1
|
Singla M, Verma S, Thakur K, Goyal A, Sharma V, Sharma D, Porwal O, Subramaniyan V, Behl T, Singh SK, Dua K, Gupta G, Gupta S. From Plants to Therapies: Exploring the Pharmacology of Coumestrol for Neurological Conditions. Curr Med Chem 2024; 31:6855-6870. [PMID: 37921179 DOI: 10.2174/0109298673250784231011094322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/30/2023] [Accepted: 09/11/2023] [Indexed: 11/04/2023]
Abstract
Neurological disorders are possibly the most prevalent and have been identified to occur among individuals with autism beyond chance. These disorders encompass a diverse range of consequences with neurological causes and have been regarded as a major threat to public mental health. There is no tried-and-true approach for completely protecting the nervous system. Therefore, plant-derived compounds have developed significantly nowadays. Coumestrol (CML) is a potent isoflavone phytoestrogen with a protective effect against neurological dysfunction and has been discovered to be structurally and functionally similar to estrogen. In recent years, more research has been undertaken on phytoestrogens. This research demonstrates the biological complexity of phytoestrogens, which consist of multiple chemical families and function in various ways. This review aimed to explore recent findings on the most significant pharmacological advantages of CML by emphasising neurological benefits. Numerous CML extraction strategies and their pharmacological effects on various neurological disorders, including PD, AD, HD, anxiety, and cognitive impairments, were also documented.
Collapse
Affiliation(s)
- Madhav Singla
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Smriti Verma
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Kiran Thakur
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| | - Ahsas Goyal
- Department of Pharmacy, Institute of Pharmaceutical Research, GLA University, U.P., India
| | - Vishal Sharma
- M.M. College of Pharmacy, Maharishi Markandeshwar (Deemed to be University), Mullana, Ambala, 133207, India
| | - Diksha Sharma
- Department of Pharmacy, Institute of Pharmaceutical Sciences, Kurukshetra University, Kurukshetra, 136119, India
| | - Omji Porwal
- Department of Pharmacognosy, Faculty of Pharmacy, Ishik University, Erbil, Kurdistan, Iraq
| | - Vetriselvan Subramaniyan
- Pharmacology Unit, Jeffrey Cheah School of Medicine and Health Sciences, Monash University, Jalan Lagoon Selatan, Bandar Sunway, 47500 Selangor Darul Ehsan, Malaysia
| | - Tapan Behl
- Department of Pharmacy, School of Health Science and Technology, University of Petroleum Science and Energy Studies, Dehradun, Uttarakhand, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, 144411, Punjab, India
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, 2007, Australia
- Discipline of Pharmacy, Graduate School of Health, the University of Technology Sydney, Ultimo, NSW2007, Australia
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
- Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
- Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun, India
| | - Saurabh Gupta
- Chitkara College of Pharmacy, Chitkara University, Rajpura, 140401, Punjab, India
| |
Collapse
|
2
|
Solano F, Hernández E, Juárez-Rojas L, Rojas-Maya S, López G, Romero C, Casillas F, Betancourt M, López A, Heidari R, Ommati MM, Retana-Márquez S. Reproductive disruption in adult female and male rats prenatally exposed to mesquite pod extract or daidzein. Reprod Biol 2022; 22:100683. [PMID: 35932513 DOI: 10.1016/j.repbio.2022.100683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/29/2022] [Accepted: 07/30/2022] [Indexed: 11/28/2022]
Abstract
Phytoestrogens are considered to be endocrine disruptors, since they can alter the endocrine system, thus disturbing many reproductive events. The intake of diets containing a high content of phytoestrogens has increased worldwide in human populations and in domestic animals. Phytoestrogens in maternal blood can pass through the placenta to the fetus in high amounts and can have long-term organizational effects. Mesquite (Prosopis sp) is a leguminous plant widely used to feed several livestock species, and is also used in the human diet. In this study we assessed the effects of exposure to mesquite pod extract during the periconception and pregnancy periods on the reproduction of male and female descendants. The females of three experimental groups received one of the following treatments: 1) vehicle injection; 2) mesquite pod extract or 3) the isoflavone daidzein during the periconception and pregnancy periods. Estrous cyclicity, sexual behavior and hormones, as well as uterine and vaginal epithelia were evaluated in the female descendants. In the males, sexual behavior and hormones, apoptosis in testicular cells and sperm quality were evaluated. In females the following was observed: alterations in estrous cycles, decreased sexual behavior, estradiol and progesterone levels, increased uterine and vaginal epithelia. In males, we observed a decrease in sexual behavior, testosterone and sperm quality, and apoptosis increased in testicular cells. All these effects were similar to those caused by daidzein. These results indicate that prenatal exposure to mesquite pod extract or daidzein, administered to females before and during pregnancy, can disrupt normal organizational-activational programming of reproductive physiology in female and male descendants.
Collapse
Affiliation(s)
- Floriberta Solano
- Masters in Biology of Animal Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Eunice Hernández
- Masters in Biology of Animal Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Lizbeth Juárez-Rojas
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Susana Rojas-Maya
- Department of Neuroendocrinology of Reproductive Behavior, Veterinary Faculty, National Autonomous University of Mexico, Mexico
| | - Gabriela López
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Carlos Romero
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Fahiel Casillas
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Miguel Betancourt
- Department of Health Sciences, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Alma López
- Department of Health Sciences, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico
| | - Reza Heidari
- Department of Pharmacology and Toxicology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Mohammad Mehdi Ommati
- College of Life Sciences, Shanxi Agricultural University, Taigu, Shanxi 030801, People's Republic of China; Pharmaceutical Sciences Research Center, Shiraz University of Medical Sciences, Shiraz, Islamic Republic of Iran
| | - Socorro Retana-Márquez
- Department of Biology of Reproduction, Autonomous Metropolitan University, Campus Iztapalapa, México City, Mexico.
| |
Collapse
|
3
|
Castro CC, Souza Pagnussat A, Munhoz CD, Netto CA. Coumestrol pre‐treatment improves spatial learning and memory deficits following transient cerebral ischemia recruiting hippocampal
GluR2 AMPA
receptors. Hippocampus 2022; 32:413-418. [DOI: 10.1002/hipo.23418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 03/13/2022] [Accepted: 03/15/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Cibele Canal Castro
- Department of Biochemistry Institute for Basic Health Sciences, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| | - Aline Souza Pagnussat
- Department of Physiotherapy Universidade Federal de Ciências da Saúde de Porto Alegre Porto Alegre Brazil
| | - Carolina Demarchi Munhoz
- Department of Pharmacology Universidade de São Paulo. Instituto de Ciências Biomedicas São Paulo Brazil
| | - Carlos Alexandre Netto
- Department of Biochemistry Institute for Basic Health Sciences, Universidade Federal do Rio Grande do Sul Porto Alegre Brazil
| |
Collapse
|
4
|
Ohgomori T, Jinno S. Cuprizone-induced demyelination in the mouse hippocampus is alleviated by phytoestrogen genistein. Toxicol Appl Pharmacol 2019; 363:98-110. [DOI: 10.1016/j.taap.2018.11.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 11/15/2018] [Accepted: 11/19/2018] [Indexed: 12/28/2022]
|
5
|
Mhaouty-Kodja S, Naulé L, Capela D. Sexual Behavior: From Hormonal Regulation to Endocrine Disruption. Neuroendocrinology 2018; 107:400-416. [PMID: 30326485 DOI: 10.1159/000494558] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Accepted: 10/16/2018] [Indexed: 11/19/2022]
Abstract
Sexual behavior constitutes a chain of behavioral responses beginning with courtship and leading to copulation. These responses, which are exhibited in a sexually dimorphic manner by the two partners, are tightly regulated by sex steroid hormones as early as the perinatal period. Hormonal changes or exposure to exogenous factors exhibiting hormone-mimetic activities, such as endocrine disrupting compounds (EDC), can therefore interfere with their expression. Here we review the experimental studies in rodents performed to address the potential effects of exposure to EDC on sexual behavior and underlying mechanisms, with particular attention to molecules with estrogenic and/or anti-androgenic activities.
Collapse
|
6
|
Venuti V, Stancanelli R, Acri G, Crupi V, Paladini G, Testagrossa B, Tommasini S, Ventura CA, Majolino D. “Host-guest” interactions in Captisol®/Coumestrol inclusion complex: UV–vis, FTIR-ATR and Raman studies. J Mol Struct 2017. [DOI: 10.1016/j.molstruc.2017.06.054] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
7
|
Moreira AC, Silva AM, Branco AF, Baldeiras I, Pereira GC, Seiça R, Santos MS, Sardão VA. Phytoestrogen coumestrol improves mitochondrial activity and decreases oxidative stress in the brain of ovariectomized Wistar-Han rats. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.05.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
|
8
|
MacLusky NJ, Thomas G, Leranth C. Low dietary soy isoflavonoids increase hippocampal spine synapse density in ovariectomized rats. Brain Res 2017; 1657:361-367. [PMID: 28063855 DOI: 10.1016/j.brainres.2017.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Revised: 12/21/2016] [Accepted: 01/01/2017] [Indexed: 01/14/2023]
Abstract
High dietary intake of plant estrogens (phytoestrogens) can affect brain structure and function. The effects of phytoestrogen intake within the range of normal animal and human dietary consumption, however, remain uncertain. The aim of the present study was to determine the effects of the isoflavonoids present in a standard low phytoestrogen laboratory rat chow on spine synapse density in the stratum radiatum of area CA1 of the hippocampus. Weanling rats (22days old) were fed either standard chow (Teklad 2018), a nutritionally comparable diet without soy (Teklad 2016) or a custom diet containing Teklad 2016 supplemented with the principal soy isoflavonoids, daidzein and genistein, for 40days. Rats were ovariectomized at 54days of age. Eight days later, spine synapse density on the apical dendrites of hippocampal pyramidal neurons in the stratum radiatum of area CA1 was measured by electron microscopic stereological analysis. Animals maintained on Teklad 2016 exhibited an approximately 60% lower CA1 spine synapse density than animals consuming Teklad 2018. Replacing genistein and daidzein in Teklad 2016 returned synapse density to levels indistinguishable from those in animals on Teklad 2018. These results indicate that the isoflavonoids in a standard laboratory rat diet exert significant effects on spine synapse density in the CA1 region of the hippocampus. Since changes in spine synapse density in this region of the hippocampus have been linked to cognitive performance and mood state, these data suggest that even relatively low daily consumption of soy phytoestrogens may be sufficient to influence hippocampal function.
Collapse
Affiliation(s)
- Neil J MacLusky
- Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, Guelph, Ontario N1G 2W1, Canada.
| | - Gladis Thomas
- Departments of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| | - Csaba Leranth
- Departments of Obstetrics and Gynecology, Yale University School of Medicine, New Haven, CT 06520-8063, USA; Neurobiology, Yale University School of Medicine, New Haven, CT 06520-8063, USA
| |
Collapse
|
9
|
Yamada J, Hatabe J, Tankyo K, Jinno S. Cell type- and region-specific enhancement of adult hippocampal neurogenesis by daidzein in middle-aged female mice. Neuropharmacology 2016; 111:92-106. [DOI: 10.1016/j.neuropharm.2016.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 08/03/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
|
10
|
Melin VE, Melin TE, Dessify BJ, Nguyen CT, Shea CS, Hrubec TC. Quaternary ammonium disinfectants cause subfertility in mice by targeting both male and female reproductive processes. Reprod Toxicol 2015; 59:159-66. [PMID: 26582257 DOI: 10.1016/j.reprotox.2015.10.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 10/01/2015] [Accepted: 10/09/2015] [Indexed: 01/26/2023]
Abstract
Alkyl dimethyl benzyl ammonium chloride (ADBAC) and didecyl dimethyl ammonium chloride (DDAC) are common ingredients in household bathroom and kitchen cleaning sprays. ADBAC+DDAC cause reproductive toxicity in mice. The aim of the present study was to investigate gender-specific reproductive effects from ADBAC+DDAC. Female reproduction was assessed through ovulation, oocyte implantation, and estrus cycling. Male reproductive function was assessed by sperm concentration, motility, and viability. Numbers of corpora lutea were not different after 2 weeks, but decreased after 8 weeks of ADBAC+DDAC exposure. Dams exposed for 5 weeks to ADBAC+DDAC spent significantly less time in estrus. ADBAC+DDAC exposed males exhibited declines in both sperm concentration and motility, but not sperm viability. Subfertility in mice from ADBAC+DDAC exposure is, therefore, mediated through reproductive disturbances in both females and males. While the effect of ADBAC+DDAC exposure on human health is unclear, widespread exposure necessitates further consideration of their potential reproductive toxicity.
Collapse
Affiliation(s)
- Vanessa E Melin
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, VA Tech, Blacksburg, VA 24061, USA
| | - Travis E Melin
- Department of Biomedical Science, E. Via College of Osteopathic Medicine - Virginia Campus, Blacksburg, VA 24060, USA
| | - Brian J Dessify
- Department of Biomedical Science, E. Via College of Osteopathic Medicine - Virginia Campus, Blacksburg, VA 24060, USA
| | - Christina T Nguyen
- Department of Biomedical Science, E. Via College of Osteopathic Medicine - Virginia Campus, Blacksburg, VA 24060, USA
| | - Caroline S Shea
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, VA Tech, Blacksburg, VA 24061, USA
| | - Terry C Hrubec
- Department of Biomedical Sciences and Pathobiology, VA-MD College of Veterinary Medicine, VA Tech, Blacksburg, VA 24061, USA; Department of Biomedical Science, E. Via College of Osteopathic Medicine - Virginia Campus, Blacksburg, VA 24060, USA.
| |
Collapse
|
11
|
Castro CC, Pagnussat AS, Moura N, da Cunha MJ, Machado FR, Wyse ATS, Netto CA. Coumestrol treatment prevents Na+, K+ -ATPase inhibition and affords histological neuroprotection to male rats receiving cerebral global ischemia. Neurol Res 2014; 36:198-206. [PMID: 24512013 DOI: 10.1179/1743132813y.0000000286] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
OBJECTIVE In this study, we investigated the possible mechanisms underlying the neuroprotective effects of coumestrol, a potent isoflavonoid with antioxidant activities and binding affinities for both estrogen receptors (ER) ER-alpha and ER-beta that are comparable to those of 17beta-estradiol, in a model of global ischemia in male subjects. METHODS Wistar rats underwent global ischemia (10 minutes) or sham surgery and received a single intracerebroventricular (icv) infusion of 20 μg of coumestrol or vehicle 1 hour before ischemia or 0, 3, 6, or 24 hours after reperfusion. RESULTS The data analysis revealed an extensive neuronal death in the CA1 hippocampal subfield at 7 days, and a significant decrease in the Na+, K+ -ATPase activity at 1 and 24 hours after ischemia, and both injuries were attenuated by coumestrol administration. CONCLUSIONS Coumestrol treatment was effective in preventing neuronal loss in all times of administration as well as able to rescue the Na+, K+ -ATPase activity, suggesting its potential benefits for either prevention or therapeutics use against cerebral ischemia in males.
Collapse
|
12
|
Pérez-Rivero J, Pérez-Martínez M, Aguilar-Setién A. Histometric analysis of vampire bat (Desmodus rotundus) testicles treated with coumestrol by oral route. JOURNAL OF APPLIED ANIMAL RESEARCH 2013. [DOI: 10.1080/09712119.2013.827578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
13
|
Aguilar-Urquizo E, Sanginés-García J, Delgadillo J, Capetillo-Leal C, Torres-Acosta J. The onset of puberty of Pelibuey male hair sheep is not delayed by the short term consumption of Morus alba or Hibiscus rosa-sinensis foliage. Livest Sci 2013. [DOI: 10.1016/j.livsci.2013.05.031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
14
|
Canal Castro C, Pagnussat AS, Orlandi L, Worm P, Moura N, Etgen AM, Alexandre Netto C. Coumestrol has neuroprotective effects before and after global cerebral ischemia in female rats. Brain Res 2012; 1474:82-90. [DOI: 10.1016/j.brainres.2012.07.025] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Revised: 06/26/2012] [Accepted: 07/12/2012] [Indexed: 01/29/2023]
|
15
|
Affiliation(s)
- Heather B Patisaul
- Department of Biology and W.M. Keck Center for Behavioral Biology, North Carolina State University, Raleigh, North Carolina 27695, USA.
| |
Collapse
|
16
|
Jeon HY, Seo DB, Shin HJ, Lee SJ. Effect of Aspergillus oryzae-challenged germination on soybean isoflavone content and antioxidant activity. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2012; 60:2807-14. [PMID: 22409158 DOI: 10.1021/jf204708n] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Application of microbial stress to soybean during germination induces the accumulation of phytoalexins, which have many health benefits. In this study, the effects of stress induced by Aspergillus oryzae on the phytochemical composition of germinating soybeans were investigated, and their radical scavenging activity was compared with those of ungerminated (US) and germinated (GS) soybeans. Additionally, the antioxidant activity of coumestrol, a soybean phytoalexin, against hydrogen peroxide-induced reactive oxygen species (ROS) was investigated in HepG2 cells. A. oryzae exposure significantly decreased the total isoflavone content and induced coumestrol and glyceollin I. A. oryzae-challenged germinated soybeans exhibited the highest radical scavenging activity (IC(50) = 0.55 mg/mL) as compared to US and GS. Coumestrol exhibited significantly higher radical scavenging activity than daidzein and genistein. Furthermore, coumestrol significantly prevented hydrogen peroxide-induced ROS production and lipid peroxidation and inhibited decreases in cell viability, intracellular glutathione (GSH) levels, and superoxide dismutase (SOD) activity. These results indicate that using food-grade A. oryzae to elicit the biosynthesis of phytoalexins alters the secondary metabolite profiles of the soybeans and offers enhanced bioactivity of soybean as a functional food ingredient.
Collapse
Affiliation(s)
- Hee Young Jeon
- Health Science Research Institute, Amorepacific Corporation R&D Center, 314-1 Bora-dong, Giheung-gu, Yongin-si, Gyeonggi-do 446-729, Korea
| | | | | | | |
Collapse
|
17
|
Jung EM, An BS, Yang H, Choi KC, Jeung EB. Biomarker genes for detecting estrogenic activity of endocrine disruptors via estrogen receptors. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2012; 9:698-711. [PMID: 22690157 PMCID: PMC3367271 DOI: 10.3390/ijerph9030698] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/26/2011] [Revised: 02/02/2012] [Accepted: 02/20/2012] [Indexed: 12/31/2022]
Abstract
Endocrine disruptors (EDs) are compounds used in various industrial products, drugs, and cosmetics. They can be found in the environment and disturb the endocrine and reproductive systems, resulting in adverse effects to humans and wildlife such as birth defects and developmental disorders. Since several EDs have a structure similar to that of endogenous steroid hormones such as estrogens, they intend to have an affinity for steroid hormone receptors and alter hormone-mediated metabolism by binding to these receptors. EDs are therefore a global concern and assays should be developed to efficiently determine whether these compounds are detrimental to biological systems. Diverse experimental methods may help determine the endocrine disrupting potential of EDs and evaluate the adverse effects of a single and/or combination of these reagents. Currently, biomarkers have been employed to objectively measure EDs potency and understand the underlying mechanisms. Further studies are required to develop ideal screening methods and biomarkers to determine EDs potency at environmentally relevant concentrations. In this review, we describe the biomarkers for estrogenicity of EDs identified both in vitro and in vivo, and introduce a biomarker, cabindin-D9k (CaBP-9k), that may be used to assess estrogenic activity of EDs.
Collapse
Affiliation(s)
- Eui-Man Jung
- Laboratory of Veterinary Biochemistry and Molecular Biology, College of Veterinary Medicine, Chungbuk National University, Cheongju, Chungbuk 361-763, Korea.
| | | | | | | | | |
Collapse
|
18
|
Clotfelter ED, McNitt MM, Carpenter RE, Summers CH. Modulation of monoamine neurotransmitters in fighting fish Betta splendens exposed to waterborne phytoestrogens. FISH PHYSIOLOGY AND BIOCHEMISTRY 2010; 36:933-943. [PMID: 20012186 DOI: 10.1007/s10695-009-9370-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2009] [Accepted: 11/29/2009] [Indexed: 05/28/2023]
Abstract
Endogenous estrogens are known to affect the activity of monoamine neurotransmitters in vertebrate animals, but the effects of exogenous estrogens on neurotransmitters are relatively poorly understood. We exposed sexually mature male fighting fish Betta splendens to environmentally relevant and pharmacological doses of three phytoestrogens that are potential endocrine disruptors in wild fish populations: genistein, equol, and β-sitosterol. We also exposed fish to two doses of the endogenous estrogen 17β-estradiol, which we selected as a positive control because phytoestrogens are putative estrogen mimics. Our results were variable, but the effects were generally modest. Genistein increased dopamine levels in the forebrains of B. splendens at both environmentally relevant and pharmacological doses. The environmentally relevant dose of equol increased dopamine levels in B. splendens forebrains, and the pharmacological dose decreased norepinephrine (forebrain), dopamine (hindbrain), and serotonin (forebrain) levels. The environmentally relevant dose of β-sitosterol decreased norepinephrine and dopamine in the forebrain and hindbrain, respectively. Our results suggest that sources of environmental phytoestrogens, such as runoff or effluent from agricultural fields, wood pulp mills, and sewage treatment plants, have the potential to modulate neurotransmitter activity in free-living fishes in a way that could interfere with normal behavioral processes.
Collapse
|
19
|
Bisphenol A interferes with synaptic remodeling. Front Neuroendocrinol 2010; 31:519-30. [PMID: 20609373 PMCID: PMC2964437 DOI: 10.1016/j.yfrne.2010.06.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2010] [Revised: 06/11/2010] [Accepted: 06/25/2010] [Indexed: 11/21/2022]
Abstract
The potential adverse effects of Bisphenol A (BPA), a synthetic xenoestrogen, have long been debated. Although standard toxicology tests have revealed no harmful effects, recent research highlighted what was missed so far: BPA-induced alterations in the nervous system. Since 2004, our laboratory has been investigating one of the central effects of BPA, which is interference with gonadal steroid-induced synaptogenesis and the resulting loss of spine synapses. We have shown in both rats and nonhuman primates that BPA completely negates the ∼ 70-100% increase in the number of hippocampal and prefrontal spine synapses induced by both estrogens and androgens. Synaptic loss of this magnitude may have significant consequences, potentially causing cognitive decline, depression, and schizophrenia, to mention those that our laboratory has shown to be associated with synaptic loss. Finally, we discuss why children may particularly be vulnerable to BPA, which represents future direction of research in our laboratory.
Collapse
|
20
|
Watson CS, Alyea RA, Cunningham KA, Jeng YJ. Estrogens of multiple classes and their role in mental health disease mechanisms. Int J Womens Health 2010; 2:153-66. [PMID: 21072308 PMCID: PMC2971739 DOI: 10.2147/ijwh.s6907] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2010] [Indexed: 12/21/2022] Open
Abstract
Gender and sex hormones can influence a variety of mental health states, including mood, cognitive development and function, and vulnerability to neurodegenerative diseases and brain damage. Functions of neuronal cells may be altered by estrogens depending upon the availability of different physiological estrogenic ligands; these ligands and their effects vary with life stages, the genetic or postgenetic regulation of receptor levels in specific tissues, or the intercession of competing nonphysiological ligands (either intentional or unintentional, beneficial to health or not). Here we review evidence for how different estrogens (physiological and environmental/dietary), acting via different estrogen receptor subtypes residing in alternative subcellular locations, influence brain functions and behavior. We also discuss the families of receptors and transporters for monoamine neurotransmitters and how they may interact with the estrogenic signaling pathways.
Collapse
|
21
|
Boué SM, Tilghman SL, Elliott S, Zimmerman MC, Williams KY, Payton-Stewart F, Miraflor AP, Howell MH, Shih BY, Carter-Wientjes CH, Segar C, Beckman BS, Wiese TE, Cleveland TE, McLachlan JA, Burow ME. Identification of the potent phytoestrogen glycinol in elicited soybean (Glycine max). Endocrinology 2009; 150:2446-53. [PMID: 19116342 PMCID: PMC2671905 DOI: 10.1210/en.2008-1235] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2008] [Accepted: 12/19/2008] [Indexed: 11/19/2022]
Abstract
The primary induced isoflavones in soybean, the glyceollins, have been shown to be potent estrogen antagonists in vitro and in vivo. The discovery of the glyceollins' ability to inhibit cancer cell proliferation has led to the analysis of estrogenic activities of other induced isoflavones. In this study, we investigated a novel isoflavone, glycinol, a precursor to glyceollin that is produced in elicited soy. Sensitive and specific in vitro bioassays were used to determine that glycinol exhibits potent estrogenic activity. Estrogen-based reporter assays were performed, and glycinol displayed a marked estrogenic effect on estrogen receptor (ER) signaling between 1 and 10 microM, which correlated with comparable colony formation of MCF-7 cells at 10 microM. Glycinol also induced the expression of estrogen-responsive genes (progesterone receptor and stromal-cell-derived factor-1). Competitive binding assays revealed a high affinity of glycinol for both ER alpha (IC(50) = 13.8 nM) and ER beta (IC(50) = 9.1 nM). In addition, ligand receptor modeling (docking) studies were performed and glycinol was shown to bind similarly to both ER alpha and ER beta. Taken together, these results suggest for the first time that glycinol is estrogenic and may represent an important component of the health effects of soy-based foods.
Collapse
Affiliation(s)
- Stephen M Boué
- Southern Regional Research Center, United States Department of Agriculture, New Orleans, Louisiana 70179, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Cardoso JR, Báo SN. Morphology of Reproductive Organs, Semen Quality and Sexual Behaviour of the Male Rabbit Exposed to a Soy-containing Diet and Soy-derived Isoflavones during Gestation and Lactation. Reprod Domest Anim 2008; 44:937-42. [DOI: 10.1111/j.1439-0531.2008.01121.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
23
|
Zanoli P, Zavatti M, Geminiani E, Corsi L, Baraldi M. The phytoestrogen ferutinin affects female sexual behavior modulating ERalpha expression in the hypothalamus. Behav Brain Res 2008; 199:283-7. [PMID: 19124045 DOI: 10.1016/j.bbr.2008.12.009] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2008] [Revised: 12/02/2008] [Accepted: 12/07/2008] [Indexed: 11/19/2022]
Abstract
This study was designed to assess the effect of the phytoestrogenic compound ferutinin, chronically administered in ovariectomized progesterone primed rats, alone or in combination with estradiol benzoate. After 2, 3 and 4 weeks of treatments, female rats were tested for receptive (lordosis) and proceptive behaviors (hops, darts and ear wigglings). Ferutinin given alone markedly increased the intensity of the lordotic response in ovariectomized rats but failed to significantly affect proceptivity. On the other hand estradiol benzoate significantly increased both receptive and proceptive behaviors. When administered in combination with estradiol, ferutinin reduced the increase in receptivity and proceptivity due to estrogen effects, acting as an antiestrogen. At the end of the behavioral experiments, animals were sacrificed and Western blot analysis of estrogen receptor alpha (ERalpha) levels was performed in the dissected hypothalami. Ferutinin increased ERalpha expression when administered alone, as estradiol did, but decreased the response to estradiol when administered in combination. These results suggest that ferutinin displays estrogenic or antiestrogenic activity through ERalpha in the hypothalamus, depending on the absence or the presence of estrogen priming.
Collapse
Affiliation(s)
- Paola Zanoli
- Department of Biomedical Sciences, Section of Pharmacology, and National InterUniversity Consortium for the Study of Natural Active Principles (CINSPAN), University of Modena and Reggio Emilia, Via Campi 287, 41100 Modena, Italy.
| | | | | | | | | |
Collapse
|
24
|
Li YW. Regulation of aromatase P450 expression by puerarin in endometrial cell line RL95-2. ACTA ACUST UNITED AC 2008; 6:1017-23. [DOI: 10.3736/jcim20081006] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
|
25
|
Bakker J, Baum MJ. Role for estradiol in female-typical brain and behavioral sexual differentiation. Front Neuroendocrinol 2008; 29:1-16. [PMID: 17720235 PMCID: PMC2373265 DOI: 10.1016/j.yfrne.2007.06.001] [Citation(s) in RCA: 138] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2007] [Revised: 05/29/2007] [Accepted: 06/19/2007] [Indexed: 12/01/2022]
Abstract
The importance of estrogens in controlling brain and behavioral sexual differentiation in female rodents is an unresolved issue in the field of behavioral neuroendocrinology. Whereas, the current dogma states that the female brain develops independently of estradiol, many studies have hinted at possible roles of estrogen in female sexual differentiation. Accordingly, it has been proposed that alpha-fetoprotein, a fetal plasma protein that binds estrogens with high affinity, has more than a neuroprotective role and specifically delivers estrogens to target brain cells to ensure female differentiation. Here, we review new results obtained in aromatase and alpha-fetoprotein knockout mice showing that estrogens can have both feminizing and defeminizing effects on the developing neural mechanisms that control sexual behavior. We propose that the defeminizing action of estradiol normally occurs prenatally in males and is avoided in fetal females because of the protective actions of alpha-fetoprotein, whereas the feminizing action of estradiol normally occurs postnatally in genetic females.
Collapse
Affiliation(s)
- Julie Bakker
- Center for Cellular & Molecular Neurobiology, University of Liège, Belgium.
| | | |
Collapse
|
26
|
KIRIHATA Y, KAWARABAYASHI T, IMANISHI S, SUGIMOTO M, KUME SI. Coumestrol Decreases Intestinal Alkaline Phosphatase Activity in Post-delivery Mice but does not Affect Vitamin D Receptor and Calcium Channels in Post-delivery and Neonatal Mice. J Reprod Dev 2008; 54:35-41. [DOI: 10.1262/jrd.19095] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Affiliation(s)
- Yuka KIRIHATA
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Tetsu KAWARABAYASHI
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Satoshi IMANISHI
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Miki SUGIMOTO
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| | - Shin-Ichi KUME
- Laboratory of Animal Physiology and Functional Anatomy, Graduate School of Agriculture, Kyoto University
| |
Collapse
|
27
|
Jang JH, Yoon JY, Cho SH. Intake of dietary phytoestrogen and indices of antioxidant and bone metabolism of pre- and post-menopausal Korean women. Nutr Res Pract 2007; 1:305-12. [PMID: 20368955 PMCID: PMC2849039 DOI: 10.4162/nrp.2007.1.4.305] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2007] [Revised: 10/06/2007] [Accepted: 10/19/2007] [Indexed: 11/17/2022] Open
Abstract
A group of 101 women, aged 40-65 years consisted of 48 premenopausal subjects and 53 postmenopausal ones living in Daegu and Gyeongbuk area in Korea were evaluated with their general characteristics, lifestyle factors, nutrient and phytoestrogen intakes, blood and urinary indices concerning antioxidant status and bone metabolism. Body mass index (BMI), waist hip ratio (WHR) and systolic blood pressure (SBP) of the postmenopausal women were significantly higher (23.8, 0.86, and 126.9 mmHg, respectively) than those of the premenopausal women (22.6, 0.82, and 115.9 mmHg; respectively). Nutrient intakes of the postmenopausal and premenopausal groups were not different except lower fat intake and higher dietary fiber and iron intakes in the postmenopausal group. Daily total phytoestrogen intake was significantly higher in the postmenopausal group (48.54 mg) than the premenopausal (31.41 mg) and was resulted mostly from higher intakes of daidzein and genistein from soy and soy products (45.42 mg vs 28.91 mg). Serum genistein level and excretion of enterolactone, major lignan metabolite, were not very different between the two groups. Serum retinal and α- tocopherol levels were higher in the postmenopausal group but TBARS levels were not different between the two groups. Serum osteocalcin (7.18 ng/mL) and urinary deoxypyridinoline (7.15 nmol/mmol creatinine), in the postmenopausal group were significantly higher than those in the premenopausal group (4.80 ng/mL, 5.95 nmol/mmol creatinine). Urinary excretion of enterolactone was positively correlated with serum osetocalcin in premenopausal women and serum genistein negatively correlated with the urinary DPD in postmenopausal women. Dietary phytoestrogen intake was negatively correlated with serum level of TBARS in all subjects. It is concluded that the effect of total phytoestrogen intake is beneficial on body antioxidant status in all middle-aged women regardless of menopause but the effect on bone metabolism appears different by the type of the phytoestrogen and the menopausal state.
Collapse
Affiliation(s)
- Jeong-Hee Jang
- Department of Food Science and Nutrition, Catholic University of Daegu, Gyeongbuk 712-702, Korea
| | | | | |
Collapse
|
28
|
Enokizono J, Kusuhara H, Sugiyama Y. Effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of phytoestrogens. Mol Pharmacol 2007; 72:967-75. [PMID: 17644650 DOI: 10.1124/mol.107.034751] [Citation(s) in RCA: 140] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The effect of breast cancer resistance protein (Bcrp/Abcg2) on the disposition of the phytoestrogens daidzein, genistein, and coumestrol was investigated using Bcrp(-/-) mice. Expression of the genes for either mouse Bcrp or human BCRP in MDCK II cells induced apically directed transport of the three phytoestrogens, whereas their transcellular transport was identical in mock and LLC-PK1 cells expressing mouse Mdr1a. After oral administration, the plasma levels of daidzein and genistein were increased in Bcrp(-/-) mice, but only a minimal change was observed for coumestrol. At steady state, tissue-to-plasma concentration ratios of the three phytoestrogens in the brain and testis of wild-type mice were very small and similar to those of [(14)C]inulin, whereas those were significantly increased in the brain and testis of Bcrp(-/-) mice. The largest increases were observed with genistein (9.2- and 5.8-fold in the brain and testis, respectively). The distributions of genistein in the epididymis and fetus, but not the ovary, were also increased in Bcrp(-/-) mice. The Bcrp protein was localized in the luminal membrane of the endothelial cells in the testis and the body of the epididymis and in both the luminal and abluminal side of ducts in the head of the epididymis. These results suggest that Bcrp limits the oral availability and distribution into the brain and testis, epididymis, and fetus of phytoestrogens.
Collapse
Affiliation(s)
- Junichi Enokizono
- Graduate School of Pharmaceutical Sciences, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | | |
Collapse
|
29
|
Jefferson WN, Padilla-Banks E, Newbold RR. Disruption of the developing female reproductive system by phytoestrogens: Genistein as an example. Mol Nutr Food Res 2007; 51:832-44. [PMID: 17604387 DOI: 10.1002/mnfr.200600258] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Studies in our laboratory have shown that exposure to genistein causes deleterious effects on the developing female reproductive system. Mice treated neonatally on days 1-5 by subcutaneous injection of genistein (0.5-50 mg/kg) exhibited altered ovarian differentiation leading to multioocyte follicles (MOFs) at 2 months of age. Ovarian function and estrous cyclicity were also disrupted by neonatal exposure to genistein with increasing severity observed over time. Reduced fertility was observed in mice treated with genistein (0.5, 5, or 25 mg/kg) and infertility was observed at 50 mg/kg. Mammary gland and behavioral endpoints were also affected by neonatal genistein treatment. Further, transgenerational effects were observed; female offspring obtained from breeding genistein treated females (25 mg/kg) to control males had increased MOFs. Thus, neonatal treatment with genistein at environmentally relevant doses caused adverse consequences on female development which is manifested in adulthood. Whether adverse effects occur in human infants exposed to soy-based products such as soy infant formulas is unknown but the neonatal murine model may help address some of the current uncertainties since we have shown that many effects obtained from feeding genistin, the glycosolated form of genistein found in soy formula, are similar to those obtained from injecting genistein.
Collapse
Affiliation(s)
- Wendy N Jefferson
- Developmental Endocrinology and Endocrine Disruptor Section, Laboratory of Molecular Toxicology, National Institute of Environmental Health Sciences, NIH, DHHS, Research Triangle Park, NC, USA.
| | | | | |
Collapse
|
30
|
Imwalle DB, Bateman HL, Wills A, Honda SI, Harada N, Rissman EF. Impairment of spatial learning by estradiol treatment in female mice is attenuated by estradiol exposure during development. Horm Behav 2006; 50:693-8. [PMID: 16884724 DOI: 10.1016/j.yhbeh.2006.06.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2005] [Revised: 05/15/2006] [Accepted: 06/06/2006] [Indexed: 10/24/2022]
Abstract
High doses of estradiol (E(2)) can impair spatial learning in the Morris water maze, in ovariectomized mice, but the same dose has no effect on adult castrated males. Here, we test the hypothesis that this sex difference is caused by neonatal actions of E(2). In Experiment 1, C57BL/6J pups were given daily estradiol benzoate (EB) or oil injections from the day of birth until postnatal Day 3. Adults were gonadectomized and received EB (s.c.) or oil 28 h before the first day of training, and 4 h before each of four daily training sessions on the Morris water maze. Females given oil as neonates, and EB prior to training displayed the poorest performance. Females that received EB as neonates and EB prior to training were insensitive to the deleterious effects of adult EB and performed better than males given the same hormone treatments. We conducted a second experiment using aromatase enzyme knockout (ArKO) mice. Adult male and female ArKO and wild-type (WT) littermates were gonadectomized and received either injections of oil or EB prior to and during water maze training (as described above). Hormone treatment failed to affect performance, yet, female but not male ArKO mice showed impaired learning compared to WT littermates. Thus, exposure to estradiol during neonatal development can counteract the deleterious effects of EB on adult spatial learning.
Collapse
Affiliation(s)
- D Bradley Imwalle
- Department of Biochemistry and Molecular Genetics, University of Virginia School of Medicine, Charlottesville, VA 22908-0733, USA.
| | | | | | | | | | | |
Collapse
|
31
|
Clotfelter ED, Rodriguez AC. Behavioral changes in fish exposed to phytoestrogens. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2006; 144:833-9. [PMID: 16584819 DOI: 10.1016/j.envpol.2006.02.007] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2005] [Revised: 01/25/2006] [Accepted: 02/05/2006] [Indexed: 05/08/2023]
Abstract
We investigated the behavioral effects of exposure to waterborne phytoestrogens in male fighting fish, Betta splendens. Adult fish were exposed to a range of concentrations of genistein, equol, beta-sitosterol, and the positive control 17beta-estradiol. The following behaviors were measured: spontaneous swimming activity, latency to respond to a perceived intruder (mirror reflection), intensity of aggressive response toward a perceived intruder, probability of constructing a nest in the presence of a female, and the size of the nest constructed. We found few changes in spontaneous swimming activity, the latency to respond to the mirror, and nest size, and modest changes in the probability of constructing a nest. There were significant decreases, however, in the intensity of aggressive behavior toward the mirror following exposure to several concentrations, including environmentally relevant ones, of 17beta-estradiol, genistein, and equol. This suggests that phytoestrogen contamination has the potential to significantly affect the behavior of free-living fishes.
Collapse
|
32
|
|
33
|
Ryan BC, Vandenbergh JG. Developmental exposure to environmental estrogens alters anxiety and spatial memory in female mice. Horm Behav 2006; 50:85-93. [PMID: 16540110 DOI: 10.1016/j.yhbeh.2006.01.007] [Citation(s) in RCA: 138] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2005] [Revised: 01/24/2006] [Accepted: 01/27/2006] [Indexed: 10/24/2022]
Abstract
Humans and wildlife are exposed to numerous anthropogenic drugs and pollutants. Many of these compounds are hormonally active, and recent evidence suggests that the presence of these endocrine disruptors permanently alters normal development and physiology in a variety of vertebrate species. Here, we report on the effects of developmental exposure to two common estrogenic pollutants, bisphenol A and ethinyl estradiol on sexually dimorphic, non-reproductive behavior. Mice (Mus musculus domesticus) were exposed to environmentally relevant levels of these chemicals (2 and 200 microg/kg/day for bisphenol A and 5 microg/kg/day for ethinyl estradiol) throughout prenatal and early postnatal development. As adults, the animals were observed in a variety of tests measuring sexually dimorphic behaviors including short-term spatial memory (in a radial-arm maze and a Barnes maze) and anxiety (in an elevated-plus maze and a light/dark preference chamber). Developmental exposure to ethinyl estradiol was found to masculinize behavior in all of the assays used. Bisphenol A increased anxious behavior in a dose-dependent fashion but had no effect on spatial memory. These results indicate that non-reproductive, sexually dimorphic behavior is sensitive to endocrine disruption. In addition, these experiments suggest that both humans and wildlife are being exposed to levels of these endocrine disrupting compounds that are sufficient to disrupt the development of the nervous system and that may have permanent consequences on sexually dimorphic behaviors.
Collapse
Affiliation(s)
- Bryce C Ryan
- Department of Zoology, North Carolina State University, Raleigh, NC 27695, USA.
| | | |
Collapse
|
34
|
Abstract
Endocrine disrupters (EDs) alter normal hormonal regulation and may be naturally occurring or environmental contaminants. Classically, EDs act genomically, with agonistic or antagonistic effects on steroid receptors and may alter reproductive function and/or cause feminisation by binding to oestrogen or androgen receptors; their binding to the thyroid receptor may dysregulate the neuroendocrine system. Recently, it has been shown that EDs can also act by non-genomic mechanisms, altering steroid synthesis (inhibition of cytochrome P450 isoforms) or steroid metabolism. The alkylphenol and phthalate plasticisers inhibit the inactivation of oestrogens by sulphation (via SULT 1A1 and 1E1 isoforms) and so cause a rise in levels of the free active endogenous oestrogens. A range of ED effects have been shown in mammals, fish, birds, reptiles, amphibia and aquatic invertebrates but it is not yet clear whether these processes also occur in human beings. It is evident that EDs, as well as altering reproduction, can cause changes in neurosteroid levels and so have the potential to affect immune function, behaviour and memory. This may be of long-term concern since traces of EDs such as plasticisers, brominated fire retardants, sunscreen agents and cosmetic ingredients are widely distributed in the environment and in human biofluids.
Collapse
Affiliation(s)
- R H Waring
- School of Biosciences, University of Birmingham, UK.
| | | |
Collapse
|
35
|
Schwarz A, Soares MR, Flório JC, Bernardi MM, Spinosa HS. Rats exposed to Solanum lycocarpum fruit in utero and during lactation: Neurochemical, behavioral and histopathological effects. Neurotoxicol Teratol 2005; 27:861-70. [PMID: 16099621 DOI: 10.1016/j.ntt.2005.07.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2004] [Revised: 06/29/2005] [Accepted: 07/07/2005] [Indexed: 10/25/2022]
Abstract
Solanum lycocarpum St. Hil (Solanaceae) is a native shrub very common in the Brazilian savannah. This plant contains steroidal glycoalkaloids that can be transformed into an intermediate for steroidal drug production. In this way, it is very possible that these glycoalkaloids and its aglycone, once in the body by ingestion of S. lycocarpum fruits, may act by disrupting the endocrine system. Because its fruits may be consumed by pregnant animals in the fields, the present study determined the possible toxic effects of exposure to S. lycocarpum fruit (10% added in the diet) from gestation day (GD) 6 to postnatal day (PND) 07 in rat dams. The unripe fruits contained 0.6% of solamargine and 0.9% of solasonine. S. lycocarpum, 10% in the diet, during gestation and the beginning of lactation reduced intrauterine growth. In addition, 20% of the treated dams showed some dead pups at birth. Reduced body weight was observed from birth through adulthood in male and female offspring exposed to 10% S. lycocarpum unripe fruits. During adulthood, female offspring showed impaired sexual behavior and male offspring showed prominent degeneration of testis germinative cells, characterized by a reduced number of germ cells and vacuolation. Also, the exposed offspring showed reduced hypothalamic norepinephrine (NOR), vanillylmandelic acid (VMA), 3-methoxy-4-hydrophenylglycol (MHPG) and homovanillic acid (HVA) levels, and reduced striatum NOR, HVA, VMA, MHPG, dopamine (DA), dihydroxyphenylacetic acid (DOPAC) and 5-hydroxyindolacetic acid (5-HIAA) levels. These results suggest that the fruit may act as an estrogen, with a long-term effect, impairing the receptive lordosis behavior of female offspring and promoting testis abnormalities in male offspring at adulthood. Finally, it appears to disrupt brain organization since important central monoamine level alterations were also observed.
Collapse
Affiliation(s)
- A Schwarz
- Programa de Pós-graduação em Toxicologia e Análises Toxicológicas da Faculdade de Ciências Farmacêuticas da Universidade de São Paulo, São Paulo-SP, Brazil
| | | | | | | | | |
Collapse
|
36
|
Schreihofer DA. Transcriptional regulation by phytoestrogens in neuronal cell lines. Mol Cell Endocrinol 2005; 231:13-22. [PMID: 15713532 DOI: 10.1016/j.mce.2004.12.006] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2004] [Revised: 12/14/2004] [Accepted: 12/16/2004] [Indexed: 10/25/2022]
Abstract
Widespread epidemiological data support the notion that high isoflavone intake is safe and may provide health benefits similar to estrogen. Evidence from rodents shows that certain phytoestrogens can act as estrogen receptor (ER) ligands in the brain. This study sought to determine the estrogenic profile of food-borne phytoestrogens in neuronal cell lines using physiologically attainable concentrations. At sub-micromolar concentrations genistein, daidzein, and zearalenone stimulated ERalpha and ERbeta-dependent transcription in Neuro2A cells co-transfected with ERs and simple and complex estrogen-response-element (ERE) containing promoters, although compounds were more active in the presence of ERbeta. In SN56, neuronblastoma cells expressing endogenous ERs, only genistein mimicked estrogen regulation of progesterone receptor steady state mRNA levels. Unlike pharmaceutical SERMs, phytoestrogens did not stimulate an AP-1-dependent promoter. Micromolar concentrations of phytoestrogens did not antagonize physiological estrogen concentrations or antagonist activation of an AP-1-dependent promoter. These results demonstrate that food-borne phytoestrogens, particularly those found in soy, act as ERE-, but not AP-1-dependent transcriptional activators in neurons in the absence of estrogen, and dietary levels of these compounds do not act as antagonists to physiological estrogen concentrations.
Collapse
Affiliation(s)
- Derek A Schreihofer
- Department of Physiology, Medical College of Georgia, 1120 15th Street, CL2130, Augusta, GA 30912-3000, USA.
| |
Collapse
|
37
|
Turcotte JC, Hunt PJB, Blaustein JD. Estrogenic effects of zearalenone on the expression of progestin receptors and sexual behavior in female rats. Horm Behav 2005; 47:178-84. [PMID: 15664021 DOI: 10.1016/j.yhbeh.2004.09.005] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2004] [Accepted: 09/30/2004] [Indexed: 10/26/2022]
Abstract
Zearalenone is a resorcylic acid lactone compound that is produced by fungal infection of edible grains and is believed to influence reproduction by binding to estrogen receptors. In order to study the potential estrogenic effects of this compound in the brain, we examined the effects of zearalenone on the expression of neuronal progestin receptors and feminine sexual behavior in female rats. Ovariectomized rats were treated with zearalenone (0.2, 1.0, or 2.0 mg), estradiol benzoate, or vehicle daily for 3 days. They were then either perfused, and progestin receptors visualized by immunocytochemistry, or injected with progesterone and tested for sexual receptivity with male rats. Progestin receptor-containing cells were counted in the medial preoptic area and ventromedial hypothalamus. The two highest doses of zearalenone increased the concentration of neuronal progestin receptors, as did 10 microg of estradiol. The highest dose of zearalenone (2 mg) also induced progestin receptor staining density comparable to that of 10 microg of estradiol benzoate. In behavioral tests, ovariectomized animals treated with 2 mg of zearalenone followed by progesterone showed levels of sexual receptivity comparable to females treated daily with estradiol benzoate (2 microg) followed by progesterone. These studies suggest that, although structurally distinct and less potent than estradiol, zearalenone can act as an estrogen agonist in the rat brain.
Collapse
Affiliation(s)
- Joanne C Turcotte
- Center for Neuroendocrine Studies and Neuroscience and Behavior Program, University of Massachusetts, Tobin Hall, 135 Hicks Way, Amherst, MA 01003-9271, USA
| | | | | |
Collapse
|
38
|
Wu Z, Yang Y, Chen Y, Xia G, Zhang R. Effects of subcutaneous administration of daidzein on blastocyst implantation in rats. Food Chem Toxicol 2005; 43:167-72. [PMID: 15582209 DOI: 10.1016/j.fct.2004.09.006] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2004] [Accepted: 09/26/2004] [Indexed: 11/25/2022]
Abstract
The study was conducted to investigate the effects of phytoestrogen daidzein on blastocyst implantation in rats. Following successful mating, female rats were given daidzein by subcutaneous administration at the dose of 0 (vehicle control, n=15), 50 mg/kg body weight (n=15) and 150 mg/kg body weight (n=15) daily on day 1-7 of pregnancy and were sacrificed on day 8 of gestation. The results revealed that high-dose treatment (150 mg/kg body weight) significantly diminished the rate of blastocyst implantation and serum levels of gonadotropin-releasing hormone (GnRH), progesterone, and gonadotropins (FSH and LH), meanwhile the serum level of beta endorphin increased significantly. These effects were not observed in the low-dose treatment group (50 mg/kg body weight). The results of this study suggested that the anti-implantation effects of daidzein are probably caused by the interference of the hypothalamus-pituitary-gonadal axis which is involved in the implantation process.
Collapse
Affiliation(s)
- Zhenlong Wu
- Department of Biological Science and Biotechnology, Tsinghua University, Haidian District, Beijing 100084, PR China
| | | | | | | | | |
Collapse
|
39
|
Patisaul HB, Luskin JR, Wilson ME. A soy supplement and tamoxifen inhibit sexual behavior in female rats. Horm Behav 2004; 45:270-7. [PMID: 15053943 DOI: 10.1016/j.yhbeh.2003.12.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2003] [Revised: 11/18/2003] [Accepted: 12/19/2003] [Indexed: 10/26/2022]
Abstract
In addition to displaying proceptive (hopping and darting) and receptive (lordosis) behaviors during a sexual encounter with a male, female rodents will regulate the timing of the encounter by engaging in a series of approaches and withdrawals from the male, a behavior termed paced mating behavior. Proceptive, receptive, and paced mating behaviors are all regulated by, and sensitive to, estrogen and progesterone, suggesting that compounds capable of disrupting these critical hormones may also perturb the display of female sexual behavior. The present experiments examined the impact of the selective estrogen receptor modulator (SERM) tamoxifen and a popular soy phytoestrogen dietary supplement on female sexual behavior in rats. Ovariectomized female rats were given either tamoxifen (TAMOX) by implant or the soy supplement through the diet then injected with estradiol benzoate (EB, 10 microg) or oil followed 48 h later with an injection of progesterone (P, 500 microg). Animals were then tested for sexual behavior 4 h after the P injection. Neither compound had any effect on sexual behavior when administered in conjunction with P alone; however, both significantly diminished receptive behavior, as measured by the lordosis quotient (LQ), in animals primed with both EB and P. Similarly, the hopping and darting rate was also significantly depressed in both the soy- and TAMOX-treated animals, compared to the EB- and P-treated controls, with the soy-treated animals showing significantly less proceptive behavior than the TAMOX-treated animals. Finally, soy but not TAMOX significantly attenuated paced mating behavior in animals compared to the EB- and P-treated controls. These results demonstrate that both the soy supplement and TAMOX act as estrogen antagonists on both proceptive and receptive behavior in female rats.
Collapse
Affiliation(s)
- Heather B Patisaul
- Yerkes National Primate Research Center, Emory University, Atlanta, GA 30329, USA.
| | | | | |
Collapse
|
40
|
Lapcík O, Stursa J, Kleinová T, Vítková M, Dvoráková H, Klejdus B, Moravcová J. Synthesis of hapten and conjugates of coumestrol and development of immunoassay. Steroids 2003; 68:1147-55. [PMID: 14643876 DOI: 10.1016/j.steroids.2003.08.014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
3-O-Carboxymethylcoumestrol was prepared as the hapten for immunoassay by a partial alkylation of coumestrol with ethyl chloroacetate in acetone alkalized with potassium carbonate. 3-O-Ethoxycarbonylmethylcoumestrol was separated by column chromatography and finally was hydrolyzed with formic acid. 1H and 13C NMR data (APT, COSY, HMQC, and HMBC) revealed that the reaction was regioselective, as 3-O-ethoxycarboxymethylcoumestrol was the only monosubstituted derivative. The hapten was then conjugated to bovine serum albumin and used for immunization of rabbits. A radioimmunoassay (RIA) system was established based on the polyclonal antiserum and a 125I-labeled hapten-tyrosine methyl ester conjugate as the radioligand. Parameters of the RIA: sensitivity: 12 pg per tube, 50% intercept: 140 pg per tube, working range: 20-4000 pg per tube. The cross-reactivity of a panel isoflavonoid and lignan phytoestrogens was either negligible (e.g. formononetin 0.07%; biochanin A 0.06%) or not detectable at all. The major immunoreactive peak in HPLC fractions from an alfalfa extract had the same retention time as coumestrol standard and represented 94.8% of the signal. The remaining 5.2% of immunoreactivity was distributed between five minor peaks. We conclude that after the validation for particular matrices, the method will be a useful tool for analysis of coumestrol, especially in low volume and low concentration samples.
Collapse
Affiliation(s)
- Oldrich Lapcík
- Department of Chemistry of Natural Compounds, Institute of Chemical Technology, Technická 5, 166 28 Praha 6, Czech Republic.
| | | | | | | | | | | | | |
Collapse
|
41
|
Gould BR, Zingg HH. Mapping oxytocin receptor gene expression in the mouse brain and mammary gland using an oxytocin receptor–LacZ reporter mouse. Neuroscience 2003; 122:155-67. [PMID: 14596857 DOI: 10.1016/s0306-4522(03)00283-5] [Citation(s) in RCA: 105] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
The hypothalamic nonapeptide oxytocin (OT) has an established role as a circulating hormone but can also act as a neurotransmitter and as a neuromodulator by interacting with its central OT receptor (OTR). To understand the role of the OTR in the mouse brain we investigated the expression of the OTR gene at the cellular level. We targeted the lacZ reporter gene to the OTR gene locus downstream of the endogenous OTR regulatory elements. Using lactating mouse mammary gland as a control for OTR promoter directed specificity of lacZ gene expression, X-gal histochemistry on tissue sections confirmed that gene expression was restricted to the myoepithelial cells. We also identified for the first time in mice the expression of the OTR gene in neighbouring adipocytes. Further, investigation in the mouse brain identified numerous nuclei containing neurons expressing the OTR gene. Whilst some of these regions had been described for rat or sheep, the OTR-LacZ reporter mouse enabled the identification of novel sites of central OTR gene expression. These regions include the accessory olfactory bulb, the medial septal nucleus, the posterolateral cortical amygdala nucleus, the posterior aspect of the basomedial amygdala nucleus, the medial part of the supramammillary nucleus, the dorsotuberomammillary nucleus, the medial and lateral entorhinal cortices, as well as specific dorsal tegmental, vestibular, spinal trigeminal, and solitary tract subnuclei. By mapping the distribution of OTR gene expression, depicted through histochemical detection of beta-galactosidase, we were able to identify single OTR gene expressing neurons and small neuron clusters that would have remained undetected by conventional approaches. These novel sites of OTR gene expression suggest additional functions of the oxytocinergic system in the mouse. These results lay the foundation for future investigation into the neural role of the OTR and provide a useful model for further study of oxytocin functions in the mouse.
Collapse
Affiliation(s)
- B R Gould
- Laboratory of Molecular Endocrinology, Royal Victoria Hospital, McGill University, 687 Pine Avenue West, Montreal, Quebec, Canada H3A 1A1
| | | |
Collapse
|
42
|
Hartley DE, Edwards JE, Spiller CE, Alom N, Tucci S, Seth P, Forsling ML, File SE. The soya isoflavone content of rat diet can increase anxiety and stress hormone release in the male rat. Psychopharmacology (Berl) 2003; 167:46-53. [PMID: 12618915 DOI: 10.1007/s00213-002-1369-7] [Citation(s) in RCA: 56] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2002] [Accepted: 11/25/2002] [Indexed: 10/20/2022]
Abstract
RATIONALE Most commercial rodent diets are formulated with soya protein and therefore contain soya isoflavones. Isoflavones form one of the main classes of phytoestrogens and have been found to exert both oestrogenic and anti-oestrogenic effects on the central nervous system. The effects have not been limited to reproductive behaviour, but include effects on learning and anxiety and actions on the hypothalamo-pituitary axis. It is therefore possible that the soya content of diet could have significant effects on brain and behaviour and be an important source of between-laboratory variability. OBJECTIVES To determine whether behaviour in two animal tests of anxiety, and stress hormone production, would differ between rats that were fed a diet which was free of soya isoflavones and other phytoestrogens (iso-free) and those that were fed a diet which contained 150 microg/g of the isoflavones genistein and daidzein (iso-150). This controlled diet has an isoflavone concentration similar to that in the maintenance diet routinely used in our institution. METHODS Male rats were randomly allocated to the iso-free and iso-150 diets and their body weights and food and water consumption were recorded for 14 days. They were then maintained on the same diets, but housed singly for 4 days, before testing in the social interaction and elevated plus-maze tests of anxiety. Corticosterone concentrations in both dietary groups were determined under basal conditions and after the stress of the two tests of anxiety. Vasopressin and oxytocin concentrations were determined after brief handling stress. RESULTS The groups did not differ in food or water intake, body weight or oxytocin concentrations. Compared with the rats fed the iso-free diet, the rats fed the iso-150 diet spent significantly less time in active social interaction and made a significantly lower percentage of entries onto the open arms of the plus-maze, indicating anxiogenic effects in both animal tests. The groups did not differ in their basal corticosterone concentrations, but the iso-150 group had significantly elevated stress-induced corticosterone concentrations. Stress-induced plasma vasopressin concentrations were also significantly elevated in the iso-150 diet group compared with the iso-free rats. CONCLUSIONS Major changes in behavioural measures of anxiety and in stress hormones can result from the soya isoflavone content of rat diet. These changes are as striking as those seen following drug administration and could form an important source of variation between laboratories.
Collapse
Affiliation(s)
- David E Hartley
- Psychopharmacology Research Unit, Centre for Neuroscience, Hodgkin Building, Kings College London, Guy's Campus, SE1 1UL, London, UK.
| | | | | | | | | | | | | | | |
Collapse
|
43
|
Thuillier R, Wang Y, Culty M. Prenatal exposure to estrogenic compounds alters the expression pattern of platelet-derived growth factor receptors alpha and beta in neonatal rat testis: identification of gonocytes as targets of estrogen exposure. Biol Reprod 2003; 68:867-80. [PMID: 12604637 DOI: 10.1095/biolreprod.102.009605] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
We examined the effects of maternal exposure to estrogens on platelet-derived growth factor (PDGF) receptor (PDGFR) expression in newborn rat testis. Pregnant rats were treated from gestation Day 14 to birth with corn oil containing diethylstilbestrol, bisphenol A, genistein, or coumestrol by gavage or subcutaneous injection. These treatments induced a dose-dependent increase in the expression of PDGFR alpha and beta mRNAs, determined by semiquantitative reverse transcription polymerase chain reaction, though diethylstilbestrol had a biphasic effect on both mRNAs. In situ hybridization analysis showed that PDGFRalpha mRNA increased mostly in the interstitium, while PDGFRbeta mRNA increased both in the interstitium and seminiferous cords. Immunohistochemical studies of PDGFRalpha and beta proteins revealed that both receptors were present in testis before and after birth and that they were upregulated upon treatment with estrogens in 3-day-old rats, with PDGFRbeta increasing dramatically in gonocytes. PDGFRalpha and beta mRNAs and proteins were also found in purified gonocytes. Our previous finding that PDGF and 17beta-estradiol induce gonocyte proliferation in vitro, together with the present finding that in vivo exposure to estrogens upregulates PDGF receptors in testis, suggest that PDGF pathway is a target of estrogens in testis. In addition, these data identify PDGFRbeta in gonocytes as a major target of gestational estrogen exposure, suggesting that estrogen may have a physiological interaction with PDGF during gonocyte development. These results, however, do not exclude the possibility that the effects of the compounds examined in this study might be due to estrogen receptor-independent action(s).
Collapse
Affiliation(s)
- Raphael Thuillier
- Division of Hormone Research, Department of Cell Biology, Georgetown University School of Medicine, Washington, District of Columbia 20057, USA
| | | | | |
Collapse
|