1
|
Xin L, Gao J, Lin H, Qu Y, Shang C, Wang Y, Lu Y, Cui X. Regulatory Mechanisms of Baicalin in Cardiovascular Diseases: A Review. Front Pharmacol 2020; 11:583200. [PMID: 33224035 PMCID: PMC7667240 DOI: 10.3389/fphar.2020.583200] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 09/15/2020] [Indexed: 12/17/2022] Open
Abstract
Cardiovascular diseases (CVDs) is the leading cause of high morbidity and mortality worldwide, which emphasizes the urgent necessity to develop new pharmacotherapies. In eastern countries, traditional Chinese medicine Scutellaria baicalensis Georgi has been used clinically for thousands of years. Baicalin is one of the main active ingredients extracted from Chinese herbal medicine S. baicalensis. Emerging evidence has established that baicalin improves chronic inflammation, immune imbalance, disturbances in lipid metabolism, apoptosis and oxidative stress. Thereby it offers beneficial roles against the initiation and progression of CVDs such as atherosclerosis, hypertension, myocardial infarction and reperfusion, and heart failure. In this review, we summarize the pharmacological features and relevant mechanisms by which baicalin regulates CVDs in the hope to reveal its application for CVDs prevention and/or therapy.
Collapse
Affiliation(s)
- Laiyun Xin
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China.,Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Jialiang Gao
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Hongchen Lin
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yi Qu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Chang Shang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuling Wang
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yingdong Lu
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Xiangning Cui
- Department of Cardiology, Guang' anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
2
|
Ruan Y, Zeng J, Jin Q, Chu M, Ji K, Wang Z, Li L. Endoplasmic reticulum stress serves an important role in cardiac ischemia/reperfusion injury (Review). Exp Ther Med 2020; 20:268. [PMID: 33199993 PMCID: PMC7664614 DOI: 10.3892/etm.2020.9398] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022] Open
Abstract
Although acute myocardial infarction is one of the most common fatal diseases worldwide, the understanding of its underlying pathogenesis continues to develop. Myocardial ischemia/reperfusion (I/R) can restore myocardial oxygen and nutrient supply. However, a large number of studies have demonstrated that recovery of blood perfusion after acute ischemia causes reperfusion injury to the heart. With progress made in the understanding of the underlying mechanisms of myocardial I/R and oxidative stress, a novel area of research that merits greater study has been identified, that of I/R-induced endoplasmic reticulum (ER) stress (ERS). Cardiac I/R can alter the function of the ER, leading to the accumulation of unfolded/misfolded proteins. The resulting ERS then induces the activation of signal transduction pathways, which in turn contribute to the development of I/R injury. The mechanism of I/R injury, and the causal relationship between I/R and ERS are reviewed in the present article.
Collapse
Affiliation(s)
- Yongxue Ruan
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Jingjing Zeng
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Qike Jin
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Maoping Chu
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Kangting Ji
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| | - Zhongyu Wang
- Wenzhou Medical University, Wenzhou, Zhejiang 325035, P.R. China
| | - Lei Li
- Institute of Cardiovascular Development and Translational Medicine, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325027, P.R. China
| |
Collapse
|
3
|
Schofield ZV, Wu MCL, Hansbro PM, Cooper MA, Woodruff TM. Acetate protects against intestinal ischemia‐reperfusion injury independent of its cognate free fatty acid 2 receptor. FASEB J 2020; 34:10418-10430. [DOI: 10.1096/fj.202000960r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/19/2020] [Accepted: 05/22/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Zoe V. Schofield
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
- The Institute for Molecular Bioscience The University of Queensland Brisbane QLD Australia
| | - Mike C. L. Wu
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| | - Philip M. Hansbro
- Centre for Inflammation Centenary Institute Sydney NSW Australia
- Faculty of Science University of Technology Sydney Ultimo NSW Australia
| | - Matthew A. Cooper
- The Institute for Molecular Bioscience The University of Queensland Brisbane QLD Australia
| | - Trent M. Woodruff
- School of Biomedical Sciences The University of Queensland Brisbane QLD Australia
| |
Collapse
|
4
|
Erikson JM, Valente AJ, Mummidi S, Kandikattu HK, DeMarco VG, Bender SB, Fay WP, Siebenlist U, Chandrasekar B. Targeting TRAF3IP2 by Genetic and Interventional Approaches Inhibits Ischemia/Reperfusion-induced Myocardial Injury and Adverse Remodeling. J Biol Chem 2017; 292:2345-2358. [PMID: 28053087 DOI: 10.1074/jbc.m116.764522] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 12/07/2016] [Indexed: 11/06/2022] Open
Abstract
Re-establishing blood supply is the primary goal for reducing myocardial injury in subjects with ischemic heart disease. Paradoxically, reperfusion results in nitroxidative stress and a marked inflammatory response in the heart. TRAF3IP2 (TRAF3 Interacting Protein 2; previously known as CIKS or Act1) is an oxidative stress-responsive cytoplasmic adapter molecule that is an upstream regulator of both IκB kinase (IKK) and c-Jun N-terminal kinase (JNK), and an important mediator of autoimmune and inflammatory responses. Here we investigated the role of TRAF3IP2 in ischemia/reperfusion (I/R)-induced nitroxidative stress, inflammation, myocardial dysfunction, injury, and adverse remodeling. Our data show that I/R up-regulates TRAF3IP2 expression in the heart, and its gene deletion, in a conditional cardiomyocyte-specific manner, significantly attenuates I/R-induced nitroxidative stress, IKK/NF-κB and JNK/AP-1 activation, inflammatory cytokine, chemokine, and adhesion molecule expression, immune cell infiltration, myocardial injury, and contractile dysfunction. Furthermore, Traf3ip2 gene deletion blunts adverse remodeling 12 weeks post-I/R, as evidenced by reduced hypertrophy, fibrosis, and contractile dysfunction. Supporting the genetic approach, an interventional approach using ultrasound-targeted microbubble destruction-mediated delivery of phosphorothioated TRAF3IP2 antisense oligonucleotides into the LV in a clinically relevant time frame significantly inhibits TRAF3IP2 expression and myocardial injury in wild type mice post-I/R. Furthermore, ameliorating myocardial damage by targeting TRAF3IP2 appears to be more effective to inhibiting its downstream signaling intermediates NF-κB and JNK. Therefore, TRAF3IP2 could be a potential therapeutic target in ischemic heart disease.
Collapse
Affiliation(s)
- John M Erikson
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Anthony J Valente
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Srinivas Mummidi
- From the Department of Medicine, University of Texas Health Science Center, San Antonio, Texas 78229
| | - Hemanth Kumar Kandikattu
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201
| | - Vincent G DeMarco
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Shawn B Bender
- the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and.,Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211
| | - William P Fay
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and
| | - Ulrich Siebenlist
- Biomedical Sciences, University of Missouri School of Medicine, Columbia, Missouri 65211.,the Laboratory of Immunoregulation, NIAID, National Institutes of Health, Bethesda, Maryland 20892
| | - Bysani Chandrasekar
- the Department of Medicine, University of Missouri School of Medicine, Columbia, Missouri 65211, .,the Research Service, Harry S. Truman Memorial Veterans Hospital, Columbia, Missouri 65201.,the Departments of Medical Pharmacology and Physiology and.,the Dalton Cardiovascular Research Center, Columbia, Missouri 65201, and
| |
Collapse
|
5
|
|
6
|
Hu CL, Xia JM, Cai J, Li X, Liao XX, Li H, Zhan H, Dai G, Jing XL. Ulinastatin attenuates oxidation, inflammation and neural apoptosis in the cerebral cortex of adult rats with ventricular fibrillation after cardiopulmonary resuscitation. Clinics (Sao Paulo) 2013; 68:1231-8. [PMID: 24141840 PMCID: PMC3782733 DOI: 10.6061/clinics/2013(09)10] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 04/15/2013] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE The role of Ulinastatin in neuronal injury after cardiopulmonary resuscitation has not been elucidated. We aim to evaluate the effects of Ulinastatin on inflammation, oxidation, and neuronal injury in the cerebral cortex after cardiopulmonary resuscitation. METHODS Ventricular fibrillation was induced in 76 adult male Wistar rats for 6 min, after which cardiopulmonary resuscitation was initiated. After spontaneous circulation returned, the rats were split into two groups: the Ulinastatin 100,000 unit/kg group or the PBS-treated control group. Blood and cerebral cortex samples were obtained and compared at 2, 4, and 8 h after return of spontaneous circulation. The protein levels of tumor necrosis factor alpha (TNF-α) and interleukin 6 (IL-6) were assayed using an enzyme-linked immunosorbent assay, and mRNA levels were quantified via real-time polymerase chain reaction. Myeloperoxidase and Malondialdehyde were measured by spectrophotometry. The translocation of nuclear factor-κB p65 was assayed by Western blot. The viable and apoptotic neurons were detected by Nissl and terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL). RESULTS Ulinastatin treatment decreased plasma levels of TNF-α and IL-6, expression of mRNA, and Myeloperoxidase and Malondialdehyde in the cerebral cortex. In addition, Ulinastatin attenuated the translocation of nuclear factor-κB p65 at 2, 4, and 8 hours after the return of spontaneous circulation. Ulinastatin increased the number of living neurons and decreased TUNEL-positive neuron numbers in the cortex at 72 h after the return of spontaneous circulation. CONCLUSIONS Ulinastatin preserved neuronal survival and inhibited neuron apoptosis after the return of spontaneous circulation in Wistar rats via attenuation of the oxidative stress response and translocation of nuclear factor-κB p65 in the cortex. In addition, Ulinastatin decreased the production of TNF-α, IL-6, Myeloperoxidase, and Malondialdehyde.
Collapse
Affiliation(s)
- Chun Lin Hu
- Department of Emergency Medicine, Sun Yat-Sen University, Guangzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Neutrophil Depletion Reduces Blood-Brain Barrier Breakdown, Axon Injury, and Inflammation After Intracerebral Hemorrhage. J Neuropathol Exp Neurol 2011; 70:218-35. [DOI: 10.1097/nen.0b013e31820d94a5] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
|
8
|
Lin L, Wu XD, Davey AK, Wang J. The anti-inflammatory effect of baicalin on hypoxia/reoxygenation and TNF-α induced injury in cultural rat cardiomyocytes. Phytother Res 2009; 24:429-37. [DOI: 10.1002/ptr.3003] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
9
|
Venkatachalam K, Prabhu SD, Reddy VS, Boylston WH, Valente AJ, Chandrasekar B. Neutralization of interleukin-18 ameliorates ischemia/reperfusion-induced myocardial injury. J Biol Chem 2009; 284:7853-65. [PMID: 19164288 DOI: 10.1074/jbc.m808824200] [Citation(s) in RCA: 102] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
Ischemia/reperfusion (I/R) injury is characterized by the induction of oxidative stress and proinflammatory cytokine expression. Recently demonstrating that oxidative stress and TNF-alpha each stimulate interleukin (IL)-18 expression in cardiomyocytes, we hypothesized that I/R also induces IL-18 expression and thus exacerbates inflammation and tissue damage. Neutralization of IL-18 signaling should therefore diminish tissue injury following I/R. I/R studies were performed using a chronically instrumented closed chest mouse model. Male C57BL/6 mice underwent 30 min of ischemia by LAD coronary artery ligation followed by various periods of reperfusion. Sham-operated or ischemia-only mice served as controls. A subset of animals was treated with IL-18-neutralizing antibodies 1 h prior to LAD ligation. Ischemic LV tissue was used for analysis. Our results demonstrate that, compared with sham operation and ischemia alone, I/R significantly increased (i) oxidative stress (increased MDA/4-HNE levels), (ii) neutrophil infiltration (increased MPO activity), (iii) NF-kappaB DNA binding activity (p50, p65), and (iv) increased expression of IL-18Rbeta, but not IL-18Ralpha or IL-18BP transcripts. Administration of IL-18-neutralizing antibodies significantly reduced I/R injury measured by reduced infarct size (versus control IgG). In isolated adult mouse cardiomyocytes, simulated ischemia/reperfusion enhanced oxidative stress and biologically active IL-18 expression via IKK-dependent NF-kappaB activation. These results indicate that IL-18 plays a critical role in I/R injury and thus represents a promising therapeutic target.
Collapse
Affiliation(s)
- Kaliyamurthi Venkatachalam
- Department of Veterans Affairs South Texas Veterans Health Care System and the Departments of Medicine and Surgery, University of Texas Health Science Center, San Antonio, Texas 78229, USA
| | | | | | | | | | | |
Collapse
|
10
|
Inhibition of myocardial apoptosis by postconditioning is associated with attenuation of oxidative stress-mediated nuclear factor-kappa B translocation and TNF alpha release. Shock 2008; 29:761-8. [PMID: 18496137 DOI: 10.1097/shk.0b013e31815cfd5a] [Citation(s) in RCA: 75] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Oxidative stress-stimulated nuclear factor-kappa B (NF-kappa B) activation has been associated with rapid transcription of TNF-alpha and induction of apoptosis. This study tested the hypothesis that postconditioning (Postcon) reduces myocardial apoptosis and inhibits translocation of NF-kappa B and release of TNF-alpha secondary to an attenuation of oxidant generation during reperfusion. Anesthetized rats were subjected to 30 min of ischemia and 3 h of reperfusion and divided randomly to Control or Postcon (three cycles of 10-s reperfusion and 10-s reocclusion applied at the onset of reperfusion) group, respectively. Relative to Control, Postcon reduced the plasma malondialdehyde (1.21 +/- 0.08 vs. 0.8 +/- 0.06* microM/mL) and decreased the generation of superoxide radical in area at risk myocardium (dihydroethidium staining). Compared with Control, Postcon also inhibited translocation of NF-kappa B to nuclei (167% +/- 21% vs. 142% +/- 18%*), decreased the level of plasma TNF-alpha (1,994 +/- 447 vs. 667 +/- 130* pg/mL), and inhibited caspase-3 activity (0.57% +/- 0.1% vs. 0.21% +/- 0.1%*). The number of apoptotic cells (percent total nuclei) in ischemic myocardium was reduced (20% +/- 1% vs. 11% +/- 2%*), consistent with reduced appearance of DNA fragmentation. To support whether oxidant generation is important in the triggering of cytokine release and apoptosis, N-acetylcysteine (NAC), a potent antioxidant agent, was administered before ischemia and at reperfusion. Treatment with NAC inhibited superoxide radical generation and decreased plasma malondialdehyde to a comparable level to that in Postcon, concomitant with an inhibition of NF-kappa B expression (42% +/- 8%*) and reduction of release of TNF-alpha (231 +/- 72* pg/mL). Caspase-3 activity (0.33% +/- 0.1%*) and apoptotic cells (12% +/- 1%*) were also comparably reduced by NAC. These data suggest that Postcon attenuates myocardial apoptosis, reduces caspase-3 activity, and is potentially mediated by inhibiting oxidant-activated NF-kappa B-TNF-alpha signaling pathway. *P < 0.05 Postcon and NAC vs. Control.
Collapse
|
11
|
Natarajan R, Salloum FN, Fisher BJ, Ownby ED, Kukreja RC, Fowler AA. Activation of hypoxia-inducible factor-1 via prolyl-4 hydoxylase-2 gene silencing attenuates acute inflammatory responses in postischemic myocardium. Am J Physiol Heart Circ Physiol 2007; 293:H1571-80. [PMID: 17545479 DOI: 10.1152/ajpheart.00291.2007] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Emerging research suggests that oxidant-driven transcription of key cytokine/chemokine networks within the myocardium plays a crucial role in producing ischemia-reperfusion (I/R) injury. We recently showed that activation of hypoxia-inducible factor-1 (HIF-1) attenuated cardiac I/R injury. Diminished injury in these prior studies was associated with significant reductions in circulating interleukin-8 levels, suggesting that HIF-1 may play an important role in modulating postischemic cardiac inflammation. In the current study, we examined the role of HIF-1 activation in modulating proinflammatory chemokine [macrophage inflammatory protein (MIP)-2, cytokine-induced neutrophil chemoattractant factor (KC), and lipopolysaccharide-induced CXC chemokine (LIX)] and adhesion molecule [intercellular adhesion molecule (ICAM)-1] expression in murine cardiomyocytes in vitro (HL-1 cell line) and in intact murine hearts following in vivo I/R injury. Our results show that HIF-1 activation induced both pharmacologically by the prolyl hydroxylase inhibitor dimethyloxallyl glycine and via small-interfering RNA (siRNA)-mediated prolyl-4 hydroxylase-2 (P4HA2) gene silencing significantly attenuated tumor necrosis factor-α-induced chemokine (KC and LIX) and ICAM-1 expression in cardiomyocytes. In vivo, postischemic hearts obtained from animals receiving the P4HA2 siRNA (HIF-1 activation) exhibited significantly reduced CXC chemokine (MIP-2, KC, and LIX), CC chemokine (monocyte chemoattractant protein-1), and ICAM-1 expression when compared with postischemic hearts from either saline I/R controls or postischemic hearts from animals receiving a nontargeting control siRNA (no HIF-1 activation). Diminished chemokine and adhesion molecule expression in HIF-1-activated postischemic hearts was associated with significantly reduced polymorphonuclear leukocyte infiltration and myocardial infarct size (>60% reduction P4HA2 siRNA I/R vs. saline I/R, P < 0.001, n = 6). In conclusion, these results demonstrate for the first time that HIF-1 activation following infusion of siRNA to P4HA2 plays a key role in modulating I/R-associated cardiac inflammatory responses.
Collapse
Affiliation(s)
- Ramesh Natarajan
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, Virginia Commonwealth University, PO Box 980050, Richmond, VA 23298-0050, USA
| | | | | | | | | | | |
Collapse
|
12
|
Colston JT, de la Rosa SD, Koehler M, Gonzales K, Mestril R, Freeman GL, Bailey SR, Chandrasekar B. Wnt-induced secreted protein-1 is a prohypertrophic and profibrotic growth factor. Am J Physiol Heart Circ Physiol 2007; 293:H1839-46. [PMID: 17616748 DOI: 10.1152/ajpheart.00428.2007] [Citation(s) in RCA: 88] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Wnt1-induced secreted protein-1 (WISP-1) is a member of the cysteine-rich 61, connective tissue growth factor, and nephroblastoma overexpressed (CCN) family of growth factors and is expressed in the heart at low basal levels. The purpose of this study was to investigate whether WISP-1 is upregulated in postinfarct myocardium and whether WISP-1 exerts prohypertrophic and mitogenic effects stimulating myocyte hypertrophy, cardiac fibroblast (CF) proliferation, and collagen expression. Male C57Bl/6 (25 g) mice underwent permanent occlusion of the left anterior descending coronary artery. mRNA and protein levels were analyzed by Northern and Western blot analyses. Cardiomyocyte hypertrophy was quantified by protein and DNA synthesis. CF proliferation was quantified by CyQuant assay, and soluble collagen release by Sircol assay. A time-dependent increase in WISP-1 expression was detected in vivo in the noninfarct zone of the left ventricle, which peaked at 24 h (3.1-fold, P < 0.01). Similarly, biglycan expression was increased by 3.71-fold (P < 0.01). IL-1beta and TNF-alpha expression preceded WISP-1 expression in vivo and stimulated WISP-1 expression in neonatal rat ventricular myocytes in vitro. WISP-1-induced cardiomyocyte hypertrophy was evidenced by increased protein (2.78-fold), but not DNA synthesis, and enhanced Akt phosphorylation and activity. Treatment of primary CF with WISP-1 significantly stimulated proliferation at 48 h (6,966 +/- 264 vs. 5,476 +/- 307 cells/well, P < 0.01) and enhanced collagen release by 72 h (18.4 +/- 3.1 vs. 8.4 +/- 1.0 ng/cell, P < 0.01). Our results demonstrate for the first time that WISP-1 and biglycan are upregulated in the noninfarcted myocardium in vivo, suggesting a positive amplification of WISP-1 signaling. WISP-1 stimulates cardiomyocyte hypertrophy, fibroblast proliferation, and ECM expression in vitro. These results suggest that WISP-1 may play a critical role in post-myocardial infarction remodeling.
Collapse
Affiliation(s)
- J T Colston
- Department of Medicine, University of Texas Health Science Center at San Antonio, San Antonio, Texas, USA
| | | | | | | | | | | | | | | |
Collapse
|
13
|
Thakker GD, Frangogiannis NG, Bujak M, Zymek P, Gaubatz JW, Reddy AK, Taffet G, Michael LH, Entman ML, Ballantyne CM. Effects of diet-induced obesity on inflammation and remodeling after myocardial infarction. Am J Physiol Heart Circ Physiol 2006; 291:H2504-14. [PMID: 16731644 DOI: 10.1152/ajpheart.00322.2006] [Citation(s) in RCA: 86] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Epidemiological studies indicate that obesity, insulin resistance, and diabetes are important comorbidities of patients with ischemic heart disease and increase mortality and development of congestive heart failure after myocardial infarction. Although ob/ob and db/db mice are commonly used to study obesity with insulin resistance or diabetes, mutations in the leptin gene or its receptor are rarely the cause of obesity in humans, which is, instead, primarily a consequence of dietary and lifestyle factors. Therefore, we used a murine model of diet-induced obesity to examine the physiological effects of obesity and the inflammatory and healing response of diet-induced obese (DIO) mice after myocardial ischemia-reperfusion injury. DIO mice developed hyperinsulinemia and insulin resistance and hepatic steatosis, with significant ectopic lipid deposition in the heart and cardiac hypertrophy in the absence of significant changes in blood pressure. The mRNA levels of chemokines at 24 h and cytokines at 24 and 72 h of reperfusion were higher in DIO than in lean mice. In granulation tissue at 72 h of reperfusion, macrophage density was significantly increased, whereas neutrophil density was reduced, in DIO mice compared with lean mice. At 7 days of reperfusion, collagen deposition in the scar was significantly reduced and left ventricular (LV) dilation and cardiac hypertrophy were increased, indicative of adverse LV remodeling, in infarcted DIO mice. Characterization of a murine diet-induced model of obesity and insulin resistance that satisfies many aspects commonly observed in human obesity allows detailed examination of the adverse cardiovascular effects of diet-induced obesity at the molecular level.
Collapse
Affiliation(s)
- Geeta D Thakker
- Dept. of Medicine, Baylor College of Medicine, 6565 Fannin, M.S. A-601, Houston, TX 77030, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Jahangiri A, Leifert WR, Kind KL, McMurchie EJ. Dietary fish oil alters cardiomyocyte Ca2+ dynamics and antioxidant status. Free Radic Biol Med 2006; 40:1592-602. [PMID: 16632119 DOI: 10.1016/j.freeradbiomed.2005.12.026] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2004] [Revised: 12/06/2005] [Accepted: 12/23/2005] [Indexed: 01/01/2023]
Abstract
The n-3 polyunsaturated fatty acids (PUFAs) found in fish oil (FO) have been shown to protect against reperfusion arrhythmias, a manifestation of reperfusion injury, which is believed to be induced by the formation of reactive oxygen species (ROS) and intracellular calcium (Ca2+) overload. Adult rats fed a diet supplemented with 10% FO had a higher proportion of myocardial n-3 PUFAs and increased expression of antioxidant enzymes compared with the saturated fat (SF)-supplemented group. Addition of hydrogen peroxide (H2O2) to cardiomyocytes isolated from rats in the SF-supplemented group increased the proportions of cardiomyocytes contracting in an asynchronous manner, increased the rate of Ca2+ influx, and increased the diastolic and systolic [Ca2+]i compared with the FO group. H2O2 exposure increased the membrane fluidity of cardiomyocytes from the FO group. These results demonstrate that dietary FO supplementation is associated with a reduction in the susceptibility of myocytes to ROS-induced injury and this may be related to membrane incorporation of n-3 PUFAs, increased antioxidant defenses, changes in cardiomyocyte membrane fluidity, and the ability to prevent rises in cellular Ca2+ in response to ROS.
Collapse
Affiliation(s)
- Anisa Jahangiri
- Department of Physiology, University of Adelaide, Adelaide, SA 5005, Australia.
| | | | | | | |
Collapse
|
15
|
Haddad JJ, Harb HL. L-gamma-Glutamyl-L-cysteinyl-glycine (glutathione; GSH) and GSH-related enzymes in the regulation of pro- and anti-inflammatory cytokines: a signaling transcriptional scenario for redox(y) immunologic sensor(s)? Mol Immunol 2004; 42:987-1014. [PMID: 15829290 DOI: 10.1016/j.molimm.2004.09.029] [Citation(s) in RCA: 104] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2004] [Accepted: 09/29/2004] [Indexed: 12/17/2022]
Abstract
Of the antioxidant/prooxidant mechanisms mediating the regulation of inflammatory mediators, particularly cytokines, oxidative stress-related pathways remain a cornerstone. It is conspicuous that there is a strong association between free radical accumulation (ROS/RNS; oxidative stress) and the evolution of inflammation and inflammatory-related responses. The scenario that upholds a consensus on the aforementioned is still evolving to unravel, from an immunologic perspective, the molecular mechanisms associated with ROS/RNS-dependent inflammation. Cytokines are keynote players when it comes to defining an intimate relationship among reduction-oxidation (redox) signals, oxidative stress and inflammation. How close we are to identifying the molecular basis of this intricate association should be weighed against the involvement of specific signaling molecules and, potentially, transcription factors. L-gamma-Glutamyl-L-cysteinyl-glycine, or glutathione (GSH), an antioxidant thiol, has shaped, and still is refining, the face of oxidative signaling in terms of regulating the milieu of inflammatory mediators, ostensibly via the modulation (expression/repression) of oxygen- and redox-responsive transcription factors, hence termed redox(y)-sensitive cofactors. When it comes to the arena of oxygen sensing, oxidative stress and inflammation, nuclear factor-kappaB (NF-kappaB) and hypoxia-inducible factor-1alpha (HIF-1alpha) are key players that determine antioxidant/prooxidant responses with oxidative challenge. It is the theme therein to underlie current understanding of the molecular association hanging between oxidative stress and the evolution of inflammation, walked through an elaborate discussion on the role of transcription factors and cofactors. Would that classify glutathione and other redox signaling cofactors as potential anti-inflammatory molecules emphatically remains of particular interest, especially in the light of identifying upstream and downstream molecular pathways for conceiving therapeutic, alleviating strategy for oxidant-mediated, inflammatory-related disease conditions.
Collapse
Affiliation(s)
- John J Haddad
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut, Lebanon.
| | | |
Collapse
|
16
|
Ho E, Boileau TWM, Bray TM. Dietary influences on endocrine-inflammatory interactions in prostate cancer development. Arch Biochem Biophys 2004; 428:109-17. [PMID: 15234275 DOI: 10.1016/j.abb.2004.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Revised: 12/16/2003] [Indexed: 01/25/2023]
Abstract
Prostate cancer is the most frequently diagnosed non-cutaneous cancer and is the second leading cause of cancer death in American men. The focus of this review is to define the relationship between hormonal (testosterone/estrogens) stimulation of chronic inflammation, generation of reactive oxygen species (ROS), and uncontrolled prostate cell proliferation, and review putative dietary chemoprevention strategies that focus on these processes. It has been proposed that elevated estrogen in men who already have high blood testosterone are at high risk for prostate cancer. We hypothesized that elevated estrogen, in the presence of testosterone, causes prolonged activation of a redox-sensitive transcription factor, nuclear factor kappa B (NF kappa B), that initiates and amplifies an inflammatory cascade within the prostate and results in sustained oxidative and nitrative damage. The inflammatory cascade is proposed to link with uncontrolled proliferation through up-regulated Wnt signal and abnormal catenin accumulation in the prostate. Finally, a strategy that emphasizes a "whole food" based approach to cancer prevention by selecting food products that bear anti-inflammatory and anti-proliferative properties may be most promising as an effective dietary chemopreventive strategy.
Collapse
Affiliation(s)
- Emily Ho
- Department of Human Nutrition, The Ohio State University, OH 45338, USA
| | | | | |
Collapse
|
17
|
Kajihara N, Morita S, Nishida T, Tatewaki H, Eto M, Egashira K, Yasui H. Transfection with a dominant-negative inhibitor of monocyte chemoattractant protein-1 gene improves cardiac function after 6 hours of cold preservation. Circulation 2003; 108 Suppl 1:II213-8. [PMID: 12970235 DOI: 10.1161/01.cir.0000087426.18858.3a] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Monocyte chemoattractant protein-1 (MCP-1), a potent chemotactic factor for monocytes, is induced during ischemia-reperfusion. As monocytes might play an important causative role in reperfusion injury, we investigated if inhibition of monocyte activation could attenuate ischemia-reperfusion injury and thereby improve cardiac preservation. To inhibit monocyte activation, we transfected a dominant-negative inhibitor of MCP-1 (7ND) gene in an animal model. METHODS AND RESULTS We used an isolated rabbit heart preparation perfused with support-rabbit blood and transfected 7ND genes to skeletal muscle of the support rabbits (n=7) using electroporation technique; causing an elevation of serum 7ND level to 20+/-7 pg/mL at 5 days after transfection. Animals receiving empty plasmid served as controls (n=7). Five days after transfection, hearts from other rabbits were excised, stored in UW solution for 6hours, and perfused with blood from transfected support rabbits. The 7ND group showed better cardiac output (128.7+/-17.9 versus 81.6+/-19.8 mL/min; P<0.01), lower serum CK-MB levels (5.0+/-1.8 versus 11.1+/-2.9 ng/mL; P<0.01), lower serum IL-1beta levels (257.2+/-23.2 versus 311.2+/-37.4pg/mL; P<0.05), and lower serum TNF-alpha levels (19.0+/-8.4 versus 35.1+/-13.0pg/mL; P<0.05). The numbers of infiltrating cells in myocardium were significantly reduced in the 7ND group. CONCLUSIONS Inhibition of MCP-1 with 7ND gene transfection reduced cytokine activation, attenuated myocardial damage, and improved cardiac function after 6 hours of preservation. These results show that MCP-1 plays an important role in ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Noriyoshi Kajihara
- Department of Cardiovascular Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka, 812-8582, Japan
| | | | | | | | | | | | | |
Collapse
|
18
|
Souza DG, Guabiraba R, Pinho V, Bristow A, Poole S, Teixeira MM. IL-1-driven endogenous IL-10 production protects against the systemic and local acute inflammatory response following intestinal reperfusion injury. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2003; 170:4759-66. [PMID: 12707357 DOI: 10.4049/jimmunol.170.9.4759] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
TNF-alpha release and action are central in the pathogenesis of the local and systemic inflammatory responses that occur after intestinal reperfusion. In this study we examined whether IL-1 participated in the cascade of events leading to TNF-alpha production and TNF-alpha-mediated injury following reperfusion of the ischemic superior mesenteric artery in rats. Blockade of the action of IL-1 by the use of anti-IL-1 antiserum or administration of IL-1R antagonist (IL-1ra), a natural antagonist of IL-1Rs, resulted in marked enhancement of reperfusion-associated tissue injury, TNF-alpha expression, and lethality. In contrast, there was marked decrease in IL-10 production. Facilitation of IL-1 action by administration of anti-IL-1ra, which antagonizes endogenous IL-1ra, or exogenous administration of rIL-1beta suppressed reperfusion-induced tissue pathology, TNF-alpha production, and lethality, but increased IL-10 production. Exogenous administration of IL-10 was effective in preventing the increase in tissue or plasma levels of TNF-alpha, the exacerbated tissue injury, and lethality. An opposite effect was observed after treatment with anti-IL-10, demonstrating a role for endogenous production of IL-10 in modulating exacerbated reperfusion-associated tissue pathology and lethality. Finally, pretreatment with anti-IL-10 reversed the protective effect of IL-1beta on reperfusion-associated lethality. Thus, IL-1 plays a major role in driving endogenous IL-10 production and protects against the TNF-alpha-dependent systemic and local acute inflammatory response following intestinal reperfusion injury.
Collapse
MESH Headings
- Acute Disease
- Adjuvants, Immunologic/administration & dosage
- Adjuvants, Immunologic/antagonists & inhibitors
- Adjuvants, Immunologic/physiology
- Adjuvants, Immunologic/therapeutic use
- Animals
- Anti-Inflammatory Agents, Non-Steroidal/administration & dosage
- Anti-Inflammatory Agents, Non-Steroidal/antagonists & inhibitors
- Anti-Inflammatory Agents, Non-Steroidal/therapeutic use
- Inflammation/immunology
- Inflammation/pathology
- Inflammation/prevention & control
- Injections, Intravenous
- Injections, Subcutaneous
- Interleukin 1 Receptor Antagonist Protein
- Interleukin-1/administration & dosage
- Interleukin-1/antagonists & inhibitors
- Interleukin-1/physiology
- Interleukin-1/therapeutic use
- Interleukin-10/administration & dosage
- Interleukin-10/biosynthesis
- Interleukin-10/physiology
- Interleukin-10/therapeutic use
- Intestinal Mucosa/metabolism
- Intestines/blood supply
- Intestines/immunology
- Intestines/pathology
- Male
- Mesenteric Artery, Superior/physiopathology
- Rats
- Rats, Wistar
- Receptors, Interleukin-1/administration & dosage
- Recombinant Proteins/administration & dosage
- Recombinant Proteins/antagonists & inhibitors
- Recombinant Proteins/therapeutic use
- Reperfusion Injury/immunology
- Reperfusion Injury/pathology
- Reperfusion Injury/prevention & control
- Sialoglycoproteins/administration & dosage
- Sialoglycoproteins/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/antagonists & inhibitors
- Tumor Necrosis Factor-alpha/metabolism
Collapse
Affiliation(s)
- Danielle G Souza
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | | | | |
Collapse
|
19
|
Affiliation(s)
- Nándor Marczin
- Department of Cardiothoracic Surgery and Anaesthetics, Imperial College, Faculty of Medicine, National Heart and Lung Institute at the Heart Institute, Harefield Hospital, Middlesex, UK.
| | | | | | | |
Collapse
|
20
|
Kesavalu L, Chandrasekar B, Ebersole JL. In vivo induction of proinflammatory cytokines in mouse tissue by Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans. ORAL MICROBIOLOGY AND IMMUNOLOGY 2002; 17:177-80. [PMID: 12030970 DOI: 10.1034/j.1399-302x.2002.170307.x] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Periodontitis is a chronic inflammatory disease initiated by a multitude of bacteria. Persistent infection leads to generation of various inflammatory mediators, resulting in tissue destruction and osteoclastic resorption of the alveolar bone. This study describes a novel in vivo murine calvarial model to assess the effects of oral pathogens on the expression of three proinflammatory cytokines [interleukin (IL)-1beta, IL-6, and tumor necrosis factor (TNF)-alpha] which are involved in bone resorption. We chose Porphyromonas gingivalis and Actinobacillus actinomycetemcomitans as prototype oral pathogens. We also tested the effects of Streptococcus gordonii, an oral commensal supragingival microorganism, considered a non-pathogen. Live bacteria were injected into subcutaneous tissue overlying the parietal bone of mice calvaria for 6 days. At the end of the experimental period, tissues overlying the calvaria were removed and analyzed for proinflammatory cytokine expression by Northern blotting. Cytokine mRNA was not detected in the tissue over the calvaria of control animals. In contrast, P. gingivalis and A. actinomycetemcomitans elicited mRNA expression of all three cytokines, TNFalpha being the highest (TNFalpha > > IL-1beta > IL-6). P. gingivalis was more potent than A. actinomycetemcomitans in inducing cytokine expression. In contrast, S. gordonii induced only low levels of mRNA for IL-1beta and TNFalpha but no IL-6 mRNA induction. These results suggest that oral microorganisms with access to host tissues elicit a battery of proinflammatory cytokines. There were clear differences in profiles and, interestingly, a commensal bacterium also stimulated bone resorptive cytokine expression in host tissues.
Collapse
Affiliation(s)
- L Kesavalu
- Department of Oral Health Science, Center for Oral Health Research, College of Dentistry 159 HSRB, University of Kentucky, Lexington, KY 40536-0305, USA
| | | | | |
Collapse
|
21
|
Hassoun HT, Zou L, Moore FA, Kozar RA, Weisbrodt NW, Kone BC. Alpha-melanocyte-stimulating hormone protects against mesenteric ischemia-reperfusion injury. Am J Physiol Gastrointest Liver Physiol 2002; 282:G1059-68. [PMID: 12016132 DOI: 10.1152/ajpgi.00073.2001] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mesenteric ischemia-reperfusion (I/R) injury to the intestine is a common and often devastating clinical occurrence for which there are few therapeutic options. alpha-Melanocyte-stimulating hormone (alpha-MSH) is a tridecapeptide released by the pituitary gland and immunocompetent cells that exerts anti-inflammatory actions and abrogates postischemic injury to the kidneys and brainstem of rodents. To test the hypothesis that alpha-MSH would afford similar protection in the postischemic small intestine, we analyzed the effects of this peptide on intestinal transit, histology, myeloperoxidase activity, and nuclear factor-kappaB (NF-kappaB) activation after 45 min of superior mesenteric artery occlusion and <or=6 h of reperfusion. Rats subjected to I/R exhibited markedly depressed intestinal transit, histological evidence of severe injury to the ileum, increased myeloperoxidase activity in ileal cytoplasmic extracts, and biphasic activation of NF-kappaB in ileal nuclear extracts. In contrast, rats treated with alpha-MSH before I/R exhibited intestinal transit and histological injury scores comparable to those of sham-operated controls. In addition, the alpha-MSH-treated rats demonstrated less I/R-induced activation of intestinal NF-kappaB and myeloperoxidase activity after prolonged (6 h) reperfusion. We conclude that alpha-MSH significantly limits postischemic injury to the rat small intestine.
Collapse
Affiliation(s)
- Heitham T Hassoun
- Department of Surgery, University of Texas Medical School at Houston, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
22
|
Chandrasekar B, Smith JB, Freeman GL. Ischemia-reperfusion of rat myocardium activates nuclear factor-KappaB and induces neutrophil infiltration via lipopolysaccharide-induced CXC chemokine. Circulation 2001; 103:2296-302. [PMID: 11342480 DOI: 10.1161/01.cir.103.18.2296] [Citation(s) in RCA: 154] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Mechanisms by which neutrophils are attracted to the myocardium in ischemia/reperfusion are not fully defined. Lipopolysaccharide-induced CXC chemokine (LIX), cytokine-induced neutrophil chemoattractant (KC), and macrophage inflammatory protein-2 (MIP-2) are rodent chemokines with potent neutrophil-chemotactic activity. The goals of the present study were to evaluate the roles of these chemokines in a rat model of ischemia/reperfusion and to examine the mechanisms of chemokine induction by oxidative stress and cytokines in cultured cardiomyocytes. METHODS AND RESULTS Male Wistar-Kyoto rats underwent 45 minutes of ligation of the left anterior descending coronary artery, followed by reperfusion for various periods. Compared with sham-operated controls, myocardium from reperfused animals had higher levels of free radicals, increased neutrophil infiltration evidenced histologically and by elevated myeloperoxidase activity, and increased nuclear factor (NF)-kappaB DNA binding activity. Ischemia-reperfusion also induced the expression of interleukin-1beta, tumor necrosis factor (TNF)-alpha, LIX, KC, and MIP-2 mRNA and protein. LIX expression was localized to resident myocardial cells, whereas KC and MIP-2 were expressed only in infiltrating inflammatory cells. Neutralization of LIX inhibited 79% of neutrophil infiltration into previously ischemic myocardium. In contrast, neutralization of KC and MIP-2 reduced neutrophil infiltration by only 28% and 37%, respectively. In cultured cardiomyocytes, LIX expression was induced by oxidative stress or TNF-alpha and was blocked by the NF-kappaB inhibitor pyrrolidinedithiocarbamate. CONCLUSIONS LIX is expressed by resident myocardial cells during ischemia-reperfusion and is induced in cultured cardiomyocytes by oxidative stress or TNF-alpha via NF-kappaB activation. Although KC and MIP-2 are expressed by inflammatory cells infiltrating the myocardium during reperfusion after ischemia, neutrophil recruitment to reperfused rat myocardium is mainly due to cardiomyocyte expression of LIX.
Collapse
Affiliation(s)
- B Chandrasekar
- Department of Medicine, University of Texas Health Science Center at San Antonio, South Texas Veterans Healthcare System, Audie Murphy Division, San Antonio, Texas, USA.
| | | | | |
Collapse
|
23
|
Chandrasekar B, Nelson JF, Colston JT, Freeman GL. Calorie restriction attenuates inflammatory responses to myocardial ischemia-reperfusion injury. Am J Physiol Heart Circ Physiol 2001; 280:H2094-102. [PMID: 11299211 DOI: 10.1152/ajpheart.2001.280.5.h2094] [Citation(s) in RCA: 76] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The life-prolonging effects of calorie restriction (CR) may be due to reduced damage from cumulative oxidative stress. Our goal was to determine the long-term effects of moderate dietary CR on the myocardial response to reperfusion after a single episode of sublethal ischemia. Male Fisher 344 rats were fed either an ad libitum (AL) or CR (40% less calories) diet. At age 12 mo the animals were anaesthetized and subjected to thoracotomy and a 15-min left-anterior descending coronary artery occlusion. The hearts were reperfused for various periods. GSH and GSSG levels, nuclear factor-kappaB (NF-kappaB) DNA binding activity, cytokine, and antioxidant enzyme expression were assessed in the ischemic zones. Sham-operated animals served as controls. Compared with the AL diet, chronic CR limited oxidative stress as seen by rapid recovery in GSH levels in previously ischemic myocardium. CR reduced DNA binding activity of NF-kappaB. The kappaB-responsive cytokines interleukin-1beta and tumor necrosis factor-alpha were transiently expressed in the CR group but persisted longer in the AL group. Furthermore, expression of manganese superoxide dismutase, a key antioxidant enzyme, was significantly delayed in the AL group. Collectively these data indicate that CR significantly attenuates myocardial oxidative stress and the postischemic inflammatory response.
Collapse
Affiliation(s)
- B Chandrasekar
- Division of Cardiology, University of Texas Health Science Center, San Antonio, 78229-3900, Texas, USA.
| | | | | | | |
Collapse
|