1
|
Zeng L, Jin X, Xiao QA, Jiang W, Han S, Chao J, Zhang D, Xia X, Wang D. Ferroptosis: action and mechanism of chemical/drug-induced liver injury. Drug Chem Toxicol 2024; 47:1300-1311. [PMID: 38148561 DOI: 10.1080/01480545.2023.2295230] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 09/12/2023] [Accepted: 11/28/2023] [Indexed: 12/28/2023]
Abstract
Drug-induced liver injury (DILI) is characterized by hepatocyte injury, cholestasis injury, and mixed injury. The liver transplantation is required for serious clinical outcomes such as acute liver failure. Current studies have found that many mechanisms were involved in DILI, such as mitochondrial oxidative stress, apoptosis, necroptosis, autophagy, ferroptosis, etc. Ferroptosis occurs when hepatocytes die from iron-dependent lipid peroxidation and plays a key role in DILI. After entry into the liver, where some drugs or chemicals are metabolized, they convert into hepatotoxic substances, consume reduced glutathione (GSH), and decrease the reductive capacity of GSH-dependent GPX4, leading to redox imbalance in hepatocytes and increase of reactive oxygen species (ROS) and lipid peroxidation level, leading to the undermining of hepatocytes; some drugs facilitated the autophagy of ferritin, orchestrating the increased ion level and ferroptosis. The purpose of this review is to summarize the role of ferroptosis in chemical- or drug-induced liver injury (chemical/DILI) and how natural products inhibit ferroptosis to prevent chemical/DILI.
Collapse
Affiliation(s)
- Li Zeng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xueli Jin
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, the First College of Clinical Medical Science, China Three Gorges University, Yichang, China
- Yichang Central People's Hospital, Yichang, China
| | - Wei Jiang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Shanshan Han
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Jin Chao
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Ding Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Xuan Xia
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| | - Decheng Wang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, College of Basic Medical Sciences, China Three Gorges University, Yichang, China
| |
Collapse
|
2
|
Fu K, Dai S, Ma C, Zhang Y, Zhang S, Wang C, Gong L, Zhou H, Li Y. Lignans are the main active components of
Schisandrae Chinensis Fructus for liver disease treatment: a review. FOOD SCIENCE AND HUMAN WELLNESS 2024; 13:2425-2444. [DOI: 10.26599/fshw.2022.9250200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
3
|
Liu Z, Liu W, Han M, Wang M, Li Y, Yao Y, Duan Y. A comprehensive review of natural product-derived compounds acting on P2X7R: The promising therapeutic drugs in disorders. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155334. [PMID: 38554573 DOI: 10.1016/j.phymed.2023.155334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 12/30/2023] [Indexed: 04/01/2024]
Abstract
BACKGROUND The P2X7 receptor (P2X7R) is known to play a significant role in regulating various pathological processes associated with immune regulation, neuroprotection, and inflammatory responses. It has emerged as a potential target for the treatment of diseases. In addition to chemically synthesized small molecule compounds, natural products have gained attention as an important source for discovering compounds that act on the P2X7R. PURPOSE To explore the research progress made in the field of natural product-derived compounds that act on the P2X7R. METHODS The methods employed in this review involved conducting a thorough search of databases, include PubMed, Web of Science and WIKTROP, to identify studies on natural product-derived compounds that interact with P2X7R. The selected studies were then analyzed to categorize the compounds based on their action on the receptor and to evaluate their therapeutic applications, chemical properties, and pharmacological actions. RESULTS The natural product-derived compounds acting on P2X7R can be classified into three categories: P2X7R antagonists, compounds inhibiting P2X7R expression, and compounds regulating the signaling pathway associated with P2X7R. Moreover, highlight the therapeutic applications, chemical properties and pharmacological actions of these compounds, and indicate areas that require further in-depth study. Finally, discuss the challenges of the natural products-derived compounds exploration, although utilizing compounds from natural products for new drug research offers unique advantages, problems related to solubility, content, and extraction processes still exist. CONCLUSION The detailed information in this review will facilitate further development of P2X7R antagonists and potential therapeutic strategies for P2X7R-associated disorders.
Collapse
Affiliation(s)
- Zhenling Liu
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Wenjin Liu
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mengyao Han
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China
| | - Mingzhu Wang
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China
| | - Yinchao Li
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongfang Yao
- School of Pharmaceutical Sciences, Zhengzhou University, Zhengzhou 450001, China; Pingyuan Laboratory (Zhengzhou University), Zhengzhou 450001, China; Key Laboratory of Advanced Drug Preparation Technologies, Ministry of Education, Zhengzhou University, Zhengzhou 450001, China.
| | - Yongtao Duan
- Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan International Joint Laboratory of Prevention and Treatment of Pediatric Diseases, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China; Henan Neurodevelopment Engineering Research Center for Children, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou University, Zhengzhou 450018, China.
| |
Collapse
|
4
|
Osmakov DI, Kalinovskii AP, Belozerova OA, Andreev YA, Kozlov SA. Lignans as Pharmacological Agents in Disorders Related to Oxidative Stress and Inflammation: Chemical Synthesis Approaches and Biological Activities. Int J Mol Sci 2022; 23:6031. [PMID: 35682715 PMCID: PMC9181380 DOI: 10.3390/ijms23116031] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/17/2022] [Accepted: 05/24/2022] [Indexed: 02/06/2023] Open
Abstract
Plant lignans exhibit a wide range of biological activities, which makes them the research objects of potential use as therapeutic agents. They provide diverse naturally-occurring pharmacophores and are available for production by chemical synthesis. A large amount of accumulated data indicates that lignans of different structural groups are apt to demonstrate both anti-inflammatory and antioxidant effects, in many cases, simultaneously. In this review, we summarize the comprehensive knowledge about lignan use as a bioactive agent in disorders associated with oxidative stress and inflammation, pharmacological effects in vitro and in vivo, molecular mechanisms underlying these effects, and chemical synthesis approaches. This article provides an up-to-date overview of the current data in this area, available in PubMed, Scopus, and Web of Science databases, screened from 2000 to 2022.
Collapse
Affiliation(s)
- Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia; (D.I.O.); (A.P.K.); (O.A.B.); (Y.A.A.)
| |
Collapse
|
5
|
Lam HYP, Liang TR, Peng SY. Ameliorative effects of Schisandrin B on Schistosoma mansoni-induced hepatic fibrosis in vivo. PLoS Negl Trop Dis 2021; 15:e0009554. [PMID: 34161342 PMCID: PMC8259995 DOI: 10.1371/journal.pntd.0009554] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 07/06/2021] [Accepted: 06/09/2021] [Indexed: 02/07/2023] Open
Abstract
Schistosomiasis is second only to malaria as the most devastating parasitic disease in the world. It is caused by the helminths Schistosoma mansoni (S. mansoni), S. haematobium, or S. japonicum. Typically, patients with schistosomiasis suffer from symptoms of liver fibrosis and hepatosplenomegaly. Currently, patients were treated with praziquantel. Although praziquantel effectively kills the worm, it cannot prevent re-infection or resolve liver fibrosis. Also, current treatment options are not ample to completely cure liver fibrosis and splenic damages. Moreover, resistance of praziquantel has been reported in vivo and in vitro studies. Therefore, finding new effective treatment agents is urgently needed. Schisandrin B (Sch B) of Schisandra chinensis has been shown to protect against different liver injuries including fatty liver disease, hepatotoxicity, fibrosis, and hepatoma. We herein investigate the potential of using Sch B to treat S. mansoni-induced liver fibrosis. Results from the present study demonstrate that Sch B is beneficial in treating S. mansoni-induced liver fibrosis and splenic damages, through inhibition of inflammasome activation and apoptosis; and aside from that regulates host immune responses. Besides, Sch B treatment damages male adult worm in the mice, consequently helps to reduce egg production and lessen the parasite burden.
Collapse
Affiliation(s)
- Ho Yin Pekkle Lam
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Ting-Ruei Liang
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
| | - Shih-Yi Peng
- Institute of Medical Sciences, Tzu Chi University, Hualien, Taiwan
- Department of Biochemistry, School of Medicine, Tzu Chi University, Hualien, Taiwan
- Ph.D. Program in Pharmacology and Toxicology, School of Medicine, Tzu Chi University, Hualien, Taiwan
- * E-mail:
| |
Collapse
|
6
|
Taavitsainen E, Kortesoja M, Bruun T, Johansson NG, Hanski L. Assaying Chlamydia pneumoniae Persistence in Monocyte-Derived Macrophages Identifies Dibenzocyclooctadiene Lignans as Phenotypic Switchers. Molecules 2020; 25:E294. [PMID: 31940776 PMCID: PMC7024427 DOI: 10.3390/molecules25020294] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/07/2020] [Accepted: 01/08/2020] [Indexed: 11/24/2022] Open
Abstract
Antibiotic-tolerant persister bacteria involve frequent treatment failures, relapsing infections and the need for extended antibiotic treatment. The virulence of an intracellular human pathogen C. pneumoniae is tightly linked to its propensity for persistence and means for its chemosensitization are urgently needed. In the current work, persistence of C. pneumoniae clinical isolate CV6 was studied in THP-1 macrophages using quantitative PCR and quantitative culture. A dibenzocyclooctadiene lignan schisandrin reverted C. pneumoniae persistence and promoted productive infection. The concomitant administration of schisandrin and azithromycin resulted in significantly improved bacterial eradication compared to sole azithromycin treatment. In addition, the closely related lignan schisandrin C was superior to azithromycin in eradicating the C. pneumoniae infection from the macrophages. The observed chemosensitization of C. pneumoniae was associated with the suppression of cellular glutathione pools by the lignans, implying to a previously unknown aspect of chlamydia-host interactions. These data indicate that schisandrin lignans induce a phenotypic switch in C. pneumoniae, promoting the productive and antibiotic-susceptible phenotype instead of persistence. By this means, these medicinal plant -derived compounds show potential as adjuvant therapies for intracellular bacteria resuscitation.
Collapse
Affiliation(s)
- Eveliina Taavitsainen
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (E.T.); (M.K.)
| | - Maarit Kortesoja
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (E.T.); (M.K.)
| | - Tanja Bruun
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (T.B.); (N.G.J.)
- Drug Research Program, Division of Pharmacology and Pharmacotherapy, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland
| | - Niklas G. Johansson
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (T.B.); (N.G.J.)
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 Helsinki, Finland; (E.T.); (M.K.)
| |
Collapse
|
7
|
Zhu P, Li J, Fu X, Yu Z. Schisandra fruits for the management of drug-induced liver injury in China: A review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 59:152760. [PMID: 31004881 DOI: 10.1016/j.phymed.2018.11.020] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2018] [Revised: 11/14/2018] [Accepted: 11/17/2018] [Indexed: 05/27/2023]
Abstract
BACKGROUND With increasing use of pharmaceuticals, drug-induced liver injury (DILI) has become a significant therapeutic challenge to physicians all over the world. Drugs based on Schisandra fruits (SF for short, the fruits of Schisandra chinensis or Schisandra sphenanthera) or synthetic analogues of schisandrin C, are commonly prescribed for treating DILI in China. PURPOSE This review summarizes the literature regarding the application of SF-derived drugs in patients with DILI and current understanding of mechanisms underlying the protective effects of SF against liver injury. METHODS Keywords related to drug-induced liver injury and Schisandra fruits were searched in the following databases: Pubmed, Cochrane Library, Google Scholar, LiverTox, China National Knowledge Infrastructure (CNKI), Chinese Scientific Journal database (VIP), and Wanfang database. All studies, published in English or Chinese, were included. Clinical study exclusion criteria: if patients received other Chinese herbal medicines in a study, the study will not be included in this review. RESULTS Clinical studies have shown that SF-derived drugs are effective in inhibiting drug-induced elevation of serum levels of alanine aminotransferase, aspartate transaminase and total bilirubin. Cellular and animal studies have demonstrated that crude SF extracts, lignan compounds found in SF, and SF-derived drugs are effective in protecting the liver against xenobiotic-induced injury. Regulation of cytochrome P450 enzyme activity, anti-oxidation, anti-inflammation and acceleration of liver regeneration are involved in the hepatoprotective mechanisms of SF. CONCLUSION SF-derived drugs are effective in ameliorating DILI in China. To verify the clinical efficacy of these drugs, high-quality clinical studies are needed.
Collapse
Affiliation(s)
- Peili Zhu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Junkui Li
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Xiuqiong Fu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China
| | - Zhiling Yu
- Consun Chinese Medicines Research Centre for Renal Diseases, School of Chinese Medicine, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China; Center for Cancer and Inflammation Research, School of Chinese Medicine, Hong Kong Baptist University, Hong Kong, China; Research and Development Centre for Natural Health Products, HKBU Shenzhen Research Institute and Continuing Education, Shenzhen, China.
| |
Collapse
|
8
|
Kortesoja M, Karhu E, Olafsdottir ES, Freysdottir J, Hanski L. Impact of dibenzocyclooctadiene lignans from Schisandra chinensis on the redox status and activation of human innate immune system cells. Free Radic Biol Med 2019; 131:309-317. [PMID: 30578916 DOI: 10.1016/j.freeradbiomed.2018.12.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Revised: 12/05/2018] [Accepted: 12/17/2018] [Indexed: 12/15/2022]
Abstract
Redox signaling has been established as an essential component of inflammatory responses, and redox active compounds are of interest as potential immunomodulatory agents. Dibenzocyclooctadiene lignans isolated from Schisandra chinensis, a medicinal plant with widespread use in oriental medicine, have been implicated to possess immunomodulatory properties but their effects on the human innate immune system cells have not been described. In this contribution, data are presented on the impact of schisandrin, schisandrin B and schisandrin C on human monocytic cell redox status, as well as their impact on dendritic cell maturation and T cell activation capacity and cytokine production. In THP-1 cells, levels of intracellular reactive oxygen species (ROS) were elevated after 1 h exposure to schisandrin. Schisandrin B and schisandrin C decreased cellular glutathione pools, which is a phenotype previously reported to promote anti-inflammatory functions. Treatment of human primary monocytes with the lignans during their maturation to dendritic cells did not have any effect on the appearance of surface markers HLA-DR and CD86 but schisandrin B and schisandrin C suppressed the secretion of cytokines interleukin (IL)-6, IL-10 and IL-12 by the mature dendritic cells. Dendritic cells maturated in presence of schisandrin C were further cocultured with naïve CD4+ T cells, resulting in reduced IL-12 production. In THP-1 cells, schisandrin B and schisandrin C reduced the IL-6 and IL-12 production triggered by E. coli lipopolysaccharide and IL-12 production induced by an infection with Chlamydia pneumoniae. In conclusion, the studied lignans act as immunomodulatory agents by altering the cytokine secretion, but do not interfere with dendritic cell maturation. And the observed effects may be associated with the ability of the lignans to alter cellular redox status.
Collapse
Affiliation(s)
- Maarit Kortesoja
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Elina Karhu
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland
| | - Elin Soffia Olafsdottir
- Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Hofsvallagata 53, 107 Reykjavik, Iceland
| | - Jona Freysdottir
- Department of Immunology and Center for Rheumatology Research, Landspitali-The National University Hospital of Iceland and Faculty of Medicine, University of Iceland, Eiriksgata, 101 Reykjavik, Iceland
| | - Leena Hanski
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, University of Helsinki, P.O. Box 56, FI-00014 University of Helsinki, Finland.
| |
Collapse
|
9
|
Ding M, Shu P, Gao S, Wang F, Gao Y, Chen Y, Deng W, He G, Hu Z, Li T. Schisandrin B protects human keratinocyte-derived HaCaT cells from tert-butyl hydroperoxide-induced oxidative damage through activating the Nrf2 signaling pathway. Int J Mol Med 2018; 42:3571-3581. [PMID: 30272282 DOI: 10.3892/ijmm.2018.3901] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 09/06/2018] [Indexed: 11/05/2022] Open
Abstract
Schisandrin B (Sch B), an active extract of Schisandra chinensis, has demonstrated antioxidant activity in a number of in vitro and in vivo models. In the present study, the capacity of Sch B to protect against oxidative injury in keratinocytes using the human keratinocyte‑derived HaCaT cell line was investigated. To induce oxidative injury, tert‑Butyl hydroperoxide (tBHP) was employed. The results indicate that Sch B efficiently reduced tBHP‑induced cell death, reactive oxygen species (ROS) generation, protein oxidation, lipid peroxidation and DNA damage. Sch B also effectively attenuated the loss of mitochondrial membrane potential (MMP), and restored adenosine triphosphate (ATP) levels in tBHP‑injured HaCaT cells. Furthermore, Sch B enhanced the expression of key antioxidant enzymes, including catalase, heme oxygenase‑1, glutathione peroxidase, and superoxide dismutase, and further engaged the nuclear factor‑erythroid 2‑related factor 2 (Nrf2) signaling pathway by modulating its phosphorylation through activating multiple upstream kinases, including protein kinase B, adenosine monophosphate‑activated protein kinase and mitogen‑activated protein kinases (MAPKs). The present study suggests that Sch B provides a protective effect in keratinocytes in response to oxidative injury via reinforcing the endogenous antioxidant defense system. Therefore, it may be applied as an adjuvant therapy or in health foods to delay the skin aging process and the onset of skin diseases caused by oxidative stress.
Collapse
Affiliation(s)
- Ming Ding
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| | - Peng Shu
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Shuang Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Fenglou Wang
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Yitian Gao
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Yu Chen
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Wenjuan Deng
- Infinitus (China) Company, Ltd., Guangzhou, Guangdong 510663, P.R. China
| | - Gaiying He
- LB Cosmeceutical Technology Co., Ltd., Shanghai 200233, P.R. China
| | - Zhenlin Hu
- Institute of Life Science, Wenzhou University, Wenzhou, Zhejiang 325000, P.R. China
| | - Tianduo Li
- School of Chemistry and Pharmaceutical Engineering, Qilu University of Technology, Jinan, Shandong 250353, P.R. China
| |
Collapse
|
10
|
Simultaneous quantification of Schisandrin B enantiomers in rat plasma by chiral LC–MS/MS: Application in a stereoselective pharmacokinetic study. J Pharm Biomed Anal 2018; 159:186-191. [DOI: 10.1016/j.jpba.2018.06.056] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 06/26/2018] [Accepted: 06/27/2018] [Indexed: 01/06/2023]
|
11
|
Lu Y, Hu Q, Chen L, Zhang H, Huang S, Xiong Y, Xia C. Interaction of deoxyschizandrin and schizandrin B with liver uptake transporters OATP1B1 and OATP1B3. Xenobiotica 2018; 49:239-246. [DOI: 10.1080/00498254.2018.1437647] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Yanli Lu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Qingqing Hu
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Lin Chen
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Hong Zhang
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Shibo Huang
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Yuqing Xiong
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| | - Chunhua Xia
- Clinical Pharmacology Institute, Nanchang University, Nanchang, China
| |
Collapse
|
12
|
Wang Z, You L, Cheng Y, Hu K, Wang Z, Cheng Y, Yang J, Yang Y, Wang G. Investigation of pharmacokinetics, tissue distribution and excretion of schisandrin B in rats by HPLC-MS/MS. Biomed Chromatogr 2017; 32. [DOI: 10.1002/bmc.4069] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 05/12/2017] [Accepted: 08/07/2017] [Indexed: 12/19/2022]
Affiliation(s)
- Zhuo Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics; China Pharmaceutical University; Nanjing People's Republic of China
| | - Linjun You
- Center for New Drug Safety Evaluation and Research; China Pharmaceutical University; Nanjing People's Republic of China
| | - Yan Cheng
- Center for New Drug Safety Evaluation and Research; China Pharmaceutical University; Nanjing People's Republic of China
| | - Kaiyong Hu
- Center for New Drug Safety Evaluation and Research; China Pharmaceutical University; Nanjing People's Republic of China
| | - Zhanbo Wang
- Center for New Drug Safety Evaluation and Research; China Pharmaceutical University; Nanjing People's Republic of China
| | - Yanan Cheng
- Center for New Drug Safety Evaluation and Research; China Pharmaceutical University; Nanjing People's Republic of China
| | - Jin Yang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics; China Pharmaceutical University; Nanjing People's Republic of China
- Center for New Drug Safety Evaluation and Research; China Pharmaceutical University; Nanjing People's Republic of China
| | - Yong Yang
- Center for New Drug Safety Evaluation and Research; China Pharmaceutical University; Nanjing People's Republic of China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics; China Pharmaceutical University; Nanjing People's Republic of China
| |
Collapse
|
13
|
Acute Pre-/Post-Treatment with 8th Day SOD-Like Supreme (a Free Radical Scavenging Health Product) Protects against Oxidant-Induced Injury in Cultured Cardiomyocytes and Hepatocytes In Vitro as Well as in Mouse Myocardium and Liver In Vivo. Antioxidants (Basel) 2017; 6:antiox6020028. [PMID: 28394280 PMCID: PMC5488008 DOI: 10.3390/antiox6020028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 03/31/2017] [Accepted: 04/07/2017] [Indexed: 01/30/2023] Open
Abstract
8th Day superoxide dismutase (SOD)-Like Supreme (SOD-Like Supreme, a free radical scavenging health product) is an antioxidant-enriched fermentation preparation with free radical scavenging properties. In the present study, the cellular/tissue protective actions of SOD-Like Supreme against menadione toxicity in cultured H9c2 cardiomyocytes and in AML12 hepatocytes as well as oxidant-induced injury in the mouse myocardium and liver were investigated. SOD-Like Supreme was found to possess potent free radical scavenging activity in vitro as assessed by an oxygen radical absorbance capacity assay. Incubation with SOD-Like Supreme (0.5-3% (v/v)) was shown to protect against menadione-induced toxicity in H9c2 and AML12 cells, as evidenced by increases in cell viability. The ability of SOD-Like Supreme to protect against menadione cytotoxicity was associated with an elevation in the cellular reduced glutathione (GSH)/oxidized glutathione (GSSG) ratio in menadione-challenged cells. Consistent with the cell-based studies, pre-/post-treatment with SOD-Like Supreme (0.69 and 2.06 mL/kg, three intermittent doses per day for two consecutive days) was found to protect against isoproterenol-induced myocardial injury and carbon tetrachloride hepatotoxicity in mice. The cardio/hepatoprotection afforded by SOD-Like Supreme was also paralleled by increases in myocardial/hepatic mitochondrial GSH/GSSG ratios in the SOD-Like Supreme-treated/oxidant-challenged mice. In conclusion, incubation/treatment with SOD-Like Supreme was found to protect against oxidant-induced injury in vitro and in vivo, presumably by virtue of its free radical scavenging activity.
Collapse
|
14
|
Schisandrin B: A Double-Edged Sword in Nonalcoholic Fatty Liver Disease. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:6171658. [PMID: 27847552 PMCID: PMC5101399 DOI: 10.1155/2016/6171658] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Revised: 09/13/2016] [Accepted: 09/28/2016] [Indexed: 12/14/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a spectrum of liver lesions ranging from hepatic steatosis, nonalcoholic steatohepatitis, hepatic cirrhosis, and hepatocellular carcinoma. The high global prevalence of NAFLD has underlined the important public health implications of this disease. The pathogenesis of NAFLD involves the abnormal accumulation of free fatty acids, oxidative stress, endoplasmic reticulum (ER) stress, and a proinflammatory state in the liver. Schisandrin B (Sch B), an active dibenzooctadiene lignan isolated from the fruit of Schisandra chinensis (a traditional Chinese herb), was found to possess antihyperlipidemic, antioxidant, anti-ER stress, and anti-inflammatory activities in cultured hepatocytes in vitro and in rodent livers in vivo. Whereas a long-term, low dose regimen of Sch B induces an antihyperlipidemic response in obese mice fed a high fat diet, a single bolus high dose of Sch B increases serum/hepatic lipid levels in mice. This differential action of Sch B is likely related to a dose/time-dependent biphasic response on lipid metabolism in mice. The hepatoprotection afforded by Sch B against oxidative stress, ER stress, and inflammation has been widely reported. The ensemble of results suggests that Sch B may offer potential as a therapeutic agent for NAFLD. The optimal dose and duration of Sch B treatment need to be established in order to ensure maximal efficacy and safety when used in humans.
Collapse
|
15
|
Leong PK, Wong HS, Chen J, Chan WM, Leung HY, Ko KM. Differential Action between Schisandrin A and Schisandrin B in Eliciting an Anti-Inflammatory Action: The Depletion of Reduced Glutathione and the Induction of an Antioxidant Response. PLoS One 2016; 11:e0155879. [PMID: 27195753 PMCID: PMC4873034 DOI: 10.1371/journal.pone.0155879] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 05/05/2016] [Indexed: 01/14/2023] Open
Abstract
Schisandrin A (Sch A) and schisandrin B (Sch B) are active components of Schisandrae Fructus. We compared the biochemical mechanism underlying the anti-inflammatory action of Sch A and Sch B, using cultured lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages and concanavalin (ConA)-stimulated mouse splenocytes. Pre-incubation with Sch A or Sch B produced an anti-inflammatory action in LPS-stimulated RAW264.7 cells, as evidenced by the inhibition of the pro-inflammatory c-Jun N-terminal kinases/p38 kinase/nuclear factor-κB signaling pathway as well as the suppression of various pro-inflammatory cytokines and effectors, with the extent of inhibition by Sch A being more pronounced. The greater activity of Sch A in anti-inflammatory response was associated with a greater decrease in cellular reduced glutathione (GSH) level and a greater increase in glutathione S-transferase activity than corresponding changes produced by Sch B. However, upon incubation, only Sch B resulted in the activation of the nuclear factor (erythroid-derived 2)-like factor 2 and the induction of a significant increase in the expression of thioredoxin (TRX) in RAW264.7 cells. The Sch B-induced increase in TRX expression was associated with the suppression of pro-inflammatory cytokines and effectors in LPS-stimulated macrophages. Studies in a mouse model of inflammation (carrageenan-induced paw edema) indicated that while long-term treatment with either Sch A or Sch B suppressed the extent of paw edema, only acute treatment with Sch A produced a significant degree of inhibition on the inflammatory response. Although only Sch A decreased the cellular GSH level and suppressed the release of pro-inflammatory cytokines and cell proliferation in ConA-simulated splenocytes in vitro, both Sch A and Sch B treatments, while not altering cellular GSH levels, suppressed ConA-stimulated splenocyte proliferation ex vivo. These results suggest that Sch A and Sch B may act differentially on activating GST/ depleting cellular GSH and inducing an antioxidant response involved in their anti-inflammatory actions.
Collapse
Affiliation(s)
- Pou Kuan Leong
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hoi Shan Wong
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Jihang Chen
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Wing Man Chan
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hoi Yan Leung
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | - Kam Ming Ko
- Division of Life Science, The Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
- * E-mail:
| |
Collapse
|
16
|
Giridharan VV, Thandavarayan RA, Arumugam S, Mizuno M, Nawa H, Suzuki K, Ko KM, Krishnamurthy P, Watanabe K, Konishi T. Schisandrin B Ameliorates ICV-Infused Amyloid β Induced Oxidative Stress and Neuronal Dysfunction through Inhibiting RAGE/NF-κB/MAPK and Up-Regulating HSP/Beclin Expression. PLoS One 2015; 10:e0142483. [PMID: 26556721 PMCID: PMC4640572 DOI: 10.1371/journal.pone.0142483] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Accepted: 10/22/2015] [Indexed: 01/12/2023] Open
Abstract
Amyloid β (Aβ)-induced neurotoxicity is a major pathological mechanism of Alzheimer’s disease (AD). Our previous studies have demonstrated that schisandrin B (Sch B), an antioxidant lignan from Schisandra chinensis, could protect mouse brain against scopolamine- and cisplatin-induced neuronal dysfunction. In the present study, we examined the protective effect of Sch B against intracerebroventricular (ICV)-infused Aβ-induced neuronal dysfunction in rat cortex and explored the potential mechanism of its action. Our results showed that 26 days co-administration of Sch B significantly improved the behavioral performance of Aβ (1–40)-infused rats in step-through test. At the same time, Sch B attenuated Aβ-induced increases in oxidative and nitrosative stresses, inflammatory markers such as inducible nitric oxide syntheses, cyclooxygenase-2, interleukin-1β (IL-1β), IL-6, and tumor necrosis factor-α, and DNA damage. Several proteins such as receptor for advanced glycation end products (RAGE), nuclear factor-κB, mitogen-activated protein kinases, and apoptosis markers were over expressed in Aβ-infused rats but were significantly inhibited by Sch B treatment. Furthermore, Sch B negatively modulated the Aβ level with simultaneous up-regulation of HSP70 and beclin, autophagy markers in Aβ-infused rats. The aforementioned effects of Sch B suggest its protective role against Aβ-induced neurotoxicity through intervention in the negative cycle of RAGE-mediated Aβ accumulation during AD patho-physiology.
Collapse
Affiliation(s)
| | - Rajarajan A. Thandavarayan
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, United States of America
- * E-mail: (RAT); (TK)
| | - Somasundaram Arumugam
- Department of Clinical Pharmacology, Niigata University of Pharmacy & Applied Life Sciences (NUPALS), Niigata City, Japan
| | - Makoto Mizuno
- Division of Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Hiroyuki Nawa
- Division of Neurobiology, Brain Research Institute, Niigata University, Niigata, Japan
| | - Kenji Suzuki
- Department of Gastroenterology and Hepatology, Niigata University Graduate School of Medical and Dental Sciences, Niigata, Japan
| | - Kam M. Ko
- Section of Biochemistry and Cell biology, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Prasanna Krishnamurthy
- Department of Cardiovascular Sciences, Houston Methodist Research Institute, Houston, Texas, United States of America
| | - Kenichi Watanabe
- Department of Clinical Pharmacology, Niigata University of Pharmacy & Applied Life Sciences (NUPALS), Niigata City, Japan
| | - Tetsuya Konishi
- Basic studies on second generation functional foods, NUPALS, NUPALS Liaison R/D promotion division, Niigata, Japan, Changchun University of Chinese Medicine, Changchun, RP China
- * E-mail: (RAT); (TK)
| |
Collapse
|
17
|
Wong HS, Chen JH, Leong PK, Leung HY, Chan WM, Ko KM. β-sitosterol protects against carbon tetrachloride hepatotoxicity but not gentamicin nephrotoxicity in rats via the induction of mitochondrial glutathione redox cycling. Molecules 2014; 19:17649-62. [PMID: 25361427 PMCID: PMC6271253 DOI: 10.3390/molecules191117649] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2014] [Revised: 10/23/2014] [Accepted: 10/24/2014] [Indexed: 01/04/2023] Open
Abstract
Previous findings have demonstrated that β-sitosterol (BSS), an active component of Cistanches Herba, protected against oxidant injury in H9c2 cardiomyocytes and in rat hearts by enhancing mitochondrial glutathione redox cycling, possibly through the intermediacy of mitochondrial reactive oxygen species production. We therefore hypothesized that BSS pretreatment can also confer tissue protection against oxidant injury in other vital organs such as liver and kidney of rats. In this study, the effects of BSS pretreatment on rat models of carbon tetrachloride (CCl4) hepatotoxicity and gentamicin nephrotoxicity were investigated. The findings showed that BSS pretreatment protected against CCl4-induced hepatotoxicity, but not gentamicin nephrotoxicity in rats. The hepatoprotection afforded by BSS was associated with the improvement in mitochondrial glutathione redox status, presumably through the glutathione reductase-mediated enhancement in mitochondrial glutathione redox cycling. The hepatoprotection afforded by BSS was also accompanied by the improved mitochondrial functional ability in rat livers. The inability of BSS to protect against gentamicin nephrotoxicity was likely due to the relatively low bioavailability of BSS in rat kidneys. BSS may serve as potential mitohormetic agent for the prevention of oxidative stress-induced injury in livers.
Collapse
Affiliation(s)
- Hoi-Shan Wong
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Ji-Hang Chen
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Pou-Kuan Leong
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Hoi-Yan Leung
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Wing-Man Chan
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| | - Kam-Ming Ko
- Division of Life Science, Hong Kong University of Science and Technology, Hong Kong, China.
| |
Collapse
|
18
|
Slanina J, Páchniková G, Carnecká M, Porubová Koubíková L, Adámková L, Humpa O, Smejkal K, Slaninová I. Identification of key structural characteristics of Schisandra chinensis lignans involved in P-glycoprotein inhibition. JOURNAL OF NATURAL PRODUCTS 2014; 77:2255-63. [PMID: 25302569 DOI: 10.1021/np500521v] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The aim of the present study was to determine the structural requirements for dibenzocyclooctadiene lignans essential for P-glycoprotein inhibition. Altogether 15 structurally related lignans isolated from Schisandra chinensis or prepared by modification of their backbone were investigated, including three pairs of enantiomers. P-Glycoprotein inhibition was quantified using a doxorubicin accumulation assay in human promyelotic leukemia HL60/MDR cells overexpressing P-glycoprotein. A preliminary quantitative structure-activity relationship analysis revealed three main structural features involved in P-glycoprotein inhibition: a 1,2,3-trimethoxy moiety, a 6-acyloxy group, and the absence of a 7-hydroxy group. The most effective inhibitors, (-)-gomisin N (1) and (+)-deoxyschizandrin [(+)-2], were selected for further evaluation of their effects. Both these lignans restored the cytotoxic effect of doxorubicin in HL60/MDR cells and when combined with a subtoxic concentration of this compound increased the proportion of G2/M cells significantly, which is a usual response to treatment with this anticancer drug.
Collapse
Affiliation(s)
- Jiří Slanina
- Department of Biochemistry, Faculty of Medicine, Masaryk University , Kamenice 5, Building A16, 625 00 Brno, Czech Republic
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Zhang S, Liu X, Ma W. Effects of piperine and deoxyschizandrin on synchronized Ca2+ oscillations in cultured hippocampal neuronal cells. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2013; 42:673-82. [DOI: 10.1007/s00249-013-0916-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2013] [Revised: 05/03/2013] [Accepted: 05/15/2013] [Indexed: 11/30/2022]
|
20
|
Zhu H, Zhang X, Guan J, Cui B, Zhao L, Zhao X. Pharmacokinetics and tissue distribution study of schisandrin B in rats by ultra-fast liquid chromatography with tandem mass spectrometry. J Pharm Biomed Anal 2013; 78-79:136-40. [DOI: 10.1016/j.jpba.2013.01.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2012] [Revised: 01/20/2013] [Accepted: 01/28/2013] [Indexed: 01/30/2023]
|
21
|
Ursolic-Acid-Enriched Herba Cynomorii Extract Protects against Oxidant Injury in H9c2 Cells and Rat Myocardium by Increasing Mitochondrial ATP Generation Capacity and Enhancing Cellular Glutathione Redox Cycling, Possibly through Mitochondrial Uncoupling. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 2013:924128. [PMID: 23690863 PMCID: PMC3638637 DOI: 10.1155/2013/924128] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/02/2013] [Accepted: 03/11/2013] [Indexed: 12/31/2022]
Abstract
Mitochondrial decay is considered to be a major contributor to aging-related diseases, including neurodegenerative diseases, cardiovascular disorders, and certain metabolic diseases. Therefore, the maintenance of mitochondrial functional capacity and antioxidant status should play an essential role in preventive health. Herba Cynomorii, which is one of the most potent "Yang-invigorating" Chinese tonic herbs, was found to increase mitochondrial ATP generation capacity (ATP-GC) in rat hearts ex vivo. In the present study, we demonstrated that HCY2, an active fraction of Herba Cynomorii, and its major ingredient ursolic acid (UA) could protect against hypoxia/reoxygenation-induced cell apoptosis in H9c2 cells in vitro and also against ischemia/reperfusion-induced injury in rat hearts ex vivo. The cardioprotection was associated with an increase in ATP-GC and an enhancement of glutathione redox cycling. The results suggest that UA may be one of the active ingredients responsible for the cardioprotection afforded by Herba Cynomorii, and this effect may be mediated, at least in part, by enhancement of mitochondrial functional capacity and antioxidant status, possibly through the induction of mitochondrial uncoupling.
Collapse
|
22
|
Leong PK, Chen N, Ko KM. Mitochondrial decay in ageing: 'Qi-invigorating' schisandrin B as a hormetic agent for mitigating age-related diseases. Clin Exp Pharmacol Physiol 2012; 39:256-64. [PMID: 21895737 DOI: 10.1111/j.1440-1681.2011.05600.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
1. The mitochondrial free radical theory of ageing (MFRTA) proposes a primary role for mitochondrial reactive oxygen species (ROS) in the ageing process. The reductive hot spot hypothesis of mammalian ageing serves as a supplement to the MFRTA by explaining how the relatively few cells that have lost oxidative phosphorylation capacity due to mitochondrial DNA mutations can be toxic to the rest of the body and result in the development of age-related diseases. 2. Schisandrin B (SchB), which can induce both a glutathione anti-oxidant and a heat shock response via redox-sensitive signalling pathways, is a hormetic agent potentially useful for increasing the resistance of tissues to oxidative damage. The enhanced cellular/mitochondrial anti-oxidant status and heat shock response afforded by SchB can preserve the structural and functional integrity of mitochondria, suggesting a potential role for SchB in ameliorating age-related diseases. 3. Future studies will focus on investigating whether SchB can produce the hormetic response in humans.
Collapse
Affiliation(s)
- Pou K Leong
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | | | | |
Collapse
|
23
|
Leong PK, Chiu PY, Ko KM. Prooxidant-induced glutathione antioxidant response in vitro and in vivo: a comparative study between schisandrin B and curcumin. Biol Pharm Bull 2012; 35:464-72. [PMID: 22466548 DOI: 10.1248/bpb.35.464] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated whether two naturally-occurring prooxidants, namely, schisandrin B (Sch B) and curcumin, and a synthetic prooxidant, menadione, can invariably elicit cyto/hepatoprotective responses against oxidant-induced injury. Results showed that (-)Sch B (a potent enantiomer of Sch B, 15 μM), curcumin (7.5 μM) and menadione (2 μM) induced a similar extent of reactive oxygen species production in AML12 cells. The relative potencies of cytoprotection in vitro were in a descending order of curcumin>menadione>(-)Sch B, which were parallel to the extent of stimulation in cellular reduced glutathione level. We further examined their hepatoprotection in vivo. Pretreatment with Sch B (800 mg/kg) and curcumin (737 mg/kg), but not menadione (344 mg/kg), protected against CCl(4) toxicity, with the degree of protection afforded by Sch B being much larger than that of curcumin. The attenuated hepatoprotection afforded by curcumin may be attributed to its low bioavailability in vivo. This postulation is supported by the findings that intraperitoneal injections of Sch B (400 mg/kg) and curcumin (368 mg/kg) and the long term, low dose treatment with Sch B (20 mg/kg/d×15) and curcumin (18 mg/kg/d×15) induced glutathione antioxidant response and hepatoprotection to similar extents in vivo. The inability of menadione to induce hepatoprotection may be related to its extensive intestinal metabolism and/or hepatotoxicity. Taken together, prooxidants can invariably induce the glutathione antioxidant response and confer cytoprotection in vitro. Whether or not the prooxidant can produce a similar response in vivo would depend on its bioavailability and potential toxic effect.
Collapse
Affiliation(s)
- Pou Kuan Leong
- Division of Life Science, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | |
Collapse
|
24
|
Lam PY, Chen N, Chiu PY, Leung HY, Ko KM. Neuroprotection against oxidative injury by a nucleic acid-based health product (Squina DNA) through enhancing mitochondrial antioxidant status and functional capacity. J Med Food 2012; 15:629-38. [PMID: 22612294 DOI: 10.1089/jmf.2011.2041] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
High levels of reactive oxygen species inflict oxidative damage on various cellular components that eventually culminate in a variety of diseases. This study investigated the cytoprotective effects of a nucleic acid-based health product (Squina [Hong Kong, China] DNA) against oxidative stress, particularly in neuronal cells. Adult female Sprague-Dawley rats were treated with Squina DNA, and changes in mitochondrial antioxidant status and functional capacity were assessed by the activities of antioxidant enzymes and ATP generation capacity in brain, heart ventricular, kidney, skeletal muscle, and liver tissues of control and Squina DNA-treated rats. The effects of Squina DNA pretreatment on brain/neuronal cell injury were investigated in a rat model of cerebral ischemia/reperfusion (I/R) injury and a neuroblastoma SH-SY5Y cell model of β-amyloid (Aβ) protein fragment 25-35-induced toxicity. Long-term Squina DNA treatment caused dose-dependent increases in mitochondrial antioxidant status and functional capacity in rat brain, heart ventricular, kidney, skeletal muscle, and liver tissues. Squina DNA pretreatment significantly prevented I/R injury in brain tissue. The cerebroprotection was associated with a reversal of I/R-induced impairment in mitochondrial antioxidant status and disruption in membrane integrity. Squina DNA ethanol extract also significantly inhibited the Aβ-induced apoptosis in SH-SY5Y neuronal cells, as evidenced by less caspase 3 and caspase 9 activation as well as mitochondrial cytochrome c release in Aβ-challenged cells. Squina DNA may enhance the resistance of tissues and cells to oxidative stress, particularly in pathological conditions such as stroke and aging-related neurodegenerative diseases.
Collapse
Affiliation(s)
- Phillip Y Lam
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
25
|
Zhang M, Liu M, Xiong M, Gong J, Tan X. Schisandra chinensis fruit extract attenuates albuminuria and protects podocyte integrity in a mouse model of streptozotocin-induced diabetic nephropathy. JOURNAL OF ETHNOPHARMACOLOGY 2012; 141:111-118. [PMID: 22353431 DOI: 10.1016/j.jep.2012.02.007] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 02/03/2012] [Accepted: 02/06/2012] [Indexed: 05/31/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis fruit is widely used in Chinese medicine for the treatment of hepatic, renal, heart, cerebrovascular and infectious diseases. AIM OF THE STUDY To investigate the effects of Schisandra chinensis fruit extract (SE) on albuminuria and podocyte injury as well as the underlying mechanism in the mouse model of streptozotocin (STZ)-induced diabetic nephropathy and in cultured mouse podocyte cells. MATERIALS AND METHODS SE was orally administrated in STZ-induced diabetic nephropathy mice for 7 weeks, at a daily dose of 5g/kg body weight. The urinary albumin/creatinine ratio and urine albumin excretion rate were measured at the 6th and 9th week of the experiment. The extent of glomerulosclerosis and extracellular matrix deposition were determined by periodic acid-silver methenamine and Masson's trichrome staining. The amount of podocytes and the integrity of the slit diaphragm were detected by immunohistological staining of podocyte markers, Wilms' tumor 1 and nephrin. Alpha-smooth muscle actin, E-cadherin and plasminogen activator inhibitor-1 were measured by western blot and immunohistological staining to evaluate the level of epithelial-to-mesenchymal transition (EMT). Real-time reverse transcription PCR was used to detect the mRNA level of E-cadherin, alpha-SMA and snail in cultured podocyte cells. RESULTS Treatment with SE significantly decreased the urine albumin excretion rate and urinary albumin/creatinine ratio. In addition, SE attenuated glomerulosclerosis and protected against podocyte loss and integrity of the slit diaphragm. Furthermore, SE effectively prevented the EMT of podocytes caused by diabetic nephropathy. CONCLUSIONS Our studies suggest that SE might be beneficial for diabetic nephropathy. The effects of SE on attenuating albuminuria and glomerulosclerosis are possibly mediated by preserving podocyte integrity through suppressing EMT.
Collapse
MESH Headings
- Administration, Oral
- Albuminuria/etiology
- Albuminuria/genetics
- Albuminuria/metabolism
- Albuminuria/pathology
- Albuminuria/prevention & control
- Animals
- Biomarkers/metabolism
- Blotting, Western
- Cells, Cultured
- Diabetes Mellitus, Experimental/complications
- Diabetes Mellitus, Experimental/drug therapy
- Diabetes Mellitus, Experimental/metabolism
- Diabetes Mellitus, Type 1/complications
- Diabetes Mellitus, Type 1/drug therapy
- Diabetes Mellitus, Type 1/metabolism
- Diabetic Nephropathies/etiology
- Diabetic Nephropathies/genetics
- Diabetic Nephropathies/metabolism
- Diabetic Nephropathies/pathology
- Diabetic Nephropathies/prevention & control
- Epithelial-Mesenchymal Transition/drug effects
- Fruit
- Gene Expression Regulation/drug effects
- Immunohistochemistry
- Male
- Mice
- Mice, Inbred C57BL
- Phytotherapy
- Plant Extracts/administration & dosage
- Plant Extracts/isolation & purification
- Plant Extracts/pharmacology
- Plants, Medicinal
- Podocytes/drug effects
- Podocytes/metabolism
- Podocytes/pathology
- Protective Agents/administration & dosage
- Protective Agents/isolation & purification
- Protective Agents/pharmacology
- RNA, Messenger/metabolism
- Real-Time Polymerase Chain Reaction
- Reverse Transcriptase Polymerase Chain Reaction
- Schisandra/chemistry
- Time Factors
Collapse
Affiliation(s)
- Mianzhi Zhang
- Nephrology Division, Gongan Hospital, 78 Nanjin Road, Tianjin 300040, China
| | | | | | | | | |
Collapse
|
26
|
Edfawy M, Hassan MH, Mansour A, Hamed AA, Amin HAA. Meloxicam Modulates Oxidative Stress Status, Inhibits Prostaglandin E2, and Abrogates Apoptosis in Carbon Tetrachloride–Induced Rat Hepatic Injury. Int J Toxicol 2012; 31:276-86. [DOI: 10.1177/1091581812442939] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The current study aimed at investigating the potential hepatoprotective property and mechanism of meloxicam (MEL) against carbon tetrachloride (CCl4)-induced hepatocellular damage in rats. Subcutaneous administration of CCl4 (2 mL/kg, twice/week for 8 weeks) induced hepatocellular damage substantiated by hematoxylin and eosin staining and significant elevation in serum aspartate transaminase, alanine transaminase, and total bilirubin. In addition, CCL4 treatment led to elevation in liver contents of lipid peroxidation marker (malondialdehyde), prostaglandin E2, active caspase 3, and Terminal deoxynucleotidyl transferase dUTP nick end labeling–positive cells and reduction in the activities of superoxide dismutase, catalase, glutathione- S-transferase, and reduced glutathione in the liver tissue. Prior oral treatment with MEL (5 mg/kg, twice/week) retained the normal liver histology and significantly restored all of these parameters close to normal values. These results demonstrated the hepatoprotective utility of MEL against the CCl4-induced liver injury which might ascribe to its antioxidant, free radical scavenging, antiapoptotic and anti-inflammatory effects.
Collapse
Affiliation(s)
- Mohamed Edfawy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Egyptian Russian University, Cairo, Egypt
| | - Memy H. Hassan
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, Egypt
- Department of Pharmacy, Faculty of Medical Rehabilitation Sciences, Taibah University, Kingdom of Saudi Arabia
| | - Ahmed Mansour
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, Egypt
| | - Abdel-Aziz Hamed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Al-Azahr University, Cairo, Egypt
| | - Hebat Allah A. Amin
- Department of Pathology, Medico legal Administration, Ministry of Justice, Cairo, Egypt
| |
Collapse
|
27
|
Cytochrome P450-catalysed reactive oxygen species production mediates the (−)schisandrin B-induced glutathione and heat shock responses in AML12 hepatocytes. Cell Biol Int 2012; 36:321-6. [DOI: 10.1042/cbi20090451] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
28
|
Hao H, Zhang L, Jiang S, Sun S, Gong P, Xie Y, Zhou X, Wang G. Thioacetamide intoxication triggers transcriptional up-regulation but enzyme inactivation of UDP-glucuronosyltransferases. Drug Metab Dispos 2011; 39:1815-22. [PMID: 21733883 DOI: 10.1124/dmd.111.039172] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Thioacetamide (TAA) is a potent hepatotoxicant and has been widely used to develop experimental liver fibrosis/cirrhosis models. Although the liver toxicity of TAA has been extensively studied, little is known about its potential influence on UDP-glucuronosyltransferases (UGTs) associated with the development of liver fibrosis. The study presented here aimed to uncover the regulation patterns of UGTs in TAA-induced liver fibrosis of rats. Potential counteracting effects of hepatoprotective agents were also determined. TAA treatment for 8 weeks induced a significant transcriptional up-regulation of the major UGT isoforms, including UGT1A1, UGT1A6, and UGT2B1, accompanied with the dramatic elevations of most typical serum biomarkers of liver function and fibrosis scores. Upon TAA intoxication, the mRNA and protein levels of the major UGT isoforms were increased to 1.5- to 2.5-fold and 2.5- to 3.3-fold of that of the normal control, respectively. The hepatoprotective agents Schisandra spp. lignans extract and dimethyl diphenyl bicarboxylate could largely abolish TAA-induced up-regulation of all three UGT isoforms. However, enzyme activities of UGTs remained unchanged after TAA treatment. The dissociation of protein expression and enzyme activity could possibly be attributed to the inactivating effects of TAA, upon a NADPH-dependent bioactivation, on UGTs. This study suggests that the transcriptional up-regulation of UGTs may be an alternative mechanism of their preserved activities in liver fibrosis/cirrhosis.
Collapse
Affiliation(s)
- Haiping Hao
- State Key Laboratory of Natural Medicines, Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing, China
| | | | | | | | | | | | | | | |
Collapse
|
29
|
Lam PY, Yan CW, Chiu PY, Leung HY, Ko KM. Schisandrin B protects against solar irradiation-induced oxidative stress in rat skin tissue. Fitoterapia 2011; 82:393-400. [DOI: 10.1016/j.fitote.2010.11.018] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2010] [Revised: 11/11/2010] [Accepted: 11/14/2010] [Indexed: 12/01/2022]
|
30
|
Leong PK, Chiu PY, Chen N, Leung H, Ko KM. Schisandrin B elicits a glutathione antioxidant response and protects against apoptosis via the redox-sensitive ERK/Nrf2 pathway in AML12 hepatocytes. Free Radic Res 2011; 45:483-95. [DOI: 10.3109/10715762.2010.550917] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
31
|
Chiu PY, Lam PY, Leung HY, Leong PK, Ma CW, Tang QT, Ko KM. Co-treatment with Shengmai San-derived herbal product ameliorates chronic ethanol-induced liver damage in rats. Rejuvenation Res 2011; 14:17-23. [PMID: 21204648 DOI: 10.1089/rej.2010.1041] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Wei Kang Su (WKS) is an antioxidant-enriched herbal product manufactured on the basis of Shengmai San, a well-known traditional Chinese herbal formula. In the present study, we investigated the effects of WKS co-treatment on chronic ethanol toxicity in rats. WKS co-treatment protected against chronic ethanol-induced hepatotoxicity, as evidenced by the suppression of plasma enzyme activities and reactive oxygen metabolite levels, as well as the inhibition of hepatic mitochondrial malondialdehyde production in chronic ethanol-intoxicated rats. The hepatoprotection afforded by WKS co-treatment in chronic ethanol-intoxicated rats was associated with a reversal of altered hepatic mitochondrial antioxidant status and adenosine triphosphate (ATP) generation capacity, as well as heat shock protein 25/70 production. Therefore, WKS may offer the prospect of preventing ethanol-associated liver damage by increasing the resistance of mitochondria to oxidative stress.
Collapse
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, Hong Kong University of Science & Technology, Clear Water Bay, Hong Kong, China
| | | | | | | | | | | | | |
Collapse
|
32
|
Lam PY, Chiu PY, Leung HY, Chen N, Leong PK, Ko KM. Schisandrin B co-treatment ameliorates the impairment on mitochondrial antioxidant status in various tissues of long-term ethanol treated rats. Fitoterapia 2010; 81:1239-45. [DOI: 10.1016/j.fitote.2010.08.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2010] [Revised: 08/18/2010] [Accepted: 08/18/2010] [Indexed: 10/19/2022]
|
33
|
Lee HJ, Lee SY, Kim YS, Jeon BK, Lee JW, Bae HS, Lee CJ. Effects of Baicalin, Baicalein and Schizandrin on Airway Mucin Production Induced by Epidermal Growth Factor and Phorbol Ester. Biomol Ther (Seoul) 2010. [DOI: 10.4062/biomolther.2010.18.4.396] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
34
|
Leong PK, Chen N, Chiu PY, Leung HY, Ma CW, Tang QT, Ko KM. Long-term treatment with shengmai san-derived herbal supplement (Wei Kang Su) enhances antioxidant response in various tissues of rats with protection against carbon tetrachloride hepatotoxicity. J Med Food 2010; 13:427-38. [PMID: 20192847 DOI: 10.1089/jmf.2009.1296] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Wei Kang Su (WKS) is a commercial herbal product based on a Chinese herbal formula, Shengmai San. Here, we investigated the effects of long-term treatment with WKS on mitochondrial antioxidant status and functional ability, as well as heat shock protein (Hsp) 25/70 production, in various tissues of rats. WKS treatment enhanced mitochondrial antioxidant status and ATP generation capacity, as well as Hsp 25/70 production in various rat tissues. WKS treatment suppressed plasma reactive oxygen metabolite levels and protected against carbon tetrachloride hepatotoxicity in rats. Long-term WKS treatment may prevent diseases by enhancing the resistance of mitochondria to oxidative stress.
Collapse
Affiliation(s)
- Pou Kuan Leong
- Department of Biochemistry, Hong Kong University of Science & Technology, Hong Kong Special Administrative Region, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Chiu PY, Luk KF, Leung HY, Ng KM, Ko KM. Schisandrin B stereoisomers protect against hypoxia/reoxygenation-induced apoptosis and associated changes in the Ca(2+)-induced mitochondrial permeability transition and mitochondrial membrane potential in AML12 hepatocytes. Phytother Res 2010; 23:1592-602. [PMID: 19370538 DOI: 10.1002/ptr.2826] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The effects of the schisandrin B stereoisomers, (+/-)gamma-schisandrin [(+/-)gamma-Sch] and (-)schisandrin B [(-)Sch B], on hypoxia/reoxygenation-induced apoptosis were investigated in AML12 hepatocytes. Changes in cellular reduced glutathione (GSH) levels, Ca(2+)-induced mitochondrial permeability transitions (MPTs) and mitochondrial membrane potentials (Deltapsi(m) values) were also examined in (+/-)gamma-Sch- and (-)Sch B-treated cells, without or with hypoxia/reoxygenation challenge. The (+/-)gamma-Sch/(-)Sch B pretreatments (2.5-5.0 microm) protected against hypoxia/reoxygenation-induced apoptosis in AML12 cells in a concentration-dependent manner, with the (-)Sch B effect being more potent. Drug antiapoptotic effects were further evidenced by suppression of hypoxia/reoxygenation-induced mitochondrial cytochrome c release and subsequent cleavage of caspase 3 and poly-ADP-ribose polymerase by (-)Sch B pretreatment. Whereas hypoxia/reoxygenation challenge increased the extent of Ca(2+)-induced MPT pore opening, and Deltapsi(m), in AML12 hepatocytes, cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B pretreatment against hypoxia/reoxygenation-induced apoptosis was associated with a decreased sensitivity to Ca(2+)-induced MPT and an increased Deltapsi(m) in both unchallenged and challenged cells, compared with the drug-free control. The results indicate that (+/-)gamma-Sch/(-)Sch B pretreatment protected against hypoxia/reoxygenation-induced apoptosis in AML12 hepatocytes and that the cytoprotection afforded by (+/-)gamma-Sch/(-)Sch B may at least in part be mediated by a decrease in sensitivity to Ca(2+)-induced MPT, which may in turn result from enhancement of cellular GSH levels by drug pretreatments.
Collapse
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
36
|
Panossian A, Wikman G. Effects of Adaptogens on the Central Nervous System and the Molecular Mechanisms Associated with Their Stress-Protective Activity. Pharmaceuticals (Basel) 2010; 3:188-224. [PMID: 27713248 PMCID: PMC3991026 DOI: 10.3390/ph3010188] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Revised: 01/11/2010] [Accepted: 01/16/2010] [Indexed: 12/17/2022] Open
Abstract
Adaptogens were initially defined as substances that enhance the "state of nonspecific resistance" in stress, a physiological condition that is linked with various disorders of the neuroendocrine-immune system. Studies on animals and isolated neuronal cells have revealed that adaptogens exhibit neuroprotective, anti-fatigue, antidepressive, anxiolytic, nootropic and CNS stimulating activity. In addition, a number of clinical trials demonstrate that adaptogens exert an anti-fatigue effect that increases mental work capacity against a background of stress and fatigue, particularly in tolerance to mental exhaustion and enhanced attention. Indeed, recent pharmacological studies of a number of adaptogens have provided a rationale for these effects also at the molecular level. It was discovered that the stress-protective activity of adaptogens was associated with regulation of homeostasis via several mechanisms of action, which was linked with the hypothalamic-pituitary-adrenal axis and the regulation of key mediators of stress response, such as molecular chaperons (e.g., HSP70), stress-activated c-Jun N-terminal protein kinase 1 (JNK1), Forkhead box O (FOXO) transcription factor DAF-16, cortisol and nitric oxide.
Collapse
Affiliation(s)
- Alexander Panossian
- Swedish Herbal Institute Research & Development, Spårvägen 2, SE-432 96 Åskloster, Sweden.
| | - Georg Wikman
- Swedish Herbal Institute Research & Development, Spårvägen 2, SE-432 96 Åskloster, Sweden
| |
Collapse
|
37
|
Slaninová I, Brezinová L, Koubíková L, Slanina J. Dibenzocyclooctadiene lignans overcome drug resistance in lung cancer cells--study of structure-activity relationship. Toxicol In Vitro 2009; 23:1047-54. [PMID: 19531378 DOI: 10.1016/j.tiv.2009.06.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2009] [Revised: 06/08/2009] [Accepted: 06/09/2009] [Indexed: 10/20/2022]
Abstract
A panel of nine dibenzo[a,c]cyclooctadiene lignans, schizandrin, gomisin A, gomisin N, gomisin J, angeloylgomisin H, tigloylgomisin P, deoxyschizandrin, gamma-schizandrin and wuweizisu C was examined for their effect on multidrug resistance, as well as their anti-proliferative activities. COR-L23/R, a multidrug resistant sub-line, which has been reported to over-express multidrug resistance-associated protein (MRP1), was used for the experiments together with its parent cell line COR-L23 (human lung cell carcinoma). We found that lignans deoxyschizandrin and gamma-schizandrin at relatively non-toxic concentrations restored the cytotoxic action of doxorubicin to COR-L23/R cells. Deoxyschizandrin and gamma-schizandrin also significantly enhanced the accumulation of doxorubicin in drug resistant cells. Both lignans alone had no effect on the cell cycle; however, when combined with sub-toxic doses of doxorubicin, they induced cell cycle arrest in the G2/M phase, which is typical for toxic doses of doxorubicin. Our results suggest that deoxyschizandrin and gamma-schizandrin potentiate the cytotoxic effect of doxorubicin in doxorubicin resistant lung cancer cells COR-L23/R by increasing the accumulation of doxorubicin inside the cells. The common structural feature of both active lignans is the R-biaryl configuration and the absence of a hydroxy group at C-8. Unlike the reversal effect, the cytotoxicity of lignans with the R-biaryl configuration was similar to that observed for lignans with the S-biaryl configuration.
Collapse
Affiliation(s)
- I Slaninová
- Department of Biology, Faculty of Medicine, Masaryk University, 62500 Brno, Czech Republic.
| | | | | | | |
Collapse
|
38
|
Chang CY, Chen YL, Yang SC, Huang GC, Tsi D, Huang CC, Chen JR, Li JS. Effect of schisandrin B and sesamin mixture on CCl(4)-induced hepatic oxidative stress in rats. Phytother Res 2009; 23:251-6. [PMID: 18979496 DOI: 10.1002/ptr.2602] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
To study the effects of schisandrin B and sesamin mixture on carbon tetrachloride (CCl(4))-induced hepatic oxidative stress in male Sprague-Dawley rats. The rats were randomly assigned to five groups: control group (olive oil injection), CCl(4) group (CCl(4) injection), silymarin group (CCl(4) injection combined with supplementation of silymarin, 7.5 mg/kg/day), low dose group (CCl(4) injection combined with supplementation of schisandrin B and sesamin mixture at a low dose, 43 mg/kg/day) and high dose group (CCl(4) injection combined with the supplementation of schisandrin B and sesamin mixture at a high dose, 215 mg/kg/day). The hepatic superoxide dismutase and glutathione peroxidase activities of rats in the low dose and high dose groups were increased significantly compared with those in the CCl(4) group. The hepatic reduced glutathione concentration in the silymarin, low dose and high dose groups were increased significantly (48%, 45% and 53%, respectively) when compared with those of the CCl(4) group. In addition, the concentration of glutathione in the erythrocytes of the low dose group was significantly higher than the CCl(4) group by 25%. These results suggest that the schisandrin B-sesamin mixture exerted a hepatoprotective effect by improving the antioxidative capacity in rats under CCl(4)-induced hepatic oxidative stress.
Collapse
Affiliation(s)
- Chia-Yu Chang
- Department of Neurology, Chi-Mei Medical Center, Tainan 710, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Naringenin-loaded nanoparticles improve the physicochemical properties and the hepatoprotective effects of naringenin in orally-administered rats with CCl(4)-induced acute liver failure. Pharm Res 2008; 26:893-902. [PMID: 19034626 DOI: 10.1007/s11095-008-9791-0] [Citation(s) in RCA: 135] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2008] [Accepted: 11/07/2008] [Indexed: 02/07/2023]
Abstract
PURPOSE A novel naringenin-loaded nanoparticles system (NARN) was developed to resolve the restricted bioavailability of naringenin (NAR) and to enhance its hepatoprotective effects in vivo on oral administration. MATERIALS AND METHODS Physicochemical characterizations of NARN included assessment of particle size and morphology, powder X-ray diffraction, fourier transform infrared spectroscopy, and dissolution study. In addition, to evaluate its bioactivities and its oral treatment potential against liver injuries, we compared the hepatoprotective, antioxidant, and antiapoptotic effects of NARN and NAR on carbon tetrachloride (CCl(4))-induced hepatotoxicity in rats. RESULTS NARN had a significantly higher release rate than NAR and improved its solubility. NARN also exhibited more liver-protective effects compared to NAR with considerable reduction in liver function index and lipid peroxidation, in conjunction to a substantial increase in the levels of the antioxidant enzymes (P < 0.05). Moreover, NARN was able to significantly inhibit the activation of caspase-3, -8, and -9 signaling, whereas NAR only markedly inhibited caspase-3 and -9 (P < 0.05). CONCLUSION NARN effectively improved the release of NAR which resulted in more hepatoprotective effects mediated by its antioxidant and antiapoptotic properties. These observations also suggest that nanoformulation can improve the free drug's bioactivity on oral administration.
Collapse
|
40
|
Wang C, Xu YQ. Diphenyl Dimethyl Bicarboxylate in the Treatment of Viral Hepatitis, Adjuvant or Curative? Gastroenterology Res 2008; 1:2-7. [PMID: 27994699 PMCID: PMC5154208 DOI: 10.4021/gr2008.10.1231] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2008] [Accepted: 10/09/2008] [Indexed: 01/22/2023] Open
Abstract
Diphenyl dimethyl bicarboxylate (DDB) has been used in some countries as hepatoprotectant adjuvant in the treatment of liver diseases, such as chronic viral hepatitis, chemical or drug induced hepatic damage. Its early confirmed efficacy is to normalize elevated blood alanine aminotransferase (ALT) from different etiologies, however, it can rarely affect the rest hepatic enzymes. In addition, the lowering or normalization of ALT in most cases occurs during DDB treatment, withdrawal of DDB administration results in ALT re-elevated. Hence, for a long time, it has been only used as adjuvant of liver disease therapy. It is still controversial that whether DDB can be beneficial to liver histology. The normalization of ALT in hepatitis does not indicate therapeutic efficacy if without substantial liver histology improvement. In recent years, more studies showed that DDB might have new therapeutical potentials in liver diseases, it may have the effect of anti-viral, anti-malignancy. These new findings were mostly based on the in vitro or animal experiments, more basic studies and clinical trials are needed to ascertain these efficacies, prior to that stage, it is recommended to be cautious to apply DDB clinically for anti-virus and anti-malignancy purposes.
Collapse
Affiliation(s)
- Chen Wang
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| | - You Qing Xu
- Department of Gastroenterology, Beijing Tiantan Hospital, Capital Medical University, Beijing, 100050, China
| |
Collapse
|
41
|
Fu M, Sun ZH, Zong M, He XP, Zuo HC, Xie ZP. Deoxyschisandrin modulates synchronized Ca2+ oscillations and spontaneous synaptic transmission of cultured hippocampal neurons. Acta Pharmacol Sin 2008; 29:891-8. [PMID: 18664321 DOI: 10.1111/j.1745-7254.2008.00821.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
AIM Deoxyschisandrin is one of the most effective composites of Schisandra chinensis, a famous Chinese medicine widely used as an antistress, anti-aging, and neurological performance-improving herb. In this study, we examined its specific mechanisms of action on cultured hippocampal neurons. METHODS Hippocampal neurons, primarily cultured for 9-11 d in vitro, were used for this study. DS were dissolved in DMSO and applied to calcium imaging and whole-cell patch clamp. RESULTS The application of 3 mg/L DS decreased the frequency of spontaneous and synchronous oscillations of intracellular Ca2+ to 72%+/-2% (mean+/-SEM), and the spontaneous inhibitory postsynaptic currents to 60%+/-3% (mean+/-SEM). The inhibitory concentration 50% (IC50) for the effect of DS on calcium oscillations was 3.8 mg/L. DS also depressed the high voltage-gated Ca2+ channel and the voltage-gated Na+ channel currents at the same time point. It had no effect, however, on voltage-gated K+ and spontaneous excitatory postsynaptic currents. CONCLUSION DS inhibited the spontaneous and synchronous oscillations of intracellular Ca2+ through the depression of influx of extracellular calcium and the initiation of action potential. By repressing the spontaneous neurotransmitter release, DS modulated the neuronal network activities.
Collapse
Affiliation(s)
- Min Fu
- Medical College of Tsinghua University, Beijing 100084, China
| | | | | | | | | | | |
Collapse
|
42
|
Plant adaptogens increase lifespan and stress resistance in C. elegans. Biogerontology 2008; 10:27-42. [PMID: 18536978 DOI: 10.1007/s10522-008-9151-9] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2008] [Accepted: 05/20/2008] [Indexed: 12/17/2022]
Abstract
Extracts of plant adaptogens such as Eleutherococcus senticosus (or Acanthopanax senticosus) and Rhodiola rosea can increase stress resistance in several model systems. We now show that both extracts also increase the mean lifespan of the nematode C. elegans in a dose-dependent way. In at least four independent experiments, 250 microg/ml Eleutherococcus (SHE-3) and 10-25 microg/ml Rhodiola (SHR-5) significantly increased life span between 10 and 20% (P < 0.001), increased the maximum lifespan with 2-3 days and postponed the moment when the first individuals in a population die, suggesting a modulation of the ageing process. With higher concentrations, less effect was observed, whereas at the highest concentrations tested (2500 microg/ml Eleutherococcus and 250 microg/ml Rhodiola) a lifespan shortening effect was observed of 15-25% (P < 0.001). Both adaptogen extracts were also able to increase stress resistance in C. elegans: against a relatively short heat shock (35 degrees C during 3 h) as well as chronic heat treatment at 26 degrees C. An increase against chronic oxidative stress conditions was observed in mev-1 mutants, and during exposure of the wild type nematode to paraquat (10 mM) or UV stress, be it less efficiently. Concerning the mode of action: both adaptogens induce translocation of the DAF-16 transcription factor from the cytoplasm into the nucleus, suggesting a reprogramming of transcriptional activities favoring the synthesis of proteins involved in stress resistance (such as the chaperone HSP-16) and longevity. Based on these observations, it is suggested that adaptogens are experienced as mild stressors at the lifespan-enhancing concentrations and thereby induce increased stress resistance and a longer lifespan.
Collapse
|
43
|
Chiu PY, Leung HY, Ko KM. Schisandrin B Enhances Renal Mitochondrial Antioxidant Status, Functional and Structural Integrity, and Protects against Gentamicin-Induced Nephrotoxicity in Rats. Biol Pharm Bull 2008; 31:602-5. [PMID: 18379049 DOI: 10.1248/bpb.31.602] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against oxidative damage in liver, heart and brain tissues in rodents. In the present study, the effect of long-term Sch B treatment (1-10 mg/kg/d x 15) on gentamicin-induced nephrotoxicity was examined in rats. Sch B treatment protected against gentamicin-induced nephrotoxicity, as evidenced by significant decreases in plasma creatinine and blood urea nitrogen levels. The nephroprotection was associated with the enhancement in renal mitochondrial antioxidant status, as assessed by the level/activity of reduced glutathione, alpha-tocopherol and Mn-superoxide dismutase, as well as the improvement/preservation of mitochondrial functional and structural integrity, as assessed by the extents of ATP generation capacity, malondialdehyde production, Ca2+ loading and cytochrome c release, as well as the sensitivity to Ca2+-induced permeability transition, in control and gentamicin-intoxicated rats. In conclusion, long-term Sch B treatment could enhance renal mitochondrial antioxidant status as well as improve mitochondrial functional and structural integrity, thereby protecting against gentamicin nephrotoxicity.
Collapse
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | |
Collapse
|
44
|
Pan SY, Dong H, Zhao XY, Xiang CJ, Fang HY, Fong WF, Yu ZL, Ko KM. Schisandrin B from Schisandra chinensis reduces hepatic lipid contents in hypercholesterolaemic mice. J Pharm Pharmacol 2008; 60:399-403. [PMID: 18284822 DOI: 10.1211/jpp.60.3.0017] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The effects of schisandrin B (Sch B) on liver and serum lipid contents were investigated in mice with experimentally-induced hypercholesterolaemia. Hypercholesterolaemia was induced either by oral administration of a cholesterol/bile salts mixture (2/0.5 g kg(-1)) for four days or by feeding a high fat/cholesterol/bile salts (10/1/0.3%, w/w) diet for seven days. Daily co-administration of Sch B (50-200 mg kg(-1), i.g.) for four or six days, respectively, decreased hepatic total cholesterol (TC) and triglyceride (TG) levels (by up to 50% and 52%, respectively) in hypercholesterolaemic mice. Sch B treatment also increased hepatic indices (14-84%) in hypercholesterolaemic mice. The results indicated that Sch B treatment could decrease hepatic TC and TG levels, and increase liver weight, in mouse models of hypercholesterolaemia. Fenofibrate treatment (100 mg kg(-1)) produced effects similar to those of Sch B on the hepatic index and lipid levels of hypercholesterolaemic mice.
Collapse
Affiliation(s)
- Si-Yuan Pan
- Department of Pharmacology, Beijing University of Chinese Medicine, Beijing 100102, China.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Chiu PY, Leung HY, Ling Siu AH, Chen N, Poon MK, Ko KM. Long-Term Treatment with a Yang-Invigorating Chinese Herbal Formula Produces Generalized Tissue Protection Against Oxidative Damage in Rats. Rejuvenation Res 2008; 11:43-62. [DOI: 10.1089/rej.2007.0577] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Hoi Yan Leung
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Ada Hoi Ling Siu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Na Chen
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Michel K.T. Poon
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| | - Kam Ming Ko
- Department of Biochemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong SAR, China
| |
Collapse
|
46
|
Chiu PY, Leung HY, Siu AH, Poon MK, Ko KM. Schisandrin B decreases the sensitivity of mitochondria to calcium ion-induced permeability transition and protects against ischemia-reperfusion injury in rat hearts. Acta Pharmacol Sin 2007; 28:1559-65. [PMID: 17883940 DOI: 10.1111/j.1745-7254.2007.00614.x] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022] Open
Abstract
AIM In order to elucidate the molecular mechanism underlying the cardioprotection afforded by schisandrin B (Sch B), the effect of Sch B treatment on the sensitivity of mitochondria to Ca2+-stimulated permeability transition (PT) was investigated in rat hearts under normal and ischemia-reperfusion (I-R) conditions. RESULTS Myocardial I-R injury caused an increase in the sensitivity of mitochondria to Ca2+-stimulated PT in vitro. The enhanced sensitivity to mitochondrial PT was associated with increases in mitochondrial Ca2+ content as well as the extent of reactive oxidant species production in vitro and cytochrome c release in vivo. The cardioprotection afforded by Sch B pretreatment against I-R-induced injury was paralleled by the decrease in the sensitivity of myocardial mitochondria to Ca2+-stimulated PT, particularly under I-R conditions. CONCLUSION The results suggest that Sch B treatment increases the resistance of myocardial mitochondria to Ca2+-stimulated PT and protects against I-R-induced tissue injury.
Collapse
Affiliation(s)
- Po-Yee Chiu
- Department of Biochemistry, Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|
47
|
Manibusan MK, Odin M, Eastmond DA. Postulated carbon tetrachloride mode of action: a review. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART C, ENVIRONMENTAL CARCINOGENESIS & ECOTOXICOLOGY REVIEWS 2007; 25:185-209. [PMID: 17763046 DOI: 10.1080/10590500701569398] [Citation(s) in RCA: 272] [Impact Index Per Article: 15.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Under the 2005 U.S. EPA Guidelines for Carcinogen Risk Assessment (1), evaluations of carcinogens rely on mode of action data to better inform dose response assessments. A reassessment of carbon tetrachloride, a model hepatotoxicant and carcinogen, provides an opportunity to incorporate into the assessment biologically relevant mode of action data on its carcinogenesis. Mechanistic studies provide evidence that metabolism of carbon tetrachloride via CYP2E1 to highly reactive free radical metabolites plays a critical role in the postulated mode of action. The primary metabolites, trichloromethyl and trichloromethyl peroxy free radicals, are highly reactive and are capable of covalently binding locally to cellular macromolecules, with preference for fatty acids from membrane phospholipids. The free radicals initiate lipid peroxidation by attacking polyunsaturated fatty acids in membranes, setting off a free radical chain reaction sequence. Lipid peroxidation is known to cause membrane disruption, resulting in the loss of membrane integrity and leakage of microsomal enzymes. By-products of lipid peroxidation include reactive aldehydes that can form protein and DNA adducts and may contribute to hepatotoxicity and carcinogenicity, respectively. Natural antioxidants, including glutathione, are capable of quenching the lipid peroxidation reaction. When glutathione and other antioxidants are depleted, however, opportunities for lipid peroxidation are enhanced. Weakened cellular membranes allow sufficient leakage of calcium into the cytosol to disrupt intracellular calcium homeostasis. High calcium levels in the cytosol activate calcium-dependent proteases and phospholipases that further increase the breakdown of the membranes. Similarly, the increase in intracellular calcium can activate endonucleases that can cause chromosomal damage and also contribute to cell death. Sustained cell regeneration and proliferation following cell death may increase the likelihood of unrepaired spontaneous, lipid peroxidation- or endonuclease-derived mutations that can lead to cancer. Based on this body of scientific evidence, doses that do not cause sustained cytotoxicity and regenerative cell proliferation would subsequently be protective of liver tumors if this is the primary mode of action. To fulfill the mode of action framework, additional research may be necessary to determine alternative mode(s) of action for liver tumors formed via carbon tetrachloride exposure.
Collapse
Affiliation(s)
- Mary K Manibusan
- Office of Pesticide Programs, U.S. Environmental Protection Agency, Washington, DC 20460, United States.
| | | | | |
Collapse
|
48
|
Maeng HJ, Chung SJ. Toxicological Relevance of Transporters. Toxicol Res 2007. [DOI: 10.5487/tr.2007.23.1.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
49
|
Yun JH, Kim YA, Chung MJ, Kang BY, Ha NJ. Hepatoprotective and Anti-fatigue Effects of Lactic Acid Bacteria (Lactobacillus acidophilus, Bifidobacterium bifidum and Streptococcus thermophilus). Toxicol Res 2007. [DOI: 10.5487/tr.2007.23.1.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
50
|
Chiu PY, Leung HY, Siu AHL, Poon MKT, Ko KM. Schisandrin B Decreases the Sensitivity of Mitochondria to Calcium Ion-Induced Permeability Transition and Protects against Carbon Tetrachloride Toxicity in Mouse Livers. Biol Pharm Bull 2007; 30:1108-12. [PMID: 17541162 DOI: 10.1248/bpb.30.1108] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Schisandrin B (Sch B), a dibenzocyclooctadiene derivative isolated from the fruit of Schisandra chinensis, has been shown to protect against carbon tetrachloride (CCl4) hepatotoxicity in mice. In order to elucidate the molecular mechanism underlying the hepatoprotection afforded by Sch B, the effect of Sch B treatment on the sensitivity of mitochondria to Ca2+-stimulated permeability transition (PT) was investigated in mouse livers under normal and CCl4-intoxicated conditions. CCl4 hepatotoxicity caused an increase in the sensitivity of mitochondria to Ca2+-stimulated PT in vitro. The enhanced sensitivity to mitochondrial PT was associated with increases in mitochondrial Ca2+ content as well as the extent of reactive oxidant species (ROS) production and cytochrome c release. The hepatoprotection afforded by Sch B pretreatment against CCl4 toxicity was paralleled by the decrease in the sensitivity of hepatic mitochondria to Ca2+-stimulated PT as well as the attenuations of mitochondrial Ca2+ loading, ROS production and cytochrome c release under CCl4-intoxicated condition. In conclusion, the results suggest that the hepatoprotection afforded by Sch B pretreatment against CCl4 toxicity may be related to the increase in the resistance of hepatic mitochondria to Ca2+-stimulated PT.
Collapse
Affiliation(s)
- Po Yee Chiu
- Department of Biochemistry, The Hong Kong University of Science and Technology, Hong Kong SAR, China
| | | | | | | | | |
Collapse
|