1
|
Howard SL, Beaudin SA, Strupp BJ, Smith DR. Maternal choline supplementation lessens the behavioral dysfunction produced by developmental manganese exposure in a rodent model of ADHD. Neurotoxicol Teratol 2024; 102:107337. [PMID: 38423398 DOI: 10.1016/j.ntt.2024.107337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/21/2024] [Accepted: 02/26/2024] [Indexed: 03/02/2024]
Abstract
Studies in children have reported associations between elevated manganese (Mn) exposure and ADHD-related symptoms of inattention, impulsivity/hyperactivity, and psychomotor impairment. Maternal choline supplementation (MCS) during pregnancy/lactation may hold promise as a protective strategy because it has been shown to lessen cognitive dysfunction caused by numerous early insults. Our objectives were to determine whether (1) developmental Mn exposure alters behavioral reactivity/emotion regulation, in addition to impairing learning, attention, impulse control, and sensorimotor function, and (2) MCS protects against these Mn-induced impairments. Pregnant Long-Evans rats were given standard diet, or a diet supplemented with additional choline throughout gestation and lactation (GD 3 - PND 21). Male offspring were exposed orally to 0 or 50 mg Mn/kg/day over PND 1-21. In adulthood, animals were tested in a series of learning, attention, impulse control, and sensorimotor tasks. Mn exposure caused lasting dysfunction in attention, reactivity to errors and reward omission, learning, and sensorimotor function, recapitulating the constellation of symptoms seen in ADHD children. MCS lessened Mn-induced attentional dysfunction and partially normalized reactivity to committing an error or not receiving an expected reward but provided no protection against Mn-induced learning or sensorimotor dysfunction. In the absence of Mn exposure, MCS produces lasting offspring benefits in learning, attention, and reactivity to errors. To conclude, developmental Mn exposure produces a constellation of deficits consistent with ADHD symptomology, and MCS offered some protection against the adverse Mn effects, adding to the evidence that maternal choline supplementation is neuroprotective for offspring and improves offspring cognitive functioning.
Collapse
Affiliation(s)
- Shanna L Howard
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Stephane A Beaudin
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, USA
| | - Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, USA.
| |
Collapse
|
2
|
Howard SL, Beaudin SA, Strupp BJ, Smith DR. Maternal choline supplementation lessens the behavioral dysfunction produced by developmental manganese exposure in a rodent model of ADHD. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.23.546356. [PMID: 37425833 PMCID: PMC10327095 DOI: 10.1101/2023.06.23.546356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
Studies in children have reported associations between elevated manganese (Mn) exposure and ADHD-related symptoms of inattention, impulsivity/hyperactivity, and psychomotor impairment. Maternal choline supplementation (MCS) during pregnancy/lactation may hold promise as a protective strategy because it has been shown to lessen cognitive dysfunction caused by numerous early insults. Our objectives were to determine whether (1) developmental Mn exposure alters behavioral reactivity/emotion regulation, in addition to impairing learning, attention, impulse control, and sensorimotor function, and (2) MCS protects against these Mn-induced impairments. Pregnant Long-Evans rats were given standard diet, or a diet supplemented with additional choline throughout gestation and lactation (G3 - PND 21). Male offspring were exposed orally to 0 or 50 mg Mn/kg/day over PND 1-21. In adulthood, animals were tested in a series of learning, attention, impulse control, and sensorimotor tasks. Mn exposure caused lasting dysfunction in attention, reactivity to errors and reward omission, learning, and sensorimotor function, recapitulating the constellation of symptoms seen in ADHD children. MCS lessened Mn-induced attentional dysfunction and partially normalized reactivity to committing an error or not receiving an expected reward but provided no protection against Mn-induced learning or sensorimotor dysfunction. In the absence of Mn exposure, MCS produces lasting offspring benefits in learning, attention, and reactivity to errors. To conclude, developmental Mn exposure produces a constellation of deficits consistent with ADHD symptomology, and MCS offered some protection against the adverse Mn effects, adding to the evidence that maternal choline supplementation is neuroprotective for offspring and improves offspring cognitive functioning. Highlights Developmental Mn exposure causes lasting dysfunction consistent with ADHD symptomology.Maternal choline supplementation (MCS) protects against Mn-induced deficits in attention and behavioral reactivity.MCS in control animals produces lasting benefits to offspring in learning, attention, and error reactivity.These data support efforts to increase choline intake during pregnancy, particularly for individuals at risk of neurotoxicant exposure.
Collapse
|
3
|
Smith DR, Strupp BJ. Animal Models of Childhood Exposure to Lead or Manganese: Evidence for Impaired Attention, Impulse Control, and Affect Regulation and Assessment of Potential Therapies. Neurotherapeutics 2023; 20:3-21. [PMID: 36853434 PMCID: PMC10119373 DOI: 10.1007/s13311-023-01345-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/18/2023] [Indexed: 03/01/2023] Open
Abstract
Behavioral disorders involving attention and impulse control dysfunction, such as ADHD, are among the most prevalent disorders in children and adolescents, with significant impact on their lives. The etiology of these disorders is not well understood, but is recognized to be multifactorial, with studies reporting associations with polygenic and environmental risk factors, including toxicant exposure. Environmental epidemiological studies, while good at establishing associations with a variety of environmental and genetic risk factors, cannot establish causality. Animal models of behavioral disorders, when properly designed, can play an essential role in establishing causal relationships between environmental risk factors and a disorder, as well as provide model systems for elucidating underlying neural mechanisms and testing therapies. Here, we review how animal model studies of developmental lead or manganese exposure have been pivotal in (1) establishing a causal relationship between developmental exposure and lasting dysfunction in the domains of attention, impulse control, and affect regulation, and (2) testing the efficacy of specific therapeutic approaches for alleviating the lasting deficits. The lead and manganese case studies illustrate how animal models can advance knowledge in ways that are not possible in human studies. For example, in contrast to the Treatment of Lead Poisoned Children (TLC) human clinical trial evaluating succimer chelation efficacy to improve cognitive functioning in lead-exposed children, our developmental lead exposure animal model showed that succimer chelation can produce lasting cognitive benefits if chelation sufficiently reduces brain lead levels. In addition, this study revealed that succimer treatment in the absence of lead exposure produces lasting cognitive dysfunction, highlighting potential risks of chelation in off-label uses, such as the treatment of autistic children without a history of lead exposure. Our animal model of developmental manganese exposure has demonstrated that manganese can cause lasting attentional and sensorimotor deficits, akin to an ADHD-inattentive behavioral phenotype, thereby providing insights into the role of environmental exposures as contributors to ADHD. These studies have also shown that oral methylphenidate (Ritalin) can fully alleviate the deficits produced by early developmental Mn exposure. Future work should continue to focus on the development and use of animal models that appropriately recapitulate the complex behavioral phenotypes of behavioral disorders, in order to determine the mechanistic basis for the behavioral deficits caused by developmental exposure to environmental toxicants, and the efficacy of existing and emerging therapies.
Collapse
Affiliation(s)
- Donald R Smith
- Department of Microbiology and Environmental Toxicology, University of California, Santa Cruz, CA, 95060, USA.
| | - Barbara J Strupp
- Division of Nutritional Sciences and Department of Psychology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
4
|
Lead exposure of rats during and after pregnancy induces anti-myelin proteolytic activity: a potential mechanism for lead-induced neurotoxicity. Toxicology 2022; 472:153179. [DOI: 10.1016/j.tox.2022.153179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 04/01/2022] [Accepted: 04/10/2022] [Indexed: 11/21/2022]
|
5
|
Goodchild CG, Beck ML, VanDiest I, Czesak FN, Lane SJ, Sewall KB. Male zebra finches exposed to lead (Pb) during development have reduced volume of song nuclei, altered sexual traits, and received less attention from females as adults. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 210:111850. [PMID: 33421715 DOI: 10.1016/j.ecoenv.2020.111850] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/18/2020] [Accepted: 12/21/2020] [Indexed: 06/12/2023]
Abstract
Lead (Pb) is a pervasive global contaminant that interferes with sensitive windows for neurological development and causes oxidative damage to tissues. The effects of moderate and high exposure to Pb have been well-studied in birds, but whether low-level early-life exposure to Pb influences adult phenotype remains unclear. Female songbirds use a male's song and coloration to discriminate between high- and low-quality males. Therefore, if early-life exposure to Pb disrupts song learning ability or shifts the allocation of antioxidant pigments away from colorful secondary sexual traits, male birds exposed to Pb may be less attractive to females. We exposed developing zebra finches (Taeniopygia guttata) to Pb-contaminated drinking water (100 or 1000 parts per billion [ppb]) after hatching (days 0-100). Once male finches reached adulthood (120-150 days post hatch), we measured song learning ability, coloration of bill and cheek patches, and volume of song nuclei in the brain. We also measured female preference for Pb-exposed males relative to control males. Finally, we measured motoric and spatial cognitive performance in male and female finches to assess whether cognitive traits differed in their sensitivity to Pb exposure. Male zebra finches exposed to 1000 ppb Pb had impaired song learning ability, reduced volume of song nuclei, bills with less redness and received less attention from females. Additionally, Pb exposure impaired motoric performance in both male and female finches but did not affect performance in a spatial cognitive task. Adult finches exposed to Pb-contaminated water had higher blood-Pb levels, though in all cases blood-Pb levels were below 7.0 µg dL-1. This study suggests that low-level exposure to Pb contributes to cognitive deficits that persist into adulthood and may indirectly influence fitness by altering secondary sexual traits and reducing male attractiveness.
Collapse
Affiliation(s)
- Christopher G Goodchild
- Virgina Tech, Dept. of Biology, Blacksburg, VA, USA; University of Central Oklahoma, Dept. of Biology, Edmond, OK, USA.
| | - Michelle L Beck
- Virgina Tech, Dept. of Biology, Blacksburg, VA, USA; Rivier University, Dept. of Biology, Nashua, NH, USA
| | | | | | | | | |
Collapse
|
6
|
Soetrisno FN, Delgado-Saborit JM. Chronic exposure to heavy metals from informal e-waste recycling plants and children's attention, executive function and academic performance. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 717:137099. [PMID: 32092800 DOI: 10.1016/j.scitotenv.2020.137099] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Revised: 01/28/2020] [Accepted: 02/02/2020] [Indexed: 05/14/2023]
Abstract
E-waste contains valuable metals that require appropriate waste management plans. However, rudimentary e-waste processing methods are a source of heavy metals environmental pollution. This study has characterised concentrations of heavy metals in soil (n = 10), water (n = 10) and hair (n = 44) of children in areas surrounding Jakarta (Indonesia), where e-waste is being or has been conducted in the past, and in a reference unexposed site. Chronic exposure to Mn, Pb, Hg, As and Cd and its associations with attention and executive function, characterised with the Trail Making Test (TMT), along with academic performance scores was conducted using multivariate regression analysis. Models were adjusted for age, gender, parental education, environmental tobacco smoke and residential traffic. Lead (3653 ± 3355 mg/kg), cadmium (3.4 ± 0.9 mg/kg) and mercury (15.2 ± 28.5 mg/kg) concentrations from soil and manganese concentrations in water (1.43 ± 0.64 mg/L) in the exposed sites were higher than current regulations. Heavy metal concentrations in hair of children living near e-waste facilities was higher than for children living in non-exposed areas (Pb: 0.155 ± 0.187 vs 0.0729 ± 0.08 mg/g; Mn: 0.130 ± 0.212 vs 0.018 ± 0.045 mg/g; Hg: 0.008 ± 0.0042 vs 0.002 ± 0.0011 mg/g) suggesting chronic exposure to heavy metals. Manganese exposure was associated with worse cognitive performance in the domains of attention (TMT-A score: 66 s, 95% CI 0.09, 132), executive function (TMT-B score: 105 s, 95% CI 11.5, 198) and social sciences (-29%, 95% CI -54, -4.7) (per unit of Mn in hair mg/g). These results suggest that informal e-waste activities contribute to local heavy metal soil contamination, and could be an important source of metal exposure to children living in the vicinity of these facilities with putative impacts on their cognitive performance. E-waste management regulation and remediation programmes should be implemented to reduce environmental pollution and associated health effects.
Collapse
Affiliation(s)
- Fitria Nurbaidah Soetrisno
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; BP Berau Ltd, Tangguh LNG, West Papua, Indonesia
| | - Juana Maria Delgado-Saborit
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK; ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain.
| |
Collapse
|
7
|
Rafiee A, Delgado-Saborit JM, Sly PD, Quémerais B, Hashemi F, Akbari S, Hoseini M. Environmental chronic exposure to metals and effects on attention and executive function in the general population. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 705:135911. [PMID: 31838411 DOI: 10.1016/j.scitotenv.2019.135911] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2019] [Revised: 10/16/2019] [Accepted: 12/01/2019] [Indexed: 05/19/2023]
Abstract
Heavy metals are neurotoxic, associated with brain dysfunction, and have been linked with cognitive decline in adults. This study was aimed to characterize chronic exposure to metals (Cd, Be, Co, Hg, Sn, V, Al, Ba, Cr, Cu, Fe, Li, Mn, Ni, Pb, and Zn) and metalloids (As, B, Sb) and assess its impact on cognitive performance of Tehran's residents, capital of Iran. Scalp hair samples gathered from 200 volunteered participants (110 men and 90 women), aged 14-70 years and quantified by inductively coupled plasma atomic emission spectroscopy (ICP-OES). Attention and executive function, two measures of cognitive performance, were characterized using the trail making test (TMT) part A and B, respectively. Mental flexibility was characterized as the Delta TMT B-A scores and cognitive efficiency or dissimulation as the ration between TMT B and A scores. A comprehensive questionnaire was used to gather information on demographic and socioeconomic as well as lifestyle and health status. The highest and lowest mean concentrations were observed for B (325 μg/g) and As (0.29 μg/g), respectively. Results indicated that chronic metal exposure measured in hair changed significantly based on gender and age (p < 0.05). The levels of Cr, Fe, Ni, Si, Hg, Pb and B were significantly higher in males' hair, whereas those of Ag and Ba were greater in females' hair (p < 0.05). The results of the cognitive TMT test were significantly different between gender and age groups (p < 0.05). Moreover, results revealed that As, Hg, Mn, and Pb levels in hair were significantly associated with poorer participants' performance scores in the TMT test (p < 0.05). Age, gender, cigarette smoking, water-pipe smoking, traffic density in the area of residence, and dental amalgam filling were significant factors affecting the TMT test scores. The results suggest that chronic exposure to metals has detrimental effects on attention, executive function, mental flexibility and cognitive efficiency.
Collapse
Affiliation(s)
- Ata Rafiee
- Department of Medicine, University of Alberta, Edmonton, AB, Canada.
| | - Juana Maria Delgado-Saborit
- ISGlobal Barcelona Institute for Global Health, Barcelona Biomedical Research Park, Barcelona, Spain; Population Health and Environmental Sciences, Analytical Environmental and Forensic Sciences, King's College London, United Kingdom; Division of Environmental Health & Risk Management, School of Geography, Earth & Environmental Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Peter D Sly
- Children's Health and Environment Program, Child Health Research Centre, The University of Queensland, South Brisbane, Australia
| | | | - Fallah Hashemi
- Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sadaf Akbari
- Trauma and Injury Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hoseini
- Research Center for Health Sciences, Institute of Health, Department of Environmental Health, School of Health, Shiraz University of Medical Sciences, Shiraz, Iran.
| |
Collapse
|
8
|
Douglas DB, Waziry R, McCarthy EP, Tadesse AW, Feyssa MD, Kawooya M, Sudfeld CR. Meeting the World Health Organization Maternal Antenatal Care Guidelines Is Associated with Improved Early and Middle Childhood Cognition in Ethiopia. J Pediatr 2019; 209:33-38.e1. [PMID: 30955792 DOI: 10.1016/j.jpeds.2019.02.032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 01/29/2019] [Accepted: 02/22/2019] [Indexed: 01/01/2023]
Abstract
OBJECTIVE To assess the association between meeting the World Health Organization (WHO) maternal antenatal care attendance guidelines and early and middle childhood cognition among impoverished Ethiopian children. STUDY DESIGN A total of 1914 impoverished Ethiopian children from the Young Lives longitudinal cohort study were included. Childhood cognition was assessed via the Cognitive Development Assessment (CDA) and Peabody Picture Vocabulary Test (PPVT) at ages 4-5 years; PPVT, Early Grade Reading Assessment (EGRA), and Math Test at ages 7-8 years; and PPVT, Math Test, and Reading Test at ages 11-12 years. Linear regression models were used to examine the association between maternal antenatal care attendance and childhood academic achievement test scores. RESULTS In the univariable analysis, children of mothers who received the WHO recommended 4+ antenatal care visits or received the WHO recommended first antenatal care visit during the first trimester scored higher on all academic achievement tests. In the multivariable analysis, children of mothers who received 4+ antenatal care visits scored significantly higher on the CDA at ages 4-5 years and Math Test at ages 7-8 years. Children of mothers who received antenatal care in the first trimester scored higher on the CDA at ages 4-5 years and Math Test scores at ages 11-12 years. Children of mothers who received both antenatal care in the first trimester and 4+ antenatal care visits scored significantly higher on the CDA at ages 4-5 years and Math Test at both ages 7-8 and 11-12 years. CONCLUSIONS Children of mothers who received the WHO recommended number and timing of antenatal care visits had significantly higher academic achievement scores across multiple domains during early and middle childhood. Promotion of antenatal care visit attendance may improve cognition through middle childhood.
Collapse
Affiliation(s)
- David B Douglas
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA.
| | - Reem Waziry
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA
| | - Ellen P McCarthy
- Harvard T.H. Chan School of Public Health, Harvard University, Boston, MA; Hinda and Arthur Marcus Institute for Aging Research, Hebrew SeniorLife, Harvard Medical School, Boston, MA
| | | | | | - Michael Kawooya
- Ernest Cook Ultrasound Research and Education Institute, Kampala, Uganda
| | | |
Collapse
|
9
|
Cory-Slechta DA, Sobolewski M, Varma G, Schneider JS. Developmental Lead and/or Prenatal Stress Exposures Followed by Different Types of Behavioral Experience Result in the Divergence of Brain Epigenetic Profiles in a Sex, Brain Region, and Time-Dependent Manner: Implications for Neurotoxicology. CURRENT OPINION IN TOXICOLOGY 2017; 6:60-70. [PMID: 29430559 DOI: 10.1016/j.cotox.2017.09.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Over a lifetime, early developmental exposures to neurocognitive risk factors, such as lead (Pb) exposures and prenatal stress (PS), will be followed by multiple varied behavioral experiences. Pb, PS and behavioral experience can each influence brain epigenetic profiles. Our recent studies show a greater level of complexity, however, as all three factors interact within each sex to generate differential adult variation in global post-translational histone modifications (PTHMs), which may result in fundamentally different consequences for life-long learning and behavioral function. We have reported that PTHM profiles differ by sex, brain region and time point of measurement following developmental exposures to Pb±PS, resulting in different profiles for each unique combination of these parameters. Imposing differing behavioral experience following developmental Pb±PS results in additional divergence of PTHM profiles, again in a sex, brain region and time-dependent manner, further increasing complexity. Such findings underscore the need to link highly localized and variable epigenetic changes along single genes to the highly-integrated brain functional connectome that is ultimately responsible for governing behavioral function. Here we advance the idea that increased understanding may be achieved through iterative reductionist and holistic approaches. Implications for experimental design of animal studies of developmental exposures to neurotoxicants include the necessity of a 'no behavioral experience' group, given that epigenetic changes in response to behavioral testing can confound effects of the neurotoxicant itself. They also suggest the potential utility of the inclusion of salient behavioral experiences as a potential effect modifier in epidemiological studies.
Collapse
Affiliation(s)
- Deborah A Cory-Slechta
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY
| | - Marissa Sobolewski
- Department of Environmental Medicine, University of Rochester Medical School, Rochester, NY
| | - G Varma
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| | - J S Schneider
- Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, PA
| |
Collapse
|
10
|
Zou Y, Feng W, Wang W, Chen Y, Zhou Z, Li Q, Zhao T, Mao G, Wu X, Yang L. Protective Effect of Porcine Cerebral Hydrolysate Peptides on Learning and Memory Deficits and Oxidative Stress in Lead-Exposed Mice. Biol Trace Elem Res 2015; 168:429-40. [PMID: 25956150 DOI: 10.1007/s12011-015-0329-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 03/26/2015] [Indexed: 02/02/2023]
Abstract
In this study, lead acetate solution and porcine cerebral hydrolysate peptides (PCHPs) were administered to developing mice. Porcine cerebral protein pretreated by ultrasound was hydrolyzed with alcalase, and 11 peptide fragments were obtained by Matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF MS) analysis of PCHPs. Our data showed that PCHPs significantly decreased Pb2+-induced spontaneous locomotor activity, latencies to reach the platform, and the time in target quadrant. It also decreased the accumulation of lead in the blood and brain of Pb2+-exposed developing mice. Co-administration of PCHPs and dimercaptosuccinic acid (DMSA) did not only reduce the accumulation of lead in blood but also increased the absorption of zinc and iron in Pb2+-exposed mice. Administration of PCHPs individually significantly enhanced hematopoietic parameters compared with the Pb2+-exposed group. PCHPs significantly reduced the levels of reactive oxygen species (ROS) and malondialdehyde (MDA) but increased glutathione (GSH) content and anti-oxidant enzymes and nitric oxide synthase (NOS) activities in Pb2+-exposed brain. Our findings suggest that PCHPs have the ability to protect against Pb2+-exposed learning and memory deficits and oxidative damage.
Collapse
Affiliation(s)
- Ye Zou
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Weiwei Feng
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Wei Wang
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Yao Chen
- School of the Environment, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Zhaoxiang Zhou
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Qian Li
- School of Food and Biological Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Ting Zhao
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Guanghua Mao
- School of the Environment, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China
| | - Xiangyang Wu
- School of the Environment, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China.
| | - Liuqing Yang
- School of Chemistry and Chemical Engineering, Jiangsu University, 301 Xuefu Rd., Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
11
|
Testing for cognitive function in animals in a regulatory context. Neurotoxicol Teratol 2015; 52:68-77. [DOI: 10.1016/j.ntt.2014.04.068] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 11/24/2022]
|
12
|
Assessment of attention and inhibitory control in rodent developmental neurotoxicity studies. Neurotoxicol Teratol 2014; 52:78-87. [PMID: 25224214 DOI: 10.1016/j.ntt.2014.09.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Revised: 08/16/2014] [Accepted: 09/05/2014] [Indexed: 11/20/2022]
Abstract
In designing screens to assess potential neurotoxicants, the paramount goal is that the selected assessment tools detect dysfunction if it exists. This goal is particularly challenging in the case of cognitive assessments. Cognition is not a unitary phenomenon, and indeed there is growing evidence that different aspects of cognitive functioning are subserved by distinct neural systems. As a result, if a particular neurotoxicant selectively damages certain neural systems but not others, it can impair some cognitive, sensory, or affective functions, but leave many others intact. Accordingly, studies with human subjects use batteries of cognitive tests, cognizant of the fact that no one test is capable of detecting all forms of cognitive dysfunction. In contrast, assessment of cognitive functioning in non-human animal developmental neurotoxicity (DNT) studies typically consists of a single, presumably representative, "learning and memory" task that is expected to detect all potential effects on cognitive functioning. Streamlining the cognitive assessment in these studies saves time and money, but these shortcuts can have serious consequences if the aspect of cognitive functioning that is impaired is not tapped by the single selected task. In particular, executive functioning - a constellation of cognitive functions which enables the organism to focus on multiple streams of information simultaneously, and revise plans as necessary - is poorly assessed in most animal DNT studies. The failure to adequately assess these functions - which include attention, working memory, inhibitory control, and planning - is particularly worrisome in light of evidence that the neural systems that subserve these functions may be uniquely vulnerable to early developmental insults. We illustrate the importance of tapping these areas of functioning in DNT studies by describing the pattern of effects produced by early developmental Pb exposure. Rats exposed to lead (Pb) early in development were tested on a series of automated attention tasks, as well as on a radial arm maze task. The lead-exposed rats were not impaired in this demanding radial arm maze task, despite conditions which tapped the limits of both working and long-term memory. In contrast, the automated tests designed to assess rodent executive functioning revealed selective and functionally important deficits in attention and regulation of emotion or negative affect (produced by committing an error or not receiving an expected reward). This example underscores the importance of including tasks to specifically tap executive functioning in DNT batteries. Such tasks are not only sensitive but can also shed light on the specific nature of the dysfunction, and they can implicate dysfunction of specific neural systems, information which can be used to design therapeutic interventions. Although the use of such tasks increases the time and effort needed to complete the battery, the benefits outweigh the cost, in light of the greater sensitivity of the battery and the more complete characterization of effects.
Collapse
|
13
|
Sex-dependent impacts of low-level lead exposure and prenatal stress on impulsive choice behavior and associated biochemical and neurochemical manifestations. Neurotoxicology 2014; 44:169-83. [PMID: 25010656 DOI: 10.1016/j.neuro.2014.06.013] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 06/23/2014] [Accepted: 06/27/2014] [Indexed: 01/06/2023]
Abstract
A prior study demonstrated increased overall response rates on a fixed interval (FI) schedule of reward in female offspring that had been subjected to maternal lead (Pb) exposure, prenatal stress (PS) and offspring stress challenge relative to control, prenatal stress alone, lead alone and lead+prenatal stress alone (Virgolini et al., 2008). Response rates on FI schedules have been shown to directly relate to measures of self-control (impulsivity) in children and in infants (Darcheville et al., 1992, 1993). The current study sought to determine whether enhanced effects of Pb±PS would therefore be seen in a more direct measure of impulsive choice behavior, i.e., a delay discounting paradigm. Offspring of dams exposed to 0 or 50ppm Pb acetate from 2 to 3 months prior to breeding through lactation, with or without immobilization restraint stress (PS) on gestational days 16 and 17, were trained on a delay discounting paradigm that offered a choice between a large reward (three 45mg food pellets) after a long delay or a small reward (one 45mg food pellet) after a short delay, with the long delay value increased from 0s to 30s across sessions. Alterations in extinction of this performance, and its subsequent re-acquisition after reinforcement delivery was reinstated were also examined. Brains of littermates of behaviorally-trained offspring were utilized to examine corresponding changes in monoamines and in levels of brain derived neurotrophic factor (BDNF), the serotonin transporter (SERT) and the N-methyl-d-aspartate receptor (NMDAR) 2A in brain regions associated with impulsive choice behavior. Results showed that Pb±PS-induced changes in delay discounting occurred almost exclusively in males. In addition to increasing percent long delay responding at the indifference point (i.e., reduced impulsive choice behavior), Pb±PS slowed acquisition of delayed discounting performance, and increased numbers of both failures to and latencies to initiate trials. Overall, the profile of these alterations were more consistent with impaired learning/behavioral flexibility and/or with enhanced sensitivity to the downshift in reward opportunities imposed by the transition from delay discounting training conditions to delay discounting choice response contingencies. Consistent with these behavioral changes, Pb±PS treated males also showed reductions in brain serotonin function in all mesocorticolimbic regions, broad monoamine changes in nucleus accumbens, and reductions in both BDNF and NMDAR 2A levels and increases in SERT in frontal cortex, i.e., in regions and neurotransmitter systems known to mediate learning/behavioral flexibility, and which were of greater impact in males. The current findings do not fully support a generality of the enhancement of Pb effects by PS, as previously seen with FI performance in females (Virgolini et al., 2008), and suggest a dissociation of the behaviors controlled by FI and delay discounting paradigms, at least in response to Pb±PS in rats. Collectively, however, the findings remain consistent with sex-dependent differences in the impacts of both Pb and PS and with the need to understand both the role of contingencies of reinforcement and underlying neurobiological effects in these sex differences.
Collapse
|
14
|
Rice C, Ghorai JK, Zalewski K, Weber DN. Developmental lead exposure causes startle response deficits in zebrafish. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2011; 105:600-8. [PMID: 21955963 PMCID: PMC3207002 DOI: 10.1016/j.aquatox.2011.08.014] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Revised: 08/09/2011] [Accepted: 08/23/2011] [Indexed: 05/02/2023]
Abstract
Lead (Pb(2+)) exposure continues to be an important concern for fish populations. Research is required to assess the long-term behavioral effects of low-level concentrations of Pb(2+) and the physiological mechanisms that control those behaviors. Newly fertilized zebrafish embryos (<2h post fertilization; hpf) were exposed to one of three concentrations of lead (as PbCl(2)): 0, 10, or 30 nM until 24 hpf. (1) Response to a mechanosensory stimulus: Individual larvae (168 hpf) were tested for response to a directional, mechanical stimulus. The tap frequency was adjusted to either 1 or 4 taps/s. Startle response was recorded at 1000 fps. Larvae responded in a concentration-dependent pattern for latency to reaction, maximum turn velocity, time to reach V(max) and escape time. With increasing exposure concentrations, a larger number of larvae failed to respond to even the initial tap and, for those that did respond, ceased responding earlier than control larvae. These differences were more pronounced at a frequency of 4 taps/s. (2) Response to a visual stimulus: Fish, exposed as embryos (2-24 hpf) to Pb(2+) (0-10 μM) were tested as adults under low light conditions (≈ 60 μW/m(2)) for visual responses to a rotating black bar. Visual responses were significantly degraded at Pb(2+) concentrations of 30 nM. These data suggest that zebrafish are viable models for short- and long-term sensorimotor deficits induced by acute, low-level developmental Pb(2+) exposures.
Collapse
Affiliation(s)
- Clinton Rice
- Department of Biology, American University, Washington, DC
| | - Jugal K. Ghorai
- Department of Mathematical Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Kathryn Zalewski
- Department of Human Movement Sciences, University of Wisconsin-Milwaukee, Milwaukee, WI
| | - Daniel N. Weber
- Children’s Environmental Health Sciences Center, University of Wisconsin-Milwaukee, Milwaukee, WI
- To Whom Correspondence should be Addressed: Children’s Environmental Health Sciences Center, University of Wisconsin-Milwaukee, 600 E. Greenfield Ave., Milwaukee, WI 53204,
| |
Collapse
|
15
|
Kasten-Jolly J, Heo Y, Lawrence DA. Central nervous system cytokine gene expression: modulation by lead. J Biochem Mol Toxicol 2011; 25:41-54. [PMID: 21322097 DOI: 10.1002/jbt.20358] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The environmental heavy metal toxicant, lead (Pb) has been shown to be more harmful to the central nervous system (CNS) of children than to adults, given that Pb exposure affects the neural system during development. Because growth factors and cytokines play very important roles in development of the CNS, we have examined the impact of Pb exposure on the expression of cytokines during CNS development. Cytokine expression was studied in post-natal-day 21 (pnd21) mice by microarray, real-time RT-PCR, Luminex, and ELISA methodologies. BALB/c mouse pups were exposed to Pb through the dam's drinking water (0.1 mM Pb acetate), from gestation-day 8 (gd8) to pnd21. Two cytokines, interleukin-6 (IL-6) and transforming growth factor-β1 (TGF-β1), displayed significantly changed transcript levels in the presence of Pb. IL-6 and TGF-β1 both have signal transduction cascades that can cooperatively turn on the gene for the astrocyte marker glial-fibrillary acidic protein (GFAP). Microarray results indicated that Pb exposure significantly increased expression of GFAP. Pb also modulated IL-6, TGF-β1, and IL-18 protein expression in select brain regions. The deleterious effects of Pb on learning and long-term memory are posited to result from excessive astrocyte growth and/or activation with concomitant interference with neural connections. Differential neural expression of cytokines in brain regions needs to be further investigated to mechanistically associate Pb and neuroinflammation with behavioral and cognitive changes.
Collapse
Affiliation(s)
- Jane Kasten-Jolly
- Laboratory of Clinical and Experimental Endocrinology and Immunology, Wadsworth Center, 120 New Scotland Avenue, Albany, NY 12208, USA
| | | | | |
Collapse
|
16
|
Eubig PA, Aguiar A, Schantz SL. Lead and PCBs as risk factors for attention deficit/hyperactivity disorder. ENVIRONMENTAL HEALTH PERSPECTIVES 2010; 118:1654-67. [PMID: 20829149 PMCID: PMC3002184 DOI: 10.1289/ehp.0901852] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Accepted: 09/09/2010] [Indexed: 05/19/2023]
Abstract
OBJECTIVES Attention deficit/hyperactivity disorder (ADHD) is the most frequently diagnosed neurobehavioral disorder of childhood, yet its etiology is not well understood. In this review we present evidence that environmental chemicals, particularly polychlorinated biphenyls (PCBs) and lead, are associated with deficits in many neurobehavioral functions that are also impaired in ADHD. DATA SOURCES Human and animal studies of developmental PCB or lead exposures that assessed specific functional domains shown to be impaired in ADHD children were identified via searches of PubMed using "lead" or "PCB exposure" in combination with key words, including "attention," "working memory," "response inhibition," "executive function," "cognitive function," "behavior," and "ADHD." DATA SYNTHESIS Children and laboratory animals exposed to lead or PCBs show deficits in many aspects of attention and executive function that have been shown to be impaired in children diagnosed with ADHD, including tests of working memory, response inhibition, vigilance, and alertness. Studies conducted to date suggest that lead may reduce both attention and response inhibition, whereas PCBs may impair response inhibition to a greater degree than attention. Low-level lead exposure has been associated with a clinical diagnosis of ADHD in several recent studies. Similar studies of PCBs have not been conducted. CONCLUSIONS We speculate that exposures to environmental contaminants, including lead and PCBs, may increase the prevalence of ADHD.
Collapse
Affiliation(s)
- Paul A Eubig
- Department of Comparative Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, Urbana, Illinois 61802, USA.
| | | | | |
Collapse
|
17
|
Inhibition of protein kinase C signaling protects prefrontal cortex dendritic spines and cognition from the effects of chronic stress. Proc Natl Acad Sci U S A 2009; 106:17957-62. [PMID: 19805148 DOI: 10.1073/pnas.0908563106] [Citation(s) in RCA: 174] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The prefrontal cortex r regulates behavior, cognition, and emotion by using working memory. Prefrontal functions are impaired by stress exposure. Acute, stress-induced deficits arise from excessive protein kinase C (PKC) signaling, which diminishes prefrontal neuronal firing. Chronic stress additionally produces architectural changes, reducing dendritic complexity and spine density of cortico-cortical pyramidal neurons, thereby disrupting excitatory working memory networks. In vitro studies have found that sustained PKC activity leads to spine loss from hippocampal-cultured neurons, suggesting that PKC may contribute to spine loss during chronic stress exposure. The present study tested whether inhibition of PKC with chelerythrine before daily stress would protect prefrontal spines and working memory. We found that inhibition of PKC rescued working memory impairments and reversed distal apical dendritic spine loss in layer II/III pyramidal neurons of rat prelimbic cortex. Greater spine density predicted better cognitive performance, the first direct correlation between pyramidal cell structure and working memory abilities. These findings suggest that PKC inhibitors may be neuroprotective in disorders with dysregulated PKC signaling such as bipolar disorder, schizophrenia, post-traumatic stress disorder, and lead poisoning--conditions characterized by impoverished prefrontal structural and functional integrity.
Collapse
|
18
|
Arnsten AFT. Stress signalling pathways that impair prefrontal cortex structure and function. Nat Rev Neurosci 2009; 10:410-22. [PMID: 19455173 DOI: 10.1038/nrn2648] [Citation(s) in RCA: 1773] [Impact Index Per Article: 118.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The prefrontal cortex (PFC) - the most evolved brain region - subserves our highest-order cognitive abilities. However, it is also the brain region that is most sensitive to the detrimental effects of stress exposure. Even quite mild acute uncontrollable stress can cause a rapid and dramatic loss of prefrontal cognitive abilities, and more prolonged stress exposure causes architectural changes in prefrontal dendrites. Recent research has begun to reveal the intracellular signalling pathways that mediate the effects of stress on the PFC. This research has provided clues as to why genetic or environmental insults that disinhibit stress signalling pathways can lead to symptoms of profound prefrontal cortical dysfunction in mental illness.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neurobiology, Yale University School of Medicine, New Haven, Connecticut 06510, USA.
| |
Collapse
|
19
|
Behen ME, Helder E, Rothermel R, Solomon K, Chugani HT. Incidence of specific absolute neurocognitive impairment in globally intact children with histories of early severe deprivation. Child Neuropsychol 2008; 14:453-69. [PMID: 18686074 DOI: 10.1080/09297040802244136] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Postnatal deprivation is associated with neurocognitive delay/dysfunction. Although "catch up" in global cognition following adoption has been reported, this study examined the incidence of specific absolute impairment in adopted children with intact global cognitive functioning. Eighty-five children (38 males, mean age = 112.8, SD = 30.3 months; range 61-209 months) raised from birth in orphanages underwent comprehensive neuropsychological evaluation. Fifty-four were deemed globally intact (IQ > 85). Of those deemed globally intact, 46% evidenced absolute impairment in at least one domain of functioning. Duration of stay in the orphanage was directly associated with incidence of impairment and number of domains affected. A substantial proportion of participants evidenced persistent, absolute impairment in one or more domains of neurocognitive function despite integrity of basic intellectual functions.
Collapse
Affiliation(s)
- Michael E Behen
- Department of Pediatrics, Children's Hospital of Michigan, Wayne State University, Detroit, Michigan 48201, USA.
| | | | | | | | | |
Collapse
|
20
|
Plusquellec P, Muckle G, Dewailly E, Ayotte P, Jacobson SW, Jacobson JL. The relation of low-level prenatal lead exposure to behavioral indicators of attention in Inuit infants in Arctic Quebec. Neurotoxicol Teratol 2007; 29:527-37. [PMID: 17706923 PMCID: PMC3417247 DOI: 10.1016/j.ntt.2007.07.002] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2006] [Revised: 06/20/2007] [Accepted: 07/03/2007] [Indexed: 10/23/2022]
Abstract
The aim of this study was to investigate the association between prenatal exposure to lead (Pb) and several aspects of behavioral function during infancy through examiner ratings and behavioral coding of video recordings. The sample consisted of 169 11-month-old Inuit infants from Arctic Quebec. Umbilical cord and maternal blood samples were used to document prenatal exposure to Pb. Average blood Pb levels were 4.6 mug/dL and 5.9 mug/dL in cord and maternal samples respectively. The Behavior Rating Scales (BRS) from the Bayley Scales of Infant Development (BSID-II) were used to assess behavior. Attention was assessed through the BRS and behavioral coding of video recordings taken during the administration of the BSID-II. Whereas the examiner ratings of behaviors detected very few associations with prenatal Pb exposure, cord blood Pb concentrations were significantly related to the direct observational measures of infant attention, after adjustment for confounding variables. These data provide evidence that increasing the specificity and the precision of the behavioral assessment has considerable potential for improving our ability to detect low-to-moderate associations between neurotoxicants, such Pb and infant behavior.
Collapse
Affiliation(s)
- P Plusquellec
- Public Health Research Unit, CHUQ Research Center (CHUL), Sainte-Foy, Québec, Canada G1V 2M2
| | | | | | | | | | | |
Collapse
|
21
|
Beaudin SA, Stangle DE, Smith DR, Levitsky DA, Strupp BJ. Succimer chelation normalizes reactivity to reward omission and errors in lead-exposed rats. Neurotoxicol Teratol 2007; 29:188-202. [PMID: 17196787 DOI: 10.1016/j.ntt.2006.11.004] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2006] [Revised: 10/08/2006] [Accepted: 11/12/2006] [Indexed: 11/23/2022]
Abstract
This study evaluated the efficacy of a 3-week course of succimer treatment to alleviate behavioral deficits in rats exposed to lead (Pb) for the first 4 weeks of life. A 3 x 2 factorial design was used: three levels of lead exposure (No Pb, Moderate, and High Pb) and two levels of chelation (succimer or vehicle). Behavioral testing was conducted following chelation therapy, from 2 to 9 months of age; this report presents the results of two of the administered tasks: (1) a conditional olfactory discrimination task (baseline task), and (2) a conditional olfactory discrimination task with periodic reward omission on some correct trials (RO task). In the RO task, the performance disruption produced by committing an error on the previous trial was significantly greater for both unchelated lead-exposed groups than for controls. The High Pb rats were also more sensitive to reward omission than controls, providing converging evidence for impaired regulation of arousal or emotion. Importantly, succimer treatment was effective in normalizing the heightened reactivity of the lead-exposed animals to both errors and reward omission. In addition, non-lead-exposed rats that were treated with succimer tended to be more affected by a prior error than controls in their latency to respond on post-error trials. In sum, these findings provide new evidence that succimer chelation can significantly lessen the lasting neurobehavioral dysfunction produced by early lead exposure, but also suggest that there may be risks of administering the drug to individuals without elevated blood lead levels.
Collapse
Affiliation(s)
- Stéphane A Beaudin
- Division of Nutritional Sciences, Cornell University, Savage Hall, Ithaca, NY 14853, USA
| | | | | | | | | |
Collapse
|
22
|
Stangle DE, Smith DR, Beaudin SA, Strawderman MS, Levitsky DA, Strupp BJ. Succimer chelation improves learning, attention, and arousal regulation in lead-exposed rats but produces lasting cognitive impairment in the absence of lead exposure. ENVIRONMENTAL HEALTH PERSPECTIVES 2007; 115:201-9. [PMID: 17384765 PMCID: PMC1831518 DOI: 10.1289/ehp.9263] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2006] [Accepted: 10/30/2006] [Indexed: 05/14/2023]
Abstract
BACKGROUND There is growing pressure for clinicians to prescribe chelation therapy at only slightly elevated blood lead levels. However, very few studies have evaluated whether chelation improves cognitive outcomes in Pb-exposed children, or whether these agents have adverse effects that may affect brain development in the absence of Pb exposure. OBJECTIVES The present study was designed to answer these questions, using a rodent model of early childhood Pb exposure and treatment with succimer, a widely used chelating agent for the treatment of Pb poisoning. RESULTS Pb exposure produced lasting impairments in learning, attention, inhibitory control, and arousal regulation, paralleling the areas of dysfunction seen in Pb-exposed children. Succimer treatment of the Pb-exposed rats significantly improved learning, attention, and arousal regulation, although the efficacy of the treatment varied as a function of the Pb exposure level and the specific functional deficit. In contrast, succimer treatment of rats not previously exposed to Pb produced lasting and pervasive cognitive and affective dysfunction comparable in magnitude to that produced by the higher Pb exposure regimen. CONCLUSIONS These are the first data, to our knowledge, to show that treatment with any chelating agent can alleviate cognitive deficits due to Pb exposure. These findings suggest that it may be possible to identify a succimer treatment protocol that improves cognitive outcomes in Pb-exposed children. However, they also suggest that succimer treatment should be strongly discouraged for children who do not have elevated tissue levels of Pb or other heavy metals.
Collapse
Affiliation(s)
- Diane E. Stangle
- Department of Psychology, Cornell University, Ithaca, New York, USA
| | - Donald R. Smith
- Department of Environmental Toxicology, University of California, Santa Cruz, California, USA
| | | | | | - David A. Levitsky
- Department of Psychology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| | - Barbara J. Strupp
- Department of Psychology, Cornell University, Ithaca, New York, USA
- Division of Nutritional Sciences, Cornell University, Ithaca, New York, USA
| |
Collapse
|
23
|
Morgan RE, Crowley JM, Smith RH, LaRoche RB, Dopheide MM. Modafinil improves attention, inhibitory control, and reaction time in healthy, middle-aged rats. Pharmacol Biochem Behav 2007; 86:531-41. [PMID: 17328945 DOI: 10.1016/j.pbb.2007.01.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2006] [Revised: 01/07/2007] [Accepted: 01/16/2007] [Indexed: 11/25/2022]
Abstract
This study examined the effect of the novel psychostimulant modafinil (Provigil) on a variety of cognitive and behavioral measures including associative learning, sustained attention, inhibitory control, and reaction time. Middle-aged female rats (18-20 months old) were administered oral doses of modafinil (0, 8, 32, and 64 mg/kg) and tested in a 3-choice visual discrimination and sustained attention task. Modafinil produced a dose-dependent pattern of improved response accuracy and impulse control (fewer premature responses) and shorter response latencies, without affecting omission errors, motivation or motor control. Although the biochemical mechanism of modafinil is unknown, these results suggest a profile differing from typical psychostimulants (e.g., amphetamine). The implications of these findings for treatment of narcolepsy, ADHD, and various arousal-related disorders are considered. Further research is needed to examine the relative safety, effectiveness, and addictive potential of modafinil, as well as, its effects in comparison with other performance-enhancing drugs (e.g., caffeine, nicotine, and amphetamines).
Collapse
Affiliation(s)
- Russell E Morgan
- Psychology Department, Western Illinois University, Macomb, IL 61455, USA.
| | | | | | | | | |
Collapse
|
24
|
Grantham-McGregor S, Cheung YB, Cueto S, Glewwe P, Richter L, Strupp B. Developmental potential in the first 5 years for children in developing countries. Lancet 2007; 369:60-70. [PMID: 17208643 PMCID: PMC2270351 DOI: 10.1016/s0140-6736(07)60032-4] [Citation(s) in RCA: 1662] [Impact Index Per Article: 97.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Many children younger than 5 years in developing countries are exposed to multiple risks, including poverty, malnutrition, poor health, and unstimulating home environments, which detrimentally affect their cognitive, motor, and social-emotional development. There are few national statistics on the development of young children in developing countries. We therefore identified two factors with available worldwide data--the prevalence of early childhood stunting and the number of people living in absolute poverty--to use as indicators of poor development. We show that both indicators are closely associated with poor cognitive and educational performance in children and use them to estimate that over 200 million children under 5 years are not fulfilling their developmental potential. Most of these children live in south Asia and sub-Saharan Africa. These disadvantaged children are likely to do poorly in school and subsequently have low incomes, high fertility, and provide poor care for their children, thus contributing to the intergenerational transmission of poverty.
Collapse
Affiliation(s)
- Sally Grantham-McGregor
- Centre for International Child Health, Institute of Child Health, University College London, UK.
| | | | | | | | | | | |
Collapse
|
25
|
LaRoche RB, Morgan RE. Adolescent fluoxetine exposure produces enduring, sex-specific alterations of visual discrimination and attention in rats. Neurotoxicol Teratol 2006; 29:96-107. [PMID: 17182216 DOI: 10.1016/j.ntt.2006.11.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2006] [Revised: 11/15/2006] [Accepted: 11/20/2006] [Indexed: 11/30/2022]
Abstract
Over the past two decades the use of selective serotonin reuptake inhibitors (SSRIs) to treat behavioral disorders in children has grown rapidly, despite little evidence regarding the safety and efficacy of these drugs for use in children. Utilizing a rat model, this study investigated whether post-weaning exposure to a prototype SSRI, fluoxetine (FLX), influenced performance on visual tasks designed to measure discrimination learning, sustained attention, inhibitory control, and reaction time. Additionally, sex differences in response to varying doses of fluoxetine were examined. In Experiment 1, female rats were administered (P.O.) fluoxetine (10 mg/kg ) or vehicle (apple juice) from PND 25 thru PND 49. After a 14 day washout period, subjects were trained to perform a simultaneous visual discrimination task. Subjects were then tested for 20 sessions on a visual attention task that consisted of varied stimulus delays (0, 3, 6, or 9 s) and cue durations (200, 400, or 700 ms). In Experiment 2, both male and female Long-Evans rats (24 F, 24 M) were administered fluoxetine (0, 5, 10, or 15 mg/kg) then tested in the same visual tasks used in Experiment 1, with the addition of open-field and elevated plus-maze testing. Few FLX-related differences were seen in the visual discrimination, open field, or plus-maze tasks. However, results from the visual attention task indicated a dose-dependent reduction in the performance of fluoxetine-treated males, whereas fluoxetine-treated females tended to improve over baseline. These findings indicate that enduring, behaviorally-relevant alterations of the CNS can occur following pharmacological manipulation of the serotonin system during postnatal development.
Collapse
|
26
|
Byers DM, Irwin LN, Moss DE, Sumaya IC, Hohmann CF. Prenatal exposure to the acetylcholinesterase inhibitor methanesulfonyl fluoride alters forebrain morphology and gene expression. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2005; 158:13-22. [PMID: 15964079 DOI: 10.1016/j.devbrainres.2005.05.003] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2005] [Revised: 04/28/2005] [Accepted: 05/09/2005] [Indexed: 11/26/2022]
Abstract
Methanesulfonyl fluoride (MSF) is a CNS-selective acetylcholinesterase (AChE) inhibitor, currently being developed and tested for the treatment of symptoms of Alzheimer's disease. We have previously confirmed that a single in utero exposure to MSF at clinically appropriate doses inhibits AChE activity in fetal rat brain by 20%, and when administered throughout gestation, MSF achieves a 40% level of inhibition. Here, we show that rats chronically exposed in utero to MSF display marked sex-specific differences in morphological development of the cerebral cortical layers compared with controls at 7 days of age. Forebrain size and cortical thickness were increased in females and decreased in males. An analysis of gene expression in neonate brain on the day of birth revealed sex-specific differential expression of over 25 genes, including choline acetyltransferase (ChAT), which were affected by prenatal MSF exposure. Many of these genes are associated with sexual differentiation and brain development, while others are involved in more generalized cellular and metabolic processes. The changes observed in cortical morphology and gene expression suggest a critical developmental role for AChE in the fetal nervous system, most likely through its effect on cholinergic neurotransmission.
Collapse
Affiliation(s)
- Donna M Byers
- Department of Biological Sciences, University of Texas at El Paso, 500 W. University Avenue, El Paso, TX 79968, USA.
| | | | | | | | | |
Collapse
|
27
|
Lim SY, Doherty JD, McBride K, Miller-Ihli NJ, Carmona GN, Stark KD, Salem N. Lead Exposure and (n-3) Fatty Acid Deficiency during Rat Neonatal Development Affect Subsequent Spatial Task Performance and Olfactory Discrimination. J Nutr 2005; 135:1019-26. [PMID: 15867275 DOI: 10.1093/jn/135.5.1019] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Docosahexaenoic acid [22:6(n-3), DHA] is important for optimal infant central nervous system development, and lead (Pb) exposure during development can produce neurological deficits. Long-Evans strain rats were fed either an (n-3) deficient [(n-3) Def] diet to produce brain DHA deficiency, or an adequate [(n-3) Adq] diet through 2 generations. At the birth of the 2nd generation, the dams were subdivided into 4 groups and supplied drinking water containing either 5.27 mmol/L (Pb) or sodium (Na) acetate until weaning. Rats were killed at 3 wk (weaning) and 11 wk (maturity) for brain Pb and fatty acid analysis. Spatial task and olfactory-cued behavioral assessments were initiated at 9 wk. Rats in the (n-3) Def group had a 79% lower concentration of brain DHA compared with the (n-3) Adq group with no effect of Pb exposure. At weaning, Pb concentrations were 7.17 +/- 0.47 nmol Pb/g of brain (wet weight) in the (n-3) Adq-Pb group and 6.49 +/- 0.63 nmol Pb/g of brain (wet weight) in the (n-3) Def-Pb group. At maturity, the brains contained 1.30 +/- 0.22 and 1.07 +/- 0.12 nmol Pb/g (wet weight), respectively. In behavioral testing, significant effects of both Pb and DHA deficiency were observed in the Morris water maze probe trial and in 2-odor olfactory discrimination acquisition and olfactory-based reversal learning tasks. Both lactational Pb exposure and (n-3) fatty acid deficiency led to behavioral deficits with additive effects observed only in the acquisition of 2-odor discriminations.
Collapse
Affiliation(s)
- Sun-Young Lim
- Division of Ocean Science, Korea Maritime University, Busan, Korea
| | | | | | | | | | | | | |
Collapse
|
28
|
Driscoll LL, Carroll JC, Moon J, Crnic LS, Levitsky DA, Strupp BJ. Impaired sustained attention and error-induced stereotypy in the aged Ts65Dn mouse: a mouse model of Down syndrome and Alzheimer's disease. Behav Neurosci 2005; 118:1196-205. [PMID: 15598129 DOI: 10.1037/0735-7044.118.6.1196] [Citation(s) in RCA: 34] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This study compared performance of 15- to 17-month-old Ts65Dn mice to that of littermate controls on an automated sustained attention task in which the location, onset time, and duration of brief visual cues varied unpredictably. Ts65Dn mice committed more omission errors than controls, particularly on trials with the briefest cues. Videotape data revealed that the trisomic mice attended less than controls during the period before cue presentation and engaged in stereotypic jumping and grooming immediately after making an error. These findings reveal that Ts65Dn mice are impaired in sustaining attention and exhibit heightened reactivity to committing an error, and support the validity of this mouse model for studying Down syndrome and Alzheimer's disease. The attention task, coupled with the videotape analyses of task performance, provides a useful paradigm for studying attention and reactivity to errors in mice.
Collapse
|
29
|
Gendle MH, White TL, Strawderman M, Mactutus CF, Booze RM, Levitsky DA, Strupp BJ. Enduring effects of prenatal cocaine exposure on selective attention and reactivity to errors: evidence from an animal model. Behav Neurosci 2004; 118:290-7. [PMID: 15113253 DOI: 10.1037/0735-7044.118.2.290] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Adult Long-Evans rats, exposed prenatally to 1 of 4 doses of cocaine (0.0,0.5,1.0, or 3.0 mg/kg iv), were tested on a 3-choice visual attention task with an olfactory distractor presented unpredictably on one third of the trials. The performance of all 3 cocaine-exposed groups was significantly more disrupted than that of controls by the presentation of distractors. Results demonstrate that prenatal cocaine exposure increases susceptibility to distractors, using a task specifically designed to measure this function. In addition, the present study revealed that individuals exposed to cocaine in utero exhibit greater performance disruption after an error than controls, in certain types of tasks. Both areas of dysfunction, impaired selective attention and impaired arousal regulation, have important functional consequences in humans, possibly affecting the school performance and social development of cocaine-exposed children.
Collapse
Affiliation(s)
- Mathew H Gendle
- Department of Psychology, Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
Children differ from adults in the relative importance of lead sources and pathways, lead metabolism, and the toxicities expressed. The central nervous system effects of lead on children seem not to be reversible. Periods of enhanced vulnerability within childhood have not consistently been identified. The period of greatest vulnerability might be endpoint specific, perhaps accounting for the failure to identify a coherent “behavioral signature” for lead toxicity. The bases for the substantial individual variability in vulnerability to lead are uncertain, although they might include genetic polymorphisms and contextual factors. The current Centers for Disease Control and Prevention screening guideline of 10 μg/dL is a risk management tool and should not be interpreted as a threshold for toxicity. No threshold has been identified, and some data are consistent with effects well below 10. Historically, most studies have concentrated on neurocognitive effects of lead, but higher exposures have recently been associated with morbidities such as antisocial behavior and delinquency. Studies of lead toxicity in experimental animal models are critical to the interpretation of nonexperimental human studies, particularly in addressing the likelihood that associations observed in the latter studies can be attributed to residual confounding. Animal models are also helpful in investigating the behavioral and neurobiological mechanisms of the functional deficits observed in lead-exposed humans. Studies of adults who have been exposed to lead are of limited use in understanding childhood lead toxicity because developmental and acquired lead exposure differ in terms of the maturity of the organs affected, the presumed mechanisms of toxicity, and the forms in which toxicities are expressed.
Collapse
Affiliation(s)
- David C. Bellinger
- From the Children’s Hospital Boston, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
31
|
Burger J, Gochfeld M. Effects of lead and exercise on endurance and learning in young herring gulls. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2004; 57:136-144. [PMID: 14759659 DOI: 10.1016/s0147-6513(03)00035-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2002] [Revised: 03/13/2003] [Accepted: 03/14/2003] [Indexed: 05/24/2023]
Abstract
In this paper, we report the use of young herring gulls, Larus argentatus, to examine the effect of lead and exercise on endurance, performance, and learning on a treadmill. Eighty 1-day-old herring gull chicks were randomly assigned to either a control group or a lead treatment group that received a single dose of lead acetate solution (100mg/kg) at day 2. Controls were injected with an equal volume of isotonic saline at the same age. Half of the lead treatment group and half of the control group were randomly assigned to an exercise regime of walking on a treadmill twice each day. The other group remained in their cages. We test the null hypotheses that neither lead nor exercise affected performance of herring gull chicks when subsequently tested on the treadmill at 7, 11, and 17 days post-injection. Performance measures included latency to orient forward initially, to move continuously, forward on the treadmill, and to avoiding being bumped against the back of the test chamber. Also measured were the number of calls per 15 s, and the time to tire out. Latency to face forward and avoiding being bumped against the back of the test chamber were measures of learning, and time to tire out was a measure of endurance. We found significant differences as a function of lead, exercise, and their interaction, and rejected the null hypotheses. For all measures of behavior and endurance, lead had the greatest contribution to accounting for variability. In general, lead-treated birds showed better performance improvement from the daily exercise than did controlled non-lead birds, with respect to endurance and learning. We suggest that in nature, exercise can improve performance of lead-exposed birds by partially mitigating the effects of lead, thereby increasing survival of lead-impaired chicks.
Collapse
Affiliation(s)
- Joanna Burger
- Consortium for Risk Evaluation with Stakeholder Participation, Environmental and Occupational Health Sciences Institute, Rutgers University, Piscataway, NJ 08854, USA.
| | | |
Collapse
|
32
|
Gendle MH, Strawderman MS, Mactutus CF, Booze RM, Levitsky DA, Strupp BJ. Impaired sustained attention and altered reactivity to errors in an animal model of prenatal cocaine exposure. BRAIN RESEARCH. DEVELOPMENTAL BRAIN RESEARCH 2003; 147:85-96. [PMID: 14741754 DOI: 10.1016/j.devbrainres.2003.10.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Although correlations have been reported between maternal cocaine use and impaired attention in exposed children, interpretation of these findings is complicated by the many risk factors that differentiate cocaine-exposed children from SES-matched controls. For this reason, the present dose-response study (0, 0.5, 1.0, or 3.0 mg/kg cocaine HCl) was designed to explore the effect of prenatal cocaine exposure on visual attention in a rodent model, using an intravenous injection protocol that closely mimics the pharmacokinetic profile and physiological effects of human recreational cocaine use. In adulthood, animals were tested on an attention task in which the duration, location, and onset time of a brief visual cue varied randomly between trials. The 3.0 mg/kg exposed males committed significantly more omission errors than control males during the final 1/3 of each testing session, specifically on trials that followed an error, which implicates impaired sustained attention and increased reactivity to committing an error. During the final 1/3 of each testing session, the 0.5 and 1.0 mg/kg exposed females took longer to enter the testing alcove at trial onset, and failed to enter the alcove more frequently than control females. Because these effects were not seen in other tasks of similar duration and reinforcement density, these findings suggest an impairment of sustained attention. This inference is supported by the finding that the increase in omission errors in the final block of trials in each daily session (relative to earlier in the session) was significantly greater for the 1.0 mg/kg females than for controls, a trend also seen for the 0.5 mg/kg group. Unlike the cocaine-exposed males, who remain engaged in the task when attention is waning, the cocaine-exposed females appear to opt for another strategy; namely, refusing to participate when their ability to sustain attention is surpassed.
Collapse
Affiliation(s)
- Mathew H Gendle
- Department of Psychology and Division of Nutritional Sciences, 109 Savage Hall, Cornell University, Ithaca, NY 14853, USA
| | | | | | | | | | | |
Collapse
|
33
|
Widholm JJ, Seo BW, Strupp BJ, Seegal RF, Schantz SL. Effects of perinatal exposure to 2,3,7,8-tetrachlorodibenzo-p-dioxin on spatial and visual reversal learning in rats. Neurotoxicol Teratol 2003; 25:459-71. [PMID: 12798963 DOI: 10.1016/s0892-0362(03)00014-x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a ubiquitous environmental contaminant that has been shown to alter spatial and visual learning following developmental exposure. The current study examined the effects of gestational and lactational exposure to TCDD on spatial and visual discrimination/reversal learning (spatial and visual RL) in rats using two-lever operant testing chambers. Pregnant Sprague-Dawley rats (10 per dose) received either 0 or 0.1 microg/kg TCDD per orem in corn oil from gestational day (GD) 10 to GD 16. One male and one female from each litter were tested beginning at 100 days of age. For spatial RL, animals were reinforced for pressing the lever associated with the correct spatial location (either left or right). For visual RL, the animals were reinforced for pressing the lever associated with the correct visual stimulus (either the illuminated or nonilluminated cuelight). After reaching 85% correct for two consecutive days, the opposite spatial location or visual cue was reinforced. Five reversals were conducted for spatial RL, and two reversals for visual RL. For spatial RL, there were no differences between the TCDD-exposed and control rats in total number of errors committed. However, an in-depth analysis of errors in four different phases of the learning process revealed that TCDD-exposed rats made more errors early in learning when they were just beginning to learn the new reinforcement contingencies. The importance of this increase in errors during the initial stage of learning is unclear, given that there was no increase in overall errors to criterion. For visual RL, there was a reduction in errors on original learning (OL) for TCDD-exposed males, while TCDD-exposed females exhibited a reduction in errors on the second reversal. Subsequent response pattern analyses revealed that the facilitation in performance was due to a more rapid transition through the early phase of learning. Why males were improved on OL and females were not until the second reversal is unknown, but the different patterns could reflect differences in learning style in male and female rats. In keeping with previous research, the results of the current study underscore the fact that (1) alterations in cognitive function observed following early TCDD exposure are very subtle and (2) under some conditions, learning is actually facilitated, rather than impaired, in TCDD-exposed animals.
Collapse
Affiliation(s)
- John J Widholm
- Department of Veterinary Biosciences, College of Veterinary Medicine, University of Illinois at Urbana-Champaign, 2001 South Lincoln Avenue, Urbana, IL 61802, USA.
| | | | | | | | | |
Collapse
|
34
|
Abstract
The detrimental effects of lead poisoning have been well known since ancient times, but some of the most severe consequences of exposure to this metal have only been described recently. Lead [Pb(II)] affects the higher functions of the central nervous system and undermines brain growth, preventing the correct development of cognitive and behavioral functions. As an established neurotoxin, Pb(II) crosses the blood-brain barrier rapidly and concentrates in the brain. The mechanisms of lead neurotoxicity are complex and still not fully understood, but recent findings recognized that both Ca(II) dependent proteins and neurotransmitters receptors represent significant targets for Pb(II). In particular, acute and chronic exposure to lead would predominantly affect two specific protein complexes: protein kinase C and the N-methyl-D-aspartate subtype of glutamate receptor. These protein complexes are deeply involved in learning and cognitive functions and are also thought to interact significantly with each other to mediate these functions. This review outlines the most recent hypotheses and evidences that link lead poisoning to impairment of these protein functions, as well as the in vitro experimental approaches that are most likely to provide information on basic mechanicistic processes.
Collapse
Affiliation(s)
- Carla Marchetti
- Istituto di Biofisica, Sezione di Genova, Consiglio Nazionale delle Ricerche, via De Marini, 6 - 16149 Genova, Italy.
| |
Collapse
|