1
|
Ma J, Kong X, Zhao M, Jiao Z, Xie H, Si W, Li H, Zhang Z. A dual-functional NIR fluorescence probe for detecting hypochlorous acid and bisulfite in biosystem. Anal Chim Acta 2024; 1320:342993. [PMID: 39142777 DOI: 10.1016/j.aca.2024.342993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/02/2024] [Accepted: 07/18/2024] [Indexed: 08/16/2024]
Abstract
BACKGROUND Bisulfite (HSO3-) serves as a bleaching agent, antioxidant, antimicrobial, and regulator of enzymatic reactions in biosystem. However, abnormal levels of bisulfite can be detrimental to health. Hypochlorous acid (HOCl), which acts as bioactive small molecules, is crucial for maintaining normal biological functions in living organisms. Disruption of its equilibrium can lead to oxidative stress and various diseases. Therefore, it's essential to monitor the fluctuations of HOCl and HSO3- at cellular and in vivo levels to study their physiological and pathological functions. RESULTS This study constructed a novel NIR bifunctional colorimetric fluorescent probe using thienocoumarin-indanedione structures to identify hypochlorite (ClO-) and bisulfite (HSO3-). By using CSO-IO to recognize HSO3- and HOCl, two distinct products were generated, displaying green and blue fluorescence, respectively. This property effectively allows for the simultaneous dual-functional detection of HSO3- (LOD: 113 nM) and HOCl (LOD: 43 nM). SIGNIFICANCE In this work, the biocompatible molecule CSO-IO has been effectively designed to detect HOCl/HSO3- in living cells and zebrafish. As a result, the dual-functional fluorescent probe has the potential to be utilized as a molecular tool to detect HSO3- derived compounds and HOCl simultaneously within the complex biological system.
Collapse
Affiliation(s)
- Junyan Ma
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China; Department of Chemistry, Clemson University, Clemson, 29634, South Carolina, USA.
| | - Xiangtao Kong
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - Mingtao Zhao
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - Zilin Jiao
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023, China
| | - Weijie Si
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - He Li
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China
| | - Zhenxing Zhang
- State Key Laboratory of New Optical Functional Materials, Anyang Normal University, Anyang, Henan, 455000, China; Department of Energy and Resources Engineering, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
2
|
Ma J, Zhao M, Kong X, Li H, Xie H, Yang X, Zhang Z. Probing the toxic hypochlorous acid in natural waters and biosystem by a coumarin-based fluorescence probe. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116836. [PMID: 39097417 DOI: 10.1016/j.ecoenv.2024.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 07/11/2024] [Accepted: 08/01/2024] [Indexed: 08/05/2024]
Abstract
Since the onset of the SARS-CoV-2 pandemic in early 2020, there has been a notable rise in sodium hypochlorite disinfectants. Sodium hypochlorite undergoes hydrolysis to generate hypochlorous acid for virus eradication. This chlorine-based disinfectant is widely utilized for public disinfection due to its effectiveness. Although sodium hypochlorite disinfection is convenient, its excessive and indiscriminate use can harm the water environment and pose a risk to human health. Hypochlorous acid, a reactive oxygen species, plays a crucial role in the troposphere, stratospheric chemistry, and oxidizing capacity. Additionally, hypochlorous acid is vital as a reactive oxygen species in biological systems, and its irregular metabolism and level is associated with several illnesses. Thus, it is crucial to identify hypochlorous acid to comprehend its environmental and biological functions precisely. Here, we constructed a new fluorescent probe, utilizing the twisted intramolecular charge transfer mechanism to quickly and accurately detect hypochlorous acid in environmental water and biosystems. The probe showed a notable increase in fluorescence when exposed to hypochlorous acid, demonstrating its excellent selectivity, fast response time (less than 10 seconds), a large Stokes shift (∼ 102 nm), and a low detection limit of 15.5 nM.
Collapse
Affiliation(s)
- Junyan Ma
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Chemistry, Clemson University, Clemson, SC 29634, United States.
| | - Mingtao Zhao
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Xiangtao Kong
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - He Li
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Hua Xie
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Xiaomei Yang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China
| | - Zhenxing Zhang
- College of Chemistry and Chemical Engineering, Anyang Normal University, Anyang, Henan 455000, China; Department of Energy and Resource Engineering, College of Engineering, Peking University, Beijing 100871, China.
| |
Collapse
|
3
|
Leopold J, Schiller J. (Chemical) Roles of HOCl in Rheumatic Diseases. Antioxidants (Basel) 2024; 13:921. [PMID: 39199167 PMCID: PMC11351306 DOI: 10.3390/antiox13080921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/16/2024] [Accepted: 07/26/2024] [Indexed: 09/01/2024] Open
Abstract
Chronic rheumatic diseases such as rheumatoid arthritis (RA) are characterized by a dysregulated immune response and persistent inflammation. The large number of neutrophilic granulocytes in the synovial fluid (SF) from RA patients leads to elevated enzyme activities, for example, from myeloperoxidase (MPO) and elastase. Hypochlorous acid (HOCl), as the most important MPO-derived product, is a strong reactive oxygen species (ROS) and known to be involved in the processes of cartilage destruction (particularly regarding the glycosaminoglycans). This review will discuss open questions about the contribution of HOCl in RA in order to improve the understanding of oxidative tissue damaging. First, the (chemical) composition of articular cartilage and SF and the mechanisms of cartilage degradation will be discussed. Afterwards, the products released by neutrophils during inflammation will be summarized and their effects towards the individual, most abundant cartilage compounds (collagen, proteoglycans) and selected cellular components (lipids, DNA) discussed. New developments about neutrophil extracellular traps (NETs) and the use of antioxidants as drugs will be outlined, too. Finally, we will try to estimate the effects induced by these different agents and their contributions in RA.
Collapse
Affiliation(s)
- Jenny Leopold
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, 04103 Leipzig, Germany;
| | | |
Collapse
|
4
|
Panasenko OM, Vladimirov YA, Sergienko VI. Free Radical Lipid Peroxidation Induced by Reactive Halogen Species. BIOCHEMISTRY. BIOKHIMIIA 2024; 89:S148-S179. [PMID: 38621749 DOI: 10.1134/s0006297924140098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 07/08/2023] [Accepted: 07/15/2023] [Indexed: 04/17/2024]
Abstract
The review is devoted to the mechanisms of free radical lipid peroxidation (LPO) initiated by reactive halogen species (RHS) produced in mammals, including humans, by heme peroxidase enzymes, primarily myeloperoxidase (MPO). It has been shown that RHS can participate in LPO both in the initiation and branching steps of the LPO chain reactions. The initiation step of RHS-induced LPO mainly involves formation of free radicals in the reactions of RHS with nitrite and/or with amino groups of phosphatidylethanolamine or Lys. The branching step of the oxidative chain is the reaction of RHS with lipid hydroperoxides, in which peroxyl and alkoxyl radicals are formed. The role of RHS-induced LPO in the development of human inflammatory diseases (cardiovascular and neurodegenerative diseases, cancer, diabetes, rheumatoid arthritis) is discussed in detail.
Collapse
Affiliation(s)
- Oleg M Panasenko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia.
| | - Yury A Vladimirov
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| | - Valery I Sergienko
- Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russia
| |
Collapse
|
5
|
Hu Z, Bai X. Self-repair and resuscitation of viable injured bacteria in chlorinated drinking water: Achromobacter as an example. WATER RESEARCH 2023; 245:120585. [PMID: 37690414 DOI: 10.1016/j.watres.2023.120585] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/24/2023] [Accepted: 09/04/2023] [Indexed: 09/12/2023]
Abstract
Chlorine disinfection for the treatment of drinking water can cause injury to the membrane and DNA of bacterial cells and may induce the surviving injured bacteria into a viable but non-culturable (VBNC) state. It is difficult to monitor viable injured bacteria by heterotrophic plate counting (HPC), and their presence is also easily miscalculated in flow cytometry intact cell counting (FCM-ICC). Viable injured bacteria have a potential risk of resuscitation in drinking water distribution systems (DWDSs) and pose a threat to public health when drinking from faucets. In this study, bacteria with injured membranes were isolated from chlorinated drinking water by FCM cell sorting. The culture rate of injured bacteria varied from 0.08% to 2.6% on agar plates and 0.39% to 6.5% in 96-well plates. As the dominant genus among the five identified genera, as well as an opportunistic pathogen with multiple antibiotic resistance, Achromobacter was selected and further studied. After treatment with chlorine at a concentration of 1.2 mg/L, Achromobacter entered into the intermediate injured state on the FCM plot, and the injury on the bacterial surface was observed by electron microscopy. However, the CTC respiratory activity assay showed that 75.0% of the bacteria were still physiologically active, and they entered into a VBNC state. The injured VBNC Achromobacter in sterile drinking water were resuscitated after approximately 25 h. The cellular repair behavior of injured bacteria was studied by Fourier transform infrared attenuated total reflectance (FTIR-ATR) and comet assays. It was found that DNA injury rather than membrane injury was repaired first. The expression of Ku and ligD increased significantly during the DNA repair period, indicating that non-homologous end-joining (NHEJ) played an important role in repairing DNA double-strand breaks. This study deepened the understanding of the effect of chlorine disinfection on bacterial viability in drinking water and will provide support for the improvement of the chlorine disinfection process for the treatment of drinking water.
Collapse
Affiliation(s)
- Zengyi Hu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaohui Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
6
|
Critical Computational Evidence Regarding the Long-Standing Controversy Over the Main Electrophilic Species in Hypochlorous Acid Solution. Molecules 2022; 27:molecules27061843. [PMID: 35335205 PMCID: PMC8952510 DOI: 10.3390/molecules27061843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/03/2022] [Accepted: 03/09/2022] [Indexed: 01/27/2023] Open
Abstract
Although hypochlorous acid (HOCl) solution has become a popular electrophilic reagent for industrial uses, the question of which molecule (HOCl or Cl2) undergoes electrophilic addition with olefins remains a controversial issue in some literature and textbooks, and this problem has been largely underexplored in theoretical studies. In this work, we computationally studied the electrophilic addition mechanism of olefins using three experimentally predicted effective electrophilic chlorinating agents, i.e., HOCl, Cl2, and Cl2O molecules. Our results demonstrate that Cl2 and Cl2O are the main electrophilic agents in HOCl solution, whereas the HOCl molecule cannot be the electrophile since the energy barrier when directly adding HOCl molecule to olefins is too high to overcome and the “anti-Markovnikov” regioselectivity for tri-substituted olefin is not consistent with experiments. Notably, the HOCl molecule prefers to form oxonium ion intermediate with a double bond, rather than the generally believed chlorium ion intermediate. This work could benefit mechanistic studies of critical biological and chemical processes with HOCl solution and may be used to update textbooks.
Collapse
|
7
|
Farag MR, Khalil SR, Zaglool AW, Hendam BM, Moustafa AA, Cocco R, Di Cerbo A, Alagawany M. Thiacloprid Induced Developmental Neurotoxicity via ROS-Oxidative Injury and Inflammation in Chicken Embryo: The Possible Attenuating Role of Chicoric and Rosmarinic Acids. BIOLOGY 2021; 10:biology10111100. [PMID: 34827094 PMCID: PMC8614723 DOI: 10.3390/biology10111100] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/15/2021] [Accepted: 10/22/2021] [Indexed: 12/11/2022]
Abstract
Simple Summary The current study was designed to evaluate the negative impact of thiacloprid (TH) on the brain tissue of developing chicken embryo models and to evaluate the modulatory effects of chicoric (CA) and rosmarinic (RA) acids. The eggs were injected in ovo with different doses of TH (0.1, 1, 10, and 100 μg/egg). TH significantly increased the oxidative damage in the brain of exposed embryos in a dose-dependent manner (p < 0.001). TH significantly elevated the oxidative stress markers; protein carbonyl, malondialdehyde (MDA) content, and DNA damage (p < 0.001). Myeloperoxidase (MPO) activity and NO significantly increased with overexpression of the pro-inflammatory cytokines (IFN-γ; interferon gamma, TNF-α; tumor necrosis factor alpha, and IL-1β; interleukin-1 beta), stress-related and apoptotic genes (NF-KB, Caspase-3) in the brain tissue on both a biochemical and molecular levels (p < 0.05), while downregulating the expression of antiapoptotic Bcl-2. Co-treatment of CA and RA with TH markedly decreased the insecticide-induced toxicity with a prominent synergistic effect (p < 0.05). In conclusion, TH is suggested to be a possible neurotoxic to embryos of vertebrates and possibly humans. The study also revealed the antioxidant, anti-inflammatory, genoprotective, and antiapoptotic properties of CA and RA against TH toxicity. Abstract Insecticides are widely employed in agriculture to control pests and as major factors for enhancing crop productivity. Thiacloprid (TH) is one of the most-used insecticides worldwide. In this study, the negative impact of TH on the brain tissue of developing chicken embryo models and the modulatory effect of chicoric (CA) and rosmarinic (RA) acids were investigated. The eggs were injected in ovo with different doses of TH (0.1, 1, 10, and 100 μg/egg). TH significantly increased the oxidative damage in the brain of exposed embryos in a dose-dependent manner (p < 0.05). TH significantly elevated the oxidative stress markers; protein carbonyl, malondialdehyde content, and DNA damage (p < 0.05). Myeloperoxidase activity and nitric oxide significantly increased with overexpression of the pro-inflammatory cytokines (interferon gamma, tumor necrosis factor alpha, and interleukin-1 beta) and stress-related and apoptotic genes (NF-KB, Caspase-3) in the brain tissue on both biochemical and molecular levels (p < 0.05), while downregulating the expression of antiapoptotic Bcl-2. Co-treatment of CA and RA with TH markedly decreased the insecticide-induced toxicity with a prominent synergistic effect (p < 0.05). In conclusion, TH is suggested to be a possible neurotoxic to embryos of vertebrates including human. The study also revealed the antioxidant, anti-inflammatory, genoprotective, and antiapoptotic property of CA and RA against TH toxicity.
Collapse
Affiliation(s)
- Mayada R. Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt;
- Correspondence: (M.R.F.); (A.D.C.); (M.A.)
| | - Samah R. Khalil
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig 44519, Egypt;
| | - Asmaa W. Zaglool
- Animal Wealth Development Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Basma M. Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Amr A. Moustafa
- Biochemistry Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig 44519, Egypt;
| | - Raffaella Cocco
- Department of Veterinary Medicine, University of Sassari, via Vienna 2, 07100 Sassari, Italy;
| | - Alessandro Di Cerbo
- School of Bioscience and Veterinary Medicine, University of Camerino, 62024 Matelica, Italy
- Correspondence: (M.R.F.); (A.D.C.); (M.A.)
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig 44519, Egypt
- Correspondence: (M.R.F.); (A.D.C.); (M.A.)
| |
Collapse
|
8
|
Hawkins CL, Davies MJ. Role of myeloperoxidase and oxidant formation in the extracellular environment in inflammation-induced tissue damage. Free Radic Biol Med 2021; 172:633-651. [PMID: 34246778 DOI: 10.1016/j.freeradbiomed.2021.07.007] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Revised: 07/04/2021] [Accepted: 07/05/2021] [Indexed: 12/30/2022]
Abstract
The heme peroxidase family generates a battery of oxidants both for synthetic purposes, and in the innate immune defence against pathogens. Myeloperoxidase (MPO) is the most promiscuous family member, generating powerful oxidizing species including hypochlorous acid (HOCl). Whilst HOCl formation is important in pathogen removal, this species is also implicated in host tissue damage and multiple inflammatory diseases. Significant oxidant formation and damage occurs extracellularly as a result of MPO release via phagolysosomal leakage, cell lysis, extracellular trap formation, and inappropriate trafficking. MPO binds strongly to extracellular biomolecules including polyanionic glycosaminoglycans, proteoglycans, proteins, and DNA. This localizes MPO and subsequent damage, at least partly, to specific sites and species, including extracellular matrix (ECM) components and plasma proteins/lipoproteins. Biopolymer-bound MPO retains, or has enhanced, catalytic activity, though evidence is also available for non-catalytic effects. These interactions, particularly at cell surfaces and with the ECM/glycocalyx induce cellular dysfunction and altered gene expression. MPO binds with higher affinity to some damaged ECM components, rationalizing its accumulation at sites of inflammation. MPO-damaged biomolecules and fragments act as chemo-attractants and cell activators, and can modulate gene and protein expression in naïve cells, consistent with an increasing cycle of MPO adhesion, activity, damage, and altered cell function at sites of leukocyte infiltration and activation, with subsequent tissue damage and dysfunction. MPO levels are used clinically both diagnostically and prognostically, and there is increasing interest in strategies to prevent MPO-mediated damage; therapeutic aspects are not discussed as these have been reviewed elsewhere.
Collapse
Affiliation(s)
- Clare L Hawkins
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark
| | - Michael J Davies
- Department of Biomedical Sciences, University of Copenhagen, Panum Institute, Blegdamsvej 3B, Copenhagen N, DK-2200, Denmark.
| |
Collapse
|
9
|
Myeloperoxidase: Mechanisms, reactions and inhibition as a therapeutic strategy in inflammatory diseases. Pharmacol Ther 2021; 218:107685. [DOI: 10.1016/j.pharmthera.2020.107685] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 09/09/2020] [Indexed: 12/17/2022]
|
10
|
Farag MR, Mahmoud HK, El-Sayed SAA, Ahmed SYA, Alagawany M, Abou-Zeid SM. Neurobehavioral, physiological and inflammatory impairments in response to bifenthrin intoxication in Oreochromis niloticus fish: Role of dietary supplementation with Petroselinum crispum essential oil. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 231:105715. [PMID: 33341507 DOI: 10.1016/j.aquatox.2020.105715] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Revised: 11/30/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
This study was conceptualized in order to assess the 96-h LC50 of bifenthrin (BF) in O. niloticus and also to measure the biochemical, behavioral, and molecular responses of the fish suchronically exposed to a sub-lethal concentration of the insecticide. The role of Petroselinum crispum essential oil (PEO) supplementation in mitigating the resulted neurotoxic insult was also investigated. The acute toxicity study revealed that the 96-h LC50 of BF is 6.81 μg/L, and varying degrees of behavioral changes were recorded in a dose-dependent manner. The subchronic study revealed reduction of dissolved oxygen and increased ammonia in aquaria of BF-exposed fish. Clinical signs revealed high degree of discomfort and aggressiveness together with reductions in survival rate and body weight gain. The levels of monoamines in brain, and GABA and amino acids in serum were reduced, together with decreased activities of Na+/K+-ATPase and acetylcholine esterases (AchE). The activities of antioxidant enzymes were also diminshed in the brain while oxdative damage and DNA breaks were elevated. Myeloperoxidase (MPO) activity in serum increased with overexpression of the pro-inflammatory cytokines in the brain tissue. BF also upregulated the expression of brain-stress related genes HSP70, Caspase-3 and P53. Supplemention of PEO to BF markedly abrogated the toxic impacts of the insecticide, specially at the high level. These findings demonstrate neuroprotective, antioxidant, genoprotective, anti-inflammatory and antiapoptic effects of PEO in BF-intoxicated fish. Based on these mechanistic insights of PEO, we recommend its use as an invaluable supplement in the fish feed.
Collapse
Affiliation(s)
- Mayada R Farag
- Forensic Medicine and Toxicology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511, Egypt.
| | - Hemat K Mahmoud
- Department of Animal Production, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| | - Sabry A A El-Sayed
- Department of Nutrition and Clinical Nutrition, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44511, Egypt
| | - Sarah Y A Ahmed
- Microbiology Department, Veterinary Medicine Faculty, Zagazig University, Zagazig, 44511, Egypt
| | - Mahmoud Alagawany
- Poultry Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt.
| | - Shimaa M Abou-Zeid
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, University of Sadat City, 32897, Egypt
| |
Collapse
|
11
|
M El Agaty S, Ibrahim Ahmed A. Pathophysiological and immunohistochemical analysis of pancreas after renal ischemia/reperfusion injury: protective role of melatonin. Arch Physiol Biochem 2020; 126:264-275. [PMID: 30270672 DOI: 10.1080/13813455.2018.1517182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Objectives: To assess the remote pancreatic injury following renal ischemia/reperfusion (I/R) and to evaluate the effect of pre-treatment with melatonin on pancreatic structure and functions.Methods: 21 rats were divided equally into sham group, renal I/R group, and melatonin pre-treated renal I/R (Mel-I/R) group.Results: Renal I/R significantly increased serum amylase, fasting glucose and decreased serum insulin in I/R versus sham group. Pancreatic levels of malondialdehyde and tumour necrosis factor alpha were significantly increased associated with diminished glutathione. Immunohistochemical and morphometric analysis revealed significant reduction in insulin immune reactivity, β-cell number, β-cells percentage/total islet cell, percentage area of reactive β-cells, and the average area of islets in I/R versus sham group. These changes were alleviated by pre-treatment with melatonin.Conclusion: Renal I/R produces significant impairment of exocrine and endocrine pancreatic functions together with histological, immunohistochemical and morphometric alterations. Pre-treatment with melatonin significantly mitigates such remote pancreatic injury.
Collapse
Affiliation(s)
- Sahar M El Agaty
- Physiology Department, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | | |
Collapse
|
12
|
Ethanolic Extract of Moringa oleifera Leaves Influences NF-κB Signaling Pathway to Restore Kidney Tissue from Cobalt-Mediated Oxidative Injury and Inflammation in Rats. Nutrients 2020; 12:nu12041031. [PMID: 32283757 PMCID: PMC7230732 DOI: 10.3390/nu12041031] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/01/2020] [Accepted: 04/07/2020] [Indexed: 12/18/2022] Open
Abstract
This study aimed to describe the protective efficacy of Moringa oleifera ethanolic extract (MOEE) against the impact of cobalt chloride (CoCl2) exposure on the rat’s kidney. Fifty male rats were assigned to five equal groups: a control group, a MOEE-administered group (400 mg/kg body weight (bw), daily via gastric tube), a CoCl2-intoxicated group (300 mg/L, daily in drinking water), a protective group, and a therapeutic co-administered group that received MOEE prior to or following and concurrently with CoCl2, respectively. The antioxidant status indices (superoxide dismutase (SOD), catalase (CAT), and reduced glutathione (GSH)), oxidative stress markers (hydrogen peroxide (H2O2), 8-hydroxy-2-deoxyguanosine (8-OHdG), and malondialdehyde (MDA)), and inflammatory response markers (nitric oxide (NO), tumor necrosis factor (TNF-α), myeloperoxidase (MPO), and C-reactive protein (CRP)) were evaluated. The expression profiles of pro-inflammatory cytokines (nuclear factor-kappa B (NF-kB) and interleukin-6 (IL-6)) were also measured by real-time quantitative polymerase chain reaction (qRT-PCR). The results showed that CoCl2 exposure was associated with significant elevations of oxidative stress and inflammatory indices with reductions in the endogenous tissue antioxidants’ concentrations. Moreover, CoCl2 enhanced the activity of the NF-κB inflammatory-signaling pathway that plays a role in the associated inflammation of the kidney. MOEE ameliorated CoCl2-induced renal oxidative damage and inflammatory injury with the suppression of the mRNA expression pattern of pro-inflammatory cytokine-encoding genes. MOEE is more effective when it is administered with CoCl2 exposure as a prophylactic regimen. In conclusion, MOEE administration exhibited protective effects in counteracting CoCl2-induced renal injury in rats.
Collapse
|
13
|
Panasenko OM, Torkhovskaya TI, Gorudko IV, Sokolov AV. The Role of Halogenative Stress in Atherogenic Modification of Low-Density Lipoproteins. BIOCHEMISTRY (MOSCOW) 2020; 85:S34-S55. [PMID: 32087053 DOI: 10.1134/s0006297920140035] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
This review discusses formation of reactive halogen species (RHS) catalyzed by myeloperoxidase (MPO), an enzyme mostly present in leukocytes. An imbalance between the RHS production and body's ability to remove or neutralize them leads to the development of halogenative stress. RHS reactions with proteins, lipids, carbohydrates, and antioxidants in the content of low-density lipoproteins (LDLs) of the human blood are described. MPO binds site-specifically to the LDL surface and modifies LDL properties and structural organization, which leads to the LDL conversion into proatherogenic forms captured by monocytes/macrophages, which causes accumulation of cholesterol and its esters in these cells and their transformation into foam cells, the basis of atherosclerotic plaques. The review describes the biomarkers of MPO enzymatic activity and halogenative stress, as well as the involvement of the latter in the development of atherosclerosis.
Collapse
Affiliation(s)
- O M Panasenko
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.
| | - T I Torkhovskaya
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia.,Orekhovich Institute of Biomedical Chemistry, Moscow, 119121, Russia
| | - I V Gorudko
- Belarusian State University, Minsk, 220030, Belarus
| | - A V Sokolov
- Federal Research and Clinical Center of Physico-Chemical Medicine, Federal Medical Biological Agency, Moscow, 119435, Russia. .,Institute of Experimental Medicine, St. Petersburg, 197376, Russia
| |
Collapse
|
14
|
Khalil SR, Mohammed AT, Abd El-fattah AH, Zaglool AW. Intermediate filament protein expression pattern and inflammatory response changes in kidneys of rats receiving doxorubicin chemotherapy and quercetin. Toxicol Lett 2018; 288:89-98. [DOI: 10.1016/j.toxlet.2018.02.024] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2017] [Revised: 02/09/2018] [Accepted: 02/14/2018] [Indexed: 12/28/2022]
|
15
|
Benavides J, Barrias P, Piro N, Arenas A, Orrego A, Pino E, Villegas L, Dorta E, Aspée A, López-Alarcón C. Reaction of tetracycline with biologically relevant chloramines. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2017; 178:171-180. [PMID: 28187315 DOI: 10.1016/j.saa.2017.02.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 01/30/2017] [Accepted: 02/02/2017] [Indexed: 06/06/2023]
Abstract
Helicobacter pylori (H. pylori) infection triggers inflammatory processes with the consequent production of hypochlorous acid (HOCl), monochloramine (NH2Cl), and protein-derived chloramines. As the therapy for eradicating H. pylori is partially based on the use of tetracycline, we studied the kinetic of its consumption elicited by HOCl, NH2Cl, N-chloro-n-butylamine (NHCl-But, used as a lysine-derived chloramine model), and lysozyme-derived chloramines. In the micromolar concentration range, tetracycline reacted rapidly with HOCl, generating in the first few seconds intermediates of short half-life. In contrast, a slow tetracycline consumption was observed in the presence of high NH2Cl and NHCl-But concentrations (millimolar range). Similar chlorinated products of tetracycline were identified by mass spectrometry, in the presence of HOCl and NH2Cl. These results evidenced that tautomers of tetracycline are pivotal intermediates in all reactions. In spite of the low reactivity of chloramines towards tetracycline, it is evident that, in the concentration range where they are produced in a H. pylori infection (millimolar range), the reactions lead to oxidation and/or chlorination of tetracycline. This kind of reactions, which were also observed triggered by lysozyme-derived chloramines, could limit the efficiency of the tetracycline-based therapy.
Collapse
Affiliation(s)
- J Benavides
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile
| | - P Barrias
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - N Piro
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile
| | - A Arenas
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile
| | - A Orrego
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - E Pino
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - L Villegas
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile
| | - E Dorta
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile
| | - A Aspée
- Facultad de Química y Biología, Universidad de Santiago de Chile, Casilla 40, Correo 33, Santiago, Chile.
| | - C López-Alarcón
- Departamento de Química Física, Facultad de Química, Pontificia Universidad Católica de Chile, C.P. 782 0436, Santiago, Chile.
| |
Collapse
|
16
|
Calcium-independent binding of human C-reactive protein to lysophosphatidylcholine in supported planar phospholipid monolayers. Acta Biomater 2017; 48:206-214. [PMID: 27815167 DOI: 10.1016/j.actbio.2016.10.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Revised: 10/06/2016] [Accepted: 10/31/2016] [Indexed: 12/22/2022]
Abstract
Details describing the molecular dynamics of inflammation biomarker human C-reactive protein (CRP) on plasma membranes containing bioactive lipid lysophosphatidylcholine (LPC) remain elusive. Here, we measured the binding kinetics of CRP to supported phospholipid monolayers deposited on an alkanethiol self-assembled monolayer on a planar gold substrate using surface plasmon resonance. Surprisingly, CRP binding to supported 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC)/LPC monolayers was calcium-independent although CRP binding to supported POPC monolayers was calcium-dependent. Binding inhibition assays indicate a specific interaction between CRP and the glycerophosphate group in LPC in the absence of calcium ions. Binding experiments on supported POPC/1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-(1'-rac-glycerol) monolayers further validated calcium-independent binding of CRP through the glycerophosphate moiety. Docking analysis predicted a new binding site for LPC in the absence of calcium ions, which is located on the opposite side of the known binding site for PC of cyclic pentameric CRP. These results using model plasma membranes should aid our understanding of the activation dynamics of CRP in altered local microenvironments of inflammation and infection. STATEMENT OF SIGNIFICANCE C-reactive protein (CRP), a major acute-phase pentraxin, binds to plasma membranes through the multivalent contacts with zwitterionic phosphorylcholine groups for activating classical complement systems. However, the interaction of CRP with phosphorylcholine-based biomaterials is unknown due to the lack of our understanding on the activation mechanism of CRP in altered local microenvironments. This paper reports the novel calcium-independent interaction of CRP to bioactive phospholipid lysophosphatidylcholine (LPC) in supported phospholipids monolayers as determined using SPR. Binding inhibition experiments indicate exposure of glycerophosphate moiety of LPC is responsible for the calcium-free interaction. Our study may explode the established concept that CRP requires calcium for binding to LPC on damaged cell membranes or biomaterials.
Collapse
|
17
|
Chlorinated Phospholipids and Fatty Acids: (Patho)physiological Relevance, Potential Toxicity, and Analysis of Lipid Chlorohydrins. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:8386362. [PMID: 28090245 PMCID: PMC5206476 DOI: 10.1155/2016/8386362] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/24/2016] [Accepted: 11/06/2016] [Indexed: 12/17/2022]
Abstract
Chlorinated phospholipids are formed by the reaction of hypochlorous acid (HOCl), generated by the enzyme myeloperoxidase under inflammatory conditions, and the unsaturated fatty acyl residues or the head group. In the first case the generated chlorohydrins are both proinflammatory and cytotoxic, thus having a significant impact on the structures of biomembranes. The latter case leads to chloramines, the properties of which are by far less well understood. Since HOCl is also widely used as a disinfecting and antibacterial agent in medicinal, industrial, and domestic applications, it may represent an additional source of danger in the case of abuse or mishandling. This review discusses the reaction behavior of in vivo generated HOCl and biomolecules like DNA, proteins, and carbohydrates but will focus on phospholipids. Not only the beneficial and pathological (toxic) effects of chlorinated lipids but also the importance of these chlorinated species is discussed. Some selected cleavage products of (chlorinated) phospholipids and plasmalogens such as lysophospholipids, (chlorinated) free fatty acids and α-chloro fatty aldehydes, which are all well known to massively contribute to inflammatory diseases associated with oxidative stress, will be also discussed. Finally, common analytical methods to study these compounds will be reviewed with focus on mass spectrometric techniques.
Collapse
|
18
|
Zhang XY, Elfarra AA. Potential roles of myeloperoxidase and hypochlorous acid in metabolism and toxicity of alkene hydrocarbons and drug molecules containing olefinic moieties. Expert Opin Drug Metab Toxicol 2016; 13:513-524. [DOI: 10.1080/17425255.2017.1271413] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
- Xin-Yu Zhang
- Institute of Environmental Pollution and Health, School of Environmental and Chemical Engineering, Shanghai University, Shanghai, China
| | - Adnan A. Elfarra
- Department of Comparative Biosciences and the Molecular and Environmental Toxicology Center, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
19
|
Unexpected products of the hypochlorous acid-induced oxidation of oleic acid: A study using high performance thin-layer chromatographyelectrospray ionization mass spectrometry. J Chromatogr A 2016; 1439:89-96. [DOI: 10.1016/j.chroma.2015.11.059] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/08/2015] [Accepted: 11/17/2015] [Indexed: 01/14/2023]
|
20
|
Schröter J, Süß R, Schiller J. MALDI-TOF MS to monitor the kinetics of phospholipase A2-digestion of oxidized phospholipids. Methods 2015; 104:41-7. [PMID: 26721598 DOI: 10.1016/j.ymeth.2015.12.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2015] [Revised: 12/17/2015] [Accepted: 12/21/2015] [Indexed: 11/26/2022] Open
Abstract
Free fatty acids (FFA) are released through phospholipase A2 (PLA2), which cleaves the fatty acyl residue at the sn-2 position of phospholipids (PL). During inflammatory diseases, reactive oxygen species (such as HOCl) lead to the formation of oxidatively modified PL (e.g., chlorohydrin generation). It is still widely unknown to which extent the oxidation of PL influences their digestibility by PLA2. Additionally, investigations on the impact of the position of the unsaturated fatty acyl residue (sn-1 versus sn-2 position) and modifications of the headgroup (for instance phosphatidylcholine (PC) versus phosphatidylethanolamine (PE)) are also lacking. Therefore, the aim of this study is the investigation of these aspects using matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF) mass spectrometry to elucidate the PL/lysophospholipid (LPL) ratios as measures of the PLA2 digestibility. We will show that oxidative modifications of PL by HOCl have a considerable impact on the PLA2 digestibility, i.e., oxidation of the unsaturated fatty acyl residues leads to a reduced digestibility of both PC and PE. Besides, it will be shown that MALDI MS is a convenient and reliable tool to investigate the related changes.
Collapse
Affiliation(s)
- Jenny Schröter
- University of Leipzig, Medical Faculty, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Rosmarie Süß
- University of Leipzig, Medical Faculty, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| | - Jürgen Schiller
- University of Leipzig, Medical Faculty, Institute of Medical Physics and Biophysics, Härtelstr. 16-18, D-04107 Leipzig, Germany.
| |
Collapse
|
21
|
Zschaler J, Arnhold J. The hydroperoxide moiety of aliphatic lipid hydroperoxides is not affected by hypochlorous acid. Chem Phys Lipids 2014; 184:42-51. [DOI: 10.1016/j.chemphyslip.2014.09.005] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Revised: 08/16/2014] [Accepted: 09/19/2014] [Indexed: 11/16/2022]
|
22
|
Panasenko OM, Gorudko IV, Sokolov AV. Hypochlorous acid as a precursor of free radicals in living systems. BIOCHEMISTRY (MOSCOW) 2014; 78:1466-89. [PMID: 24490735 DOI: 10.1134/s0006297913130075] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Hypochlorous acid (HOCl) is produced in the human body by the family of mammalian heme peroxidases, mainly by myeloperoxidase, which is secreted by neutrophils and monocytes at sites of inflammation. This review discusses the reactions that occur between HOCl and the major classes of biologically important molecules (amino acids, proteins, nucleotides, nucleic acids, carbohydrates, lipids, and inorganic substances) to form free radicals. The generation of such free radical intermediates by HOCl and other reactive halogen species is accompanied by the development of halogenative stress, which causes a number of socially important diseases, such as cardiovascular, neurodegenerative, infectious, and other diseases usually associated with inflammatory response and characterized by the appearance of biomarkers of myeloperoxidase and halogenative stress. Investigations aimed at elucidating the mechanisms regulating the activity of enzyme systems that are responsible for the production of reactive halogen species are a crucial step in opening possibilities for control of the development of the body's inflammatory response.
Collapse
Affiliation(s)
- O M Panasenko
- Research Institute of Physico-Chemical Medicine, Moscow, 119435, Russia.
| | | | | |
Collapse
|
23
|
Abstract
SIGNIFICANCE Inflammatory diseases (such as arthritis) of the extracellular matrix (ECM) are of considerable socioeconomic significance. There is clear evidence that reactive oxygen species (ROS) and nitrogen species released by, for instance, neutrophils contribute to the degradation of the ECM. Here we will focus on the ROS-induced degradation of the glycosaminoglycans, one important component of the ECM. RECENT ADVANCES The recently developed "anti-TNF-α" therapy is primarily directed against neutrophilic granulocytes that are powerful sources of ROS. Therefore, a more detailed look into the mechanisms of the reactions of these ROS is reasonable. CRITICAL ISSUES Since both enzymes and ROS contribute to the pathogenesis of inflammatory diseases, it is very difficult to estimate the contributions of the individual species in a complex biological environment. This particularly applies as many products are not stable but only transient products that decompose in a time-dependent manner. Thus, the development of suitable analytical methods as well as the establishment of useful biomarkers is a challenging aspect. FUTURE DIRECTIONS If the mechanisms of ECM destruction are understood in more detail, then the development of suitable drugs to treat inflammatory diseases will be hopefully much more successful.
Collapse
Affiliation(s)
- Beate Fuchs
- Medical Department, Institute of Medical Physics and Biophysics, University of Leipzig , Leipzig, Germany
| | | |
Collapse
|
24
|
Mass spectrometry and inflammation—MS methods to study oxidation and enzyme-induced changes of phospholipids. Anal Bioanal Chem 2013; 406:1291-306. [DOI: 10.1007/s00216-013-7534-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2013] [Revised: 11/14/2013] [Accepted: 11/21/2013] [Indexed: 10/25/2022]
|
25
|
Gebicka L, Banasiak E. Hypochlorous acid-induced heme damage of hemoglobin and its inhibition by flavonoids. Toxicol In Vitro 2012; 26:924-9. [DOI: 10.1016/j.tiv.2012.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2011] [Revised: 04/04/2012] [Accepted: 04/05/2012] [Indexed: 01/17/2023]
|
26
|
Mohamadin AM, Elberry AA, Mariee AD, Morsy GM, Al-Abbasi FA. Lycopene attenuates oxidative stress and heart lysosomal damage in isoproterenol induced cardiotoxicity in rats: A biochemical study. PATHOPHYSIOLOGY 2012; 19:121-30. [DOI: 10.1016/j.pathophys.2012.04.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2010] [Revised: 11/21/2010] [Accepted: 02/14/2011] [Indexed: 10/28/2022] Open
|
27
|
Reis A, Spickett CM. Chemistry of phospholipid oxidation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2012; 1818:2374-87. [PMID: 22342938 DOI: 10.1016/j.bbamem.2012.02.002] [Citation(s) in RCA: 439] [Impact Index Per Article: 33.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2011] [Revised: 01/14/2012] [Accepted: 02/03/2012] [Indexed: 11/25/2022]
Abstract
The oxidation of lipids has long been a topic of interest in biological and food sciences, and the fundamental principles of non-enzymatic free radical attack on phospholipids are well established, although questions about detail of the mechanisms remain. The number of end products that are formed following the initiation of phospholipid peroxidation is large, and is continually growing as new structures of oxidized phospholipids are elucidated. Common products are phospholipids with esterified isoprostane-like structures and chain-shortened products containing hydroxy, carbonyl or carboxylic acid groups; the carbonyl-containing compounds are reactive and readily form adducts with proteins and other biomolecules. Phospholipids can also be attacked by reactive nitrogen and chlorine species, further expanding the range of products to nitrated and chlorinated phospholipids. Key to understanding the mechanisms of oxidation is the development of advanced and sensitive technologies that enable structural elucidation. Tandem mass spectrometry has proved invaluable in this respect and is generally the method of choice for structural work. A number of studies have investigated whether individual oxidized phospholipid products occur in vivo, and mass spectrometry techniques have been instrumental in detecting a variety of oxidation products in biological samples such as atherosclerotic plaque material, brain tissue, intestinal tissue and plasma, although relatively few have achieved an absolute quantitative analysis. The levels of oxidized phospholipids in vivo is a critical question, as there is now substantial evidence that many of these compounds are bioactive and could contribute to pathology. The challenges for the future will be to adopt lipidomic approaches to map the profile of oxidized phospholipid formation in different biological conditions, and relate this to their effects in vivo. This article is part of a Special Issue entitled: Oxidized phospholipids-their properties and interactions with proteins.
Collapse
|
28
|
Spickett CM, Reis A, Pitt AR. Identification of oxidized phospholipids by electrospray ionization mass spectrometry and LC-MS using a QQLIT instrument. Free Radic Biol Med 2011; 51:2133-49. [PMID: 21983435 DOI: 10.1016/j.freeradbiomed.2011.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2011] [Revised: 09/01/2011] [Accepted: 09/02/2011] [Indexed: 11/29/2022]
Abstract
Phospholipids are complex and varied biomolecules that are susceptible to lipid peroxidation after attack by free radicals or electrophilic oxidants and can yield a large number of different oxidation products. There are many available methods for detecting phospholipid oxidation products, but also various limitations and problems. Electrospray ionization mass spectrometry allows the simultaneous but specific analysis of multiple species with good sensitivity and has a further advantage that it can be coupled to liquid chromatography for separation of oxidation products. Here, we explain the principles of oxidized phospholipid analysis by electrospray mass spectrometry and describe fragmentation routines for surveying the structural properties of the analytes, in particular precursor ion and neutral loss scanning. These allow targeted detection of phospholipid headgroups and identification of phospholipids containing hydroperoxides and chlorine, as well as the detection of some individual oxidation products by their specific fragmentation patterns. We describe instrument protocols for carrying out these survey routines on a QTrap5500 mass spectrometer and also for interfacing with reverse-phase liquid chromatography. The article highlights critical aspects of the analysis as well as some limitations of the methodology.
Collapse
Affiliation(s)
- Corinne M Spickett
- School of Life and Health Sciences, Aston University, Birmingham B4 7ET, UK.
| | | | | |
Collapse
|
29
|
Fuchs B, Bresler K, Schiller J. Oxidative changes of lipids monitored by MALDI MS. Chem Phys Lipids 2011; 164:782-95. [PMID: 21964445 DOI: 10.1016/j.chemphyslip.2011.09.006] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Revised: 09/03/2011] [Accepted: 09/15/2011] [Indexed: 11/29/2022]
Abstract
Oxidation processes of lipids are of paramount interest from many viewpoints. For instance, oxidation processes are highly important under in vivo conditions because molecules with regulatory functions are generated by oxidation of lipids or free fatty acids. Additionally, many inflammatory diseases are accompanied by lipid oxidation and, therefore, oxidation products are also useful disease (bio)markers. Thus, there is also considerable interest in methods of (oxidized) lipid analysis. Nowadays, soft ionization mass spectrometric (MS) methods are regularly used to study oxidative lipid modifications due to their high sensitivities and the extreme mass resolution. Although electrospray ionization (ESI) MS is so far most popular, applications of matrix-assisted laser desorption and ionization (MALDI) MS are increasing. This review aims to summarize the so far available data on MALDI analyses of oxidized lipids. In addition to model systems, special attention will be paid to the monitoring of oxidized lipids under in vivo conditions, particularly the oxidation of (human) lipoproteins. It is not the aim of this review to praise MALDI as the "best" method but to provide a critical survey of the advantages and drawbacks of this method.
Collapse
Affiliation(s)
- Beate Fuchs
- University of Leipzig, Faculty of Medicine, Institute of Medical Physics and Biophysics, Härtelstrasse16/18, Leipzig, Germany
| | | | | |
Collapse
|
30
|
Francescato HDC, Marin ECS, Cunha FDQ, Costa RS, Silva CGAD, Coimbra TM. Role of endogenous hydrogen sulfide on renal damage induced by adriamycin injection. Arch Toxicol 2011; 85:1597-606. [PMID: 21590344 DOI: 10.1007/s00204-011-0717-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2011] [Accepted: 05/09/2011] [Indexed: 11/28/2022]
Abstract
A single injection of adriamycin (ADR) induces marked and persistent proteinuria in rats that progress to glomerular and tubulointerstitial lesions. It has been shown that ADR-induced nephrotoxicity is mediated, at least in part, by oxidative stress that lead to inflammation. Endogenous hydrogen sulfide (H₂S) is synthesized from L-cysteine and is an important signaling molecule in inflammation. This study evaluates the effect of DL-propargylglycine (PAG), an inhibitor of endogenous H₂S formation, on the evolution of renal damage induced by ADR. The rats were injected i.p. with 0.15 M NaCl or PAG (50 mg/kg) 2 h after ADR injection (3.5 mg/kg). Control rats were injected with 0.15 M NaCl or PAG only. Twenty hours urine samples were collected for albuminuria and creatinine measurements on days 1 and 14 after saline or ADR injections and on days 2 and 15 blood samples were collected to measure plasma creatinine, then the rats were killed. The kidneys were removed for H₂S formation evaluation, renal lipid peroxidation and glutathione levels, and histological and immunohistochemical analysis. On day 2 after ADR injection the rats presented increase in oxidative stress associated with neutrophils and macrophages influx in renal tissue. On day 15 the rats also presented increased desmin expression at glomerular edge and vimentin in cortical tubulointerstitium, as well as albuminuria. All these alterations were reduced by PAG injection. The protective effect of PAG on ADR nephrotoxicity was associated to decreased H₂S formation and to restriction of oxidative stress and inflammation in the renal cortex.
Collapse
Affiliation(s)
- Heloísa Della Coletta Francescato
- Department of Physiology, Faculty of Medicine, University of São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, São Paulo 14049-900, Brazil
| | | | | | | | | | | |
Collapse
|
31
|
Ashour OM, Elberry AA, Alahdal AM, Al Mohamadi AM, Nagy AA, Abdel-Naim AB, Abdel-Sattar EA, Mohamadin AM. Protective effect of bilberry (Vaccinium myrtillus) against doxorubicin-induced oxidative cardiotoxicity in rats. Med Sci Monit 2011; 17:BR110-5. [PMID: 21455099 PMCID: PMC3539517 DOI: 10.12659/msm.881711] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2010] [Accepted: 08/24/2010] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Doxorubicin (DOX) is a commonly used chemotherapeutic agent. It is associated with serious dose-limiting cardiotoxicity, which is at least partly caused by generation of reactive oxygen species (ROS). Supplementations with bilberries were effective in reducing oxidative stress in many tissue injuries due their high content of antioxidants. The present study investigated the potential protective effect of bilberry extract against DOX-induced cardiotoxicity in rats. MATERIAL/METHODS Rats were treated orally with a methanolic extract of bilberry for 10 days. DOX was injected intraperitoneally on day 7. Twenty-four hours after the last bilberry administration, rats were subjected to ECG study. Blood was then withdrawn and cardiac tissues were dissected for assessment of oxidative stress and cardiac tissue injury. Cardiac tissues were also subjected to histopathological examination. RESULTS Bilberry extract significantly inhibited DOX-provoked reduced glutathione depletion and accumulation of oxidized glutathione, malondialdehyde and protein carbonyls in cardiac tissues. This was accompanied by significant amelioration of reduced cardiac catalase, superoxide dismutase, and glutathione peroxidase activities; and increased cardiac myeloperoxidase activity in response to DOX challenge. Pretreatment with bilberry significantly guarded against DOX-induced increase in serum activities of lactate dehydrogenase, creatine phosphokinase and creatine kinase-MB, as well as the level of troponin I. Bilberry alleviated ECG changes in rats treated with DOX and attenuated its pathological changes. CONCLUSIONS Bilberry protects against DOX-induced cardiotoxicity in rats. This can be attributed, at least in part, to its antioxidant activity.
Collapse
Affiliation(s)
- Osama M. Ashour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed A. Elberry
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Beni-suef University, Beni-Suef, Egypt
| | - Abdulrahman M. Alahdal
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Beni-suef University, Beni-Suef, Egypt
| | - Ameen M. Al Mohamadi
- Department of Clinical Pharmacy, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Pharmacology, Faculty of Medicine, Beni-suef University, Beni-Suef, Egypt
| | - Ayman A. Nagy
- Department of Pathology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Tanta University, Egypt
| | - Ashraf B. Abdel-Naim
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Essam A. Abdel-Sattar
- Department of Natural Products, Faculty of Pharmacy, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Ahmed M. Mohamadin
- Department of Clinical Biochemistry, Faculty of Medicine, Taibah University, Madinah, Saudi Arabia
| |
Collapse
|
32
|
Vaghasiya J, Sheth N, Bhalodia Y, Manek R. Sitagliptin protects renal ischemia reperfusion induced renal damage in diabetes. ACTA ACUST UNITED AC 2011; 166:48-54. [DOI: 10.1016/j.regpep.2010.08.007] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2010] [Revised: 07/02/2010] [Accepted: 08/11/2010] [Indexed: 10/24/2022]
|
33
|
Sokolov AV, Chekanov AV, Kostevich VA, Aksenov DV, Vasilyev VB, Panasenko OM. Revealing binding sites for myeloperoxidase on the surface of human low density lipoproteins. Chem Phys Lipids 2011; 164:49-53. [DOI: 10.1016/j.chemphyslip.2010.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2010] [Revised: 10/20/2010] [Accepted: 10/26/2010] [Indexed: 10/18/2022]
|
34
|
Spickett CM, Wiswedel I, Siems W, Zarkovic K, Zarkovic N. Advances in methods for the determination of biologically relevant lipid peroxidation products. Free Radic Res 2010; 44:1172-202. [PMID: 20836661 DOI: 10.3109/10715762.2010.498476] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Lipid peroxidation is recognized to be an important contributor to many chronic diseases, especially those of an inflammatory pathology. In addition to their value as markers of oxidative damage, lipid peroxidation products have also been shown to have a wide variety of biological and cell signalling effects. In view of this, accurate and sensitive methods for the measurement of lipid peroxidation products are essential. Although some assays have been described for many years, improvements in protocols are continually being reported and, with recent advances in instrumentation and technology, highly specialized and informative techniques are increasingly used. This article gives an overview of the most currently used methods and then addresses the recent advances in some specific approaches. The focus is on analysis of oxysterols, F(2)-isoprostanes and oxidized phospholipids by gas chromatography or liquid chromatography mass spectrometry techniques and immunoassays for the detection of 4-hydroxynonenal.
Collapse
Affiliation(s)
- Corinne M Spickett
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, UK.
| | | | | | | | | |
Collapse
|
35
|
Ford DA. Lipid oxidation by hypochlorous acid: chlorinated lipids in atherosclerosis and myocardial ischemia. CLINICAL LIPIDOLOGY 2010; 5:835-852. [PMID: 21339854 PMCID: PMC3041592 DOI: 10.2217/clp.10.68] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Leukocytes, containing myeloperoxidase (MPO), produce the reactive chlorinating species, HOCl, and they have important roles in the pathophysiology of cardiovascular disease. Leukocyte-derived HOCl can target primary amines, alkenes and vinyl ethers of lipids, resulting in chlorinated products. Plasmalogens are vinyl ether-containing phospholipids that are abundant in tissues of the cardiovascular system. The HOCl oxidation products derived from plasmalogens are α-chlorofatty aldehyde and unsaturated molecular species of lysophosphatidylcholine. α-chlorofatty aldehyde is the precursor of both α-chlorofatty alcohol and α-chlorofatty acid. Both α-chlorofatty aldehyde and α-chlorofatty acid accumulate in activated neutrophils and have disparate chemotactic properties. In addition, α-chlorofatty aldehyde increases in activated monocytes, human atherosclerotic lesions and rat infarcted myocardium. This article addresses the pathways for the synthesis of these lipids and their biological targets.
Collapse
Affiliation(s)
- David A Ford
- Department of Biochemistry & Molecular Biology, Center for Cardiovascular Research, Saint Louis University School of Medicine, Room 325, Doisy Research Center, 1100 South Grand Blvd, St Louis, MO 63104, USA, Tel.: +1 314 977 9264, Fax: +1 314 977 9205
| |
Collapse
|
36
|
Wu J, Teuber K, Eibisch M, Fuchs B, Schiller J. Chlorinated and brominated phosphatidylcholines are generated under the influence of the Fenton reagent at low pH-a MALDI-TOF MS study. Chem Phys Lipids 2010; 164:1-8. [PMID: 20932962 DOI: 10.1016/j.chemphyslip.2010.09.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 09/23/2010] [Accepted: 09/25/2010] [Indexed: 11/30/2022]
Abstract
Lipid (phospholipid) oxidation is an increasingly important research topic due to the significant physiological relevance. The Fenton reaction, i.e. the transition metal catalyzed decomposition of H(2)O(2) is frequently used to generate hydroxyl radicals (HO*). Lipids with unsaturated fatty acyl residues are primarily converted by HO* radicals into peroxides. In contrast, chloro- and bromohydrins as well as dihalogenides are formed by the addition of HOCl or HOBr to the olefinic groups of the fatty acyl residues of lipids or under the influence of the enzyme myeloperoxidase (MPO) from Cl(-) and H(2)O(2). We will show here by using MALDI-TOF MS for product analysis that halogenated products may also be generated in the presence of the Fenton reagent, if either FeCl(2) or FeBr(2) is used. In the presence of FeSO(4), however, peroxides are exclusively generated. It will also be shown that the generation of halogen-containing products is a competing reaction with the cleavage of the double bond under generation of the corresponding aldehyde or carboxylic acid that is favored at prolonged incubation times and at elevated pH.
Collapse
Affiliation(s)
- Jianqing Wu
- Institute of Medical Physics and Biophysics, Faculty of Medicine, University of Leipzig, Leipzig, Germany
| | | | | | | | | |
Collapse
|
37
|
Gorudko IV, Vakhrusheva TV, Mukhortova AV, Cherenkevich SN, Timoshenko AV, Sergienko VI, Panasenko OM. The priming effect of halogenated phospholipids on the functional responses of human neutrophils. BIOCHEMISTRY MOSCOW SUPPLEMENT SERIES A-MEMBRANE AND CELL BIOLOGY 2010. [DOI: 10.1134/s1990747810030037] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
38
|
Vaghasiya JD, Sheth NR, Bhalodia YS, Jivani NP. Exaggerated liver injury induced by renal ischemia reperfusion in diabetes: effect of exenatide. Saudi J Gastroenterol 2010; 16:174-80. [PMID: 20616412 PMCID: PMC3003206 DOI: 10.4103/1319-3767.65187] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND/AIM This study was designed to investigate the possible effect of exenatide (Glucagon like Peptide-1 receptor agonist) on liver injury (distant organ) induced by renal ischemia reperfusion (IR) in diabetic rats. MATERIALS AND METHODS In vivo renal IR was performed in both type 2 diabetic and normal rats. Each protocol comprised ischemia for 30 minutes followed by reperfusion for 24 hours and a treatment period of 14 days before induction of ischemia. RESULTS Lipid peroxidation, xanthine oxidase activity, myeloperoxidase activity and nitric oxide level in liver tissue were significantly increased (P < 0.01, P < 0.001, P < 0.001, P < 0.05, respectively), after IR in diabetic rats compared to normal rats. Antioxidant enzymes like glutathione, superoxide dismutase, catalase and glutathione peroxidase were significantly reduced (P < 0.05, P < 0.05, P < 0.01, P < 0.05, respectively), after IR in diabetic rats compared to normal rats. Exenatide treatment significantly normalized (P < 0.01), these biochemical parameters in treated rats compared to diabetic IR rats. Serum creatinine phosphokinase activity and liver function enzymes were also significantly normalized (P < 0.001, P < 0.001, respectively), after administration of exenatide. CONCLUSION Exenatide exerted protective effect on exaggerated remote organ (liver) injury induced by renal IR in diabetes.
Collapse
Affiliation(s)
- Jitendra D. Vaghasiya
- Department of Pharmacology, Jodhpur National University, Jodhpur, India,Address for correspondence: Mr. Jitendra Vaghasiya, Department of Pharmacology, Smt. R.B.P.M.P.C., Atkot - 360 040, Rajkot, Gujarat, India. E-mail:
| | - Navin R. Sheth
- Department of Pharmaceutical Sciences, Saurashtra University, Rajkot, Gujarat, India
| | | | - Nurudin P. Jivani
- Department of Pharmacology, Jodhpur National University, Jodhpur, India
| |
Collapse
|
39
|
Nusshold C, Kollroser M, Köfeler H, Rechberger G, Reicher H, Üllen A, Bernhart E, Waltl S, Kratzer I, Hermetter A, Hackl H, Trajanoski Z, Hrzenjak A, Malle E, Sattler W. Hypochlorite modification of sphingomyelin generates chlorinated lipid species that induce apoptosis and proteome alterations in dopaminergic PC12 neurons in vitro. Free Radic Biol Med 2010; 48:1588-600. [PMID: 20226853 PMCID: PMC4061462 DOI: 10.1016/j.freeradbiomed.2010.02.037] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2009] [Revised: 01/12/2010] [Accepted: 02/27/2010] [Indexed: 11/15/2022]
Abstract
Recent observations link myeloperoxidase (MPO) activation to neurodegeneration. In multiple sclerosis MPO is present in areas of active demyelination where the potent oxidant hypochlorous acid (HOCl), formed by MPO from H(2)O(2) and chloride ions, could oxidatively damage myelin-associated lipids. The purpose of this study was (i) to characterize reaction products of sphingomyelin (SM) formed in response to modification by HOCl, (ii) to define the impact of exogenously added SM and HOCl-modified SM (HOCl-SM) on viability parameters of a neuronal cell line (PC12), and (iii) to study alterations in the PC12 cell proteome in response to SM and HOCl-SM. MALDI-TOF-MS analyses revealed that HOCl, added as reagent or generated enzymatically, transforms SM into chlorinated species. On the cellular level HOCl-SM but not SM induced the formation of reactive oxygen species. HOCl-SM induced severely impaired cell viability, dissipation of the mitochondrial membrane potential, and activation of caspase-3 and DNA damage. Proteome analyses identified differential expression of specific subsets of proteins in response to SM and HOCl-SM. Our results demonstrate that HOCl modification of SM results in the generation of chlorinated lipid species with potent neurotoxic properties. Given the emerging connections between the MPO-H(2)O(2)-chloride axis and neurodegeneration, this chlorinating pathway might be implicated in neuropathogenesis.
Collapse
Affiliation(s)
- Christoph Nusshold
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Manfred Kollroser
- Institute of Forensic Medicine, Medical University of Graz, Graz, Austria
| | - Harald Köfeler
- Center of Medical Research, Medical University of Graz, Graz, Austria
| | - Gerald Rechberger
- Institute of Molecular Biosciences, Karl-Franzens University, Graz, Austria
| | - Helga Reicher
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Andreas Üllen
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Eva Bernhart
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Sabine Waltl
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Ingrid Kratzer
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Albin Hermetter
- Institute of Biochemistry, Graz University of Technology, Graz, Austria
| | - Hubert Hackl
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Zlatko Trajanoski
- Institute for Genomics and Bioinformatics, Graz University of Technology, Graz, Austria
| | - Andelko Hrzenjak
- Department of Pulmonology, Medical University of Graz, Graz, Austria
| | - Ernst Malle
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
| | - Wolfgang Sattler
- Institute of Molecular Biology and Biochemistry, Medical University of Graz, 8010 Graz, Austria
- Corresponding author. Fax: +43 316 380 9615.
| |
Collapse
|
40
|
Kubala L, Schmelzer KR, Klinke A, Kolarova H, Baldus S, Hammock BD, Eiserich JP. Modulation of arachidonic and linoleic acid metabolites in myeloperoxidase-deficient mice during acute inflammation. Free Radic Biol Med 2010; 48:1311-20. [PMID: 20156554 PMCID: PMC2856720 DOI: 10.1016/j.freeradbiomed.2010.02.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 01/30/2010] [Accepted: 02/09/2010] [Indexed: 01/15/2023]
Abstract
Acute inflammation is a common feature of many life-threatening pathologies, including septic shock. One hallmark of acute inflammation is the peroxidation of polyunsaturated fatty acids forming bioactive products that regulate inflammation. Myeloperoxidase (MPO) is an abundant phagocyte-derived hemoprotein released during phagocyte activation. Here, we investigated the role of MPO in modulating biologically active arachidonic acid (AA) and linoleic acid (LA) metabolites during acute inflammation. Wild-type and MPO-knockout (KO) mice were exposed to intraperitoneally injected endotoxin for 24 h, and plasma LA and AA oxidation products were comprehensively analyzed using a liquid chromatography-mass spectrometry method. Compared to wild-type mice, MPO-KO mice had significantly lower plasma levels of LA epoxides and corresponding LA- and AA-derived fatty acid diols. AA and LA hydroxy intermediates (hydroxyeicosatetraenoic and hydroxyoctadecadienoic acids) were also significantly lower in MPO-KO mice. Conversely, MPO-deficient mice had significantly higher plasma levels of cysteinyl-leukotrienes with well-known proinflammatory properties. In vitro experiments revealed significantly lower amounts of AA and LA epoxides, LA- and AA-derived fatty acid diols, and AA and LA hydroxy intermediates in stimulated polymorphonuclear neutrophils isolated from MPO-KO mice. Our results demonstrate that MPO modulates the balance of pro- and anti-inflammatory lipid mediators during acute inflammation and, in this way, may control acute inflammatory diseases.
Collapse
Affiliation(s)
- Lukas Kubala
- Department of Internal Medicine, University of California at Davis, Davis, CA 95616, USA.
| | | | | | | | | | | | | |
Collapse
|
41
|
Elberry AA, Abdel-Naim AB, Abdel-Sattar EA, Nagy AA, Mosli HA, Mohamadin AM, Ashour OM. Cranberry (Vaccinium macrocarpon) protects against doxorubicin-induced cardiotoxicity in rats. Food Chem Toxicol 2010; 48:1178-84. [DOI: 10.1016/j.fct.2010.02.008] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2009] [Revised: 01/21/2010] [Accepted: 02/03/2010] [Indexed: 02/07/2023]
|
42
|
Bhalodia Y, Sheth N, Vaghasiya J, Jivani N. Hyperlipidemia Enhanced Oxidative Stress and Inflammatory Response Evoked by
Renal Ischemia/Reperfusion Injury. INT J PHARMACOL 2009. [DOI: 10.3923/ijp.2010.25.30] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
43
|
Schober C, Schiller J, Pinker F, Hengstler JG, Fuchs B. Lysophosphatidylethanolamine is – in contrast to – choline – generated under in vivo conditions exclusively by phospholipase A2 but not by hypochlorous acid. Bioorg Chem 2009; 37:202-10. [DOI: 10.1016/j.bioorg.2009.09.002] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Revised: 09/08/2009] [Accepted: 09/09/2009] [Indexed: 10/20/2022]
|
44
|
Lessig J, Fuchs B. HOCl-mediated glycerophosphocholine and glycerophosphoethanolamine generation from plasmalogens in phospholipid mixtures. Lipids 2009; 45:37-51. [PMID: 19937395 DOI: 10.1007/s11745-009-3365-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2008] [Accepted: 07/03/2009] [Indexed: 11/30/2022]
Abstract
Many mammalian tissues and cells contain, in addition to (diacyl) phospholipids, considerable amounts of plasmalogens, which may function as important antioxidants. Apart from the "scavenger" function mediated by the high sensitivity of the vinyl-ether bond, the functional role of plasmalogens is so far widely unknown. Furthermore, there is increasing evidence that plasmalogen degradation products have harmful effects in inflammatory processes. In a previous investigation glycerophosphocholine (GPC) formation was verified as a novel plasmalogen degradation pathway upon oxidation with hypochlorous acid (HOCl), however these investigations were performed in simple model systems. Herein, we examine plasmalogen degradation in a more complex system in order to evaluate if GPC generation is also a major pathway in the presence of other highly unsaturated glycerophospholipids (GPL) representing an additional reaction site of HOCl targets. Using MALDI-TOF mass spectrometry and (31)P NMR spectroscopy, we confirmed that the first step of the HOCl-induced degradation of GPL mixtures containing plasmalogens is the attack of the vinyl-ether bond resulting in the generation of 1-lysophosphatidylcholine (lysoPtdCho) or 1-lysophosphatidylethanolamine. In the second step HOCl reacts with the fatty acyl residue in the sn-2 position of 1-lysoPtdCho. This reaction is about three times faster in comparison to comparable diacyl-GPL. Thus, the generation of GPC and glycerophosphoethanolamine (GPE) from plasmalogens are relevant products formed from HOCl attack on the vinyl-ether bond of plasmalogens under pathological conditions.
Collapse
Affiliation(s)
- Jacqueline Lessig
- Medical Faculty, Institute of Medical Physics and Biophysics, University of Leipzig, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | | |
Collapse
|
45
|
Cardiac Damage Induced by Renal Ischemia/Reperfusion Injury in Hyperlipidemic Rats: Role of PPAR-α Agonist. ACTA ACUST UNITED AC 2009. [DOI: 10.1016/s1561-5413(09)60244-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
46
|
Flemmig J, Spalteholz H, Schubert K, Meier S, Arnhold J. Modification of phosphatidylserine by hypochlorous acid. Chem Phys Lipids 2009; 161:44-50. [DOI: 10.1016/j.chemphyslip.2009.06.144] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2009] [Revised: 06/25/2009] [Accepted: 06/26/2009] [Indexed: 10/20/2022]
|
47
|
Robaszkiewicz A, Bartosz G, Soszyński M. Effect of N-chloroamino acids on the erythrocyte. Free Radic Res 2009; 42:30-9. [DOI: 10.1080/10715760701774873] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- A. Robaszkiewicz
- Department of Molecular Biophysics, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| | - G. Bartosz
- Department of Molecular Biophysics, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
- Department of Biochemistry and Cell Biology, University of Rzeszów, Cegielniana 12, 35-959 Rzeszów, Poland
| | - M. Soszyński
- Department of Molecular Biophysics, University of Łódź, Banacha 12/16, 90-237 Łódź, Poland
| |
Collapse
|
48
|
Sokolov AV, Ageeva KV, Pulina MO, Cherkalina OS, Samygina VR, Vlasova II, Panasenko OM, Zakharova ET, Vasilyev VB. Ceruloplasmin and myeloperoxidase in complex affect the enzymatic properties of each other. Free Radic Res 2009; 42:989-98. [DOI: 10.1080/10715760802566574] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
49
|
Tatlidede E, Şehirli Ö, Velioğlu-Öğünç A, Çetinel Ş, Yeğen BÇ, Yarat A, Süleymanoğlu S, Şener G. Resveratrol treatment protects against doxorubicin-induced cardiotoxicity by alleviating oxidative damage. Free Radic Res 2009; 43:195-205. [DOI: 10.1080/10715760802673008] [Citation(s) in RCA: 96] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Chantepie S, Malle E, Sattler W, Chapman MJ, Kontush A. Distinct HDL subclasses present similar intrinsic susceptibility to oxidation by HOCl. Arch Biochem Biophys 2009; 487:28-35. [PMID: 19464255 DOI: 10.1016/j.abb.2009.05.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2009] [Revised: 05/07/2009] [Accepted: 05/14/2009] [Indexed: 02/02/2023]
Abstract
The heme protein myeloperoxidase (MPO) functions as a catalyst for lipoprotein oxidation. Hypochlorous acid (HOCl), a potent two-electron oxidant formed by the MPO-H(2)O(2)-chloride system of activated phagocytes, modifies antiatherogenic high-density lipoprotein (HDL). The structural heterogeneity and oxidative susceptibility of HDL particle subfractions were probed with HOCl. All distinct five HDL subfraction were modified by HOCl as demonstrated by the consumption of tryptophan residues and free amino groups, cross-linking of apolipoprotein AI, formation of HOCl-modified epitopes, increased electrophoretic mobility and altered content of unsaturated fatty acids in HDL subclasses. Small, dense HDL3 were less susceptible to oxidative modification than large, light HDL2 on a total mass basis at a fixed HOCl:HDL mass ratio of 1:32, but in contrast not on a particle number basis at a fixed HOCl:HDL molar ratio of 97:1. We conclude that structural and physicochemical differences between HDL subclasses do not influence their intrinsic susceptibility to oxidative attack by HOCl.
Collapse
MESH Headings
- Atherosclerosis/blood
- Atherosclerosis/etiology
- Blood Protein Electrophoresis
- Electrophoresis, Agar Gel
- Fatty Acids, Unsaturated/analysis
- Humans
- Hypochlorous Acid/pharmacology
- In Vitro Techniques
- Lipoproteins, HDL/blood
- Lipoproteins, HDL/chemistry
- Lipoproteins, HDL/classification
- Lipoproteins, HDL/drug effects
- Lipoproteins, HDL2/blood
- Lipoproteins, HDL2/chemistry
- Lipoproteins, HDL2/drug effects
- Lipoproteins, HDL3/blood
- Lipoproteins, HDL3/chemistry
- Lipoproteins, HDL3/drug effects
- Oxidants/pharmacology
- Oxidation-Reduction
- Tryptophan/chemistry
Collapse
Affiliation(s)
- Sandrine Chantepie
- Université Pierre et Marie Curie-Paris 6, UMR S939 "Dyslipydemia, Inflammation and Atherosclerosis in Metabolic Diseases", F-75013 Paris, France.
| | | | | | | | | |
Collapse
|