1
|
van de Weijer MP, Vermeulen J, Schrantee A, Munafò MR, Verweij KJH, Treur JL. The potential role of gray matter volume differences in the association between smoking and depression: A narrative review. Neurosci Biobehav Rev 2024; 156:105497. [PMID: 38100958 DOI: 10.1016/j.neubiorev.2023.105497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/14/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023]
Abstract
Tobacco use and major depression are both leading contributors to the global burden of disease and are also highly comorbid. Previous research indicates bi-directional causality between tobacco use and depression, but the mechanisms that underlie this causality are unclear, especially for the causality from tobacco use to depression. Here we narratively review the available evidence for a potential causal role of gray matter volume in the association. We summarize the findings of large existing neuroimaging meta-analyses, studies in UK Biobank, and the Enhancing NeuroImaging Genetics through MetaAnalysis (ENIGMA) consortium and assess the overlap in implicated brain areas. In addition, we review two types of methods that allow us more insight into the causal nature of associations between brain volume and depression/smoking: longitudinal studies and Mendelian Randomization studies. While the available evidence suggests overlap in the alterations in brain volumes implicated in tobacco use and depression, there is a lack of research examining the underlying pathophysiology. We conclude with recommendations on (genetically-informed) causal inference methods useful for studying these associations.
Collapse
Affiliation(s)
- Margot P van de Weijer
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands.
| | - Jentien Vermeulen
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Anouk Schrantee
- Department of Radiology and Nuclear Medicine, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Marcus R Munafò
- School of Psychological Science, University of Bristol, Bristol, the United Kingdom
| | - Karin J H Verweij
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| | - Jorien L Treur
- Department of Psychiatry, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, the Netherlands
| |
Collapse
|
2
|
Johansson L, Guo X, Sacuiu S, Fässberg MM, Kern S, Zettergren A, Skoog I. Longstanding smoking associated with frontal brain lobe atrophy: a 32-year follow-up study in women. BMJ Open 2023; 13:e072803. [PMID: 37802622 PMCID: PMC10565256 DOI: 10.1136/bmjopen-2023-072803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Accepted: 08/18/2023] [Indexed: 10/10/2023] Open
Abstract
OBJECTIVE To examine the association between midlife tobacco smoking and late-life brain atrophy and white matter lesions. METHODS The study includes 369 women from the Prospective Population Study of Women in Gothenburg, Sweden. Cigarette smoking was reported at baseline 1968 (mean age=44 years) and at follow-up in 1974-1975 and 1980-1981. CT of the brain was conducted 32 years after baseline examination (mean age=76 years) to evaluate cortical atrophy and white matter lesions. Multiple logistic regressions estimated associations between midlife smoking and late-life brain lesions. The final analyses were adjusted for alcohol consumption and several other covariates. RESULTS Smoking in 1968-1969 (adjusted OR 1.85; 95% CI 1.12 to 3.04), in 1974-1975 (OR 2.37; 95% CI 1.39 to 4.04) and in 1980-1981 (OR 2.47; 95% CI 1.41 to 4.33) were associated with late-life frontal lobe atrophy (2000-2001). The strongest association was observed in women who reported smoking at all three midlife examinations (OR 2.63; 95% CI 1.44 to 4.78) and in those with more frequent alcohol consumption (OR 6.02; 95% CI 1.74 to 20.84). Smoking in 1980-1981 was also associated with late-life parietal lobe atrophy (OR 1.99; 95% CI 1.10 to 3.58). There were no associations between smoking and atrophy in the temporal or occipital lobe, or with white matter lesions. CONCLUSION Longstanding tobacco smoking was mainly associated with atrophy in the frontal lobe cortex. A long-term stimulation of nicotine receptors in the frontal neural pathway might be harmful for targeted brain cell.
Collapse
Affiliation(s)
- Lena Johansson
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
- Department of Addiction and Dependency, Sahlgrenska University Hospital, Sahlgrenska universitetssjukhuset, Goteborg, Sweden
- Institute of Health and Care Sciences at Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Xinxin Guo
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Simona Sacuiu
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Madeleine Mellqvist Fässberg
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Silke Kern
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Anna Zettergren
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| | - Ingmar Skoog
- Department of Psychiatry and Neurochemistry, Sahlgrenska Academy, Centre for Ageing and Health (AgeCap), Institute of Neuroscience and Physiology, University of Gothenburg, Goteborg, Sweden
| |
Collapse
|
3
|
Niu X, Gao X, Lv Q, Zhang M, Dang J, Sun J, Wang W, Wei Y, Cheng J, Han S, Zhang Y. Increased spontaneous activity of the superior frontal gyrus with reduced functional connectivity to visual attention areas and cerebellum in male smokers. Front Hum Neurosci 2023; 17:1153976. [PMID: 37007679 PMCID: PMC10063805 DOI: 10.3389/fnhum.2023.1153976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/03/2023] [Indexed: 03/19/2023] Open
Abstract
BackgroundChronic smokers have abnormal spontaneous regional activity and disrupted functional connectivity as revealed by previous neuroimaging studies. Combining different dimensions of resting-state functional indicators may help us learn more about the neuropathological mechanisms of smoking.MethodsThe amplitude of low frequency fluctuations (ALFF) of 86 male smokers and 56 male non-smokers were first calculated. Brain regions that displayed significant differences in ALFF between two groups were selected as seeds for further functional connectivity analysis. Besides, we examined correlations between brain areas with abnormal activity and smoking measurements.ResultsIncreased ALFF in left superior frontal gyrus (SFG), left medial superior frontal gyrus (mSFG) and middle frontal gyrus (MFG) as well as decreased ALFF in right calcarine sulcus were observed in smokers compared with non-smokers. In the seed-based functional connectivity analysis, smokers showed attenuated functional connectivity with left SFG in left precuneus, left fusiform gyrus, left lingual gyrus, left cerebellum 4 5 and cerebellum 6 as well as lower functional connectivity with left mSGF in left fusiform gyrus, left lingual gyrus, left parahippocampal gyrus (PHG), left calcarine sulcus, left cerebellum 4 5, cerebellum 6 and cerebellum 8 (GRF corrected, Pvoxel < 0.005, Pcluster<0.05). Furthermore, attenuated functional connectivity with left mSGF in left lingual gyrus and PHG displayed a negative correlation with FTND scores (r = −0.308, p = 0.004; r = −0.326, p = 0.002 Bonferroni corrected).ConclusionOur findings of increased ALFF in SFG with reduced functional connectivity to visual attention areas and cerebellum subregions may shed new light on the pathophysiology of smoking.
Collapse
Affiliation(s)
- Xiaoyu Niu
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Xinyu Gao
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Qingqing Lv
- Department of Radiology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Mengzhe Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jinghan Dang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jieping Sun
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Weijian Wang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Yarui Wei
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
| | - Jingliang Cheng
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Jingliang Cheng,
| | - Shaoqiang Han
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- Shaoqiang Han,
| | - Yong Zhang
- Department of Magnetic Resonance Imaging, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Key Laboratory of Magnetic Resonance and Brain Function of Henan Province, Zhengzhou, China
- Engineering Technology Research Center for Detection and Application of Brain Function of Henan Province, Zhengzhou, China
- Key Laboratory for Functional Magnetic Resonance Imaging and Molecular Imaging of Henan Province, Zhengzhou, China
- Engineering Research Center of Medical Imaging Intelligent Diagnosis and Treatment of Henan Province, Zhengzhou, China
- Zhengzhou Key Laboratory of Brain Function and Cognitive Magnetic Resonance Imaging, Zhengzhou, China
- Henan Key Laboratory of Imaging Intelligence Research, Zhengzhou, China
- Henan Engineering Research Center of Brain Function Development and Application, Zhengzhou, China
- *Correspondence: Yong Zhang,
| |
Collapse
|
4
|
Shen Z, Huang P, Wang C, Qian W, Yang Y, Zhang M. Cerebellar Gray Matter Reductions Associate With Decreased Functional Connectivity in Nicotine-Dependent Individuals. Nicotine Tob Res 2019; 20:440-447. [PMID: 29065207 DOI: 10.1093/ntr/ntx168] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Accepted: 07/25/2017] [Indexed: 01/19/2023]
Abstract
Introduction Nicotine dependence (ND) is a chronic, relapsing mental disorder characterized by compulsive cigarette seeking and smoking. Although the cerebellum plays an increasingly implicated role in ND, the exact cerebellar alterations in ND remain unclear. Identifying the localization of these cerebellar abnormalities in ND may help to further understand the role of the cerebellum in ND. Thus, we investigated the structural and functional alterations in the cerebellum in a large sample of smokers using the spatially unbiased infratentorial template (SUIT). Methods High-resolution structural magnetic resonance imaging (MRI) data were acquired from 85 smokers and 41 nonsmokers. We applied voxel-based morphometry (VBM) and the SUIT cerebellar atlas to compare the cerebellar gray matter (GM) volume between smokers and nonsmokers. Using resting-state functional MRI data, we also performed seed-based functional connectivity (FC) analysis to examine the functional correlates of the GM volume changes. Results Both VBM and lobular analyses revealed smaller GM volume in the bilateral Crus I in smokers. The GM volume of the left Crus I was inversely correlated with the severity of nicotine dependence as assessed by Fagerström Test for Nicotine Dependence (r = -.268, p = .013). We also found reduced FC between the bilateral Crus I and brain regions involved in the default mode network and motor system, as well as the frontal and temporal cortex in smokers. Conclusions Our results indicate that decreased cerebellar GM volume and corticocerebellar FC are associated with ND, and these may underlie the core ND phenotypes, including automatized smoking behavior, cognitive, and emotional deficits. Implications As smoking remains a worldwide public health problem, identifying the related neural alterations may help to understand the pathophysiology of ND. Based on previous findings in the cerebellum, we investigated the localization of the GM differences and related FC changes in ND subjects. Our findings highlight altered corticocerebellar circuits in ND, suggesting an association between the cerebellum and the phenotypes of ND.
Collapse
Affiliation(s)
- Zhujing Shen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Peiyu Huang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chao Wang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wei Qian
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD
| | - Minming Zhang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
5
|
Cigarette smoking and gray matter brain volumes in middle age adults: the CARDIA Brain MRI sub-study. Transl Psychiatry 2019; 9:78. [PMID: 30741945 PMCID: PMC6370765 DOI: 10.1038/s41398-019-0401-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 01/18/2018] [Accepted: 03/26/2018] [Indexed: 12/24/2022] Open
Abstract
Cigarette smoking has been associated with dementia and dementia-related brain changes, notably gray matter (GM) volume atrophy. These associations are thought to reflect the co-morbidity of smoking and vascular, respiratory, and substance use/psychological conditions. However, the extent and localization of the smoking-GM relationship and the degree to which vascular, respiratory, and substance use/psychological factors influence this relationship remain unclear. In the Coronary Artery Risk Development in Young Adults CARDIA cohort (n = 698; 52% women; 40% black participants; age = 50.3 (SD = 3.5)), we examined the associations of smoking status with total GM volume and GM volume of brain regions linked to neurocognitive and addiction disorders. Linear regression models were used to adjust for vascular, respiratory, and substance use/psychological factors and to examine whether they modify the smoking-GM relationship. Compared to never-smokers, current smokers had smaller total GM volume (-8.86 cm3 (95%CI = -13.44, -4.29). Adjustment for substance use/psychological - but not vascular or respiratory - factors substantially attenuated this association (coefficients = -5.54 (95% CI = -10.32, -0.76); -8.33 (95% CI = -12.94, -3.72); -7.69 (95% CI = -6.95, -4.21), respectively). There was an interaction between smoking and alcohol use such that among alcohol non-users, smoking was not related to GM volumes and among alcohol users, those who currently smoked had -12 cm3 smaller total GM, specifically in the frontal and temporal lobes, amygdala, cingulate, and insula. Results suggest a large-magnitude association between smoking and smaller GM volume at middle age, accounting for vascular, respiratory, and substance use/psychological factors, and that the association was strongest in alcohol users. Regions suggested to be most vulnerable are those where cognition and addiction processes overlap.
Collapse
|
6
|
Filbey FM, McQueeny T, Kadamangudi S, Bice C, Ketcherside A. Combined effects of marijuana and nicotine on memory performance and hippocampal volume. Behav Brain Res 2015; 293:46-53. [PMID: 26187691 DOI: 10.1016/j.bbr.2015.07.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2014] [Revised: 06/24/2015] [Accepted: 07/07/2015] [Indexed: 11/30/2022]
Abstract
Combined use of marijuana (MJ) and tobacco is highly prevalent in today's population. Individual use of either substance is linked to structural brain changes and altered cognitive function, especially with consistent reports of hippocampal volume deficits and poorer memory performance. However, the combined effects of MJ and tobacco on hippocampal structure and on learning and memory processes remain unknown. In this study, we examined both the individual and combined effects of MJ and tobacco on hippocampal volumes and memory performance in four groups of adults taken from two larger studies: MJ-only users (n=36), nicotine-only (Nic-only, n=19), combined marijuana and nicotine users (MJ+Nic, n=19) and non-using healthy controls (n=16). Total bilateral hippocampal volumes and memory performance (WMS-III logical memory) were compared across groups controlling for total brain size and recent alcohol use. Results found MJ and MJ+Nic groups had smaller total hippocampal volumes compared to Nic-only and controls. No significant difference between groups was found between immediate and delayed story recall. However, the controls showed a trend for larger hippocampal volumes being associated with better memory scores, while MJ+Nic users showed a unique inversion, whereby smaller hippocampal volume was associated with better memory. Overall, results suggest abnormalities in the brain-behavior relationships underlying memory processes with combined use of marijuana and nicotine use. Further research will need to address these complex interactions between MJ and nicotine.
Collapse
Affiliation(s)
- Francesca M Filbey
- The Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, United States.
| | - Tim McQueeny
- The Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, United States
| | - Shrinath Kadamangudi
- The Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, United States
| | - Collette Bice
- The Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, United States
| | - Ariel Ketcherside
- The Center for BrainHealth, School of Behavioral and Brain Sciences, University of Texas at Dallas, United States
| |
Collapse
|
7
|
El-Beltagy AEFBM, Abou-El-Naga AM, Sabry DM. Neurotoxicological effects of nicotine on the embryonic development of cerebellar cortex of chick embryo during various stages of incubation. Tissue Cell 2015; 47:506-14. [PMID: 26235253 DOI: 10.1016/j.tice.2015.07.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2015] [Revised: 07/03/2015] [Accepted: 07/03/2015] [Indexed: 01/12/2023]
Abstract
Long-acting nicotine is known to exert pathological effects on almost all tissues including the cerebellar cortex. The present work was designed to elucidate the effect of nicotine on the development of cerebellar cortex of chick embryo during incubation period. The fertilized eggs of hen (Gallus gallus domesticus) were injected into the air space by a single dose of long acting nicotine (1.6 mg/kg/egg) at the 4th day of incubation. The embryos were taken out of the eggs on days 8, 12 and 16 of incubation. The cerebellum of the control and treated embryos at above ages were processed for histopathological examination. The TEM were examined at 16th day of incubation. The results of the present study revealed that, exposure to long-acting nicotine markedly influence the histogenesis of cerebellar cortex of chick embryo during the incubation period. At 8th day of incubation, nicotine delayed the differentiation of the cerebellar analge; especially the external granular layer (EGL) and inner cortical layer (ICL). Furthermore, at 12th day of incubation, the cerebellar foliation was irregular and the Purkinje cells not recognized. By 16th day of incubation, the cerebellar foliations were irregular with interrupted cerebellar cortex and irregular arrangement of Purkinje cells. Immunohistochemical analysis for antibody P53 protein revealed that the cerebellar cortex in all stages of nicotine treated groups possessed a moderate to weak reaction for P53 protein however; this reaction was markedly stronger in the cerebellar cortex of control groups. Moreover, the flow cytometric analysis confirmed that the percentage of apoptosis in control group was significantly higher compared with that of nicotine treated group. At the TEM level, the cerebellar Purkinje cells of 16th day of treated groups showed multiple subcellular alterations in compared with those of the corresponding control group. Such changes represented by appearing of vacuolated mitochondria, cisternal fragmentation of RER, irregular grooves of Golgi tubules. Also, multiple cytoplasmic vacuoles and aggregation of Nissl granules were recorded around pyknotic nucleus.
Collapse
Affiliation(s)
| | | | - Dalia M Sabry
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, Egypt
| |
Collapse
|
8
|
Wetherill RR, Jagannathan K, Hager N, Childress AR, Rao H, Franklin TR. Cannabis, Cigarettes, and Their Co-Occurring Use: Disentangling Differences in Gray Matter Volume. Int J Neuropsychopharmacol 2015; 18:pyv061. [PMID: 26045474 PMCID: PMC4648161 DOI: 10.1093/ijnp/pyv061] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 05/25/2015] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Structural magnetic resonance imaging techniques are powerful tools for examining the effects of drug use on the brain. The nicotine and cannabis literature has demonstrated differences between nicotine cigarette smokers and cannabis users compared to controls in brain structure; however, less is known about the effects of co-occurring cannabis and tobacco use. METHODS We used voxel-based morphometry to examine gray matter volume differences between four groups: (1) cannabis-dependent individuals who do not smoke tobacco (Cs); (2) cannabis-dependent individuals who smoke tobacco (CTs); (3) cannabis-naïve, nicotine-dependent individuals who smoke tobacco (Ts); and (4) healthy controls (HCs). We also explored associations between gray matter volume and measures of cannabis and tobacco use. RESULTS A significant group effect was observed in the left putamen, thalamus, right precentral gyrus, and left cerebellum. Compared to HCs, the Cs, CTs, and Ts exhibited larger gray matter volumes in the left putamen. Cs also had larger gray matter volume than HCs in the right precentral gyrus. Cs and CTs exhibited smaller gray matter volume than HCs in the thalamus, and CTs and Ts had smaller left cerebellar gray matter volume than HCs. CONCLUSIONS This study extends previous research that independently examined the effects of cannabis or tobacco use on brain structure by including an examination of co-occurring cannabis and tobacco use, and provides evidence that cannabis and tobacco exposure are associated with alterations in brain regions associated with addiction.
Collapse
Affiliation(s)
- Reagan R Wetherill
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager).
| | - Kanchana Jagannathan
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Nathan Hager
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Anna Rose Childress
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Hengyi Rao
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| | - Teresa R Franklin
- University of Pennsylvania, Department of Psychiatry, Philadelphia, PA (Drs Wetherill, Jagannathan, Childress, Rao, and Franklin, and Mr Hager)
| |
Collapse
|
9
|
Impact of prenatal nicotine on the structure of midbrain dopamine regions in the rat. Brain Struct Funct 2015; 221:1939-53. [PMID: 25716298 DOI: 10.1007/s00429-015-1014-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Accepted: 02/15/2015] [Indexed: 10/23/2022]
Abstract
In utero exposure of rats to nicotine (NIC) provides a useful animal model for studying the impact of smoking during pregnancy on human offspring. Certain sequelae of prenatal NIC exposure suggest an impact on the development of the midbrain dopamine (DA) system, which receives a robust cholinergic innervation from the mesopontine tegmentum. We therefore investigated whether prenatal NIC induced structural changes in cells and synapses within the midbrain that persisted into adulthood. Osmotic minipumps delivering either sodium bitartrate (vehicle; VEH) or NIC bitartrate at 2 mg/kg/day were implanted into nine timed-pregnant dams at E4. At birth, rat pups were culled to litters of six males each, and the litters were cross-fostered. Plasma levels of NIC and cotinine from killed pups provided evidence of NIC exposure in utero. Pups separated from dams at weaning showed a trend toward reduced locomotor activity at this time point but not when tested again in adulthood. Adult rats were killed for anatomical studies. Estimates of brain size and volume did not vary with NIC treatment. Midbrain sections stained for Nissl or by immunoperoxidase for tyrosine hydroxylase and analyzed using unbiased stereology revealed no changes in volume or cell number in the substantia nigra compacta or ventral tegmental area as a result of NIC exposure. Within the ventral tegmental area, electron microscopic physical disector analysis showed no significant differences in the number of axon terminals or the number of asymmetric (putative excitatory) or symmetric (putative inhibitory) synapses. Although too infrequent to estimate by unbiased stereology, no obvious difference in the proportion of cholinergic axons was noted in NIC- versus VEH-treated animals. These data suggest that activation of nicotinic receptors during prenatal development induces no significant modifications in the structure of cells in the ventral midbrain when assessed in adulthood.
Collapse
|
10
|
Prom-Wormley E, Maes HHM, Schmitt JE, Panizzon MS, Xian H, Eyler LT, Franz CE, Lyons MJ, Tsuang MT, Dale AM, Fennema-Notestine C, Kremen WS, Neale MC. Genetic and environmental contributions to the relationships between brain structure and average lifetime cigarette use. Behav Genet 2015; 45:157-70. [PMID: 25690561 DOI: 10.1007/s10519-014-9704-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 12/27/2014] [Indexed: 10/24/2022]
Abstract
Chronic cigarette use has been consistently associated with differences in the neuroanatomy of smokers relative to nonsmokers in case-control studies. However, the etiology underlying the relationships between brain structure and cigarette use is unclear. A community-based sample of male twin pairs ages 51-59 (110 monozygotic pairs, 92 dizygotic pairs) was used to determine the extent to which there are common genetic and environmental influences between brain structure and average lifetime cigarette use. Brain structure was measured by high-resolution structural magnetic resonance imaging, from which subcortical volume and cortical volume, thickness and surface area were derived. Bivariate genetic models were fitted between these measures and average lifetime cigarette use measured as cigarette pack-years. Widespread, negative phenotypic correlations were detected between cigarette pack-years and several cortical as well as subcortical structures. Shared genetic and unique environmental factors contributed to the phenotypic correlations shared between cigarette pack-years and subcortical volume as well as cortical volume and surface area. Brain structures involved in many of the correlations were previously reported to play a role in specific aspects of networks of smoking-related behaviors. These results provide evidence for conducting future research on the etiology of smoking-related behaviors using measures of brain morphology.
Collapse
Affiliation(s)
- Elizabeth Prom-Wormley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA,
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
11
|
Wang C, Xu X, Qian W, Shen Z, Zhang M. Altered human brain anatomy in chronic smokers: a review of magnetic resonance imaging studies. Neurol Sci 2015; 36:497-504. [PMID: 25577510 DOI: 10.1007/s10072-015-2065-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 01/05/2015] [Indexed: 01/23/2023]
Abstract
Cigarette smoking is becoming more prevalent in developing countries, such as China, and is the largest single cause of preventable death worldwide. New emerging reports are highlighting how chronic cigarette smoking plays a role in neural dysfunctions, such as cognitive decline. Basic animal experimental studies have shown that rats undergo persistent pathological brain changes after being given chronic levels of nicotine. What is perhaps less appreciated is the fact that chronic cigarette smoking induces subtle anatomical changes in the human brain. Consequently, this chapter aims to summarize and integrate the existing magnetic resonance imaging studies on both gray- and white-matter marcostructural and microstructural changes. The reviewed studies demonstrate that chronic cigarette smoking results in discrete and localized alterations in brain region tissue (both the gray and white matter of different brain regions), which may, in part, be responsible for different neural dysfunctions. In addition, we further discuss the possible pathological and neurobiological mechanisms of these nicotinic effects on the brain tissue. We will also address the limitations of the current studies on this issue and identify opportunities for future research.
Collapse
Affiliation(s)
- Chao Wang
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University School of Medicine, No. 88 Jiefang Road, Hangzhou, 310009, China
| | | | | | | | | |
Collapse
|
12
|
Alekseeva N, McGee J, Kelley RE, Maghzi AH, Gonzalez-Toledo E, Minagar A. Toxic-Metabolic, Nutritional, and Medicinal-Induced Disorders of Cerebellum. Neurol Clin 2014; 32:901-11. [DOI: 10.1016/j.ncl.2014.07.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
13
|
Correlation between pulmonary function and brain volume in healthy elderly subjects. Neuroradiology 2013; 55:689-95. [PMID: 23440433 DOI: 10.1007/s00234-013-1157-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2012] [Accepted: 02/07/2013] [Indexed: 10/27/2022]
Abstract
INTRODUCTION Cigarette smoking decreases brain regional gray matter volume and is related to chronic obstructive lung disease (COPD). COPD leads to decreased pulmonary function, which is represented by forced expiratory volume in one second percentage (FEV1.0 %); however, it is unclear if decreased pulmonary function is directly related to brain gray matter volume decline. Because there is a link between COPD and cognitive decline, revealing a direct relationship between pulmonary function and brain structure is important to better understand how pulmonary function affects brain structure and cognitive function. Therefore, the purpose of this study was to analyze whether there were significant correlations between FEV1.0 % and brain regional gray and white matter volumes using brain magnetic resonance (MR) image data from 109 community-dwelling healthy elderly individuals. METHODS Brain MR images were processed with voxel-based morphometry using a custom template by applying diffeomorphic anatomical registration using the exponentiated lie algebra procedure. RESULTS We found a significant positive correlation between the regional white matter volume of the cerebellum and FEV1.0 % after adjusting for age, sex, and intracranial volume. CONCLUSION Our results suggest that elderly individuals who have a lower FEV1.0 % have decreased regional white matter volume in the cerebellum. Therefore, preventing decreased pulmonary function is important for cerebellar white matter volume in the healthy elderly population.
Collapse
|
14
|
Gutzeit A, Froehlich JM, Hergan K, Graf N, Binkert CA, Meier D, Brügger M, Reischauer C, Sutter R, Herdener M, Schubert T, Kos S, Grosshans M, Straka M, Mutschler J. Insula-specific H magnetic resonance spectroscopy reactions in heavy smokers under acute nicotine withdrawal and after oral nicotine substitution. Eur Addict Res 2013; 19:184-93. [PMID: 23257512 DOI: 10.1159/000345915] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 11/19/2012] [Indexed: 12/30/2022]
Abstract
The aim of this study was to clarify whether addiction-specific neurometabolic reaction patterns occur in the insular cortex during acute nicotine withdrawal in tobacco smokers in comparison to nonsmokers. Fourteen male smokers and 10 male nonsmokers were included. Neurometabolites of the right and the left insular cortices were quantified by magnetic resonance spectroscopy (MRS) on a 3-Tesla scanner. Three separate MRS measurements were performed in each subject: among the smokers, the first measurement was done during normal smoking behavior, the second measurement during acute withdrawal (after 24 h of smoking abstinence), and the third shortly after administration of an oral nicotine substitute. Simultaneously, craving, withdrawal symptoms, and CO levels in exhaled air were determined during the three phases. The participants in the control group underwent the same MR protocol. In the smokers, during withdrawal, the insular cortex showed a significant increase in glutamine (Gln; p = 0.023) as well as a slight increase not reaching significance for glutamine/glutamate (Glx; p = 0.085) and a nonsignificant drop in myoinositol (mI; p = 0.381). These values tended to normalize after oral nicotine substitution treatment, even though differences were not significant: Gln (p = 0.225), Glx (p = 0.107) and mI (p = 0.810). Overall, the nonsmokers (control group) did not show any metabolic changes over all three phases (p > 0.05). In smokers, acute nicotine withdrawal produces a neurometabolic reaction pattern that is partly reversed by the administration of an oral nicotine substitute. The results are consistent with the expression of an addiction-specific neurometabolic shift in the brain and confirm the fact that the insular cortex seems to play a possible role in nicotine dependence.
Collapse
Affiliation(s)
- Andreas Gutzeit
- Department of Radiology, Cantonal Hospital Winterthur, CH–8401Winterthur, Switzerland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Vardi N, Parlakpinar H, Ates B. Beneficial effects of chlorogenic acid on methotrexate-induced cerebellar Purkinje cell damage in rats. J Chem Neuroanat 2011; 43:43-7. [PMID: 21946024 DOI: 10.1016/j.jchemneu.2011.09.003] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 12/17/2022]
Abstract
Several studies have well confirmed the contribution of oxidative stress in the pathogenesis of methotrexate (MTX)-induced damage in the various organs. Many agents have been tested experimentally to reduce or inhibit the oxidative stress. The aim of this study was to determine the possible protective effect of chlorogenic acid (CLG) on MTX-induced cerebellar damage in rats. The rats were randomly divided into three groups as follows: I: control group; II: MTX group; III: CLG+MTX group. In the MTX group; malondialdehyde (MDA) content was found to be increased, whereas superoxide dismutase (SOD), catalase (CAT) activities, and glutathione (GSH) content were decreased. On the other hand, CLG markedly attenuated the elevated MDA content and prevented the deleterious effects of MTX on oxidative stress markers. MTX caused severe loss of Purkinje cells and apoptotic cell death in the cerebellum. The CLG administration before MTX treatment significantly reduced Purkinje cell damage and the expression of apoptotic cells. In conclusion, our results demonstrate that chlorogenic acid treatment may protect the impairment of oxidative stress and ameliorate MTX-induced cerebellar damage at biochemical and histological levels.
Collapse
Affiliation(s)
- Nigar Vardi
- Department of Embryology and Histology, Faculty of Medicine, Inonu University, 44280 Malatya, Turkey.
| | | | | |
Collapse
|
16
|
Kühn S, Romanowski A, Schilling C, Mobascher A, Warbrick T, Winterer G, Gallinat J. Brain grey matter deficits in smokers: focus on the cerebellum. Brain Struct Funct 2011; 217:517-22. [PMID: 21909705 DOI: 10.1007/s00429-011-0346-5] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 08/23/2011] [Indexed: 01/18/2023]
Abstract
Structural cerebral deficiencies in smokers have been well characterized by morphometric investigations focussing on cortical and subcortical structures. Although the role of the cerebellum is increasingly noted in mental and addiction disorders, no reports exist regarding cerebellar alterations in smokers employing a methodology specifically designed to assess the cerebellar morphology. We acquired high-resolution MRI scans from 33 heavy smokers and 22 never-smokers and used a voxel-based morphometry (VBM) approach utilizing the Spatially Unbiased Infratentorial (SUIT) toolbox (Diedrichsen 2006) to provide an optimized and fine-grained exploration of cerebellar structural alterations associated with smoking. Relative to never-smokers, smokers showed significant reductions of grey matter volume in the right cerebellum Crus I. The grey matter volume in Crus I correlated negatively with the amount of nicotine dependence as assessed by means of the Fagerström scale. Since Crus I has been identified as the cognitive division of the cerebellum, the structural deficit may in part mediate cognitive deficits previously reported in smokers. Of note, the dependence-related magnitude of the volume deficit may support the notion that the cerebellum is substantially involved in core mechanisms of drug dependence.
Collapse
Affiliation(s)
- Simone Kühn
- Charité University Medicine, St Hedwig Krankenhaus, Clinic for Psychiatry and Psychotherapy, Berlin, Germany.
| | | | | | | | | | | | | |
Collapse
|
17
|
Nicotine mediated microcystic oedema in white matter of cerebellum: possible relationship to postural imbalance. Ann Neurosci 2011; 18:14-6. [PMID: 25205912 PMCID: PMC4117026 DOI: 10.5214/ans.0972.7531.1118105] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2010] [Revised: 12/15/2010] [Accepted: 01/15/2011] [Indexed: 11/21/2022] Open
Abstract
Background Nicotine is heavily used addictive drug that has unpleasant side- effects, e.g. dizziness, nausea, emphysema. Purpose The current study was designed to find the possible relationship of nicotine mediated microcystic oedema in white matter of cerebellum to postural imbalance. Methods Nicotine was administered for 8 weeks orally via cannula, using dose rate (5 mg/day, 10 mg/day) to male drukrey rats. The results were compared to control adult rats, given vehicle in identical manner. After 8 weeks exposure, the cerebellum was removed and processed for histopathologic study. Results The cellular microcystic change with interstitial oedema was found in white core of cerebellum of rat received 10 mg/kg of nicotine. Cytoplasmic vacuolation was also observed in most areas of cerebellum. Conclusion These findings suggest that the mature adult cerebellum is susceptible to the damaging effects of nicotine in depleting white core of cerebellum.
Collapse
|
18
|
Gökçe MF, Kaplan S, Türkkani A, Kozan R, Ayyildiz M, Emirzeoglu M, Aslan H, Marangoz C. Nitric oxide synthase inhibitors protect cerebellar Purkinje cells from zinc-induced cell loss in adult rat. J Chem Neuroanat 2011; 41:25-31. [DOI: 10.1016/j.jchemneu.2010.10.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2010] [Revised: 10/29/2010] [Accepted: 10/29/2010] [Indexed: 11/15/2022]
|
19
|
Umene-Nakano W, Yoshimura R, Yoshii C, Hoshuyama T, Hayashi K, Hori H, Katsuki A, Ikenouchi-Sugita A, Nakamura J. Varenicline does not increase serum BDNF levels in patients with nicotine dependence. Hum Psychopharmacol 2010; 25:276-9. [PMID: 20373480 DOI: 10.1002/hup.1113] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Varenicline, alpha4beta2 nicotinic acetylcholine receptor (nAChR) partial agonist, is a new class of medications for treating nicotine dependence. As an alpha4beta2 nAChR partial agonist, varenicline serves to reduce nicotine withdrawal symptoms, while high-affinity binding of the agonist mitigates the reinforcing effects of smoking. In the present study, we compared serum brain-derived neurotrophic factor (BDNF) levels of nicotine dependence and nonsmokers, and we investigated changes in serum BDNF levels after 8 weeks of treatment with varenicline. Patients met the DSM-IV criteria for nicotine dependence. Both the Fagerström test for nicotine dependence (FTND) and the Tobacco Dependence Screener (TDS) were used. Serum BDNF levels and breath carbon monoxide (CO) levels were measured before and 8 weeks after varenicline treatment. Fourteen of 16 subjects (87.5%) stopped smoking within 12 weeks of varenicline treatment. Thirteen healthy nonsmokers who never had previously smoked were randomly selected as a control group. Serum BDNF levels of patients before treatment (4.8 +/- 3.8 ng/ml) were significantly lower than those in the control group (12.4 +/- 6.13 ng/ml). Serum BDNF levels had not increased from baseline (4.8 +/- 3.8 ng/ml) to 8 weeks after varenicline treatment (3.0 +/- 1.1 ng/ml) of patients. These results suggest that smoking might decrease serum BDNF levels and that treatment with varenicline for 8 weeks, combined with 12 weeks of not smoking, does not increase serum BDNF levels in smokers.
Collapse
Affiliation(s)
- Wakako Umene-Nakano
- Department of Psychiatry, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Fukuoka, Japan. wakako-@med.uoeh-u.ac.jp
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Bhang SY, Choi SW, Ahn JH. Changes in plasma brain-derived neurotrophic factor levels in smokers after smoking cessation. Neurosci Lett 2010; 468:7-11. [DOI: 10.1016/j.neulet.2009.10.046] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2009] [Revised: 10/01/2009] [Accepted: 10/13/2009] [Indexed: 11/25/2022]
|
21
|
Treatment of ataxia and imbalance with varenicline (chantix): report of 2 patients with spinocerebellar ataxia (types 3 and 14). Clin Neuropharmacol 2009; 31:363-5. [PMID: 19050414 DOI: 10.1097/wnf.0b013e31818736a9] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Two patients with spinocerebellar ataxia (types 3 and 14) experienced marked improvement in their cerebellar symptoms shortly after taking varenicline (Chantix).
Collapse
|
22
|
Zesiewicz TA, Sullivan KL, Freeman A, Juncos JL. Treatment of imbalance with varenicline Chantix(R): report of a patient with fragile X tremor/ataxia syndrome. Acta Neurol Scand 2009; 119:135-8. [PMID: 18771524 DOI: 10.1111/j.1600-0404.2008.01070.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We describe the case of a man with Fragile X tremor/ataxia syndrome, whose ataxia and imbalance improved with the use of varenicline (Chantix) and reverted to baseline 10 days after varenicline was discontinued. Varenicline was started as part of a smoking cessation program.
Collapse
Affiliation(s)
- T A Zesiewicz
- Parkinson Research Foundation Center of Excellence at University of South Florida, University of South Florida, Tampa, FL 34677, USA.
| | | | | | | |
Collapse
|
23
|
Domino E. Tobacco smoking and MRI/MRS brain abnormalities compared to nonsmokers. Prog Neuropsychopharmacol Biol Psychiatry 2008; 32:1778-81. [PMID: 18817837 PMCID: PMC2631356 DOI: 10.1016/j.pnpbp.2008.09.004] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2008] [Revised: 09/04/2008] [Accepted: 09/05/2008] [Indexed: 10/21/2022]
Abstract
This mini review emphasizes the fact that tobacco smoking causes small but real biologic brain changes that need to be studied in depth. A crucial question is whether these anatomical/chemical changes reverse toward normal when smokers quit. This review is presented to stimulate further research to answer this question.
Collapse
Affiliation(s)
- E.F. Domino
- Corresponding Author: E.F. Domino M.D., Department of Pharmacology, University of Michigan, Ann Arbor MI 48109-0632, Telephone: 734 764-9115, Fax: 734 763-4450,
| |
Collapse
|
24
|
Kim TS, Kim DJ, Lee H, Kim YK. Increased plasma brain-derived neurotrophic factor levels in chronic smokers following unaided smoking cessation. Neurosci Lett 2007; 423:53-7. [PMID: 17662528 DOI: 10.1016/j.neulet.2007.05.064] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2007] [Revised: 05/17/2007] [Accepted: 05/23/2007] [Indexed: 11/18/2022]
Abstract
Recent animal studies have suggested an association between nicotine and alterations in brain-derived neurotrophic factor (BDNF) expression levels. However, the role of BDNF in humans with nicotine dependence has not yet been investigated. In this study, we explored the differences in the plasma BDNF levels of chronic smokers and healthy nonsmokers, and we investigated the changes in plasma BDNF levels in chronic smokers following unaided smoking cessation. Forty voluntary participants (20 smokers and 20 nonsmokers) were enrolled in this study. We measured the plasma BDNF levels at baseline (both groups) and at the end of the two-month study period (smoker group only) using an enzyme-linked immunosorbent assay. A total of 12 smokers (60.0%) completed the two-month study. ANCOVA with age and body mass index as covariates showed that the baseline plasma BDNF levels in smokers were significantly lower than those in nonsmokers (F=4.626, p=0.038). The plasma BDNF levels in the smokers significantly increased from baseline after the two-month smoking cessation period (Z=-3.059, p=0.002). These findings suggest that BDNF may play a role in the pathophysiology of smoking behavior.
Collapse
Affiliation(s)
- Tae-Suk Kim
- Department of Psychiatry, Holy Family Hospital, The Catholic University of Korea, College of Medicine, 2 Sosa-dong, Wonmi-gu, Pucheon City, Kyunggi-do 420-717, Republic of Korea
| | | | | | | |
Collapse
|
25
|
Tomassini S, Cuoghi V, Catalani E, Casini G, Bigiani A. Long-term effects of nicotine on rat fungiform taste buds. Neuroscience 2007; 147:803-10. [PMID: 17560039 DOI: 10.1016/j.neuroscience.2007.04.053] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2007] [Revised: 03/23/2007] [Accepted: 04/10/2007] [Indexed: 10/23/2022]
Abstract
Nicotine, an alkaloid found in tobacco smoke, has been recognized as capable of inducing changes in taste functionality in conditions of chronic exposure. The mechanisms underlying these sensory alterations, however, are currently unknown. We addressed this issue by studying the long-term effects of nicotine on the anatomical features of taste buds, the peripheral end-organs of taste, in rat fungiform papillae. Nicotine was administered to rats via drinking water over a period of 3 weeks, which represents a standard method to achieve chronic drug exposure in laboratory animals. We found that prolonged administration of nicotine induced a significant reduction in the size of fungiform taste buds, without affecting their total number on the rat tongue. Morphometric measurements as well as evaluations of taste cell membrane capacitance suggested that the reduced size of taste organs was determined by a decrease in the number of cells per taste bud. In addition, chronic treatment with nicotine caused an increase in the relative density of cells expressing gustducin, a specific G protein alpha-subunit found in some taste cells and involved in bitter/sweet transduction. Interestingly, changes in the expression pattern of gustducin turned out to be more pronounced in periadolescent/adolescent than in adult rats. As a whole, our data indicate that long-term nicotine administration induces significant changes in the anatomical properties of taste buds in rat fungiform papillae. These changes could have a profound impact on the sensory information relayed to the brain; therefore, they may be responsible, at least in part, for the alterations in taste functionality observed during chronic nicotine exposure, a condition found in regular smokers.
Collapse
Affiliation(s)
- S Tomassini
- Dipartimento di Scienze Biomediche, Università di Modena e Reggio Emilia, Modena, Italy
| | | | | | | | | |
Collapse
|
26
|
Gallinat J, Lang UE, Jacobsen LK, Bajbouj M, Kalus P, von Haebler D, Seifert F, Schubert F. Abnormal hippocampal neurochemistry in smokers: evidence from proton magnetic resonance spectroscopy at 3 T. J Clin Psychopharmacol 2007; 27:80-4. [PMID: 17224719 DOI: 10.1097/jcp.0b013e31802dffde] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
OBJECTIVE In animals, nicotine, the primary psychoactive constituent of tobacco smoke, reduces neurogenesis and increases cell loss in both hippocampus and cortex. Accordingly, tobacco smoking has been linked to reduced performance on cognitive paradigms requiring attention and working memory in humans. However, few prior studies have tested for evidence of structural brain alterations in human tobacco smokers. In this study, proton magnetic resonance spectroscopy was used to assess the effects of chronic smoking on neuronal integrity of the hippocampus and anterior cingulate cortex (ACC). METHODS Absolute concentrations of N-acetylaspartate, total choline (tCho), and total creatine were measured in the left hippocampus and ACC in 13 chronic tobacco smokers and 13 nonsmokers matched for age, sex, and education. RESULTS The N-acetylaspartate concentration was significantly reduced in smokers relative to nonsmokers in the left hippocampus but not in the ACC. There were no group differences in the tCho and total creatine concentrations in either voxel. However, ACC tCho concentration was positively correlated with magnitude of lifetime exposure to tobacco smoke (pack-years). CONCLUSION The results are consistent with prior observations of hippocampal neuronal damage in rodents receiving nicotine and working memory deficits in human tobacco smokers. The positive relationship between tCho and lifetime tobacco exposure suggests that a component of tobacco smoke, presumably nicotine, may increase cortical membrane turnover or modify cell density. Together, these results add to growing evidence that nicotine exerts neurotoxic effects in human brain, although an a priori nature of the findings cannot be ruled out.
Collapse
Affiliation(s)
- Jürgen Gallinat
- Klinik für Psychiatrie und Psychotherapie, Charité Universitätsmedizin, Campus Mitte (PUK Charité SHK), Berlin, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Gallinat J, Meisenzahl E, Jacobsen LK, Kalus P, Bierbrauer J, Kienast T, Witthaus H, Leopold K, Seifert F, Schubert F, Staedtgen M. Smoking and structural brain deficits: a volumetric MR investigation. Eur J Neurosci 2007; 24:1744-50. [PMID: 17004938 DOI: 10.1111/j.1460-9568.2006.05050.x] [Citation(s) in RCA: 253] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Growing evidence from animal studies indicates brain-damaging properties of nicotine exposure. Investigations in humans found a wide range of functional cerebral effects of nicotine and cigarette smoking, but studies focusing on brain damage are sparse. In 22 smokers and 23 never-smokers possible differences of the cerebral structures were investigated using magnetic resonance imaging and voxel-based morphometry. Significantly smaller grey matter volume and lower grey matter density (P = 0.05, corrected) were observed in the frontal regions (anterior cingulate, prefrontal and orbitofrontal cortex), the occipital lobe and the temporal lobe including parahippocampal gyrus, in smokers than in never-smokers. Group differences of either grey matter volume or grey matter density were also found in the thalamus, cerebellum and substantia nigra, among other regions. Smokers did not show greater volumes than never-smokers in any cerebral region. Magnitude of lifetime exposure to tobacco smoke (pack-years) was inversely correlated with volume of frontal and temporal lobes and cerebellum (P = 0.001, uncorrected). The data indicate structural deficits of several cortical and subcortical regions in smokers relative to never-smokers. The topographic profile of the group differences show some similarities to brain networks known to mediate drug reinforcement, attention and working memory processing. The present findings may explain in part the frequently reported cognitive dysfunctions in chronic cigarette consumers.
Collapse
Affiliation(s)
- Jürgen Gallinat
- Clinic for Psychiatry and Psychotherapy, Charité University Medicine, St Hedwig Krankenhaus, Turmstrasse 21, 10559 Berlin, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Lavezzi AM, Ottaviani G, Matturri L. Ontogenesis of human cerebellar cortex and biopathological characterization in sudden unexplained fetal and infant death. Virchows Arch 2006; 450:31-40. [PMID: 17334803 DOI: 10.1007/s00428-006-0311-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2006] [Accepted: 09/06/2006] [Indexed: 10/23/2022]
Abstract
The aims of this study were to investigate in the human cerebellar cortex the structural and biological ontogenetic features, the possible presence of alterations in cases of sudden unexplained fetal and infant death, and the involvement of the maternal cigarette smoking in developmental abnormalities. We analyzed 52 brains of fetal and infant death victims, aged from the second gestational trimester to 12th postnatal month. In the cerebellar cortex we evaluated, besides the morphological aspects, the expression of several biomarkers implicated in proliferative processes (c-fos, proliferating cell nuclear antigen, and apoptosis) as well as the presence of the neurotransmitter somatostatin, which is strongly implicated in central nervous system differentiation, and of EN2 gene. The observed features of the cerebellar cortex, mainly confined to the transient external granular layer, were high proliferative activity and high expression of both somatostatin and EN2 gene in prenatal life and high apoptotic index after birth. In 41% of the sudden unexplained death victims, in the greater part with smoking mothers, we observed different biopathological alterations of the cerebellar cortex. Maternal smoking is increasingly being demonstrated to be one of the main contributors to developmental neurological alterations in the offspring.
Collapse
Affiliation(s)
- Anna Maria Lavezzi
- Institute of Pathology, Lino Rossi Research Center, University of Milan, Via della Commenda, 19, Milan, 20122, Italy.
| | | | | |
Collapse
|
29
|
Smith AM, Zeve DR, Dohrman DP, Chen WJA. The interactive effect of alcohol and nicotine on NGF-treated pheochromocytoma cells. Alcohol 2006; 39:65-72. [PMID: 17134658 DOI: 10.1016/j.alcohol.2006.06.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2006] [Revised: 06/21/2006] [Accepted: 06/21/2006] [Indexed: 10/24/2022]
Abstract
Previous studies have reported that alcohol exposure reduces the number of neuronal-like pheochromocytoma (PC12) cells in culture. In this study, the interactive effect of coexposure of alcohol and nicotine on PC12 cell numbers was examined in comparison with the effect derived from alcohol or nicotine exposure individually. Moreover, the role of apoptosis in mediating changes in PC12 cell numbers was also investigated. It was hypothesized that alcohol would result in cell loss, and the presence of nicotine would attenuate the damaging effects of alcohol. PC12 cells were exposed to alcohol (100 mM), nicotine (10 microM), or both alcohol and nicotine for 24, 48, 72, or 96 h. Caspase-3 activity and DNA fragmentation, markers for apoptotic cell death, were measured to determine the role of apoptosis in mediating decreases in PC12 cell numbers. The findings indicated that both alcohol and nicotine exposure significantly decreased PC12 cell numbers when compared with the control treatment. Furthermore, the coexposure of these two drugs caused a significantly greater decrease in cell numbers when compared with cells exposed to either alcohol or nicotine alone. This additive effect was related to the duration of exposure with a marked reduction in cell numbers following 96 h of coexposure to alcohol and nicotine. Neither alcohol nor nicotine exposure appeared to alter caspase-3 activity or DNA fragmentation levels, suggesting that the reduction in PC12 cell numbers following alcohol and/or nicotine exposure may possibly be due to factors other than apoptosis, such as interference with proliferation rates.
Collapse
Affiliation(s)
- Andrew M Smith
- Department of Neuroscience & Experimental Therapeutics, The Texas A&M Health Science Center College of Medicine, 142E Reynolds Medical Building, College Station, TX 77843-1114, USA
| | | | | | | |
Collapse
|
30
|
Neuhaus A, Bajbouj M, Kienast T, Kalus P, von Haebler D, Winterer G, Gallinat J. Persistent dysfunctional frontal lobe activation in former smokers. Psychopharmacology (Berl) 2006; 186:191-200. [PMID: 16612617 DOI: 10.1007/s00213-006-0366-7] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2005] [Accepted: 02/27/2006] [Indexed: 11/25/2022]
Abstract
OBJECTIVE Chronic smoking and nicotine exposure are accompanied by impaired cognitive task performance, modulated cerebral activity in brain imaging studies, and neuritic damage in experimental animals. The profile of the described dysfunctions matches frontal lobe circuits which also play a role in reward processing and reinforcement behavior. However, it is largely unknown if cerebral dysfunctions are reversible or persist during long term abstinence. MATERIALS AND METHODS Cortical activation during auditory target processing (oddball task, P300 component) was recorded with 32-channel EEG in 247 healthy subjects consisting of 84 smokers, 53 former smokers (mean time of abstinence 11.9 years), and 110 never smokers. RESULTS Both current smokers and former smokers exhibited significantly diminished P300 amplitudes (Cz, Pz) relative to never smokers. Neuroelectric source analysis (low resolution brain electromagnetic tomography) revealed a hypoactivation of the anterior cingulate, orbitofrontal, and prefrontal cortex in smokers compared to never smokers. A similar profile of hypoactivation was observed in former smokers. CONCLUSION For the first time, evidence is provided that dysfunctional activation of frontal lobe networks in smokers is also present in long term abstainers.
Collapse
Affiliation(s)
- Andres Neuhaus
- Department of Psychiatry and Psychotherapy, Charité University Medicine, Campus Benjamin Franklin, Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
31
|
Liu JJ, Mohila CA, Gong Y, Govindarajan N, Onn SP. Chronic nicotine exposure during adolescence differentially influences calcium-binding proteins in rat anterior cingulate cortex. Eur J Neurosci 2006; 22:2462-74. [PMID: 16307589 DOI: 10.1111/j.1460-9568.2005.04423.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
We have recently shown that chronic amphetamine exposure selectively up-regulates parvalbumin (PV) calcium-binding proteins in the anterior cingulate cortex (ACC). In this study, we evaluated the effects of chronic nicotine (NIC) exposure on PV, calbindin D28k (CB) and calretinin (CR) calcium-binding protein immunostaining in ACC GABAergic interneurons. Chronic NIC exposure for 3 weeks in adolescent rats, either via drinking water (the oral group) or by twice daily subcutaneous injections (the injection group), resulted in the expression of high levels of CR proteins in the ACC but not in the parietal cortex. Larger increases in the density of CR-immunoreactive (ir) neurons were noted in the NIC-injected rats at 0-day withdrawal (45% increase) compared with the oral group (26% increase). The larger increases in CR-ir neuron density in the NIC-injected rats were also reflected by prominent CR-ir processes across cortical layers. The density of PV-ir neurons was also increased (37%) at 0-day withdrawal but only in the oral NIC group and no changes in CB-ir neuron density were observed in either NIC group. Combined dual-immunofluorescence and confocal microscopy revealed that somatodendritic alpha4 nicotinic acetylcholine receptors colocalized with cortical neurons stained positively for CR, PV or CB. These results suggest that CR- and/or PV-ir-containing GABA interneurons may be involved in channeling the effects of NIC in the ACC, which is closely associated with the ventral basal ganglia circuit that is linked to brain reward function.
Collapse
Affiliation(s)
- Jen-Jane Liu
- Department of Neurobiology and Anatomy, Drexel University College of Medicine, 2900 Queen Lane, Philadelphia, PA 19129, USA
| | | | | | | | | |
Collapse
|
32
|
Chen WJA, Edwards RB. Prenatal nicotine exposure does not cause Purkinje cell loss in the developing rat cerebellar vermis. Neurotoxicol Teratol 2003; 25:633-7. [PMID: 12972077 DOI: 10.1016/s0892-0362(03)00048-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Smoking by pregnant women poses a potential risk on the unborn child because nicotine can easily be transported from the maternal to the fetal physiological system. Our previous studies have shown that developing brains are sensitive to nicotine-induced cell loss if nicotine was administered during the brain growth spurt (early postnatal) in a rat model system. The purpose of this study was to examine whether nicotine exposure prenatally (first two trimesters equivalent in rats) would lead to Purkinje cell loss in the developing cerebellar vermis. Pregnant female rats were subcutaneously implanted with 0 (placebo), 15 (NIC 15), or 25 (NIC 25) mg nicotine pellets (21-day time released) on gestational day (GD) 0. An additional control group receiving no implantation was also introduced (normal). One pup from each litter was sacrificed on postnatal day (PD) 10 and the cerebellar vermis was processed for stereological cell counting of Purkinje cells. No significant effects of prenatal nicotine treatment were found in the forebrain, cerebellum, and brainstem weights. Similarly, the assessments of volume, Purkinje cell number, and Purkinje cell density found no significant differences among all treatment groups. Taken together, the current and a previous finding, it suggests that there is a temporal window of vulnerability to nicotine-induced Purkinje cell loss in the developing cerebellar vermis.
Collapse
Affiliation(s)
- Wei-Jung A Chen
- Department of Human Anatomy and Medical Neurobiology, College of Medicine, Texas A&M University System Health Science Center, 1426 Reynolds Medical Building, College Station, TX 77843-1114, USA.
| | | |
Collapse
|
33
|
Maier SE, West JR. Alcohol and nutritional control treatments during neurogenesis in rat brain reduce total neuron number in locus coeruleus, but not in cerebellum or inferior olive. Alcohol 2003; 30:67-74. [PMID: 12878276 DOI: 10.1016/s0741-8329(03)00096-x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Although a significant amount of progress has been made during the past two decades in determining the effects of alcohol on brain development, there is still a gap in the literature in terms of when the neurons in the brain are more or less vulnerable to the deleterious effects of alcohol. Using a rat model system, we examined the effect of alcohol on the development of three brain regions after exposure to alcohol only during the period of neurogenesis of each specific region. Our working hypothesis was that all three regions would be equally vulnerable to alcohol-induced reductions in neuron number after exposure during neurogenesis. The Purkinje cells of the cerebellum and the neurons of the locus coeruleus and inferior olive were chosen for examination because of their functional relation to the neuroanatomical circuit for motor coordination and gait, which is disrupted in children exposed to alcohol during gestation. Groups of timed-pregnant Sprague-Dawley rats were administered alcohol or nutritional control substitute daily by gavage during the period of neurogenesis for each region, or they were given no treatments. On postnatal day 10, neuron counts were derived from the three regions of the offspring brains by using stereological cell-counting techniques. The number of neurons in the locus coeruleus was reduced in both the alcohol- and nutritional control-treated groups relative to findings for the normal control group. There was no similar reduction in neuron number in the Purkinje cells of the cerebellum, nor in the neurons of the inferior olive, among the treatment groups. These results demonstrate that the period of neurogenesis is not a uniformly vulnerable period for the three brain regions tested, and the findings support the suggestion of a possible avenue for examining the underlying explanation for why some regions are more vulnerable than other regions during various phases of neuronal development.
Collapse
Affiliation(s)
- Susan E Maier
- Human Anatomy and Medical Neurobiology, Room 228 Reynolds Medical Building, College of Medicine, 1114 TAMU, The Texas A&M University System Health Science Center, College Station, TX 77843-1114, USA.
| | | |
Collapse
|