1
|
Chitolina Schetinger L, de Jesus LSB, Bottari NB, Viana AR, Nauderer JN, Silveira MV, Castro M, Nass P, Caetano PA, Morsch V, Jacob-Lopes E, Queiroz Zepka L, Chitolina Schetinger MR. Microalgae-Derived Carotenoid Extract and Biomass Reduce Viability, Induce Oxidative Stress, and Modulate the Purinergic System in Two Melanoma Cell Lines. Life (Basel) 2025; 15:199. [PMID: 40003608 PMCID: PMC11856458 DOI: 10.3390/life15020199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/24/2025] [Accepted: 01/27/2025] [Indexed: 02/27/2025] Open
Abstract
Cutaneous melanoma (CM) is an aggressive and metastatic tumor, resulting in high mortality rates. Despite significant advances in therapeutics, the available treatments still require improvements. Thus, purinergic signaling emerged as a potential pathway to cancer therapy due to its involvement in cell communication, proliferation, differentiation, and apoptosis. In addition, due to safety and acceptable clinical tolerability, carotenoids from microalgae have been investigated as adjuvants in anti-melanoma therapy. Then, this work aimed to investigate the in vitro anti-melanogenic effect of carotenoid extract (CA) and total biomass (BM) of the Scenedesmus obliquus microalgae on two cutaneous melanoma cell lines (A375 and B16F10). Cells were cultivated under ideal conditions and treated with 10, 25, 50, and 100 μM of CA or BM for 24 h. The effects of the compounds on viability, oxidant status, and purinergic signaling were verified. The IC50 cell viability results showed that CA and BM decreased B16F10 viability at 24.29 μM and 74.85 μM, respectively and decreased A375 viability at 73.93 μM and 127.80 μM, respectively. Carotenoid treatment for 24 h in B16F10 and A375 cells increased the release of reactive oxygen species compared to the control. In addition, CA and BM isolated or combined with cisplatin chemotherapy (CIS) modulated the purinergic system in B16F10 and A375 cell lines through P2X7, A2AR, CD39, and 5'-nucleotidase. They led to cell apoptosis and immunoregulation by activating A2A receptors and CD73 inhibition. The results disclose that CA and BM from Scenedesmus obliquus exhibit an anti-melanogenic effect, inhibiting melanoma cell growth.
Collapse
Affiliation(s)
- Luisa Chitolina Schetinger
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Loren S. B. de Jesus
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Nathieli B. Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
- Department of Microbiology and Parasitology, Biology Institute, Federal University of Pelotas (UFPEL), Pelotas 96010-610, Brazil
| | - Altevir R. Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Jelson N. Nauderer
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Marcylene V. Silveira
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Milagros Castro
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Pricila Nass
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Patrícia Acosta Caetano
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Vera Morsch
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| | - Eduardo Jacob-Lopes
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Leila Queiroz Zepka
- Department of Food Science and Technology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.C.S.); (P.N.); (P.A.C.); (E.J.-L.)
| | - Maria Rosa Chitolina Schetinger
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM), Santa Maria 97105-900, Brazil; (L.S.B.d.J.); (N.B.B.); (A.R.V.); (J.N.N.); (M.V.S.); (M.C.); (V.M.)
| |
Collapse
|
2
|
He SB, Shi LY, Yang ZQ, Zheng QH, Huang PX, Ji W, Wang XL, Lin MT, Zhuang HH, Chen XY, Zhang Y, Chen W, Zeng YM. Platinum nanozyme embedded in hyaluronate with multifunctional attributes synergistically promoting tracheal fistula healing. Int J Biol Macromol 2025; 287:138337. [PMID: 39645122 DOI: 10.1016/j.ijbiomac.2024.138337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/04/2024] [Accepted: 12/02/2024] [Indexed: 12/09/2024]
Abstract
Respiratory tract fistulas, including tracheal and bronchial fistulas, usually cause prolonged hospitalization with developed complications and even death, while respiratory tract fistula healing remains challenging. Exploring effectiveness and mechanism in animal systems using well-designed bio-nanomaterials will improve our understanding of fistula management. Hyaluronate (hyaluronan or hyaluronic acid) has been widely studied as a promising coating material for bio-nanomaterials in treatment applications. Herein, by combining the intrinsic bioactivities of sodium hyaluronate (SHA) and the enzyme-like activities of platinum (Pt) nanoparticles (NPs), obtained SHA-PtNPs defined as nanozymes (Enzyme-like nanomaterials) have been proposed to treat tracheal fistulas. Results reveal that introducing SHA endows the fabrication of PtNPs with dispersibility, small particle size (3.7 nm), stability, etc. On the other hand, SHA-PtNPs present high catalase-like (3320 U/g), superoxide dismutase-like activities (129,000 U/g), and hydroxyl radicals elimination capacity, thereby exerting excellent reactive oxide species scavenging ability. We have systematically verified the above properties of SHA-PtNPs in vitro. SHA-PtNPs show outstanding biocompatibility, promote cell proliferation and migration, and have considerable hemocompatibility and hemostasis. Afterward, rabbit tracheal fistula models that were treated with SHA-PtNPs in vivo showed a significant improvement in the closure of the fistulas and an increase in quality. This was evident through a substantial decrease in inflammation, increased angiogenesis, stimulation of re-epithelialization, and highly ordered alignment of collagen fibers. No significant side effects were observed. In summary, this work initiates an in vivo treatment for tracheal fistula models by taking advantage of both naturally sourced polysaccharides and nanozymes.
Collapse
Affiliation(s)
- Shao-Bin He
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China.; Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China; Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Li-Yong Shi
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Zhi-Qiang Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Qiong-Hua Zheng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Peng-Xiang Huang
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Wei Ji
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Xia-Li Wang
- Department of Clinical Medicine, Quanzhou Medical College, Quanzhou 362000, China
| | - Meng-Ting Lin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Han Zhuang
- Laboratory Animal Center, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Xiao-Yang Chen
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China.
| | - Yi-Ming Zeng
- Department of Pulmonary and Critical Care Medicine, Fujian Key Laboratory of Lung Stem Cell, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China..
| |
Collapse
|
3
|
Charalampous N, Antonopoulou M, Chasapis CT, Vlastos D, Dormousoglou M, Dailianis S. New insights into the oxidative and cytogenotoxic effects of Tetraglyme on human peripheral blood cells. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176484. [PMID: 39322075 DOI: 10.1016/j.scitotenv.2024.176484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/21/2024] [Indexed: 09/27/2024]
Abstract
The present study investigated the oxidative and cytogenotoxic potential of Tetraethylene glycol dimethyl ether (known as Tetraglyme) on healthy human peripheral blood lymphocytes, widely used as an in vitro model for assessing the human health risk posed by different chemical compounds. In a first step, Nuclear Magnetic Resonance (1H NMR) spectroscopy, and Ultra-High Performance Liquid Chromatography-Mass Spectrometry (UHPLC-MS) were employed to estimate Tetraglyme's stability under a wide range of pH values (4-12), and thus to identify potential by-products. Thereafter, isolated lymphocytes were treated with different concentrations of Tetraglyme (0.02-20 mg L-1) for assessing its oxidative (using the DCFH-DA staining), and cytogenotoxic potential (using the trypan blue exclusion test for estimating cell viability, Comet assay, as well as the cytokinesis-block micronucleus assay, with or without the addition of S9 metabolic activation system). According to the results, Tetraglyme remains stable at pH 4, but two additional derivatives (i.e. 1-[2-(2-ethoxyethoxy)ethoxy]-2-methoxyethane [C9H20O4] and 1-ethoxy-2-(2-ethoxyethoxy)ethane (Diethylene glycol diethyl ether) [C8H18O3]) were found in traces, under alkaline conditions (pH ≥7). Moreover, although Tetraglyme (and/or its derivatives) showed negligible alterations of cell viability (>92 %) in all cases, the pronounced ROS formation, DNA damage, cell proliferation arrest, and MN frequencies in challenged cells are indicative of its oxidative and cytogenotoxic potential. The significant alterations of Cytokinesis-Block Proliferation Index (CBPI) and Micronucleus (MN) frequencies in S9 challenged cells give further evidence for the potential involvement of Tetraglyme's metabolites in the observed cytogenotoxic mode of action. Although not conclusive, the present findings give rise to further research, utilizing different cell types and biological models, for elucidating Tetraglyme's toxic mode of action, as well as its environmental and human risk.
Collapse
Affiliation(s)
- Nikolina Charalampous
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Maria Antonopoulou
- Department of Sustainable Agriculture, School of Agricultural Sciences, University of Patras, GR-30131 Agrinio, Greece
| | - Christos T Chasapis
- Institute of Chemical Biology, National Hellenic Research Foundation, GR-11635 Athens, Greece
| | - Dimitris Vlastos
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Margarita Dormousoglou
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece
| | - Stefanos Dailianis
- Department of Biology, School of Natural Sciences, University of Patras, GR-26500 Rio, Patras, Greece.
| |
Collapse
|
4
|
He S, Zheng Q, Ma L, Shen H, Zheng B, Zhang Y, Deng HH, Chen W, Fan K. Mucin-Triggered Osmium Nanoclusters as Protein-Corona-Like Nanozymes with Photothermal-Enhanced Peroxidase-Like Activity for Tumor-Specific Therapy. NANO LETTERS 2024; 24:14337-14345. [PMID: 39470470 DOI: 10.1021/acs.nanolett.4c04026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Nanomaterials with peroxidase-like activity and photothermal conversion efficiency have garnered significant attention for their ability to generate cytotoxic hydroxyl radicals and provide synergistic therapeutic effects. Selecting nanozymes with suitable properties and carriers is crucial for maximizing efficacy. While the mucin family is known for its mucoadhesive, glycosylated structures that enhance drug bioavailability and targeting, its potential in nanozymes remains underexplored. Here, we utilize mucin-2 to facilitate osmium nanoclusters (Os@Mucin), creating protein-corona-like nanozymes. This configuration bestows Os@Mucin with excellent peroxidase-like activity (769 U/mg) and photothermal conversion efficiency (22.83%, 808 nm). Mucin-2 promotes Os uptake by cells, allowing Os@Mucin to exhibit tumor environment-responsive peroxidase-like activity, further enhanced under photothermal conditions for targeted cytotoxicity and synergistic effects. In vivo experiments demonstrate that this integration effectively treats triple-negative breast cancer. This study innovatively highlights the potential of the mucin family and underscores the promising role of Os nanozymes in tumor therapy.
Collapse
Affiliation(s)
- Shaobin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Qionghua Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Long Ma
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Huanran Shen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Bohang Zheng
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
- Nanozyme Laboratory in Zhongyuan, Henan Academy of Innovations in Medical Science, Zhengzhou, Henan 451163, China
| |
Collapse
|
5
|
Cabello MC, Chen G, Melville MJ, Osman R, Kumar GD, Domaille DW, Lippert AR. Ex Tenebris Lux: Illuminating Reactive Oxygen and Nitrogen Species with Small Molecule Probes. Chem Rev 2024; 124:9225-9375. [PMID: 39137397 DOI: 10.1021/acs.chemrev.3c00892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Reactive oxygen and nitrogen species are small reactive molecules derived from elements in the air─oxygen and nitrogen. They are produced in biological systems to mediate fundamental aspects of cellular signaling but must be very tightly balanced to prevent indiscriminate damage to biological molecules. Small molecule probes can transmute the specific nature of each reactive oxygen and nitrogen species into an observable luminescent signal (or even an acoustic wave) to offer sensitive and selective imaging in living cells and whole animals. This review focuses specifically on small molecule probes for superoxide, hydrogen peroxide, hypochlorite, nitric oxide, and peroxynitrite that provide a luminescent or photoacoustic signal. Important background information on general photophysical phenomena, common probe designs, mechanisms, and imaging modalities will be provided, and then, probes for each analyte will be thoroughly evaluated. A discussion of the successes of the field will be presented, followed by recommendations for improvement and a future outlook of emerging trends. Our objectives are to provide an informative, useful, and thorough field guide to small molecule probes for reactive oxygen and nitrogen species as well as important context to compare the ecosystem of chemistries and molecular scaffolds that has manifested within the field.
Collapse
Affiliation(s)
- Maidileyvis C Cabello
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Gen Chen
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - Michael J Melville
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Rokia Osman
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| | - G Dinesh Kumar
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Dylan W Domaille
- Department of Chemistry, Colorado School of Mines, Golden, Colorado 80401, United States
| | - Alexander R Lippert
- Department of Chemistry, Southern Methodist University, Dallas, Texas 75275-0314, United States
| |
Collapse
|
6
|
Bao H, Wu M, Xing J, Li Z, Zhang Y, Wu A, Li J. Enzyme-like nanoparticle-engineered mesenchymal stem cell secreting HGF promotes visualized therapy for idiopathic pulmonary fibrosis in vivo. SCIENCE ADVANCES 2024; 10:eadq0703. [PMID: 39167646 PMCID: PMC11338238 DOI: 10.1126/sciadv.adq0703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 08/23/2024]
Abstract
Stem cell therapy is being explored as a potential treatment for idiopathic pulmonary fibrosis (IPF), but its effectiveness is hindered by factors like reactive oxygen species (ROS) and inflammation in fibrotic lungs. Moreover, the distribution, migration, and survival of transplanted stem cells are still unclear, impeding the clinical advancement of stem cell therapy. To tackle these challenges, we fabricate AuPtCoPS trimetallic-based nanocarriers (TBNCs), with enzyme-like activity and plasmid loading capabilities, aiming to efficiently eradicate ROS, facilitate delivery of therapeutic genes, and ultimately improve the therapeutic efficacy. TBNCs also function as a computed tomography contrast agent for tracking mesenchymal stem cells (MSCs) during therapy. Accordingly, we enhanced the antioxidant stress and anti-inflammatory capabilities of engineered MSCs and successfully visualized their biological behavior in IPF mice in vivo. Overall, this study provides an efficient and forward-looking treatment approach for IPF and establishes a framework for a stem cell-based therapeutic system aimed at addressing lung disease.
Collapse
Affiliation(s)
- Hongying Bao
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Manxiang Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
| | - Jie Xing
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Zihou Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Yuenan Zhang
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Aiguo Wu
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| | - Juan Li
- Ningbo Key Laboratory of Biomedical Imaging Probe Materials and Technology, CAS Key Laboratory of Magnetic Materials and Devices, Laboratory of Advanced Theranostic Materials and Technology, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China
- Zhejiang International Cooperation Base of Biomedical Materials Technology and Application, Zhejiang Engineering Research Center for Biomedical Materials, Ningbo Cixi Institute of Biomedical Engineering, Cixi 315300, China
| |
Collapse
|
7
|
Oliveira GFS, Gouveia FS, Andrade AL, de Vasconcelos MA, Teixeira EH, Palmeira-Mello MV, Batista AA, Lopes LGD, de Carvalho IMM, Sousa EHS. Minimal Functionalization of Ruthenium Compounds with Enhanced Photoreactivity against Hard-to-Treat Cancer Cells and Resistant Bacteria. Inorg Chem 2024; 63:14673-14690. [PMID: 39042379 PMCID: PMC11304396 DOI: 10.1021/acs.inorgchem.4c02235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/26/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Metallocompounds have emerged as promising new anticancer agents, which can also exhibit properties to be used in photodynamic therapy. Here, we prepared two ruthenium-based compounds with a 2,2'-bipyridine ligand conjugated to an anthracenyl moiety. These compounds coded GRBA and GRPA contain 2,2'-bipyridine or 1,10-phenathroline as auxiliary ligands, respectively, which provide quite a distinct behavior. Notably, compound GRPA exhibited remarkably high photoproduction of singlet oxygen even in water (ϕΔ = 0.96), almost twice that of GRBA (ϕΔ = 0.52). On the other hand, this latter produced twice more superoxide and hydroxyl radical species than GRPA, which may be due to the modulation of their excited state. Interestingly, GRPA exhibited a modest binding to DNA (Kb = 4.51 × 104), while GRBA did not show a measurable interaction only noticed by circular dichroism measurements. Studies with bacteria showed a great antimicrobial effect, including a synergistic effect in combination with commercial antibiotics. Besides that, GRBA showed very low or no cytotoxicity against four mammalian cells, including a hard-to-treat MDA-MB-231, triple-negative human breast cancer. Potent activities were measured for GRBA upon blue light irradiation, where IC50 of 43 and 13 nmol L-1 were seen against hard-to-treat triple-negative human breast cancer (MDA-MB-231) and ovarian cancer cells (A2780), respectively. These promising results are an interesting case of a simple modification with expressive enhancement of biological activity that deserves further biological studies.
Collapse
Affiliation(s)
- Geângela
de Fátima Sousa Oliveira
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Florencio Sousa Gouveia
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Alexandre Lopes Andrade
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | | | - Edson Holanda Teixeira
- Laboratório
Integrado de Biomoléculas, Departamento de Patologia e Medicina
Legal, Universidade Federal do Ceará, Fortaleza, Ceará 60441-750, Brazil
| | - Marcos V. Palmeira-Mello
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Alzir A. Batista
- Departamento
de Química, Universidade Federal
de São Carlos, PO Box 676, São Carlos, São Paulo 13565-905, Brazil
| | - Luiz Gonzaga de
França Lopes
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Idalina Maria Moreira de Carvalho
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| | - Eduardo Henrique Silva Sousa
- Laboratório
de Bioinorgânica, Departmento de Química Orgânica
e Inorgânica, Universidade Federal
do Ceará, Fortaleza 60440-900, Brazil
| |
Collapse
|
8
|
Lin FL, Guo XY, Shen HR, Guo XM, Dai Y, Zheng QH, Chen JC, Xu QX, Zhang Y, He SB, Chen W. Laminarin-modulated osmium nanozymes with high substrate-affinity and selective peroxidase-like behavior engineered colorimetric assay for hydroxyl radical scavenging capacity estimation. Mikrochim Acta 2024; 191:488. [PMID: 39066796 DOI: 10.1007/s00604-024-06571-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 07/13/2024] [Indexed: 07/30/2024]
Abstract
Hydroxyl radical (·OH) scavenging capacity (HOSC) estimation is essential for evaluating antioxidants, natural extracts, or drugs against clinical diseases. While nanozymes offer advantages in related applications, they still face limitations in activity and selectivity. In response, this work showcases the fabrication of laminarin-modulated osmium (laminarin-Os) nanoclusters (1.45 ± 0.05 nm), functioning as peroxidase-like nanozymes within a colorimetric assay tailored for rational HOSC estimation. This study validates both the characterization and remarkable stability of laminarin-Os. By leveraging the abundant surface negative charges of laminarin-Os and the surface hydroxyls of laminarin, oxidation reactions are facilitated, augmenting laminarin-Os's affinity for 3,3',5,5'-tetramethylbenzidine (TMB) (KM = 0.04 mM). This enables the laminarin-Os-based colorimetric assay to respond to ·OH more effectively than citrate-, albumin-, or other polysaccharides-based Os. In addition, experimental results also validate the selective peroxidase-like behavior of laminarin-Os under acidic conditions. Antioxidants like ascorbic acid, glutathione, tannic acid, and cysteine inhibit absorbance at 652 nm in the colorimetric platform using laminarin-Os's peroxidase-like activity. Compared with commercial kits, this assay demonstrates superior sensitivity (e.g., responds to ascorbic acid 0.01-0.075 mM, glutathione 1-15 µg/mL, tannic acid 0.5-5 µM, and monoammonium glycyrrhizinate cysteine 1.06-10.63 µM) and HOSC testing for glutathione, tannic acid, and monoammonium glycyrrhizinate cysteine. Overall, this study introduces a novel Os nanozyme with exceptional TMB affinity and ·OH selectivity, paving the way for HOSC estimation in biomedical research, pharmaceutical analysis, drug quality control, and beyond.
Collapse
Affiliation(s)
- Feng-Lin Lin
- Department of Pharmacy, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, China
| | - Xiao-Yun Guo
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Huan-Ran Shen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Xiu-Mei Guo
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yun Dai
- Department of Pharmacy, Quanzhou Women's and Children's Hospital, Quanzhou, 362000, China
| | - Qiong-Hua Zheng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China
| | - Jin-Cheng Chen
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Qiu-Xia Xu
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China
| | - Yin Zhang
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
- Laboratory of Clinical Pharmacy, Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, 362000, China.
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou, 350004, China.
| |
Collapse
|
9
|
da Silva GS, Hernandes MBB, Toledo Junior JC. The Ubiquity of the Reaction of the Labile Iron Pool That Attenuates Peroxynitrite-Dependent Oxidation Intracellularly. Biomolecules 2024; 14:871. [PMID: 39062585 PMCID: PMC11274960 DOI: 10.3390/biom14070871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 07/03/2024] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Although the labile iron pool (LIP) biochemical identity remains a topic of debate, it serves as a universal homeostatically regulated and essential cellular iron source. The LIP plays crucial cellular roles, being the source of iron that is loaded into nascent apo-iron proteins, a process akin to protein post-translational modification, and implicated in the programmed cell death mechanism known as ferroptosis. The LIP is also recognized for its reactivity with chelators, nitric oxide, and peroxides. Our recent investigations in a macrophage cell line revealed a reaction of the LIP with the oxidant peroxynitrite. In contrast to the LIP's pro-oxidant interaction with hydrogen peroxide, this reaction is rapid and attenuates the peroxynitrite oxidative impact. In this study, we demonstrate the existence and antioxidant characteristic of the LIP and peroxynitrite reaction in various cell types. Beyond its potential role as a ubiquitous complementary or substitute protection system against peroxynitrite for cells, the LIP and peroxynitrite reaction may influence cellular iron homeostasis and ferroptosis by changing the LIP redox state and LIP binding properties and reactivity.
Collapse
Affiliation(s)
| | | | - José Carlos Toledo Junior
- Departamento de Química, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| |
Collapse
|
10
|
Badakumar B, Inbakandan D, Venkatnarayanan S, Krishna Mohan TV, Nancharaiah YV, Pandey NK, Veeramani P, Sriyutha Murthy P. Physiological and biochemical response in green mussel Perna viridis subjected to continuous chlorination: Perspective on cooling water discharge criteria. CHEMOSPHERE 2024; 359:142191. [PMID: 38697563 DOI: 10.1016/j.chemosphere.2024.142191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 04/26/2024] [Accepted: 04/27/2024] [Indexed: 05/05/2024]
Abstract
Heavy infestation by Perna viridis has been observed in the sub-seabed seawater intake tunnel and CWS of a tropical coastal power station in-spite of continuous low dose chlorination regime (0.2 ± 0.1 mg L-1) (CLDC), indicating periodical settlement and growth. Continuous arrival of mussels (colonized in the sub seabed tunnel intake section) at the pump house indicated that the mussels were able to tolerate and survive in a chlorinated environment, for varying time periods and were dislodged when they become weak and subsequent death, leading to flushing out of the system. In the present study, effect of continuous chlorination [0.2 mg L-1 (in-plant use); 0.5 mg L-1 (shock dose) & 1.0 mg L-1 (high levels)] was evaluated on mussels to assess; (a) time taken for mortality, (b) action of chlorine on physiological, genetic, metabolic and neuronal processes. 100% mortality of mussels was observed after 15 (0.2 mg L-1); 9 (0.5 mg L-1) and 6 days (1.0 mg L-1) respectively. Extended valve closure due to chlorination resulted in stress, impairing the respiratory and feeding behavior leading to deterioration in mussel health. Pseudofaeces excretion reduced to 68% (0.2 mg L-1); 10% (0.5 mg L-1) and 89% (1.0 mg L-1) compared to controls. Genotoxicity was observed with increase in % tail DNA fraction in all treatments such as 86% (0.2 mg L-1); 76% (0.5 mg L-1) and 85% (1.0 mg L-1). Reactive Oxygen Species (ROS) stress biomarkers increased drastically/peaked within the first 3 days of continuous chlorination with subsequent quenching by antioxidant enzymes. Gill produced highest generation of ROS; 38% (0.2 mg L-1); 97% (0.5 mg L-1); 98% (1.0 mg L-1). Additionally, it was shown that 84% (0.2 mg L-1), 72% (0.5 mg L-1), and 80.4% (1.0 mg L-1) of the neurotransmitter acetylcholinesterase activity was inhibited by chlorine at the nerve synapse. The cumulative impact of ROS generation, neuronal toxicity, and disrupted functions weakens the overall health of green mussels resulting in mortality.
Collapse
Affiliation(s)
- Bandita Badakumar
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India; Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India
| | - D Inbakandan
- Centre for Ocean Research, Sathyabama Institute of Science and Technology, Chennai, 600 119, Tamil Nadu, India.
| | - S Venkatnarayanan
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - T V Krishna Mohan
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
| | - N K Pandey
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - P Veeramani
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India
| | - P Sriyutha Murthy
- Biofouling and Biofilm Processes Section, Water & Steam Chemistry Division, Bhabha Atomic Research Center, Kalpakkam 603 102, Tamil Nadu, India; Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India.
| |
Collapse
|
11
|
Lee SY, Kim JH, Song JW, Min JS, Kim HJ, Kim RH, Ahn JW, Yoo H, Park K, Kim JW. Macrophage-mannose-receptor-targeted photoactivatable agent for in vivo imaging and treatment of atherosclerosis. Int J Pharm 2024; 654:123951. [PMID: 38423154 DOI: 10.1016/j.ijpharm.2024.123951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 02/16/2024] [Accepted: 02/25/2024] [Indexed: 03/02/2024]
Abstract
Previous studies have demonstrated the effects of theranostic agents on atherosclerotic plaques. However, there is limited information on targeted theranostics for photodynamic treatment of atherosclerosis. This study aimed to develop a macrophage-mannose-receptor-targeted photoactivatable nanoagent that regulates atherosclerosis and to evaluate its efficacy as well as safety in atherosclerotic mice. We synthesised and characterised D-mannosamine (MAN)-polyethylene glycol (PEG)-chlorin e6 (Ce6) for phototheranostic treatment of atherosclerosis. The diagnostic and therapeutic effects of MAN-PEG-Ce6 were investigated using the atherosclerotic mouse model. The hydrophobic Ce6 photosensitiser was surrounded by the hydrophilic MAN-PEG outer shell of the self-assembled nanostructure under aqueous conditions. The MAN-PEG-Ce6 was specifically internalised in macrophage-derived foam cells through receptor-mediated endocytosis. After laser irradiation, the MAN-PEG-Ce6 markedly increased singlet oxygen generation. Intravital imaging and immunohistochemistry analyses verified MAN-PEG-Ce6's specificity to plaque macrophages and its notable anti-inflammatory impact by effectively reducing mannose-receptor-positive macrophages. The toxicity assay showed that MAN-PEG-Ce6 had negligible effects on the biochemical profile and structural damage in the skin and organs. Targeted photoactivation with MAN-PEG-Ce6 thus has the potential to rapidly reduce macrophage-derived inflammatory responses in atheroma and present favourable toxicity profiles, making it a promising approach for both imaging and treatment of atherosclerosis.
Collapse
Affiliation(s)
- Seung-Yul Lee
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea; Division of Cardiology, Department of Internal Medicine, CHA Bundang Medical Center, Seongnam 13496, Republic of Korea
| | - Jin Hyuk Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Joon Woo Song
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Ji Seon Min
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hyun Jung Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Ryeong Hyun Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea
| | - Jae Won Ahn
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea
| | - Hongki Yoo
- Department of Mechanical Engineering, KAIST, Daejeon 34141, Republic of Korea.
| | - Kyeongsoon Park
- Department of Systems Biotechnology, Chung-Ang University, Anseong 17546, Republic of Korea.
| | - Jin Won Kim
- Multimodal Imaging and Theranostic Laboratory, Cardiovascular Center, Korea University Guro Hospital, Seoul 08308, Republic of Korea.
| |
Collapse
|
12
|
Jiang Y, Chen H, Lin T, Zhang C, Shen J, Chen J, Zhao Y, Xu W, Wang G, Huang P. Ultrasound-activated prodrug-loaded liposome for efficient cancer targeting therapy without chemotherapy-induced side effects. J Nanobiotechnology 2024; 22:2. [PMID: 38169390 PMCID: PMC10763105 DOI: 10.1186/s12951-023-02195-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Off-targeted distribution of chemotherapeutic drugs causes severe side effects, further leading to poor prognosis and patient compliance. Ligand/receptor-mediated targeted drug delivery can improve drug accumulation in the tumor but it always attenuated by protein corona barriers. RESULTS To address these problems, a radically different strategy is proposed that can leave the off-targeted drugs inactive but activate the tumor-distributed drugs for cancer-targeting therapy in a tumor microenvironment-independent manner. The feasibility and effectiveness of this strategy is demonstrated by developing an ultrasound (US)-activated prodrug-loaded liposome (CPBSN38L) comprising the sonosensitizer chlorin e6 (Ce6)-modified lipids and the prodrug of pinacol boronic ester-conjugated SN38 (PBSN38). Once CPBSN38L is accumulated in the tumor and internalized into the cancer cells, under US irradiation, the sonosensitizer Ce6 rapidly induces extensive production of intracellular reactive oxygen species (ROS), thereby initiating a cascade amplified ROS-responsive activation of PBSN38 to release the active SN38 for inducing cell apoptosis. If some of the injected CPBSN38L is distributed into normal tissues, the inactive PBSN38 exerts no pharmacological activity on normal cells. CPBSN38L exhibited strong anticancer activity in multiple murine tumor models of colon adenocarcinoma and hepatocellular carcinoma with no chemotherapy-induced side effects, compared with the standard first-line anticancer drugs irinotecan and topotecan. CONCLUSIONS This study established a side-effect-evitable, universal, and feasible strategy for cancer-targeting therapy.
Collapse
Affiliation(s)
- Yifan Jiang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Hongjian Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China
| | - Tao Lin
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Chao Zhang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jiaxin Shen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Jifan Chen
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Yanan Zhao
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Wen Xu
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China
| | - Guowei Wang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
| | - Pintong Huang
- Department of Ultrasound in Medicine, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Research Center of Ultrasound in Medicine and Biomedical Engineering, The Second Affiliated Hospital of Zhejiang University School of Medicine, Zhejiang University, Hangzhou, 310009, China.
- Research Center for Life Science and Human Health, Binjiang Institute of Zhejiang University, Hangzhou, 310053, China.
| |
Collapse
|
13
|
Jantsch MH, Doleski PH, Viana AR, da Silva JLG, Passos DF, Cabral FL, Manzoni AG, Ebone RDS, Soares ABU, de Andrade CM, Schetinger MRC, Leal DBR. Effects of clopidogrel bisulfate on B16-F10 cells and tumor development in a murine model of melanoma. Biochem Cell Biol 2023; 101:443-455. [PMID: 37163764 DOI: 10.1139/bcb-2022-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023] Open
Abstract
Metastatic melanoma is a very aggressive skin cancer. Platelets are constituents of the tumor microenvironment and, when activated, contribute to cancer progression, especially metastasis and inflammation. P2Y12 is an adenosine diphosphate receptor that triggers platelet activation. Inhibition of P2Y12 by clopidogrel bisulfate (CB) decreases platelet activation, which is also controlled by the extracellular concentration and the metabolism of purines by purinergic enzymes. We evaluated the effects of CB on the viability and proliferation of cultured B16-F10 cells. We also used a metastatic melanoma model with C57BL-6 mice to evaluate cancer development and purine metabolism modulation in platelets. B16-F10 cells were administered intraperitoneally to the mice. Two days later, the animals underwent a 12-day treatment with CB (30 mg/kg by gavage). We have found that CB reduced cell viability and proliferation in B16-F10 culture in 72 h at concentrations above 30 µm. In vivo, CB decreased tumor nodule counts and lactate dehydrogenase levels and increased platelet purine metabolism. Our results showed that CB has significant effects on melanoma progression.
Collapse
Affiliation(s)
- Matheus Henrique Jantsch
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Instituto Federal Farroupilha, Campus Santo Ângelo, Santo Ângelo, RS, Brazil
| | - Pedro Henrique Doleski
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Altevir Rossato Viana
- Programa de Pós-graduação em Nanociências; Laboratório de Biociências. Universidade Franciscana, Santa Maria, RS, Brazil
| | - Jean Lucas Gutknecht da Silva
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Ferreira Passos
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Fernanda Licker Cabral
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Alessandra Guedes Manzoni
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Renan da Silva Ebone
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | | | - Cínthia Melazzo de Andrade
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Hospital Veterinário, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Maria Rosa Chitolina Schetinger
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| | - Daniela Bitencourt Rosa Leal
- Laboratório de Imunobiologia Experimental e Aplicada (LABIBIO), Departamento de Microbiologia e Parasitologia, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Biológicas: Bioquímica Toxicológica, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
- Programa de Pós-graduação em Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
| |
Collapse
|
14
|
Viana AR, Bottari NB, Oviedo VR, Santos D, Londero JEL, Schetinger MRC, Flores EMM, Pigatto A, Schuch AP, Krause A, Krause LMF. Phytochemical and biological characterization of aqueous extract of Vassobia breviflora on proliferation and viability of melanoma cells: involvement of purinergic pathway. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2023; 86:632-652. [PMID: 37434435 DOI: 10.1080/15287394.2023.2233989] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Vassobia breviflora belongs to the Solanaceae family, possessing biological activity against tumor cells and is a promising alternative for therapy. The aim of this investigation was to determine the phytochemical properties V. breviflora using ESI-ToF-MS. The cytotoxic effects of this extract were examined in B16-F10 melanoma cells and the relationship if any to purinergic signaling was involved. The antioxidant activity of total phenols, (2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid (ABTS) was analyzed, as well as production of reactive oxygen species (ROS) and nitric oxide (NO) was determined. Genotoxicity was assessed by DNA damage assay. Subsequently, the structural bioactive compounds were docked against purinoceptors P2X7 and P2Y1 receptors. The bioactive compounds found in V. breviflora were N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline, calystegine B, 12-O-benzoyl- tenacigenin A and bungoside B. In vitro cytotoxicity was demonstrated at concentration ranges of 0.1-10 mg/ml, and plasmid DNA breaks only at the concentration of 10 mg/ml. V. breviflora extracts affected hydrolysis by ectoenzymes, such as ectonucleoside triphosphate diphosphohydrolase (E-NTPDase) and ectoadenosine deaminase (E-ADA) which control levels of degradation and formation of nucleosides and nucleotides. In the presence of substrates ATP, ADP, AMP and adenosine, the activities of E-NTPDase, 5´-NT or E-ADA were significantly modulated by V. breviflora. N-methyl-(2S,4 R)-trans-4-hydroxy-L-proline presented higher binding affinity (according to receptor-ligand complex estimated binding affinity as evidenced by ∆G values) to bind to both P2X7 and P2Y1purinergic receptors.Our results suggest a putative interaction of V. breviflora bioactive compounds with growth inhibitory potential in B16-F10 melanoma and suggest that may be considered as promising compounds in melanoma and cancer treatment.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | - Daniel Santos
- Chemistry, Federal University of Santa Maria, Santa Maria, Brazil
| | | | | | | | - Aline Pigatto
- Postgraduate Program in Teaching Science and Mathematics, Franciscan University, Santa Maria, Brazil
| | - André Passaglia Schuch
- Biochemistry and Molecular Biology, Federal University of Santa Maria, Santa Maria, Brazil
| | - Alexandre Krause
- Veterinary Medicine, Federal University of Santa Maria, Santa Maria, Brazil
| | | |
Collapse
|
15
|
Kessel D. Critical PDT Theory VI: Detection of Reactive Oxygen Species: Trials and Errors. Photochem Photobiol 2023; 99:1216-1217. [PMID: 36625179 DOI: 10.1111/php.13778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 01/06/2023] [Indexed: 01/11/2023]
Abstract
Fluorescence intensity of DCFH-DA in hepatoma 1c1c7 cells after 10 min incubations.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI
| |
Collapse
|
16
|
Wardman P. Factors Important in the Use of Fluorescent or Luminescent Probes and Other Chemical Reagents to Measure Oxidative and Radical Stress. Biomolecules 2023; 13:1041. [PMID: 37509077 PMCID: PMC10377120 DOI: 10.3390/biom13071041] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 06/20/2023] [Accepted: 06/24/2023] [Indexed: 07/30/2023] Open
Abstract
Numerous chemical probes have been used to measure or image oxidative, nitrosative and related stress induced by free radicals in biology and biochemistry. In many instances, the chemical pathways involved are reasonably well understood. However, the rate constants for key reactions involved are often not yet characterized, and thus it is difficult to ensure the measurements reflect the flux of oxidant/radical species and are not influenced by competing factors. Key questions frequently unanswered are whether the reagents are used under 'saturating' conditions, how specific probes are for particular radicals or oxidants and the extent of the involvement of competing reactions (e.g., with thiols, ascorbate and other antioxidants). The commonest-used probe for 'reactive oxygen species' in biology actually generates superoxide radicals in producing the measured product in aerobic systems. This review emphasizes the need to understand reaction pathways and in particular to quantify the kinetic parameters of key reactions, as well as measure the intracellular levels and localization of probes, if such reagents are to be used with confidence.
Collapse
Affiliation(s)
- Peter Wardman
- Formerly of the Gray Cancer Institute, Mount Vernon Hospital/University of Oxford, UK
| |
Collapse
|
17
|
Hobai IA. MECHANISMS OF CARDIAC DYSFUNCTION IN SEPSIS. Shock 2023; 59:515-539. [PMID: 36155956 DOI: 10.1097/shk.0000000000001997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
ABSTRACT Studies in animal models of sepsis have elucidated an intricate network of signaling pathways that lead to the dysregulation of myocardial Ca 2+ handling and subsequently to a decrease in cardiac contractile force, in a sex- and model-dependent manner. After challenge with a lethal dose of LPS, male animals show a decrease in cellular Ca 2+ transients (ΔCa i ), with intact myofilament function, whereas female animals show myofilament dysfunction, with intact ΔCa i . Male mice challenged with a low, nonlethal dose of LPS also develop myofilament desensitization, with intact ΔCa i . In the cecal ligation and puncture (CLP) model, the causative mechanisms seem similar to those in the LPS model in male mice and are unknown in female subjects. ΔCa i decrease in male mice is primarily due to redox-dependent inhibition of sarco/endoplasmic reticulum Ca 2+ ATP-ase (SERCA). Reactive oxygen species (ROS) are overproduced by dysregulated mitochondria and the enzymes NADPH/NADH oxidase, cyclooxygenase, and xanthine oxidase. In addition to inhibiting SERCA, ROS amplify cardiomyocyte cytokine production and mitochondrial dysfunction, making the process self-propagating. In contrast, female animals may exhibit a natural redox resilience. Myofilament dysfunction is due to hyperphosphorylation of troponin I, troponin T cleavage by caspase-3, and overproduction of cGMP by NO-activated soluble guanylate cyclase. Depleted, dysfunctional, or uncoupled mitochondria likely synthesize less ATP in both sexes, but the role of energy deficit is not clear. NO produced by NO synthase (NOS)-3 and mitochondrial NOSs, protein kinases and phosphatases, the processes of autophagy and sarco/endoplasmic reticulum stress, and β-adrenergic insensitivity may also play currently uncertain roles.
Collapse
Affiliation(s)
- Ion A Hobai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, Massachusetts
| |
Collapse
|
18
|
Wang Y, Li X, Fang Y, Wang J, Yan D, Chang B. Degradable Fe 3O 4-based nanocomposite for cascade reaction-enhanced anti-tumor therapy. RSC Adv 2023; 13:7952-7962. [PMID: 36909758 PMCID: PMC9997073 DOI: 10.1039/d3ra00527e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 03/02/2023] [Indexed: 03/12/2023] Open
Abstract
Cascade catalytic therapy has been recognized as a promising cancer treatment strategy, which is due in part to the induced tumor apoptosis when converting intratumoral hydrogen peroxide (H2O2) into highly toxic hydroxyl radicals (˙OH) based on the Fenton or Fenton-like reactions. Moreover this is driven by the efficient catalysis of glucose oxidization associated with starving therapy. The natural glucose oxidase (GO x ), recognized as a "star" enzyme catalyst involved in cancer treatment, can specially and efficiently catalyze the glucose oxidization into gluconic acid and H2O2. Herein, pH-responsive biodegradable cascade therapeutic nanocomposites (Fe3O4/GO x -PLGA) with dual enzymatic catalytic features were designed to respond to the tumor microenvironment (TME) and to catalyze the cascade reaction (glucose oxidation and Fenton-like reaction) for inducing oxidase stress. The GO x -motivated oxidation reaction could effectively consume intratumoral glucose to produce H2O2 for starvation therapy and the enriched H2O2 was subsequently converted into highly toxic ˙OH by a Fe3O4-mediated Fenton-like reaction for chemodynamic therapy (CDT). In addition, the acidity amplification owing to the generation of gluconic acid will in turn accelerate the degradation of the nanocomposite and initiate the Fe3O4-H2O2 reaction for enhancing CDT. The resultant cooperative cancer therapy was proven to provide highly efficient tumor inhibition on HeLa cells with minimal systemic toxicity. This cascade catalytic Fenton nanocomposite might provide a promising strategy for efficient cancer therapy.
Collapse
Affiliation(s)
- Yang Wang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology Taicang 215411 Jiangsu Province P.R. China
| | - Xun Li
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P.R. China
| | - Yuan Fang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology Taicang 215411 Jiangsu Province P.R. China
| | - Jianhua Wang
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology Taicang 215411 Jiangsu Province P.R. China
| | - Danhong Yan
- Department of Medical Technology, Suzhou Chien-shiung Institute of Technology Taicang 215411 Jiangsu Province P.R. China
| | - Baisong Chang
- State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology Wuhan 430070 P.R. China
| |
Collapse
|
19
|
Rossato Viana A, Bianchin Bottari N, Santos D, Bolson Serafin M, Garlet Rossato B, Moresco RN, Wolf K, Ourique A, Hörner R, de Moraes Flores ÉM, Chitolina Schetinger MR, Stefanello Vizzotto B, Maria Fontanari Krause L. Insights of ethyl acetate fraction from Vassobia breviflora in multidrug-resistant bacteria and cancer cells: from biological to therapeutic. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2022; 85:972-987. [PMID: 36208226 DOI: 10.1080/15287394.2022.2130844] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Cancer and infectious diseases are among the leading causes of death in the world. Despite the diverse array of treatments available, challenges posed by resistance, side effects, high costs, and inaccessibility persist. In the Solanaceae plant family, few studies with Vassobia breviflora species relating to biological activity are known, but promising results have emerged. The phytochemicals present in the ethyl acetate fraction were obtained using ESI-MS-QTOF, and the antioxidants assays 1,1-diphenyl-2-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonic acid) radical capture (ABTS), plasma ferric reduction capacity (FRAP), and total antioxidant capacity (TAC). Cytotoxic activity was evaluated by MTT, Neutral Red, and lactate dehydrogenase (LDH) released. The production of reactive oxygen species, nitric oxide, and purinergic enzymes was also investigated. Antibacterial activity was measured through minimum inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and antibiofilm activity, in addition to genotoxicity in plasmid DNA. Five major masses were identified D-glucopyranose II, allyl disulfide, γ-lactones, pharbilignoside, and one mass was not identified. V. breviflora exhibited relevant antioxidant and cytotoxic activity against the HeLa cell line and enhanced expression effect in modulation of purinergic signaling. Antibacterial activities in the assays in 7 ATCC strains and 8 multidrug-resistant clinical isolates were found. V. breviflora blocked biofilm formation in producing bacteria at the highest concentrations tested. However, there was no plasmid DNA cleavage at the concentrations tested. Data demonstrated that V. breviflora exhibited an antioxidant effect through several methods and proved to be a promising therapeutic alternative for use against tumor cells via purinergic signaling and multidrug-resistant microorganisms, presenting an anti-biofilm effect.
Collapse
Affiliation(s)
- Altevir Rossato Viana
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Nathieli Bianchin Bottari
- Department of Biochemistry and Molecular Biology, Federal University of Santa Maria (UFSM)Santa Maria-RS, Brazil
| | - Daniel Santos
- Department of Chemistry, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Marissa Bolson Serafin
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Bruna Garlet Rossato
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Rafael Noal Moresco
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | - Katianne Wolf
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Aline Ourique
- Nanosciences Postgraduate Program, Franciscan University (UFN), Santa Maria-RS Brazil
| | - Rosmari Hörner
- Department of Clinical and Toxicology Analysis, Federal University of Santa Maria (UFSM), Santa Maria-RS, Brazil
| | | | | | | | | |
Collapse
|
20
|
Franco C, Viana AR, Ourique AF, Vizzotto BS, Krause LMF. Protective Effect of Indomethacin-loaded Polymeric Nanoparticles Against Oxidative Stress-Induced Cytotoxicity in Human Breast Adenocarcinoma Cell Model. REVISTA BRASILEIRA DE CANCEROLOGIA 2022. [DOI: 10.32635/2176-9745.rbc.2022v68n4.2545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Abstract
Introduction: Anti-inflammatory drugs are being utilized to treat cancer because of its inflammatory microenvironment. Objective: The objective of this study is to investigate the antioxidant potential of indomethacin and its genotoxicity, since free or loaded in polymeric nanocapsules using MCF-7 (human breast cancer) cells as an in vitro model. Method: Development of indomethacin-loaded polyepsiloncaprolactone (PCL) nanocapsules by interfacial deposition method. It is characterized by pH determination by potentiometer, mean diameter and polydispersity index by dynamic light scattering; zeta potential by electrophoretic mobility; encapsulation efficacy by high performance liquid chromatography method; corona effect formation; 2ʹ,7ʹ-dichlorofluorescin diacetate (DCFH-DA) method by spectrofluorimetric assay; nitric oxide (NO) determination by spectrophotometric and genotoxicity assay by plasmid DNA cleavage method. Results: The results showed a mild acidic pH (4.78 ± 0.10), sizes around 200 nm and PDI<0.2 with a zeta potential around -20 mV and encapsulation efficiency of 99% (1 mg mL-1), showing a dose-dependent corona formation profile in 24h incubation. Conclusion: DCFH-DA assay showed no production of reactive oxygen species (ROS) while NO determination showed that Ind-OH-NC from 26.7 to 100 μM increased reactive nitrogen species (RNS), demonstrating antioxidant potential against MCF-7 cells. No sample at the concentrations evaluated induced DNA cleavage, being considered a safe treatment.
Collapse
|
21
|
Kousar S, Mudassir MA, Bibi F, Irfan M, Alyas M, Bukhari SW, Qadir S. 2′,7′-Dichlorofluorescein: Biological, Analytical, and Industrial Progress. MINI-REV ORG CHEM 2022; 19:708-716. [DOI: 10.2174/1570193x19666220110114234] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Revised: 10/20/2021] [Accepted: 12/20/2021] [Indexed: 11/22/2022]
Abstract
Abstrack:
Fluorescein derivatives have attracted a great deal of attention for ubiquitous applications
on account of their unique properties. Particularly, the 2′,7′-dichlorofluorescein (DCF) is of paramount
importance in biological, analytical, and industrial fields. Mainly, DCF has been employed as
a reactant in reactive oxygen species (ROS) formation reactions in biological applications. It has
been utilized in oxidative stress and cell spreading measurement. It has been extensively explored to
analyze oxidative, respiratory burst, secretory peroxidase, and multidrug resistance-associated proteins
(MRPs). It has been widely investigated for detecting/quantification of H2O2, glucose, lipid,
cholesterol, other hydroperoxides, and polycationic protamine.
Moreover, it has been applied to differentiate dopamine from ascorbic acid. It has also shown immense
potential in biolabeling, cancer imaging, and drug delivery. Several studies demonstrated the
great promise of DCF as a fluorescent probe for real-time monitoring/quantification of mercury,
cadmium, zinc, arsenite, acetate, fluoride, thiocyanate, azide ions, hydrogen peroxide, ammonia,
ozone, sulfur dioxide, and drug molecules. Furthermore, the use of DCF to manufacture dyesensitized
solar cells and Schottky barrier devices opens up avenues for its industrial applications.
Apart from presenting a comprehensive account of the immense potential of DCF in the areas mentioned
above, the present review also intends to provide insight into its broader future scope for a
myriad of applications to emerge.
Collapse
Affiliation(s)
- Shazia Kousar
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim
Yar Khan 64200, Pakistan
| | - Muhammad Ahmad Mudassir
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim
Yar Khan 64200, Pakistan
| | - Fehmeeda Bibi
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim
Yar Khan 64200, Pakistan
| | - Madiha Irfan
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim
Yar Khan 64200, Pakistan
| | - Mohammad Alyas
- Department of Chemistry Khwaja Fareed University of Engineering and Information Technology (KFUEIT), Rahim
Yar Khan 64200, Pakistan
| | - Syed Waqas Bukhari
- Institute of Chemical Sciences, Bahauddin Zakariya University (BZU), Multan 60800, Pakistan
| | - Salman Qadir
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, P.R. China
- University of
Chinese Academy of Sciences, Beijing 100049, P.R. China
| |
Collapse
|
22
|
Kessel D. Critical PDT Theory IV: The Strange Case of 'KillerRed'? Photochem Photobiol 2022; 99:906-907. [PMID: 36039569 DOI: 10.1111/php.13705] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Accepted: 08/26/2022] [Indexed: 11/29/2022]
Abstract
A 27 kDa protein termed 'KillerRed' (KR) contains a chromophore with photodynamic properties. Upon irradiation with green light, this protein behaves much like a 'classical' photosensitizing agent. Fluorescence is produced and a photophysical reaction results in the conversion of nearby oxygen molecules to reactive oxygen species. It is periodically claimed that these effects would permit KR to mimic the anti-tumor properties of photosensitizing agents that have demonstrated clinical efficacy for cancer control. Based on the photophysical properties of KR and issues associated with its use, the likelihood appears to be dim. Moreover, there are many concerns with regard to some current reports on KR, summarized here.
Collapse
Affiliation(s)
- David Kessel
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, 48201, USA
| |
Collapse
|
23
|
Cheng C, Cheng Y, Zhao S, Wang Q, Li S, Chen X, Yang X, Wei H. Multifunctional Nanozyme Hydrogel with Mucosal Healing Activity for Single-Dose Ulcerative Colitis Therapy. Bioconjug Chem 2022; 33:248-259. [PMID: 34936326 DOI: 10.1021/acs.bioconjchem.1c00583] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nanozymes are nanomaterials with enzyme-like activities, which have been developed for inflammatory disease therapy by reactive oxygen species (ROS) scavenging. The application of nanozymes in ulcerative colitis (UC) treatment not only inherits the merits of small molecular antioxidants (e.g., 5-aminosalicylic acid) to scavenge ROS but also achieves catalytic recycle instead of stoichiometric consumption. However, current therapies usually ignore the repair of mucosa, the first line of defense, whose damage increases the risk of infections. Herein, a multifunctional nanozyme hydrogel is designed and verified both as an ROS scavenger and a mucosal healing enhancer for UC therapy. The chitosan-coated CeO2 nanozyme (CCNZ) not only possesses excellent ROS-scavenging ability but also exhibits satisfactory antibacterial capacity. After gelation with alginate, the optimized CCNZ1:Alg1.5 nanozyme hydrogel exhibits multiple functions, including inflamed site targeting, supporting cell growth, ROS scavenging, and antibacterial activity, which alleviates UC better than a clinical medication 5-aminosalicylic acid by even a single-dose treatment. This study reveals that a nanozyme providing mucosal healing is promising for UC therapy with excellent potential for clinical application and enriches the nanozyme research of treatment for diseases.
Collapse
Affiliation(s)
- Chaoqun Cheng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Yuan Cheng
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sheng Zhao
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Quan Wang
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Sirong Li
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiwen Chen
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xiaohan Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Hui Wei
- Department of Biomedical Engineering, College of Engineering and Applied Sciences, Nanjing National Laboratory of Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Nanjing University, Nanjing, Jiangsu 210023, China
- State Key Laboratory of Analytical Chemistry for Life Science and State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing, Jiangsu 210023, China
| |
Collapse
|
24
|
Zhang S, Hao J, Ding F, Ren X. Nanocatalyst doped bacterial cellulose-based thermosensitive nanogel with biocatalytic function for antibacterial application. Int J Biol Macromol 2022; 195:294-301. [PMID: 34914907 DOI: 10.1016/j.ijbiomac.2021.12.020] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/30/2021] [Accepted: 12/04/2021] [Indexed: 12/22/2022]
Abstract
Reactive oxygen species (ROS) for treating bacterial infection is an alternative strategy to overcome the drawbacks such as bacterial resistance of commonly used antibiotics. Nanocatalysts have been proved highly effective in regulating intracellular ROS level due to their intrinsic enzymes-mimicking ability. Herein, we prepared a carbon-based nanozyme doped with copper atoms with peroxidase mimetic activity to catalyze the decomposition of bio-safety dosage of H2O2 to highly reactive OH radicals for antibacterial treatment. Furthermore, we designed the thermo-responsive nanogels consisting of bacterial cellulose nanowhiskers as the carrier of the nanozyme. The obtained nanogels displayed remarkable intelligent response to temperature change with sol-gel transition temperature of ~33 °C and in situ gel forming ability. Moreover, the nanogels exhibited excellent biocompatibility in vitro, along with remarkable antibacterial efficacy which could inactivate 6.36 log of S. aureus and 6.01 log of E. coli in 3 h, respectively. The findings provide a novel strategy for advancing the development of nanocatalysts-based responsive biomaterials for treating bacterial infections.
Collapse
Affiliation(s)
- Shumin Zhang
- Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 214122, Jiangsu, China
| | - Jican Hao
- School of Chemical and Material Engineering, Jiangnan University, 214122, Jiangsu, China
| | - Fang Ding
- Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 214122, Jiangsu, China
| | - Xuehong Ren
- Laboratory of Eco-textiles of Ministry of Education, College of Textile Science and Engineering, Jiangnan University, 214122, Jiangsu, China.
| |
Collapse
|
25
|
Reiniers MJ, de Haan LR, Reeskamp LF, Broekgaarden M, Hoekstra R, van Golen RF, Heger M. Optimal Use of 2',7'-Dichlorofluorescein Diacetate in Cultured Hepatocytes. Methods Mol Biol 2022; 2451:721-747. [PMID: 35505044 DOI: 10.1007/978-1-0716-2099-1_39] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Oxidative stress is a state that arises when the production of reactive transients overwhelms the cell's capacity to neutralize the oxidants and radicals. This state often coincides with the pathogenesis and perpetuation of numerous chronic diseases. On the other hand, medical interventions such as radiation therapy and photodynamic therapy generate radicals to selectively damage and kill diseased tissue. As a result, the qualification and quantification of oxidative stress are of great interest to those studying disease mechanisms as well as therapeutic interventions. 2',7'-Dichlorodihydrofluorescein-diacetate (DCFH2-DA) is one of the most widely used fluorogenic probes for the detection of reactive transients. The nonfluorescent DCFH2-DA crosses the plasma membrane and is deacetylated by cytosolic esterases to 2',7'-dichlorodihydrofluorescein (DCFH2). The nonfluorescent DCFH2 is subsequently oxidized by reactive transients to form the fluorescent 2',7'-dichlorofluorescein (DCF). The use of DCFH2-DA in hepatocyte-derived cell lines is more challenging because of membrane transport proteins that interfere with probe uptake and retention, among several other reasons. Cancer cells share some of the physiological and biochemical features with hepatocytes, so probe-related technical issues are applicable to cultured malignant cells as well. This study therefore analyzed the in vitro properties of DCFH2-DA in cultured human hepatocytes (HepG2 cells and differentiated and undifferentiated HepaRG cells) to identify methodological and technical features that could impair proper data analysis and interpretation. The main issues that were found and should therefore be accounted for in experimental design include the following: (1) both DCFH2-DA and DCF are taken up rapidly, (2) DCF is poorly retained in the cytosol and exits the cell, (3) the rate of DCFH2 oxidation is cell type-specific, (4) DCF fluorescence intensity is pH-dependent at pH < 7, and (5) the stability of DCFH2-DA in cell culture medium relies on medium composition. Based on the findings, the conditions for the use of DCFH2-DA in hepatocyte cell lines were optimized. Finally, the optimized protocol was reduced to practice and DCFH2-DA was applied to visualize and quantify oxidative stress in real time in HepG2 cells subjected to anoxia/reoxygenation as a source of reactive transients.
Collapse
Affiliation(s)
- Megan J Reiniers
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China
- Department of Surgery, Haaglanden Medisch Centrum, The Hague, The Netherlands
| | - Lianne R de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands
| | - Laurens F Reeskamp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Mans Broekgaarden
- Team Cancer Targets and Experimental Therapeutics, Department Microenvironment Cell Plasticity and Signaling, Institute for Advanced Biosciences, Université de Grenoble-Alpes, Allée des Alpes, La Tronche, France
- INSERM U 1209, CNRS UMR 5309, Allée des Alpes, La Tronche, France
| | - Ruurdtje Hoekstra
- Tytgat Institute for Liver and Intestinal Research, Amsterdam UMC, Location AMC, Amsterdam, The Netherlands
| | - Rowan F van Golen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, Leiden, The Netherlands.
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, P. R. China.
- Laboratory Experimental Oncology, Department of Pathology, Erasmus MC, Rotterdam, The Netherlands.
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands.
| |
Collapse
|
26
|
Fluorometric Assessment of Sulfhydryl Oxidase Activity: Optimization by Response Surface Methodology. J Fluoresc 2021; 32:381-388. [PMID: 34855074 DOI: 10.1007/s10895-021-02861-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Sulfhydryl oxidase was studied using a spectrofluorometric assay. The current protocol operates by using a combination of hemoglobin (HB) and hematin (HT) as a peroxidase mimic to catalyze the H2O2-dependent oxidation of thiamine. The response surface methodology (RSM) is used to optimize the new method. The current method is very accurate, sensitive, and linear up to 200 IU. When compared to the colorimetric method, the method produced a satisfactory correlation. The novel protocol is being used to evaluate asthenospermic patients' and fertile men's seminal sulfhydryl oxidase activity. The current protocol was used to determine reference values for seminal sulfhydryl oxidase activity. Due to the fact the newly developed spectrofluorometric method is more sensitive and precise than other colorimetric methods, and because thiamine is less expensive than other types of probes used in colorimetric and spectrofluorometric methods, it is likely to find widespread use among scientists studying sulfhydryl oxidase activity in biological tissues. The present method's analytical recovery yielded high specific findings.
Collapse
|
27
|
Chuy GP, Muraro PCL, Viana AR, Pavoski G, Espinosa DCR, Vizzotto BS, da Silva WL. Green Nanoarchitectonics of Silver Nanoparticles for Antimicrobial Activity Against Resistant Pathogens. J Inorg Organomet Polym Mater 2021; 32:1213-1222. [PMID: 34840542 PMCID: PMC8608851 DOI: 10.1007/s10904-021-02162-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 11/15/2021] [Indexed: 12/15/2022]
Abstract
Antimicrobial resistance represents a serious concern to public health, being responsible for hospital infections, affecting mainly immunosuppressed patients. Thus, nanotechnology appears as an alternative to solve this problem, through the application of metallic nanoparticles with antimicrobial activity. The present work aims to synthesize and characterize AgNPs from Klebsiella pneumoniae (AgNPs-KP) and Aloe vera extract (AgNPs-AV), evaluating the antimicrobial activity against Klebsiella pneumoniae carbapenemase (KpC) and the cytotoxicity in the L929 cell line. AgNPs were prepared by the biosynthetic method using Klebsiella pneumoniae and were characterized by XRD, FTIR and SEM–EDS. Antimicrobial activity was tested using the MIC and MBC. The cytotoxicity was evaluated by the MTT method and neutral red. The production of ROS and nitrogen RNS tests were performed in the L929 cell line. Thus, it was possible to confirm the production of AgNPs-KP, through morphological, structural and elemental analysis. AgNPs from Klebsiella pneumoniae had potent antimicrobial activity in low concentration against antimicrobial resistant pathogens with MIC 9.76 µg mL−1 and MBC 9.06 µg mL−1. Moreover, AgNPs-KP in concentrations of 10, 30 and 100 µg mL−1 did not show cytotoxic properties for the L929 fibroblast, where only the cytotoxic effect was observed in high concentrations (300 µg mL−1). AgNPs-KP did not produce ROS about the analyzed concentrations and RNS production was only in the highest concentration of 3000 µg mL−1. Therefore, AgNPs biosynthesized by Klebsiella pneumoniae have potential medical applicability as a promising antimicrobial agent, using a simple and low-cost method, correlating nanomedicine as nanostructured materials.
Collapse
Affiliation(s)
| | | | | | - Giovani Pavoski
- Polytechnical School of Chemical Engineering, University of the São Paulo, São Paulo, SP Brazil
| | | | | | | |
Collapse
|
28
|
Hsu SS, Lin YS, Liang WZ. Inhibition of the pesticide rotenone-induced Ca 2+ signaling, cytotoxicity and oxidative stress in HCN-2 neuronal cells by the phenolic compound hydroxytyrosol. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2021; 179:104979. [PMID: 34802529 DOI: 10.1016/j.pestbp.2021.104979] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/30/2021] [Accepted: 10/15/2021] [Indexed: 06/13/2023]
Abstract
Rotenone, a plant-derived pesticide belonging to genera Derris and Lonchorcarpus, is an inhibitor of NADH dehydrogenase complex. Studies have shown that rotenone was applied as a neurotoxic agent in various neuronal models. Hydroxytyrosol [2-(3,4-dihydroxyphenyl)-ethanol] is a natural phenolic compound found in the olive (Olea europaea L.). Studies of hydroxytyrosol have dramatically increased because this compound may contribute to the prevention of neurodegenerative diseases. Although hydroxytyrosol has received increasing attention due to its multiple pharmacological activities, it is not explored whether hydroxytyrosol inhibited rotenone-induced cytotoxicity in the neuronal cell model. The aim of this study was to explore whether hydroxytyrosol prevented rotenone-induced Ca2+ signaling, cytotoxicity and oxidative stress in HCN-2 neuronal cell line. In HCN-2 cells, rotenone (5-30 μM) concentration-dependently induced cytosolic Ca2+ concentrations ([Ca2+]i) rises and cytotoxicity. Treatment with hydroxytyrosol (30 μM) reversed rotenone (20 μM)-induced cytotoxic responses. In Ca2+-containing medium, rotenone-induced Ca2+ entry was inhibited by 2-APB (a store-operated Ca2+ channel modulator) or hydroxytyrosol. In Ca2+-free medium, treatment with thapsigargin (an endoplasmic reticulum Ca2+ pump inhibitor) or hydroxytyrosol significantly inhibited rotenone-induced [Ca2+]i rises. Furthermore, treatment with hydroxytyrosol reversed ROS levels, cytotoxic responses, and antioxidant enzyme activities (SOD, GPX and CAT) in rotenone-treated cells. Together, in HCN-2 cells, rotenone induced Ca2+ influx via store-operated Ca2+ entry and Ca2+ release from the endoplasmic reticulum and caused oxidative stress. Moreover, hydroxytyrosol ameliorated Ca2+ or ROS-associated cytotoxicity. It suggests that hydroxytyrosol might have a protective effect on rotenone-induced neurotoxicity in human neuronal cells.
Collapse
Affiliation(s)
- Shu-Shong Hsu
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan; Department of Neurosurgery, National Defense Medical Center, Taipei 11490, Taiwan; College of Health and Nursing, Meiho University, Pingtung 91202, Taiwan
| | - Yung-Shang Lin
- Department of Neurosurgery, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
| | - Wei-Zhe Liang
- Department of Pharmacy and Master Program, College of Pharmacy and Health Care, Tajen University, Pingtung County 90741, Taiwan; Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan.
| |
Collapse
|
29
|
Hadrup N, Knudsen KB, Carriere M, Mayne-L'Hermite M, Bobyk L, Allard S, Miserque F, Pibaleau B, Pinault M, Wallin H, Vogel U. Safe-by-design strategies for lowering the genotoxicity and pulmonary inflammation of multiwalled carbon nanotubes: Reduction of length and the introduction of COOH groups. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2021; 87:103702. [PMID: 34252584 DOI: 10.1016/j.etap.2021.103702] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 07/05/2021] [Accepted: 07/08/2021] [Indexed: 06/13/2023]
Abstract
Potentially, the toxicity of multiwalled carbon nanotubes (MWCNTs) can be reduced in a safe-by-design strategy. We investigated if genotoxicity and pulmonary inflammation of MWCNTs from the same batch were lowered by a) reducing length and b) introducing COOH-groups into the structure. Mice were administered: 1) long and pristine MWCNT (CNT-long) (3.9 μm); 2) short and pristine CNT (CNT-short) (1 μm); 3) CNT modified with high ratio COOH-groups (CNT-COOH-high); 4) CNT modified with low ratio COOH-groups (CNT-COOH-low). MWCNTs were dosed by intratracheal instillation at 18 or 54 μg/mouse (∼0.9 and 2.7 mg/kg bw). Neutrophils numbers were highest after CNT-long exposure, and both shortening the MWCNT and addition of COOH-groups lowered pulmonary inflammation (day 1 and 28). Likewise, CNT-long induced genotoxicity, which was absent with CNT-short and after introduction of COOH groups. In conclusion, genotoxicity and pulmonary inflammation of MWCNTs were lowered, but not eliminated, by shortening the fibres or introducing COOH-groups.
Collapse
Affiliation(s)
- Niels Hadrup
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Kristina Bram Knudsen
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark.
| | - Marie Carriere
- INAC (Institute for Nanoscience and Cryogenics), LAN (Laboratoire Lésions des Acides Nucléiques, Nucleic Acid Lesions Laboratory), 17 Avenue des Martyrs, 38054, Grenoble Cedex 09, France.
| | | | - Laure Bobyk
- INAC (Institute for Nanoscience and Cryogenics), LAN (Laboratoire Lésions des Acides Nucléiques, Nucleic Acid Lesions Laboratory), 17 Avenue des Martyrs, 38054, Grenoble Cedex 09, France.
| | - Soline Allard
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91 191, Gif sur Yvette Cedex, France.
| | - Frédéric Miserque
- CEA, DES, Service de la Corrosion et du Comportement des Matériaux dans leur Environnement (SCCME), Laboratoire d'Etude de la Corrosion Aqueuse (LECA), Université Paris-Saclay, F-91191, Gif-sur-Yvette, France.
| | - Baptiste Pibaleau
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91 191, Gif sur Yvette Cedex, France.
| | - Mathieu Pinault
- Université Paris-Saclay, CEA, CNRS, NIMBE, 91 191, Gif sur Yvette Cedex, France.
| | - Håkan Wallin
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; National Institute of Occupational Health, Pb 5330 Majorstuen, 0304, Oslo, Norway.
| | - Ulla Vogel
- National Research Centre for the Working Environment (NFA), 105 Lersø Parkallé, Copenhagen Ø, Denmark; DTU Food, Danish Technical University (DTU), Anker Engelunds Vej 1, 2800 Kgs. Lyngby, DK-2800 Kgs, Lyngby, Denmark.
| |
Collapse
|
30
|
Parvez MK, Al-Dosari MS, Tabish Rehman M, Alajmi MF, Alqahtani AS, AlSaid MS. New terpenic and phenolic compounds from Suaeda monoica reverse oxidative and apoptotic damages in human endothelial cells. Saudi Pharm J 2021; 29:1102-1111. [PMID: 34703363 PMCID: PMC8523353 DOI: 10.1016/j.jsps.2021.08.007] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 08/01/2021] [Indexed: 11/20/2022] Open
Abstract
Elevation in hyperglycemia-associated methylglyoxal level can trigger vascular endothelial cells oxidative stress and apoptosis. The present work assesses the cell proliferative, anti-oxidative and anti-apoptotic potential of Suaeda monoica derived four new terpenes: a norsesquaterpenol (normonisesquaterpenol), a monocyclic triterpenoid (suaedanortriterpene dione), an aromatic monoterpenic ester and a labdane-type norditerpenic xyloside as well as two new phenols: an alkylated β-naphthol and a β-methoxy naphthalene in cultured human umbilical vein endothelial cells (HUVEC). Of these, suaedanortriterpenedione (53.7%), normonisesquaterpenol (51.4%) and norditerpenic xyloside (48%) showed the most promising cell proliferative activities compared to others. Moreover, normonisesquaterpenol, norditerpenic xyloside and suaedanortriterpenedione efficiently reversed the oxidative and apoptotic cell damage via downregulation of capase-3/7 by 44.3%, 42.2% and 39.4%, respectively against dichlorofluorescin, whereas by 46.2%, 43.5% and 42.5%, respectively against methylglyoxal. Aminoguanidine, the reference drug inhibited caspase-3/7 activity by 56.2% and 54.7% through attenuation of dichlorofluorescin and methylglyoxal, respectively. Further in silico molecular docking analysis revealed formation of stable complexes between the tested compounds and caspase-3/7. Conclusively, we for the first time demonstrate the growth stimulatory, anti-oxidative and anti-apoptotic salutations of S. monoica derived novel compounds in human endothelial cells. This warrants their further assessment as vascular cell protective and rejuvenating therapeutics, especially in hyperglycemic conditions.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Ali S. Alqahtani
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mansour S. AlSaid
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
- Medicinal, Aromatic and Poisonous Plants Research Center, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
31
|
He SB, Lin MT, Yang L, Noreldeen HAA, Peng HP, Deng HH, Chen W. Protein-Assisted Osmium Nanoclusters with Intrinsic Peroxidase-like Activity and Extrinsic Antifouling Behavior. ACS APPLIED MATERIALS & INTERFACES 2021; 13:44541-44548. [PMID: 34494808 DOI: 10.1021/acsami.1c11907] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Extensive studies have laid the groundwork for understanding peroxidase-like nanozymes. However, improvements are still required before their practical applications. On one hand, it is significant to explore highly reactive nanozymes. On the other hand, it is necessary to avoid fouling formed on the surface of nanozymes, which will affect their activity and the results of H2O2 sensors or H2O2-related applications. Herein, a strategy is reported to design osmium nanoclusters (Os NCs) with the existence of bovine serum albumin (BSA) through biomineralization. BSA-Os NCs were found to possess intrinsic peroxidase-like activity with a high specific activity (6120 U/g). Studies also found that the catalytic activity of BSA-Os NCs was better than those of reported protein-assisted metal nanozymes (e.g., BSA-Pt NPs and BSA-Au NCs). More significantly, BSA has been confirmed as a protective shell to give Os NCs extrinsic antifouling property in some typical ions (e.g., Hg2+, Ag+, Pb2+, I-, Cr6+, Cu2+, Ce3+, S2-, etc.), saline (0-2 M), or protein (0-100 mg/mL) conditions. Under optimal conditions, a colorimetric sensor was established to realize a linear range of H2O2 from 1.25 to 200 μM with a low detection limit of 300 nM. On this basis, remarkable features enable a BSA-Os NCs-based colorimetric sensor to detect H2O2 from complex systems with clear color gradients. Together, this work highlights the advantages of protein-assisted Os nanozymes and provides a paragon for peroxidase-like nanozymes in H2O2-related applications.
Collapse
Affiliation(s)
- Shao-Bin He
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
- Department of Pharmacy, The Second Affiliated Hospital of Fujian Medical University, Quanzhou 362000, China
| | - Meng-Ting Lin
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Liu Yang
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hamada A A Noreldeen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| | - Wei Chen
- Fujian Key Laboratory of Drug Target Discovery and Structural and Functional Research, School of Pharmacy, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
32
|
Xiang H, You C, Liu W, Wang D, Chen Y, Dong C. Chemotherapy-enabled/augmented cascade catalytic tumor-oxidative nanotherapy. Biomaterials 2021; 277:121071. [PMID: 34450576 DOI: 10.1016/j.biomaterials.2021.121071] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2021] [Revised: 08/10/2021] [Accepted: 08/12/2021] [Indexed: 11/17/2022]
Abstract
Catalytic cascade transformations, which occur in spatially constrained tumor environment to generate therapeutic moieties from prodrugs or intrinsic species, are highly desirable for precise cancer therapy. Nevertheless, it is high challenging to engineer a cascade nanoreactor with tumor microenvironment (TME)-responsive capability for synergistic tumor therapy. Inspired by the biocatalytic cascades in biological processes, here, a tumor-specific nanoreactor was established to activate cascade reactions for oxidative stress-augmented chemotherapy by the integration of an artificial enzyme, Pt(IV)-based prodrug (Pt(IV)), with Cu(II)-based metal-organic frameworks (CuMOF). Upon internalization of CuMOF@Pt(IV) by tumor cells, in addition to chemotherapeutic effect, the activated cisplatin by glutathione (GSH) reduction is capable of acting as an artificial enzyme to elevate the hydrogen peroxide (H2O2) level through cascade reactions for augmenting the therapeutic efficacy of Cu+-mediated chemodynamic therapy (CDT). Meanwhile, CuMOF@Pt(IV) specifically deplete overexpressed GSH at tumor sites, thus amplifying tumor oxidative stress, and finally leading to augmented antitumor efficacy. The orchestrated cooperative effect of chemotherapy and oxidative stress presents splendid therapeutic efficacy on tumor-bearing mice with negligible adverse effects. Therefore, this cascade nanoreactor provides exciting opportunities to develop complementary therapeutic modalities for precise cancer treatment.
Collapse
Affiliation(s)
- Huijing Xiang
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Changwen You
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Weiwei Liu
- Chongqing Key Laboratory of Ultrasound Molecular Imaging, Ultrasound Department of the Second Affiliated Hospital of Chongqing Medical University, Chongqing, 400010, PR China
| | - Dongqiong Wang
- Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China
| | - Yu Chen
- State Key Laboratory of High Performance Ceramic and Superfine Microstructures, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, 200050, PR China; Materdicine Lab, School of Life Sciences, Shanghai University, Shanghai, 200444, PR China.
| | - Caihong Dong
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China.
| |
Collapse
|
33
|
Kessler A, Hedberg J, McCarrick S, Karlsson HL, Blomberg E, Odnevall I. Adsorption of Horseradish Peroxidase on Metallic Nanoparticles: Effects on Reactive Oxygen Species Detection Using 2',7'-Dichlorofluorescin Diacetate. Chem Res Toxicol 2021; 34:1481-1495. [PMID: 33856197 PMCID: PMC8220500 DOI: 10.1021/acs.chemrestox.0c00430] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Indexed: 11/28/2022]
Abstract
The fluorescent probe 2',7'-dichlorofluorescein diacetate (DCFH-DA) together with the enzyme horseradish peroxidase (HRP) is widely used in nanotoxicology to study acellular reactive oxygen species (ROS) production from nanoparticles (NPs). This study examined whether HRP adsorbs onto NPs of Mn, Ni, and Cu and if this surface process influences the extent of metal release and hence the ROS production measurements using the DCFH assay in phosphate buffered saline (PBS), saline, or Dulbecco's modified Eagle's medium (DMEM). Adsorption of HRP was evident onto all NPs and conditions, except for Mn NPs in PBS. The presence of HRP resulted in an increased release of copper from the Cu NPs in PBS and reduced levels of nickel from the Ni NPs in saline. Both metal ions in solution and the adsorption of HRP onto the NPs can change the activity of HRP and thus influence the ROS results. The effect of HRP on the NP reactivity was shown to be solution chemistry dependent. Most notable was the evident affinity/adsorption of phosphate toward the metal NPs, followed by a reduced adsorption of HRP, the concomitant reduction in released manganese from the Mn NPs, and increased levels of released metals from the Cu NPs in PBS. Minor effects were observed for the Ni NPs. The solution pH should be monitored since the release of metals can change the solution pH and the activity of HRP is known to be pH-dependent. It is furthermore essential that solution pH adjustments are made following the addition of NaOH during diacetyl removal of DCFH-DA. Even though not observed for the given exposure conditions of this study, released metal ions could possibly induce agglomeration or partial denaturation of HRP, which in turn could result in steric hindrance for H2O2 to reach the active site of HRP. This study further emphasizes the influence of HRP on the background kinetics, its solution dependence, and effects on measured ROS signals. Different ways of correcting for the background are highlighted, as this can result in different interpretations of generated results. The results show that adsorption of HRP onto the metal NPs influenced the extent of metal release and may, depending on the investigated system, result in either under- or overestimated ROS signals if used together with the DCFH assay. HRP should hence be used with caution when measuring ROS in the presence of reactive metallic NPs.
Collapse
Affiliation(s)
- Amanda Kessler
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
| | - Jonas Hedberg
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
| | - Sarah McCarrick
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Hanna L. Karlsson
- Institute
of Environmental Medicine, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Eva Blomberg
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
- RISE
Research Institute of Sweden, Division Bioeconomy
and Health, Material and Surface Design, Box 5604, SE-114 86 Stockholm, Sweden
| | - Inger Odnevall
- KTH
Royal Institute of Technology, Department of Chemistry, Division of Surface and Corrosion Science, 100 44 Stockholm, Sweden
- AIMES
- Center for the Advancement of Integrated Medical and Engineering
Sciences at Karolinska Institutet and KTH Royal Institute of Technology, 169 27 Stockholm, Sweden
- Department
of Neuroscience, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
34
|
Reiniers MJ, de Haan LR, Reeskamp LF, Broekgaarden M, van Golen RF, Heger M. Analysis and Optimization of Conditions for the Use of 2',7'-Dichlorofluorescein Diacetate in Cultured Hepatocytes. Antioxidants (Basel) 2021; 10:antiox10050674. [PMID: 33925917 PMCID: PMC8147027 DOI: 10.3390/antiox10050674] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Revised: 04/11/2021] [Accepted: 04/15/2021] [Indexed: 12/27/2022] Open
Abstract
Numerous liver pathologies encompass oxidative stress as molecular basis of disease. The use of 2',7'-dichlorodihydrofluorescein-diacetate (DCFH2-DA) as fluorogenic redox probe is problematic in liver cell lines because of membrane transport proteins that interfere with probe kinetics, among other reasons. The properties of DCFH2-DA were analyzed in hepatocytes (HepG2, HepaRG) to characterize methodological issues that could hamper data interpretation and falsely skew conclusions. Experiments were focused on probe stability in relevant media, cellular probe uptake/retention/excretion, and basal oxidant formation and metabolism. DCFH2-DA was used under optimized experimental conditions to intravitally visualize and quantify oxidative stress in real-time in HepG2 cells subjected to anoxia/reoxygenation. The most important findings were that: (1) the non-fluorescent DCFH2-DA and the fluorescent DCF are rapidly taken up by hepatocytes, (2) DCF is poorly retained in hepatocytes, and (3) DCFH2 oxidation kinetics are cell type-specific. Furthermore, (4) DCF fluorescence intensity was pH-dependent at pH < 7 and (5) the stability of DCFH2-DA in cell culture medium relied on medium composition. The use of DCFH2-DA to measure oxidative stress in cultured hepatocytes comes with methodological and technical challenges, which were characterized and solved. Optimized in vitro and intravital imaging protocols were formulated to help researchers conduct proper experiments and draw robust conclusions.
Collapse
Affiliation(s)
- Megan J. Reiniers
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (M.J.R.); (L.R.d.H.)
- Department of Surgery, Haaglanden Medisch Centrum, 2512 VA The Hague, The Netherlands
| | - Lianne R. de Haan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (M.J.R.); (L.R.d.H.)
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
| | - Laurens F. Reeskamp
- Department of Vascular Medicine, Amsterdam UMC, Location AMC, 1105 AZ Amsterdam, The Netherlands;
| | - Mans Broekgaarden
- Team Cancer Targets and Experimental Therapeutics, Department Microenvironment Cell Plasticity and Signaling, Institute for Advanced Biosciences, CNRS UMR 5309, Université de Grenoble-Alpes, Allée des Alpes, 38700 La Tronche, France;
- INSERM U 1209, Allée des Alpes, 38700 La Tronche, France
| | - Rowan F. van Golen
- Department of Gastroenterology and Hepatology, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands;
| | - Michal Heger
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, Department of Pharmaceutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; (M.J.R.); (L.R.d.H.)
- Laboratory of Experimental Oncology, Department of Pathology, Erasmus MC, 3015 GD Rotterdam, The Netherlands
- Department of Pharmaceutics, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, 3584 CG Utrecht, The Netherlands
- Correspondence: or ; Tel.: +86-138-19345926 or +31-30-2533966
| |
Collapse
|
35
|
Bardyn M, Allard J, Crettaz D, Rappaz B, Turcatti G, Tissot JD, Prudent M. Image- and Fluorescence-Based Test Shows Oxidant-Dependent Damages in Red Blood Cells and Enables Screening of Potential Protective Molecules. Int J Mol Sci 2021; 22:ijms22084293. [PMID: 33924276 PMCID: PMC8074894 DOI: 10.3390/ijms22084293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/09/2021] [Accepted: 04/15/2021] [Indexed: 12/23/2022] Open
Abstract
An increase of oxygen saturation within blood bags and metabolic dysregulation occur during storage of red blood cells (RBCs). It leads to the gradual exhaustion of RBC antioxidant protective system and, consequently, to a deleterious state of oxidative stress that plays a major role in the apparition of the so-called storage lesions. The present study describes the use of a test (called TSOX) based on fluorescence and label-free morphology readouts to simply and quickly evaluate the oxidant and antioxidant properties of various compounds in controlled conditions. Here, TSOX was applied to RBCs treated with four antioxidants (ascorbic acid, uric acid, trolox and resveratrol) and three oxidants (AAPH, diamide and H2O2) at different concentrations. Two complementary readouts were chosen: first, where ROS generation was quantified using DCFH-DA fluorescent probe, and second, based on digital holographic microscopy that measures morphology alterations. All oxidants produced an increase of fluorescence, whereas H2O2 did not visibly impact the RBC morphology. Significant protection was observed in three out of four of the added molecules. Of note, resveratrol induced diamond-shape “Tirocytes”. The assay design was selected to be flexible, as well as compatible with high-throughput screening. In future experiments, the TSOX will serve to screen chemical libraries and probe molecules that could be added to the additive solution for RBCs storage.
Collapse
Affiliation(s)
- Manon Bardyn
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
| | - Jérôme Allard
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
- Département de Génie Chimique, École Polytechnique de Montréal, Montréal, QC H3C 3A7, Canada
| | - David Crettaz
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
| | - Benjamin Rappaz
- Biomolecular Screening Facility (BSF), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Gerardo Turcatti
- Biomolecular Screening Facility (BSF), Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Jean-Daniel Tissot
- Faculté de Biologie et de Médecine, Université de Lausanne, CH-1011 Lausanne, Switzerland
| | - Michel Prudent
- Laboratoire de Recherche sur les Produits Sanguins, Transfusion Interrégionale CRS, CH-1066 Epalinges, Switzerland
- Faculté de Biologie et de Médecine, Université de Lausanne, CH-1011 Lausanne, Switzerland
- Center for Research and Innovation in Clinical Pharmaceutical Sciences, Institute of Pharmaceutical Sciences of Western Switzerland, University of Lausanne, CH-1011 Lausanne, Switzerland
| |
Collapse
|
36
|
In Vitro Photodynamic Effects of the Inclusion Nanocomplexes of Glucan and Chlorin e6 on Atherogenic Foam Cells. Int J Mol Sci 2020; 22:ijms22010177. [PMID: 33375356 PMCID: PMC7795021 DOI: 10.3390/ijms22010177] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 12/23/2020] [Accepted: 12/23/2020] [Indexed: 12/25/2022] Open
Abstract
Macrophage-derived foam cells play critical roles in the initiation and progression of atherosclerosis. Activated macrophages and foam cells are important biomarkers for targeted imaging and inflammatory disease therapy. Macrophages also express the dectin-1 receptor, which specifically recognizes β-glucan (Glu). Here, we prepared photoactivatable nanoagents (termed Glu/Ce6 nanocomplexes) by encapsulating hydrophobic chlorin e6 (Ce6) within the triple-helix structure of Glu in aqueous condition. Glu/Ce6 nanocomplexes generate singlet oxygen upon laser irradiation. The Glu/Ce6 nanocomplexes were internalized into foam cells and delivered Ce6 molecules into the cytoplasm of foam cells. Upon laser irradiation, they induced significant membrane damage and apoptosis of foam cells. These results suggest that Glu/Ce6 nanocomplexes can be a photoactivatable material for treating atherogenic foam cells.
Collapse
|
37
|
Application of PEG-CdSe@ZnS quantum dots for ROS imaging and evaluation of deoxynivalenol-mediated oxidative stress in living cells. Food Chem Toxicol 2020; 146:111834. [DOI: 10.1016/j.fct.2020.111834] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 10/19/2020] [Accepted: 10/23/2020] [Indexed: 12/23/2022]
|
38
|
Gonzalez T, Peiretti F, Defoort C, Borel P, Govers R. 2',7'-dichlorofluorescin-based analysis of Fenton chemistry reveals auto-amplification of probe fluorescence and albumin as catalyst for the detection of hydrogen peroxide. Biochem J 2020; 477:BCJ20200602. [PMID: 33216850 DOI: 10.1042/bcj20200602] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/10/2020] [Accepted: 11/20/2020] [Indexed: 11/17/2022]
Abstract
Fluorophore 2',7'-dichlorofluorescin (DCF) is the most frequently used probe for measuring oxidative stress in cells, but many aspects of DCF remain to be revealed. Here, DCF was used to study the Fenton reaction in detail, which confirmed that in a cell-free system, the hydroxyl radical was easily measured by DCF, accompanied by the consumption of H2O2 and the conversion of ferrous iron into ferric iron. DCF fluorescence was more specific for hydroxyl radicals than the measurement of thiobarbituric acid (TBA)-reactive 2-deoxy-D-ribose degradation products, which also detected H2O2. As expected, hydroxyl radical-induced DCF fluorescence was inhibited by iron chelation, anti-oxidants, and hydroxyl radical scavengers and enhanced by low concentrations of ascorbate. Remarkably, due to DCF fluorescence auto-amplification, Fenton reaction-induced DCF fluorescence steadily increased in time even when all ferrous iron was oxidized. Surprisingly, the addition of bovine serum albumin rendered DCF sensitive to H2O2 as well. Within cells, DCF appeared not to react directly with H2O2 but indirect via the formation of hydroxyl radicals, since H2O2-induced cellular DCF fluorescence was fully abolished by iron chelation and hydroxyl radical scavenging. Iron chelation in H2O2-stimulated cells in which DCF fluorescence was already increasing did not abrogate further increases in fluorescence, suggesting DCF fluorescence auto-amplification in cells. Collectively, these data demonstrate that DCF is a very useful probe to detect hydroxyl radicals and hydrogen peroxide and to study Fenton chemistry, both in test tubes as well as in intact cells, and that fluorescence auto-amplification is an intrinsic property of DCF.
Collapse
|
39
|
Smolková K, Mikó E, Kovács T, Leguina-Ruzzi A, Sipos A, Bai P. Nuclear Factor Erythroid 2-Related Factor 2 in Regulating Cancer Metabolism. Antioxid Redox Signal 2020; 33:966-997. [PMID: 31989830 PMCID: PMC7533893 DOI: 10.1089/ars.2020.8024] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Significance: Nuclear factor erythroid 2 (NFE2)-related factor 2 (NFE2L2, or NRF2) is a transcription factor predominantly affecting the expression of antioxidant genes. NRF2 plays a significant role in the control of redox balance, which is crucial in cancer cells. NRF2 activation regulates numerous cancer hallmarks, including metabolism, cancer stem cell characteristics, tumor aggressiveness, invasion, and metastasis formation. We review the molecular characteristics of the NRF2 pathway and discuss its interactions with the cancer hallmarks previously listed. Recent Advances: The noncanonical activation of NRF2 was recently discovered, and members of this pathway are involved in carcinogenesis. Further, cancer-related changes (e.g., metabolic flexibility) that support cancer progression were found to be redox- and NRF2 dependent. Critical Issues: NRF2 undergoes Janus-faced behavior in cancers. The pro- or antineoplastic effects of NRF2 are context dependent and essentially based on the specific molecular characteristics of the cancer in question. Therefore, systematic investigation of NRF2 signaling is necessary to clarify its role in cancer etiology. The biggest challenge in the NRF2 field is to determine which cancers can be targeted for better clinical outcomes. Further, large-scale genomic and transcriptomic studies are missing to correlate the clinical outcome with the activity of the NRF2 system. Future Directions: To exploit NRF2 in a clinical setting in the future, the druggable members of the NRF2 pathway should be identified. In addition, it will be important to study how the modulation of the NRF2 system interferes with cytostatic drugs and their combinations.
Collapse
Affiliation(s)
- Katarína Smolková
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Edit Mikó
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary
| | - Tünde Kovács
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Alberto Leguina-Ruzzi
- Department of Mitochondrial Physiology, Institute of Physiology of the Czech Academy of Sciences (IPHYS CAS), Prague, Czech Republic
| | - Adrienn Sipos
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Péter Bai
- Department of Medical Chemistry, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.,MTA-DE Lendület Laboratory of Cellular Metabolism, Debrecen, Hungary.,Faculty of Medicine, Research Center for Molecular Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
40
|
Wang Q, Zhang D, Feng J, Sun T, Li C, Xie X, Shi Q. Enhanced photodynamic inactivation for Gram-negative bacteria by branched polyethylenimine-containing nanoparticles under visible light irradiation. J Colloid Interface Sci 2020; 584:539-550. [PMID: 33129163 DOI: 10.1016/j.jcis.2020.09.106] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 09/22/2020] [Accepted: 09/26/2020] [Indexed: 12/29/2022]
Abstract
Antibiotic pollution has been a serious global public health concern in recent years, photodynamic inactivation is one of the most promising and innovative methods for antibacterial applications that avoids antibiotic abuse and minimizes risks of antibiotic resistance. However, limited by the weak interaction between the photosensitizers and Gram-negative bacteria, the effect of photodynamic inactivation cannot be fully exerted. Herein, photosensitizer chlorin e6-loaded polyethyleneimine-based micelle was constructed. The synergy of electrostatic and hydrophobic interactions between the nanoparticles and the bacterial surface promoted the anchoring of nanoparticles onto the bacteria, resulting in enhanced photoinactivation activities on Gram-negative bacteria. As expected, an eminent antibacterial effect was also observed on the Gram-positive bacteria Staphylococcus aureus. The cellular uptake results showed that photosensitizer was firmly anchored to the bacterial cell surface of Escherichia coli or Staphylococcus aureus by the introduction of branched polyethylenimine-containing nanoparticles. The light-triggered generation of reactive oxygen species, mainly singlet oxygen, from the membrane-bound nanoparticles caused irreversible damage to the bacterial outer membrane, achieving enhanced bactericidal efficiency than free photosensitizer. The study would provide an efficient and promising antimicrobial alternative to prevent overuse of antibiotics and have enormous potential for human healthcare and the environment remediation.
Collapse
Affiliation(s)
- Qian Wang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Dandan Zhang
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Jin Feng
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Tingli Sun
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Cailing Li
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China
| | - Xiaobao Xie
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China.
| | - Qingshan Shi
- Guangdong Institute of Microbiology, Guangdong Academy of Sciences, State Key Laboratory of Applied Microbiology Southern China, Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Open Laboratory of Applied Microbiology, Guangzhou 510070, PR China.
| |
Collapse
|
41
|
Parvez MK, Basudan OA, Noman OM, Al-Dosari MS, Alqasoumi SI. The first bioactivity studies of Acantholimon lycopodioides from high altitude Karakoram-Himalayan desert. Saudi J Biol Sci 2020; 27:2514-2520. [PMID: 32994707 PMCID: PMC7499106 DOI: 10.1016/j.sjbs.2020.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 04/03/2020] [Accepted: 04/03/2020] [Indexed: 10/31/2022] Open
Abstract
Couple of ethnopharmacological surveys in the Indian Ladakh and Pakistani Shigar valleys has reported the medicinal use of Acantholimon lycopodioides against cardiac and gastric disorders that however, remains without scientific rationale or experimental validations. Here, we assess the in vitro bio/therapeutic activities of A. lycopodioides extracts as well as chloroform, ethyl acetate, n-butanol and aqueous fractions. The in vitro β-carotene-linoleic acid bleaching and DPPH radical scavenging methods demonstrated a very high anti-oxidative property of chloroform and ethyl acetate fractions compared to others. Cell viability assay (MTT) on human cervical (HeLa), breast (MDA-MB321) and liver (HepG2) cancer cells revealed their differential cytotoxicity, except the chloroform fraction. Of these, the precipitate exerted highest cytotoxicity on HepG2 cells followed by aqueous fraction on MDA-MB321 cells. Notably, the non-cytotoxicity of chloroform fraction coincided with its highest anti-oxidative activity. Further, the chloroform fraction showed marked hepatoprotection (up to 84%) against 3'7'dichlorofluorescin triggered free radicals induced oxidative damage. Also, the hepatoprotective chloroform fraction mildly activated CYP3A4 in HepG2 cells (dual-luciferase assay). Moreover, the A. lycopodioides extracts and fractions showed differential anti-bacterial and anti-fungal activities. Of these, while S. aureus was more sensitive to the water-insoluble extract, ethyl acetate fraction showed moderate activity against E. coli and C. albicans. On the other hand, the chloroform fraction showed promising activity against S. Aureus, C. albicans, P. vulgaris and E. faecalis. In conclusion, our data for the first time, demonstrated promising anti-oxidative, hepatoprotective, anti-cancer, anti-microbial and CYP3A4 activating salutations of A. lycopodioides. This warrants further studies towards isolation and identification of its therapeutically active principles.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar A. Basudan
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Omar M. Noman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Saleh I. Alqasoumi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
42
|
Sikora A, Zielonka J, Dębowska K, Michalski R, Smulik-Izydorczyk R, Pięta J, Podsiadły R, Artelska A, Pierzchała K, Kalyanaraman B. Boronate-Based Probes for Biological Oxidants: A Novel Class of Molecular Tools for Redox Biology. Front Chem 2020; 8:580899. [PMID: 33102447 PMCID: PMC7545953 DOI: 10.3389/fchem.2020.580899] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 08/12/2020] [Indexed: 01/21/2023] Open
Abstract
Boronate-based molecular probes are emerging as one of the most effective tools for detection and quantitation of peroxynitrite and hydroperoxides. This review discusses the chemical reactivity of boronate compounds in the context of their use for detection of biological oxidants, and presents examples of the practical use of those probes in selected chemical, enzymatic, and biological systems. The particular reactivity of boronates toward nucleophilic oxidants makes them a distinct class of probes for redox biology studies. We focus on the recent progress in the design and application of boronate-based probes in redox studies and perspectives for further developments.
Collapse
Affiliation(s)
- Adam Sikora
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jacek Zielonka
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Karolina Dębowska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Michalski
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Renata Smulik-Izydorczyk
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Jakub Pięta
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Radosław Podsiadły
- Faculty of Chemistry, Institute of Polymer and Dye Technology, Lodz University of Technology, Lodz, Poland
| | - Angelika Artelska
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Karolina Pierzchała
- Faculty of Chemistry, Institute of Applied Radiation Chemistry, Lodz University of Technology, Lodz, Poland
| | - Balaraman Kalyanaraman
- Department of Biophysics and Free Radical Research Center, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
43
|
Ivanova A, Gerasimova E, Gazizullina E. Study of Antioxidant Properties of Agents from the Perspective of Their Action Mechanisms. Molecules 2020; 25:E4251. [PMID: 32947948 PMCID: PMC7570667 DOI: 10.3390/molecules25184251] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/13/2020] [Accepted: 09/15/2020] [Indexed: 11/16/2022] Open
Abstract
The creation and analysis of a large variety of existing methods for the evaluation of integrated antioxidant properties are quite relevant in connection with a range of biological mechanisms of the antioxidants (AO) action. In this work, the existing methods are correlated with mechanisms of antioxidant action. It is shown that the results obtained by various methods are mainly incomparable. This can be connected with the implementation of various mechanisms of antioxidant action in methods. The analysis of the literature data presented in this review indicates the difficulty of creating a universal method and the feasibility of using integrated approaches based on the use of several methods that implement and combine various mechanisms of the chemical conversion of antioxidants. This review describes methods for studying the chelating ability of antioxidants, except for methods based on electron and hydrogen atom transfer reactions, which are currently not widely covered in modern literature. With the description of each mechanism, special attention is paid to electrochemical methods, as the interaction of active oxygen metabolites of radical and non-radical nature with antioxidants has an electron/proton/donor-acceptor nature, which corresponds to the nature of electrochemical methods and suggests that they can be used to study the interaction.
Collapse
Affiliation(s)
- Alla Ivanova
- Chemical Technological Institute, Ural Federal University Named after the First President of Russia B. N. Yeltsin, 620002 Ekaterinburg, Russia; (E.G.); (E.G.)
| | | | | |
Collapse
|
44
|
Zhang T, Wang T, Mejia-Tickner B, Kissel J, Xie X, Huang CH. Inactivation of Bacteria by Peracetic Acid Combined with Ultraviolet Irradiation: Mechanism and Optimization. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:9652-9661. [PMID: 32643925 DOI: 10.1021/acs.est.0c02424] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Peracetic acid (PAA) is an emerging disinfectant for municipal wastewater treatment owing to good biocidal effects and limited harmful by-product formation. This study investigated the inactivation of Gram-negative Escherichia coli (E. coli) and Gram-positive Enterococcus durans (E. durans) and Staphylococcus epidermidis (S. epidermidis) by PAA combined with UV concurrently (UV/PAA) or sequentially (PAA-UV/PAA) for enhanced disinfection. Under UV/PAA, the contributions of different mechanisms (UV, PAA, reactive radicals (mainly •OH and CH3C(O)OO•), and the synergistic effect of all mechanisms involved) to the overall inactivation were quantitatively assessed. Results revealed that radicals played a moderate role in the enhanced disinfection, while the synergistic effect presented a greater contribution, which could be partially linked to the diffusion of PAA into the cells as evidenced for the first time by a fluorescence microscopic method. Taking advantage of PAA diffusion into bacteria, pre-exposure of PAA followed by UV/PAA was demonstrated to yield the highest disinfection efficiency. Indeed, compared to UV/PAA, PAA-UV/PAA could achieve additional 4.7-5.4, 4.1-5.3, and 2.9-3.4 log inactivation of E. coli, E. durans, and S. epidermidis, respectively, in clean water and secondary/tertiary wastewater effluents when the same amounts of PAA and UV doses were applied in both approaches. Bacterial regrowth tests confirmed minimal regrowth potential after the disinfection.
Collapse
Affiliation(s)
- Tianqi Zhang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ting Wang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Benjamin Mejia-Tickner
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Jessica Kissel
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Xing Xie
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| | - Ching-Hua Huang
- School of Civil and Environmental Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, United States
| |
Collapse
|
45
|
Barium tungstate nanoparticles to enhance radiation therapy against cancer. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102230. [DOI: 10.1016/j.nano.2020.102230] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 02/29/2020] [Accepted: 05/26/2020] [Indexed: 11/24/2022]
|
46
|
Effects of Functionalized Fullerenes on ROS Homeostasis Determine Their Cytoprotective or Cytotoxic Properties. NANOMATERIALS 2020; 10:nano10071405. [PMID: 32707664 PMCID: PMC7407884 DOI: 10.3390/nano10071405] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 07/11/2020] [Accepted: 07/17/2020] [Indexed: 02/06/2023]
Abstract
BACKGROUND Functionalized fullerenes (FF) can be considered regulators of intracellular reactive oxygen species (ROS) homeostasis; their direct oxidative damage-as well as regulation of oxidant enzymes and signaling pathways-should be considered. METHODS Uptake of two water-soluble functionalized C70 fullerenes with different types of aromatic addends (ethylphenylmalonate and thienylacetate) in human fetal lung fibroblasts, intracellular ROS visualization, superoxide scavenging potential, NOX4 expression, NRF2 expression, oxidative DNA damage, repair genes, cell proliferation and cell cycle were studied. RESULTS & CONCLUSION The intracellular effects of ethylphenylmalonate C70 derivative (FF1) can be explained in terms of upregulated NOX4 activity. The intracellular effects of thienylacetate C70 derivative (FF2) can be probably resulted from its superoxide scavenging potential and inhibition of lipid peroxidation. FF1 can be considered a NOX4 upregulator and potential cytotoxicant and FF2, as a superoxide scavenger and a potential cytoprotector.
Collapse
|
47
|
Parvez MK, Al-Dosari MS, Ahmed S, Rehman MT, Al-Rehaily AJ, Alajmi MF. Oncoglabrinol C, a new flavan from Oncocalyx glabratus protects endothelial cells against oxidative stress and apoptosis, and modulates hepatic CYP3A4 activity. Saudi Pharm J 2020; 28:648-656. [PMID: 32550794 PMCID: PMC7292873 DOI: 10.1016/j.jsps.2020.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 04/14/2020] [Indexed: 12/30/2022] Open
Abstract
Active herbal or natural compounds have high chemical diversity and specificity than synthetic drugs. Recently, we have validated the hypoglycemic salutation of Oncocalyx glabratus in rodent model, and demonstrated the activation of PPARα/γ by its newly ioslated flavan derivative Oncoglabrinol C (5,3'-Dihydroxyflavan 7-4'-O-digallate) in liver cells (HepG2). Here we evaluated the potential of Oncoglabrinol C against Dichlorofluorescin (DCFH) and Methylglyoxal (MGO) induced endothelial cells (HUVEC) oxidative and apoptotic damage, including activation of PXR-mediated hepatic CYP3A4. Our MTT assay showed protection of ~57% and ~63.5% HUVEC cells by 10 and 20 μg/ml doses of Oncoglabrinol C, respectively through attenuating DCFH triggered free-radicals. Also, the two doses effectively protected ~53% and ~65.5% cells, respectively by reversing MGO toxicity. In DCFH and MGO treated cells, Oncoglabrinol C (20 μg/ml) effectively downregulated caspase 3/7 activity by ~33% and ~43.5%, respectively. Moreover, in reporter gene (dual-luciferase) assay, Oncoglabrinol C (20 μg/ml) moderately activated hepatic CYP3A4. Molecular docking of Oncoglabrinol C indicated its strong interactions with cellular caspase 3/7, PPARα/γ and PXR proteins, which supported its anti-apoptotic (antagonistic) as well as pro-hypoglycemic and PXR/CYP activating (agonistic) activities. Taken together, our findings demonstrated the potential of Oncoglabrinol C in reversing the endothelial oxidative and apoptotic damage as well as in the activation of hepatic CYP3A4. This warrants further evaluations of Oncoglabrinol C and related compounds towards developing effective and safe drugs against diabetes associated cardiovascular disorders.
Collapse
Affiliation(s)
- Mohammad K. Parvez
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed S. Al-Dosari
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Sarfaraz Ahmed
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Md. Tabish Rehman
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Adnan J. Al-Rehaily
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed F. Alajmi
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| |
Collapse
|
48
|
Ghéczy N, Sasaki K, Yoshimoto M, Pour-Esmaeil S, Kröger M, Stano P, Walde P. A two-enzyme cascade reaction consisting of two reaction pathways. Studies in bulk solution for understanding the performance of a flow-through device with immobilised enzymes. RSC Adv 2020; 10:18655-18676. [PMID: 35518281 PMCID: PMC9053938 DOI: 10.1039/d0ra01204a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 04/29/2020] [Indexed: 12/17/2022] Open
Abstract
Enzyme-catalysed cascade reactions in flow-through systems with immobilised enzymes currently are of great interest for exploring their potential for biosynthetic and bioanalytical applications. Basic studies in this field often aim at understanding the stability of the immobilised enzymes and their catalytic performance, for example, in terms of yield of a desired reaction product, analyte detection limit, enzyme stability or reaction reproducibility. In the work presented, a cascade reaction involving the two enzymes bovine carbonic anhydrase (BCA) and horseradish peroxidase (HRP) – with hydrogen peroxide (H2O2) as HRP “activator” – was first investigated in great detail in bulk solution at pH = 7.2. The reaction studied is the hydrolysis and oxidation of 2′,7′-dichlorodihydrofluorescein diacetate (DCFH2-DA) to 2′,7′-dichlorofluorescein (DCF), which was found to proceed along two reaction pathways. This two-enzyme cascade reaction was then applied for analysing the performance of BCA and HRP immobilised in glass fiber filters which were placed inside a filter holder device through which a DCFH2-DA/H2O2 substrate solution was pumped. Comparison was made between (i) co-immobilised and (ii) sequentially immobilised enzymes (BCA first, HRP second). Significant differences for the two arrangements in terms of measured product yield (DCF) could be explained based on quantitative UV/vis absorption measurements carried out in bulk solution. We found that the lower DCF yield observed for sequentially immobilised enzymes originates from a change in one of the two possible reaction pathways due to enzyme separation, which was not the case for enzymes that were co-immobilised (or simultaneously present in the bulk solution experiments). The higher DCF yield observed for co-immobilised enzymes did not originate from a molecular proximity effect (no increased oxidation compared to sequential immobilisation). A cascade reaction catalysed by bovine carbonic anhydrase (BCA) and horseradish peroxidase (HRP) proceeds over two possible pathways, which explains differences in product formation for differently immobilised enzymes in flow-through reactions.![]()
Collapse
Affiliation(s)
- Nicolas Ghéczy
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Kai Sasaki
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Makoto Yoshimoto
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland .,Department of Applied Chemistry, Yamaguchi University Tokiwadai 2-16-1 Ube 755-8611 Japan
| | - Sajad Pour-Esmaeil
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| | - Martin Kröger
- Polymer Physics, Department of Materials, ETH Zürich Leopold-Ruzicka-Weg 4 CH-8093 Zürich Switzerland
| | - Pasquale Stano
- Department of Biological and Environmental Sciences and Technologies (DiSTeBA), University of Salento Ecotekne 73100 Lecce Italy
| | - Peter Walde
- Laboratory for Multifunctional Materials, Department of Materials, ETH Zürich Vladimir-Prelog-Weg 5 CH-8093 Zürich Switzerland
| |
Collapse
|
49
|
He SB, Balasubramanian P, Chen ZW, Zhang Q, Zhuang QQ, Peng HP, Deng HH, Xia XH, Chen W. Protein-Supported RuO 2 Nanoparticles with Improved Catalytic Activity, In Vitro Salt Resistance, and Biocompatibility: Colorimetric and Electrochemical Biosensing of Cellular H 2O 2. ACS APPLIED MATERIALS & INTERFACES 2020; 12:14876-14883. [PMID: 32155045 DOI: 10.1021/acsami.0c00778] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Protein-supported nanoparticles have a great significance in scientific and nanotechnology research because of their "green" process, low cost-in-use, good biocompatibility, and some interesting properties. Ruthenium oxide nanoparticles (RuO2NPs) have been considered to be an important member in nanotechnology research. However, the biosynthetic approach of RuO2NPs is relatively few compared to those of other nanoparticles. To address this challenge, this work presented a new way for RuO2NP synthesis (BSA-RuO2NPs) supported by bovine serum albumin (BSA). BSA-RuO2NPs are confirmed to exert peroxidase-like activity, electrocatalytic activity, in vitro salt resistance (2 M NaCl), and biocompatibility. Results indicate that BSA-RuO2NPs have higher affinity binding for 3,3',5,5'-tetramethylbenzidine or H2O2 than bare RuO2NPs. Moreover, BSA turns out to be a crucial factor in promoting the stability of RuO2NPs. Taking the advantages of these improved properties, we established colorimetric (linear range from 2 to 800 μM, a limit of detection of 1.8 μM) and electrochemical (linear range from 0.4 to 3850 μM, a limit of detection of 0.18 μM) biosensors for monitoring in situ H2O2 secretion from living MCF-7 cells. Herein, this work offers a new biosynthesis strategy to obtain BSA-RuO2NPs and sheds light on the sensitive biosensors to monitor the H2O2 secreted from living cells for promising applications in the fields of nanotechnology, biology, biosensors, and medicine.
Collapse
Affiliation(s)
- Shao-Bin He
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Paramasivam Balasubramanian
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Zhi-Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qi Zhang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Qiong-Qiong Zhuang
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hua-Ping Peng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Hao-Hua Deng
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| | - Xing-Hua Xia
- State Key Laboratory of Analytical Chemistry for Life Science and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Wei Chen
- Higher Educational Key Laboratory for Nano Biomedical Technology of Fujian Province, Department of Pharmaceutical Analysis, Fujian Medical University, Fuzhou 350004, China
| |
Collapse
|
50
|
Han Y, Ouyang J, Li Y, Wang F, Jiang JH. Engineering H 2O 2 Self-Supplying Nanotheranostic Platform for Targeted and Imaging-Guided Chemodynamic Therapy. ACS APPLIED MATERIALS & INTERFACES 2020; 12:288-297. [PMID: 31834761 DOI: 10.1021/acsami.9b18676] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Developing highly efficient chemodynamic therapy (CDT)-based theranostic technology for cancer treatment is highly desired but still challenging. A novel nanotheranostic platform is constructed for enhanced CDT by engineering hybrid CaO2 and Fe3O4 nanoparticles with a hyaluronate acid (HA) stabilizer and NIR fluorophore label. This design not only enables the nanotheranostic agent to afford highly efficient CDT against tumor cells but also confers NIR fluorescence (NIRF) and magnetic resonance (MR) bimodal imaging for in vivo visualization of CDT. Moreover, the use of the HA stabilizer allows for the facile synthesis of the nanotheranostic agent with excellent biocompatibility and active targetability. The nanotheranaostic agent possesses a high capacity of self-supplying H2O2 and producing •OH in acidic conditions, while retaining the desired stability under physiological conditions. It also demonstrates high selectivity to tumor cells via CDT with minimized toxicity to normal cells. In vivo studies reveal that our nanotheranaostic agent exhibits efficacious tumor growth inhibition via a CDT mechanism with favorable biosafety. Moreover, in vivo visualization of the CDT progress via NIRF and MR bimodal imaging demonstrates specific targeting and treatment of tumors. The developed H2O2 self-supplying, active targeting, and bimodal imaging nanotheranostic platform holds the potential as a highly efficient strategy for CDT of cancer.
Collapse
Affiliation(s)
- Yajing Han
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , P. R. China
| | - Jiang Ouyang
- College of Chemistry and Chemical Engineering , Central South University , Changsha , Hunan 410083 , P. R. China
| | - Yazhou Li
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , P. R. China
| | - Fenglin Wang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , P. R. China
| | - Jian-Hui Jiang
- State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering , Hunan University , Changsha , Hunan 410082 , P. R. China
| |
Collapse
|