and titres of vitamin K2. L. lactis ssp. cremoris MG1363 was selected for more detailed studies of the impact of selected carbon sources tested under different growth conditions [i.e. static fermentation (oxygen absent, heme absent); aerobic fermentation (oxygen present, heme absent) and aerobic respiration (oxygen present, heme present)] on vitamin K2 production in M17 media. Aerobic fermentation with fructose as a carbon source resulted in the highest specific concentration of vitamin K2: 3.7-fold increase compared to static fermentation with glucose, whereas aerobic respiration with trehalose resulted in the highest titre: 5.2-fold increase compared to static fermentation with glucose. When the same strain was applied to quark fermentation, we consistently observed that altered carbon source (fructose) and aerobic cultivation of the pre-culture resulted in efficient vitamin K2 fortification in the quark product. Conclusions With this study we demonstrate that certain LAB strains can be employed for efficient production of long-chain vitamin K2. Strain selection and optimisation of growth conditions offer a viable strategy towards natural vitamin K2 enrichment of fermented foods, and to improved biotechnological vitamin K2 production processes. Electronic supplementary material The online version of this article (10.1186/s12934-019-1179-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yue Liu
- Food Microbiology, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Eric O van Bennekom
- BU Veterinary Drugs, RIKILT, Wageningen University and Research, Akkermaalsbos 2, 6708 WB, Wageningen, The Netherlands
| | - Yu Zhang
- Food Microbiology, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands.,, Shanghai, People's Republic of China
| | - Tjakko Abee
- Food Microbiology, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands
| | - Eddy J Smid
- Food Microbiology, Wageningen University and Research, PO Box 17, 6700 AA, Wageningen, The Netherlands.
| |
Collapse
|
22
|
Ravichandiran P, Masłyk M, Sheet S, Janeczko M, Premnath D, Kim AR, Park B, Han M, Yoo DJ. Synthesis and Antimicrobial Evaluation of 1,4-Naphthoquinone Derivatives as Potential Antibacterial Agents. ChemistryOpen 2019; 8:589-600. [PMID: 31098338 PMCID: PMC6507621 DOI: 10.1002/open.201900077] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 04/18/2019] [Indexed: 12/16/2022] Open
Abstract
1,4-Naphthoquinones are an important class of compounds present in a number of natural products. In this study, a new series of 1,4-naphthoquinone derivatives were synthesized. All the synthesized compounds were tested for in vitro antimicrobial activity. In this present investigation, two Gram-positive and five Gram-negative bacterial strains and one pathogenic yeast strain were used to determine the antibacterial activity. Naphthoquinones tested for its antibacterial potencies, among seven of them displayed better antimicrobial activity against Staphylococcus aureus (S. aureus; 30-70 μg/mL). Some of the tested compounds showed moderate to low antimicrobial activity against Pseudomonas aeruginosa (P. aeruginosa) and Salmonella bongori (S. bongori; 70-150 μg/mL). In addition, most active compounds against S. aureus were evaluated for toxicity to human blood cells using a hemolysis assay. For better understanding, reactive oxygen species (ROS) generation, time-kill kinetic study, and apoptosis, necrosis responses were investigated for three representative compounds.
Collapse
Affiliation(s)
- Palanisamy Ravichandiran
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| | - Maciej Masłyk
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Sunirmal Sheet
- Department of Forest Science and Technology, College of Agriculture and Life SciencesChonbuk National University, 567 Baekje-daero, Deokjin-guJeonju-si561-756, Jeollabuk-doRepublic of Korea
| | - Monika Janeczko
- Department of Molecular Biology, Faculty of Biotechnology and Environmental SciencesThe John Paul II Catholic University of Lublinul. Konstantynów 1i20-708LublinPoland
| | - Dhanraj Premnath
- Department of BiotechnologyKarunya Institute of Technology and ScienceSchool of Agriculture and Biosciences, Karunya NagarCoimbatore641114, Tamil NaduIndia
| | - Ae Rhan Kim
- R&D Center for CANUTECH, Business Incubation Center, Department of Bioenvironmental ChemistryChonbuk National University, Jeollabuk-do54896Republic of Korea.
| | - Byung‐Hyun Park
- Department of BiochemistryChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Myung‐Kwan Han
- Department of MicrobiologyChonbuk National University Medical School, Jeollabuk-do54896Republic of Korea
| | - Dong Jin Yoo
- Department of Life Science, Department of Energy Storage/Conversion Engineering of Graduate School, and Hydrogen and Fuel Cell Research CenterChonbuk National University, Jeollabuk-do54896Republic of Korea
| |
Collapse
|
23
|
Vitamin K2 improves proliferation and migration of bovine skeletal muscle cells in vitro. PLoS One 2018; 13:e0195432. [PMID: 29617432 PMCID: PMC5884547 DOI: 10.1371/journal.pone.0195432] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 03/22/2018] [Indexed: 01/20/2023] Open
Abstract
Skeletal muscle function is highly dependent on the ability to regenerate, however, during ageing or disease, the proliferative capacity is reduced, leading to loss of muscle function. We have previously demonstrated the presence of vitamin K2 in bovine skeletal muscles, but whether vitamin K has a role in muscle regulation and function is unknown. In this study, we used primary bovine skeletal muscle cells, cultured in monolayers in vitro, to assess a potential effect of vitamin K2 (MK-4) during myogenesis of muscle cells. Cell viability experiments demonstrate that the amount of ATP produced by the cells was unchanged when MK-4 was added, indicating viable cells. Cytotoxicity analysis show that MK-4 reduced the lactate dehydrogenase (LDH) released into the media, suggesting that MK-4 was beneficial to the muscle cells. Cell migration, proliferation and differentiation was characterised after MK-4 incubation using wound scratch analysis, immunocytochemistry and real-time PCR analysis. Adding MK-4 to the cells led to an increased muscle proliferation, increased gene expression of the myogenic transcription factor myod as well as increased cell migration. In addition, we observed a reduction in the fusion index and relative gene expression of muscle differentiation markers, with fewer complex myotubes formed in MK-4 stimulated cells compared to control cells, indicating that the MK-4 plays a significant role during the early phases of muscle proliferation. Likewise, we see the same pattern for the relative gene expression of collagen 1A, showing increased gene expression in proliferating cells, and reduced expression in differentiating cells. Our results also suggest that MK-4 incubation affect low density lipoprotein receptor-related protein 1 (LRP1) and the low-density lipoprotein receptor (LDLR) with a peak in gene expression after 45 min of MK-4 incubation. Altogether, our experiments show that MK-4 has a positive effect on muscle cell migration and proliferation, which are two important steps during early myogenesis.
Collapse
|
24
|
Ammentorp B, Darius H, De Caterina R, Schilling R, Schmitt J, Zamorano JL, Kirchhof P, Le Heuzey JY. Differences among western European countries in anticoagulation management of atrial fibrillation. Thromb Haemost 2017; 111:833-41. [DOI: 10.1160/th13-12-1007] [Citation(s) in RCA: 86] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2013] [Accepted: 02/20/2014] [Indexed: 11/05/2022]
Abstract
SummaryDue to improved implementation of guidelines, new scoring approaches to improve risk categorisation, and introduction of novel oral anticoagulants, medical management of patients with atrial fibrillation (AF) is continuously improving. The PREFER in AF registry enrolled 7,243 consecutive patients with ECG-confirmed AF in seven European countries in 2012–2013 (mean age: 71.5 ± 10.7 years; 60.1% males; mean CHA2DS 2 -VASc score: 3.4). While patient characteristics were generally homogeneous across countries, anticoagulation management showed important differences: the proportion of patients taking vitamin K antagonists (VKAs) varied between 86.0% (in France) and 71.4% (in Italy). Warfarin was used predominantly in the UK and Italy (74.9% and 62.0%, respectively), phenprocoumon in Germany (74.1%), acenocoumarol in Spain (67.3%), and fluindione in France (61.8 %). The major sites for international normalised ratio (INR) measurements were biology laboratories in France anticoagulation clinics in Italy, Spain, and the UK, and physicians’ offices or self-measurement in Germany. Temporary VKA discontinuation and bridging with other anticoagulants was frequent (at least once in the previous 12 months for 22.9% of the patients, on average; ranging from 29.7% in Germany to 14.9% in the UK). Time in therapeutic range (TTR), defined as at least two of the last three available INR values between 2.0–3.0 prior to enrolment, ranged from 70.3% in Spain to 81.4% in Germany. TTR was constantly overestimated by physicians. While the type and half-lives of VKA as well as the mode of INR surveillance differed, overall quality of anticoagulation management by TTR was relatively homogenous in AF patients across countries.
Collapse
|
25
|
Liu Y, Alexeeva S, Defourny KA, Smid EJ, Abee T. Tiny but mighty: bacterial membrane vesicles in food biotechnological applications. Curr Opin Biotechnol 2017; 49:179-184. [PMID: 28985542 DOI: 10.1016/j.copbio.2017.09.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 08/15/2017] [Accepted: 09/03/2017] [Indexed: 12/15/2022]
Abstract
Membrane vesicle (MV) production is observed in all domains of life. Evidence of MV production accumulated in recent years among bacterial species involved in fermentation processes. These studies revealed MV composition, biological functions and properties, which made us recognize the potential of MVs in food applications as delivery vehicles of various compounds to other bacteria or the human host. Moreover, MV producing strains can deliver benefits as probiotics or starters in fermentation processes. Next to the natural production of MVs, we also highlight possible methods for artificial generation of bacterial MVs and cargo loading to enhance their applicability. We believe that a more in-depth understanding of bacterial MVs opens new avenues for their exploitation in biotechnological applications.
Collapse
Affiliation(s)
- Yue Liu
- Wageningen University, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Svetlana Alexeeva
- Wageningen University, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Kyra Ay Defourny
- Wageningen University, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| | - Eddy J Smid
- Wageningen University, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, The Netherlands.
| | - Tjakko Abee
- Wageningen University, Laboratory of Food Microbiology, P.O. Box 17, 6700 AA Wageningen, The Netherlands
| |
Collapse
|
26
|
Orale Antikoagulation mit Vitamin K-Antagonisten – ein Update. Wien Med Wochenschr 2017; 168:121-132. [DOI: 10.1007/s10354-017-0577-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Accepted: 05/22/2017] [Indexed: 10/19/2022]
|
27
|
Synthesis of Quinone-BasedN-Sulfonyl-1,2,3-triazoles: Chemical Reactivity of Rh(II) Azavinyl Carbenes and Antitumor Activity. ChemistrySelect 2017. [DOI: 10.1002/slct.201700885] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
28
|
Kelly C, Sattler S, Schwartz A. Coagulopathy secondary to vitamin K deficiency caused by severe diarrhea. Am J Emerg Med 2017; 35:660.e1-660.e2. [PMID: 29804618 DOI: 10.1016/j.ajem.2014.10.028] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2014] [Accepted: 10/11/2014] [Indexed: 11/17/2022] Open
Affiliation(s)
- Catherine Kelly
- Good Samaritan Hospital Medical Center, 1000 Montauk Highway, West Islip, NY 11795.
| | - Steven Sattler
- Good Samaritan Hospital Medical Center, 1000 Montauk Highway, West Islip, NY 11795
| | - Adam Schwartz
- Good Samaritan Hospital Medical Center, 1000 Montauk Highway, West Islip, NY 11795
| |
Collapse
|
29
|
New family of antimicrobial agents derived from 1,4-naphthoquinone. Eur J Med Chem 2016; 124:1019-1025. [DOI: 10.1016/j.ejmech.2016.10.034] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Revised: 10/14/2016] [Accepted: 10/15/2016] [Indexed: 11/21/2022]
|
30
|
Britt RB, Brown JN. Characterizing the Severe Reactions of Parenteral Vitamin K1. Clin Appl Thromb Hemost 2016; 24:5-12. [PMID: 28301903 DOI: 10.1177/1076029616674825] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Parenteral vitamin K1 (phytonadione) is used for anticoagulant reversal, and a boxed warning exists with intravenous and intramuscular administration due to the possibility of severe reactions, including fatalities. These reactions resemble hypersensitivity or anaphylaxis, including anaphylactoid reaction, and have led to shock and cardiac and/or respiratory arrest. The objective of this review is to summarize the available literature detailing the anaphylactic/anaphylactoid reactions with parenteral vitamin K1 in order to better characterize the reaction and provide a more in-depth understanding of its importance. A comprehensive literature search of MEDLINE (1946 to June 2016) and EMBASE (1947 to June 2016) was conducted using the terms vitamin K1, phytonadione, phytomenadione, vitamin K group, anaphylaxis, polyoxyethylated castor oil, and cremophor. A total of 2 retrospective surveillance studies, 2 retrospective cohort studies, and 17 case reports were identified for inclusion and assessment. Based on a review of the literature, use of parenteral vitamin K1 may result in severe hypotension, bradycardia or tachycardia, dyspnea, bronchospasm, cardiac arrest, and death. These reactions are most consistent with a nonimmune-mediated anaphylactoid mechanism. It appears that intravenous administration is more frequently associated with these reactions and occurs at an incidence of 3 per 10 000 doses of intravenous vitamin K1. The solubilizer may also increase the risk of adverse reactions, which occurred in patients with and without previous exposure to vitamin K1. Although there are known factors that increase the risk of an adverse drug event occurring, reactions have been reported despite all precautions being properly followed.
Collapse
Affiliation(s)
- Rachel B Britt
- 1 Geriatric Research, Education and Clinical Center, Durham VA Health Care System, Durham, NC, USA.,2 Pharmacy Service, Durham VA Medical Center, Durham, NC, USA
| | - Jamie N Brown
- 2 Pharmacy Service, Durham VA Medical Center, Durham, NC, USA
| |
Collapse
|
31
|
Vissers LE, Dalmeijer GW, Boer JM, Verschuren WM, van der Schouw YT, Beulens JW. The relationship between vitamin K and peripheral arterial disease. Atherosclerosis 2016; 252:15-20. [DOI: 10.1016/j.atherosclerosis.2016.07.915] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Revised: 07/20/2016] [Accepted: 07/21/2016] [Indexed: 01/07/2023]
|
32
|
Ayee MAA, Roth CW, Akpa BS. Structural perturbation of a dipalmitoylphosphatidylcholine (DPPC) bilayer by warfarin and its bolaamphiphilic analogue: A molecular dynamics study. J Colloid Interface Sci 2016; 468:227-237. [PMID: 26852346 PMCID: PMC4762473 DOI: 10.1016/j.jcis.2016.01.056] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2015] [Revised: 01/24/2016] [Accepted: 01/26/2016] [Indexed: 12/26/2022]
Abstract
Compounds with nominally similar biological activity may exhibit differential toxicity due to differences in their interactions with cell membranes. Many pharmaceutical compounds are amphiphilic and can be taken up by phospholipid bilayers, interacting strongly with the lipid-aqueous interface whether or not subsequent permeation through the bilayer is possible. Bolaamphiphilic compounds, which possess two hydrophilic ends and a hydrophobic linker, can likewise undergo spontaneous uptake by bilayers. While membrane-spanning bolaamphiphiles can stabilize membranes, small molecules with this characteristic have the potential to create membrane defects via disruption of bilayer structure and dynamics. When compared to the amphiphilic therapeutic anticoagulant, warfarin, the bolaamphiphilic analogue, brodifacoum, exhibits heightened toxicity that goes beyond superior inhibition of the pharmacological target enzyme. We explore, herein, the consequences of anticoagulant accumulation in a dipalmitoylphosphatidylcholine (DPPC) bilayer. Coarse-grained molecular dynamics simulations reveal that permeation of phospholipid bilayers by brodifacoum causes a disruption of membrane barrier function that is driven by the bolaamphiphilic nature and size of this molecule. We find that brodifacoum partitioning into bilayers causes membrane thinning and permeabilization and promotes lipid flip-flop - phenomena that are suspected to play a role in triggering cell death. These phenomena are either absent or less pronounced in the case of the less toxic, amphiphilic compound, warfarin.
Collapse
Affiliation(s)
- Manuela Aseye Ayele Ayee
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL 60607, USA; Department of Medicine, University of Illinois at Chicago, 909 S. Wolcott Ave., Chicago, IL 60612, USA.
| | - Charles William Roth
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL 60607, USA.
| | - Belinda Sena Akpa
- Department of Chemical Engineering, University of Illinois at Chicago, 810 S. Clinton St., Chicago, IL 60607, USA; Department of Molecular Biomedical Sciences, North Carolina State University, 1060 William Moore Dr., Raleigh, NC 27607, USA.
| |
Collapse
|
33
|
Theoretical Study of Molecular Structure and Physicochemical Properties of Novel Factor Xa Inhibitors and Dual Factor Xa and Factor IIa Inhibitors. Molecules 2016; 21:molecules21020185. [PMID: 26861270 PMCID: PMC6273828 DOI: 10.3390/molecules21020185] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Revised: 01/27/2016] [Accepted: 01/27/2016] [Indexed: 12/13/2022] Open
Abstract
The geometries and energies of factor Xa inhibitors edoxaban, eribaxaban, fidexaban, darexaban, letaxaban, and the dual factor Xa and thrombin inhibitors tanogitran and SAR107375 in both the gas-phase and aqueous solution were studied using the Becke3LYP/6-31++G(d,p) or Grimme’s B97D/6-31++G(d,p) method. The fully optimized conformers of these anticoagulants show a characteristic l-shape structure, and the water had a remarkable effect on the equilibrium geometry. According to the calculated pKa values eribaxaban and letaxaban are in neutral undissociated form at pH 7.4, while fidexaban and tanogitran exist as zwitterionic structures. The lipophilicity of the inhibitors studied lies within a large range of log P between 1 and 4. The dual inhibitor SAR107375 represents an improvement in structural, physicochemical and pharmacokinetic characteristics over tanogitran. At blood pH, SAR107375 predominantly exists in neutral form. In contrast with tanogitran, it is better absorbed and more lipophilic and active after oral application.
Collapse
|
34
|
Maniwa Y, Kasukabe T, Kumakura S. Vitamin K2 and cotylenin A synergistically induce monocytic differentiation and growth arrest along with the suppression of c-MYC expression and induction of cyclin G2 expression in human leukemia HL-60 cells. Int J Oncol 2015; 47:473-80. [PMID: 26046133 PMCID: PMC4501641 DOI: 10.3892/ijo.2015.3028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2015] [Accepted: 05/25/2015] [Indexed: 11/05/2022] Open
Abstract
Although all-trans retinoic acid (ATRA) is a standard and effective drug used for differentiation therapy in acute promyelocytic leukemia, ATRA-resistant leukemia cells ultimately emerge during this treatment. Therefore, the development of new drugs or effective combination therapy is urgently needed. We demonstrate that the combined treatment of vitamin K2 and cotylenin A synergistically induced monocytic differentiation in HL-60 cells. This combined treatment also synergistically induced NBT-reducing activity and non-specific esterase-positive cells as well as morphological changes to monocyte/macrophage-like cells. Vitamin K2 and cotylenin A cooperatively inhibited the proliferation of HL-60 cells in short-term and long-term cultures. This treatment also induced growth arrest at the G1 phase. Although 5 µg/ml cotylenin A or 5 µM vitamin K2 alone reduced c-MYC gene expression in HL-60 cells to approximately 45% or 80% that of control cells, respectively, the combined treatment almost completely suppressed c-MYC gene expression. We also demonstrated that the combined treatment of vitamin K2 and cotylenin A synergistically induced the expression of cyclin G2, which had a positive effect on the promotion and maintenance of cell cycle arrest. These results suggest that the combination of vitamin K2 and cotylenin A has therapeutic value in the treatment of acute myeloid leukemia.
Collapse
Affiliation(s)
| | - Takashi Kasukabe
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| | - Shunichi Kumakura
- Department of Medical Education and Research, Faculty of Medicine, Shimane University, Izumo 693-8501, Japan
| |
Collapse
|
35
|
Singh R, Puri A, Panda BP. Development of menaquinone-7 enriched nutraceutical: inside into medium engineering and process modeling. Journal of Food Science and Technology 2014; 52:5212-9. [PMID: 26243944 DOI: 10.1007/s13197-014-1600-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 08/03/2014] [Accepted: 10/02/2014] [Indexed: 01/07/2023]
Abstract
Menaquinone 7 (MK-7) is nutritionally important metabolite found by fermentation mainly using B. subtilis species. In this study, soybean medium was modified to improve the MK-7 production using Bacillus subtilis NCIM 2708 under solid state fermentation. The objective of this study was to produce large amount of MK-7 within a short period of time. Nine nutritional components viz. glycerol, mannitol, dextrose, sucrose, yeast extract, malt extract, K2HPO4, MgSO4.7H2O and CaCl2 were investigated to obtain the maximum MK-7 concentration. The highest MK-7 concentration 39.039 μg/g was obtained after 24 h of fermentation in the following optimised medium components: soybean 20 g, glycerol 40 ml/kg, mannitol 60 g/kg, yeast extract 4 g/kg, malt extract 8 g/kg and calcium chloride 4 g/kg. The maximum production of MK-7 56.757 μg/g was predicted by point prediction tool of Design Expert 7.1 software (Statease Inc. USA). This data shows 68.78 % validity of the predicted model.
Collapse
Affiliation(s)
- Rishipal Singh
- Microbial and Pharmaceutical Biotechnology Laboratory, Centre for Advanced Research in Pharmaceutical Science, Faculty of Pharmacy, Jamia Hamdard, New Delhi, 110062 India
| | - Alka Puri
- Microbial and Pharmaceutical Biotechnology Laboratory, Centre for Advanced Research in Pharmaceutical Science, Faculty of Pharmacy, Jamia Hamdard, New Delhi, 110062 India
| | - Bibhu Prasad Panda
- Microbial and Pharmaceutical Biotechnology Laboratory, Centre for Advanced Research in Pharmaceutical Science, Faculty of Pharmacy, Jamia Hamdard, New Delhi, 110062 India
| |
Collapse
|
36
|
Retrospective Study of Twenty-Four Patients With Prolonged Coagulopathy Due to Long-Acting Anti-Vitamin K Rodenticide Poisoning. Am J Med Sci 2014; 347:299-304. [DOI: 10.1097/maj.0b013e318291cb7d] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
37
|
Scientific Opinion on the safety and efficacy of vitamin K3 (menadione sodium bisulphite and menadione nicotinamide bisulphite) as a feed additive for all animal species. EFSA J 2014. [DOI: 10.2903/j.efsa.2014.3532] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
38
|
Zak J, Ron D, Riva E, Harding HP, Cross BCS, Baxendale IR. Establishing a flow process to coumarin-8-carbaldehydes as important synthetic scaffolds. Chemistry 2012; 18:9901-10. [PMID: 22782929 DOI: 10.1002/chem.201201039] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/22/2012] [Indexed: 11/10/2022]
Abstract
Despite their usefulness as fluorophores and synthetic precursors, efficient and reliable routes to coumarin-8-carbaldehydes are lacking. We describe here a high-yielding continuous flow synthesis that requires no manual intermediate purification or work-up, giving access to multigram quantities of the aldehyde product.
Collapse
Affiliation(s)
- Jaroslav Zak
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | | | | | | | | | | |
Collapse
|
39
|
Nowicka B, Kruk J. Occurrence, biosynthesis and function of isoprenoid quinones. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1797:1587-605. [PMID: 20599680 DOI: 10.1016/j.bbabio.2010.06.007] [Citation(s) in RCA: 303] [Impact Index Per Article: 21.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Revised: 06/09/2010] [Accepted: 06/14/2010] [Indexed: 12/23/2022]
Abstract
Isoprenoid quinones are one of the most important groups of compounds occurring in membranes of living organisms. These compounds are composed of a hydrophilic head group and an apolar isoprenoid side chain, giving the molecules a lipid-soluble character. Isoprenoid quinones function mainly as electron and proton carriers in photosynthetic and respiratory electron transport chains and these compounds show also additional functions, such as antioxidant function. Most of naturally occurring isoprenoid quinones belong to naphthoquinones or evolutionary younger benzoquinones. Among benzoquinones, the most widespread and important are ubiquinones and plastoquinones. Menaquinones, belonging to naphthoquinones, function in respiratory and photosynthetic electron transport chains of bacteria. Phylloquinone K(1), a phytyl naphthoquinone, functions in the photosynthetic electron transport in photosystem I. Ubiquinones participate in respiratory chains of eukaryotic mitochondria and some bacteria. Plastoquinones are components of photosynthetic electron transport chains of cyanobacteria and plant chloroplasts. Biosynthetic pathway of isoprenoid quinones has been described, as well as their additional, recently recognized, diverse functions in bacterial, plant and animal metabolism.
Collapse
Affiliation(s)
- Beatrycze Nowicka
- Department of Plant Physiology and Biochemistry, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Kraków, Poland
| | | |
Collapse
|
40
|
Showalter SL, Wang Z, Costantino CL, Witkiewicz AK, Yeo CJ, Brody JR, Carr BI. Naturally occurring K vitamins inhibit pancreatic cancer cell survival through a caspase-dependent pathway. J Gastroenterol Hepatol 2010; 25:738-44. [PMID: 19929921 DOI: 10.1111/j.1440-1746.2009.06085.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
BACKGROUND AND AIMS Available medical therapies against pancreatic cancer are largely ineffective and have many side-effects. Physiologically, vitamins K1 and K2 (VK) act as co-factors for gamma-carboxylation of prothrombin and other coagulation factors. In previous studies, VK analogs have been found to have potent negative effects on the survival of various cancer cells. We hypothesized that the well-tolerated and naturally occurring VK1 and VK2 may be used to inhibit pancreatic cancer cell survival. METHODS Four pancreas cancer cell lines were tested. Two of these (MiaPaCa2 and PL5) were found to be sensitive to VK1 and VK2 (IC50 values < or =150 microM). To address the mechanisms of this effect on cell survival, we performed cell cycle and apoptosis studies using VK2 (the more potent compound). RESULTS We found that VK induced caspase-dependent apoptosis in over 60% of cells in the sensitive lines at the half maximal inhibitory concentration (IC(50)) range. Further, this induction in apoptosis was antagonized by a caspase inhibitor. Accompanying apoptosis, a dose- and time-dependent induction of extracellular signal-regulated kinase (ERK) phosphorylation occurred when sensitive lines were treated with either VK1 or VK2 at inhibitory doses. Simultaneous co-treatment of cells with a MEK1 inhibitor and VK prevented both the induction of ERK phosphorylation and the apoptosis, showing that the mitogen-activated protein (MAP) kinase pathway is central for VK-mediated apoptosis in pancreatic cancer cells. CONCLUSION These data show that naturally-occurring, non-toxic K vitamins can inhibit the survival of some pancreatic cancer cell lines. These novel, safe and clinically-utilized agents initiate a caspase-dependent apoptosis via the MAP kinase pathway and could potentially benefit patients with pancreatic cancer either as a single agent or in combination with chemotherapy for treatment, or for prevention of recurrence of pancreas cancer post resection.
Collapse
Affiliation(s)
- Shayna L Showalter
- Department of Surgery, Jefferson Center for Pancreatic, Biliary and Related Cancers, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
41
|
Abstract
There is a growing awareness that natural vitamins (with the only exception of pantothenic acid) positively or negatively modulate the synthesis of some cytokines and growth factors in the CNS, and various mammalian cells and organs. As natural vitamins are micronutrients in the human diet, studying their effects can be considered a part of nutritional genomics or nutrigenomics. A given vitamin selectively modifies the synthesis of only a few cytokines and/or growth factors, although the same cytokine and/or growth factor may be regulated by more than one vitamin. These effects seem to be independent of the effects of vitamins as coenzymes and/or reducing agents, and seem to occur mainly at genomic and/or epigenetic level, and/or by modulating NF-kappaB activity. Although most of the studies reviewed here have been based on cultured cell lines, but their findings have been confirmed by some key in vivo studies. The CNS seems to be particularly involved and is severely affected by most avitaminoses, especially in the case of vitamin B(12). However, the vitamin-induced changes in cytokine and growth factor synthesis may initiate a cascade of events that can affect the function, differentiation, and morphology of the cells and/or structures not only in the CNS, but also elsewhere because most natural vitamins, cytokines, and growth factors cross the blood-brain barrier. As cytokines are essential to CNS-immune and CNS-hormone system communications, natural vitamins also interact with these circuits. Further studies of such vitamin-mediated effects could lead to vitamins being used for the treatment of diseases which, although not true avitaminoses, involve an imbalance in cytokine and/or growth factor synthesis.
Collapse
Affiliation(s)
- Giuseppe Scalabrino
- Laboratory of Neuropathology, 'Città Studi' Department, Faculty of Medicine and Surgery, University of Milan, Milan, Italy.
| |
Collapse
|
42
|
Nimptsch K, Rohrmann S, Nieters A, Linseisen J. Serum undercarboxylated osteocalcin as biomarker of vitamin K intake and risk of prostate cancer: a nested case-control study in the Heidelberg cohort of the European prospective investigation into cancer and nutrition. Cancer Epidemiol Biomarkers Prev 2009; 18:49-56. [PMID: 19124480 DOI: 10.1158/1055-9965.epi-08-0554] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
From cell studies, Vitamin K is known to exert anticancer effects on a variety of cancer cell lines, including prostate cancer cells. Recently, we reported an inverse association between dietary intake of menaquinones (vitamin K(2)), but not phylloquinone (vitamin K(1)), and risk of prostate cancer. In this nested case-control study including 250 prostate cancer cases and 494 matched controls, we aimed to confirm this cancer-protective effect using serum undercarboxylated osteocalcin (ucOC), a biomarker of vitamin K status inversely associated with vitamin K intake. In addition, effect modification by a functionally relevant polymorphism in the vitamin K epoxide reductase gene (VKORC1) was assessed. Serum ucOC and intact total osteocalcin (iOC) were analyzed with the use of ELISA tests. Serum ucOC was expressed relative to iOC (i.e., as ucOC/iOC ratio). Conditional logistic regression was used to calculate multivariate adjusted odds ratios (OR) and 95% confidence intervals (95% CI). Serum ucOC/iOC ratio was positively associated with advanced-stage (OR per 0.1 increment, 1.38; 95% CI, 1.03-1.86) and high-grade prostate cancer (OR, 1.21; 95% CI, 1.00-1.46) but not with total prostate cancer. The significant association with advanced-stage prostate cancer was confirmed when serum ucOC/iOC ratio was jointly modeled with menaquinone intake data. There was indication of a lower prostate cancer risk in carriers of the A allele (compared with GG carriers) of the +2255 VKORC1 polymorphism with increasing menaquinone intake (P(interaction) = 0.14) whereas no distinct effect modification was observed for the ucOC/iOC ratio (P(interaction) = 0.37). The increased risks of advanced-stage and high-grade prostate cancer with higher serum ucOC/iOC ratio strengthen the findings for dietary menaquinone intake.
Collapse
Affiliation(s)
- Katharina Nimptsch
- Division of Cancer Epidemiology, German Cancer Research Center, Im Neuenheimer Feld 280, Heidelberg DE-69120, Germany
| | | | | | | |
Collapse
|
43
|
The association between dietary vitamin K intake and serum undercarboxylated osteocalcin is modulated by vitamin K epoxide reductase genotype. Br J Nutr 2008; 101:1812-20. [DOI: 10.1017/s0007114508131750] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Vitamin K acts as a cofactor during the γ-carboxylation of vitamin K-dependent proteins. Undercarboxylated osteocalcin (ucOC) is a suggested biomarker of vitamin K status. The +2255 polymorphism of the vitamin K epoxide reductase gene (VKORC1) was shown to be associated with the recycling rate of the active form of vitamin K. We investigated the association between dietary vitamin K intake and serum ucOC and hypothesized that this association might vary byVKORC1genotype. ucOC and total intact osteocalcin (iOC) concentrations were quantified using specific ELISA tests in serum samples of 548 male and female participants (aged 18–81 years) of the Bavarian Food Consumption Survey II. ucOC was expressed relative to iOC (ucOC/iOC ratio). Dietary intake of vitamin K (phylloquinone and menaquinones) was estimated from three 24 h dietary recalls using previously published food composition data. The association between dietary vitamin K intake and ucOC/iOC ratio was analysed using linear and non-linear regression models. Median intakes of phylloquinone/menaquinones were 83·4/37·6 μg/d in men and 79·6/29·8 μg/d in women, respectively. As expected, vitamin K intake was significantly inversely associated with the ucOC/iOC ratio. The ucOC/iOC ratio differed significantly across variants of the +2255 polymorphism in theVKORC1gene. Stratification byVKORC1+2255 genotype revealed that only in carriers of the GG genotype (39 % of all participants) did the ucOC/iOC ratio significantly decrease with increasing intake of vitamin K. Thus, the results show that the inverse association between dietary vitamin K intake and serum ucOC depends on a functionally relevant allelic variant of theVKORC1gene.
Collapse
|
44
|
Assessment of bone mineral density and markers of bone turnover in children under long-term oral anticoagulant therapy. J Pediatr Hematol Oncol 2008; 30:592-7. [PMID: 18799935 DOI: 10.1097/mph.0b013e31817541a8] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oral anticoagulants antagonize vitamin K action and potentially impair the carboxylation of osteocalcin, a protein essential for normal bone matrix formation. In the present study, bone mineral density (BMD) and bone turnover markers were evaluated in 23 children under long-term oral anticoagulant therapy. BMD of the lumbar spine was assessed (Dual Energy x-ray Absorptiometry) and reported as z score. Osteoblast [bone alkaline phosphatase, osteocalcin (Gla-Oc), amino-terminal procollagen 1 extension peptide] and osteoclast (urinary calcium and deoxypyridinoline, serum cross-linked C telopeptide) activity markers were measured. Vitamin D {[25(OH) D], parathormone, calcium, phosphorus, magnesium} and vitamin K status [factors II, VII, IX, X, protein C, protein S, undercarboxylated osteocalcin (Glu-Oc)] were determined. The above parameters were also evaluated in 25 healthy controls. Patients presented with higher levels in Glu-Oc, parathormone, and bone resorption markers, lower levels in bone formation markers and 25(OH) D, whereas 52% of them showed signs of osteopenia (-1>BMD z score>-2.5). Statistical analysis demonstrated that anticoagulant therapy was an independent predictor of alterations in Glu-Oc, Gla-Oc, bone alkaline phosphatase, amino-terminal procollagen 1 extension peptide, and serum cross-linked C telopeptide levels. It seems that long-term use of coumarin derivatives may cause osteopenia in children with the risk of developing osteoporosis later in life.
Collapse
|
45
|
Nimptsch K, Rohrmann S, Linseisen J. Dietary intake of vitamin K and risk of prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition (EPIC-Heidelberg). Am J Clin Nutr 2008; 87:985-92. [PMID: 18400723 DOI: 10.1093/ajcn/87.4.985] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Anticarcinogenic activities of vitamin K have been observed in various cancer cell lines, including prostate cancer cells. Epidemiologic studies linking dietary intake of vitamin K with the development of prostate cancer have not yet been conducted. OBJECTIVE We evaluated the association between dietary intake of phylloquinone (vitamin K1) and menaquinones (vitamin K2) and total and advanced prostate cancer in the Heidelberg cohort of the European Prospective Investigation into Cancer and Nutrition. DESIGN At baseline, habitual dietary intake was assessed by means of a food-frequency questionnaire. Dietary intake of phylloquinone and menaquinones (MK-4-14) was estimated by using previously published HPLC-based food-content data. Multivariate-adjusted relative risks of total and advanced prostate cancer in relation to intakes of phylloquinone and menaquinones were calculated in 11 319 men by means of Cox proportional hazards regression. RESULTS During a mean follow-up time of 8.6 y, 268 incident cases of prostate cancer, including 113 advanced cases, were identified. We observed a nonsignificant inverse association between total prostate cancer and total menaquinone intake [multivariate relative risk (highest compared with lowest quartile): 0.65; 95% CI: 0.39, 1.06]. The association was stronger for advanced prostate cancer (0.37; 0.16, 0.88; P for trend = 0.03). Menaquinones from dairy products had a stronger inverse association with advanced prostate cancer than did menaquinones from meat. Phylloquinone intake was unrelated to prostate cancer incidence (1.02; 0.70, 1.48). CONCLUSIONS Our results suggest an inverse association between the intake of menaquinones, but not that of phylloquinone, and prostate cancer. Further studies of dietary vitamin K and prostate cancer are warranted.
Collapse
Affiliation(s)
- Katharina Nimptsch
- Division of Cancer Epidemiology, German Cancer Research Centre, Heidelberg, Germany
| | | | | |
Collapse
|
46
|
Whelan AM, Jurgens TM, Bowles SK. Natural Health Products in the Prevention and Treatment of Osteoporosis: Systematic Review of Randomized Controlled Trials. Ann Pharmacother 2006; 40:836-49. [PMID: 16670364 DOI: 10.1345/aph.1g226] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Background: Consumers are increasingly looking to natural health products to manage specific diseases such as osteoporosis. As a result, healthcare providers need evidence-based information on which to base recommendations regarding use and efficacy. Objective: To identify natural health products (NHPs, ie, dietary supplements) advocated for the prevention and treatment of osteoporosis and systematically review the evidence from randomized controlled trials for the effect of NHPs on bone mineral density (BMD)/fracture rate in women. Methods: MEDLINE, Natural Medicines Comprehensive Database, and the Internet were initially searched to identify NHPs advocated for prevention and treatment of osteoporosis. For NHPs having evidence to support their claim, the aforementioned sources, along with International Pharmaceutical Abstracts, the Cochrane Library, the International Bibliographic Information on Dietary Supplements, the Cumulative Index to Nursing & Allied Health, and HerbMed, were searched to locate randomized controlled trials published in English between 1966 and October 2004. Bibliographies of identified articles were also searched. Randomized controlled trials were selected if they evaluated the use of a single NHP in women, using BMD/fracture rate as the outcome measure. NHPs were excluded from further evaluation if a review had already been published. Data were extracted using predetermined criteria and studies appraised using the Jadad scale. Forty-five NHPs were identified that the authors claimed to be beneficial in prevention and treatment of osteoporosis, with 15 having evidence to support their claim. Calcium; copper; evening primrose oil; fish oils; fluoride; magnesium; manganese; strontium; vitamin D; and black, green, and oolong tea did not meet study criteria. Results: Results from randomized controlled trials evaluating dehydroepiandrosterone (DHEA), phytoestrogens, and vitamin K2 (menaquinone or menatetrenone) were promising; however, study limitations suggest the need for confirmatory evidence. Conclusions: Although no definitive conclusions can be drawn, the relative safety of phytoestrogens, DHEA, and vitamin K2 at the studied doses, as well as preliminary positive results from randomized controlled trials, provides some initial support for the use of these NHPs in the prevention and treatment of osteoporosis in women.
Collapse
|
47
|
Fugate SE, Ramsey AM. Resistance to oral vitamin K for reversal of overanticoagulation during Crohn's disease relapse. J Thromb Thrombolysis 2005; 17:219-23. [PMID: 15353921 DOI: 10.1023/b:thro.0000040492.02376.cc] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
OBJECTIVE The purpose of this case report is to describe oral vitamin K resistance in a patient with concomitant Crohn's disease (CD) relapse and supratherapeutic anticoagulation. Additionally, a literature review was conducted to explore the mechanism and supporting evidence for poor response to oral vitamin K during CD relapse. CASE REPORT A 36 year-old female presented with an elevated International Normalized Ratio (INR) of 7.8 during a relapse of CD including symptoms of severe, persistent diarrhea and reduced appetite. For excessive anticoagulation, initial management consisted of withholding warfarin for seven days, administering vitamin K in a total dose of 10 mg orally and 1 mg intravenously. One week later, the INR remained elevated at 8.09. Subcutaneous vitamin K, in a dose of 5 mg, was administered on day eight, and the INR was reduced to a subtherapeutic result of 1.2 on day eleven. DISCUSSION The case report illustrates a poor response to recommended and repeated doses of oral vitamin K and a single, small dose of intravenous vitamin K during CD relapse. However, the patient responded favorably to vitamin K by the subcutaneous route. Current literature and consensus guidelines recommend the oral route of vitamin K as first-line management of overanticoagulation due to warfarin. Present data supports that patients with inflammatory bowel disease including CD have a greater incidence of vitamin K deficiency and malabsorption, and this is likely due to multiple pathological mechanisms. CONCLUSIONS Based on this case report, treatment of overanticoagulation in patients with CD relapse should include aggressive management, close monitoring, and consideration of an alternative, parenteral route of vitamin K administration rather than by the oral route due to potential for poor absorption.
Collapse
Affiliation(s)
- Susan Elaine Fugate
- The University of Oklahoma Health Sciences Center, Department of Pharmacy, Clinical and Administrative Sciences, Oklahoma City, OK 73190-5040, USA.
| | | |
Collapse
|
48
|
Abstract
Insight into the molecular basis for genetic warfarin resistance has recently been accomplished by the identification of an 18-kDa protein of the endoplasmic reticulum that is targeted by the drug. When expressed in eukaryotic and insect cells, the protein reduces vitamin K1 2,3-epoxide in a warfarin-sensitive reaction. This finding strongly suggests that the protein is part of the vitamin K cycle, which is essential for the production of vitamin K-dependent proteins. Identification of the 18-kDa protein has aided the understanding of the vitamin K-dependent gamma-carboxylation system at the molecular level.
Collapse
Affiliation(s)
- Reidar Wallin
- Departments of Internal Medicine and Biochemistry, Wake Forest University School of Medicine, Winston-Salem, NC 27157, USA.
| | | |
Collapse
|
49
|
Macronutrients. Dis Mon 2004. [DOI: 10.1016/j.disamonth.2004.02.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
50
|
Yamada K, Inui K, Iwamoto M, Nakamura H, Tsujio T, Konishi S, Ito Y, Takaoka K, Koike T. High serum levels of menatetrenone in male patients with ossification of the posterior longitudinal ligament. Spine (Phila Pa 1976) 2003; 28:1789-93. [PMID: 12923464 DOI: 10.1097/01.brs.0000084664.88303.b8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
STUDY DESIGN This work was performed to investigate the role of vitamin K (VK) in the pathogenesis of ossification of posterior longitudinal ligament (OPLL), by analyzing the biochemical markers of the blood samples of OPLL patients and responses of ligament cells derived from OPLL lesion to VK2. OBJECTIVES The pathogenesis of OPLL, classified as a form of diffuse idiopathic skeletal hyperostosis, is still unclear. In this study, we investigated the role of menaquinone (VK2) in patients with OPLL (OPLL patients) and the effects of VK2 on ligament cells isolated from OPLL lesion. METHODS Serum levels of intact osteocalcin, glu-osteocalcin, MK-4, -7 (VK2 variants) and other minerals in spot blood samples were measured in 24 OPLL patients and in 24 age-matched control patients (non-OPLL patients). The cultured cells isolated from an OPLL patient were treated with MK-4. Alkaline phosphatase (Al-p) activity and osteocalcin release were measured after 2 weeks of culture. RESULTS In the clinical study, the serum MK-4 in male OPLL patients was significantly higher than that in male non-OPLL patients. However, among female patients, the difference was not significant. Although the serum osteocalcin in females was significantly higher than that in males, there was no significant difference between the OPLL and non-OPLL groups. In in vitro study, MK-4 did not increase Al-p activity in the ligament cells isolated from nonossified region of OPLL patient. Osteoblastic activity of the cultured cells was not stimulated by MK-4. CONCLUSION From these results and previous reports, we propose the possibility of the impediment in VK2 metabolism in OPLL patients. The results also implicate the gender tendency in OPLL, because the difference of serum level of MK-4 in OPLL patients was significant only in male.
Collapse
Affiliation(s)
- Kenji Yamada
- Department of Orthopaedic Surgery, Osaka City University Medical School, Osaka, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|