1
|
An L, Ren J, Yu T, Hai T, Jia Y, Liu Y. Three-dimensional surface motion capture of multiple freely moving pigs using MAMMAL. Nat Commun 2023; 14:7727. [PMID: 38001106 PMCID: PMC10673844 DOI: 10.1038/s41467-023-43483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Understandings of the three-dimensional social behaviors of freely moving large-size mammals are valuable for both agriculture and life science, yet challenging due to occlusions in close interactions. Although existing animal pose estimation methods captured keypoint trajectories, they ignored deformable surfaces which contained geometric information essential for social interaction prediction and for dealing with the occlusions. In this study, we develop a Multi-Animal Mesh Model Alignment (MAMMAL) system based on an articulated surface mesh model. Our self-designed MAMMAL algorithms automatically enable us to align multi-view images into our mesh model and to capture 3D surface motions of multiple animals, which display better performance upon severe occlusions compared to traditional triangulation and allow complex social analysis. By utilizing MAMMAL, we are able to quantitatively analyze the locomotion, postures, animal-scene interactions, social interactions, as well as detailed tail motions of pigs. Furthermore, experiments on mouse and Beagle dogs demonstrate the generalizability of MAMMAL across different environments and mammal species.
Collapse
Affiliation(s)
- Liang An
- Department of Automation, Tsinghua University, Beijing, China
| | - Jilong Ren
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Tao Yu
- Department of Automation, Tsinghua University, Beijing, China
- Tsinghua University Beijing National Research Center for Information Science and Technology (BNRist), Beijing, China
| | - Tang Hai
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
- Beijing Farm Animal Research Center, Institute of Zoology, Chinese Academy of Sciences, Beijing, China.
| | - Yichang Jia
- School of Medicine, Tsinghua University, Beijing, China.
- IDG/McGovern Institute for Brain Research at Tsinghua, Beijing, China.
- Tsinghua Laboratory of Brain and Intelligence, Beijing, China.
| | - Yebin Liu
- Department of Automation, Tsinghua University, Beijing, China.
- Institute for Brain and Cognitive Sciences, Tsinghua University, Beijing, China.
| |
Collapse
|
2
|
Liao YJ, Liao CH, Chen LR, Yang JR. Dopaminergic neurons derived from porcine induced pluripotent stem cell like cells function in the Lanyu pig model of Parkinson's disease. Anim Biotechnol 2023; 34:1283-1294. [PMID: 35152856 DOI: 10.1080/10495398.2021.2020130] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
The induced pluripotent stem cells (iPSCs) are able to differentiate into dopaminergic neurons and execute the therapeutic effects for Parkinson's disease (PD). Here, we established a animal model of PD in Lanyu pigs by injecting 5 mg/kg of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine hydrochloride (MPTP). Next, the porcine iPSC-like cells (piPSC-like cells) were differentiated into D18 neuronal progenitors (D18 NPs) that were transplanted into the striatum to evaluate their therapeutic effects of PD. We showed that after 8 weeks of cell transplantation, the behavior score was significantly ameliorated and fully recovered at the 14th week of cell transplantation. The number of dopaminergic neurons was also significantly improved at the end of the experiment although the number was still about 50% lower than that in the control group. Our findings suggest that piPSC-like cell-derived D18 NPs exhibit a potential for the treatment of PD in the Lanyu pig model.
Collapse
Affiliation(s)
- Yu-Jing Liao
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
| | - Chia-Hsin Liao
- Department of Medical Research, Buddhist Tzu Chi General Hospital, Hualien, Taiwan
- Holistic Education Center, Tzu Chi University of Science and Technology, Hualien, Taiwan
| | - Lih-Ren Chen
- Division of Physiology, Livestock Research Institute, Council of Agriculture, Tainan, Taiwan
- Department of Biotechnology and Bioindustry Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Jenn-Rong Yang
- Kaohsiung Animal Propagation Station, Livestock Research Institute, Council of Agriculture, Neipu, Pingtung, Taiwan
| |
Collapse
|
3
|
Krasko MN, Rudisch DM, Burdick RJ, Schaen-Heacock NE, Broadfoot CK, Nisbet AF, Rogus-Pulia N, Ciucci MR. Dysphagia in Parkinson Disease: Part II-Current Treatment Options and Insights from Animal Research. CURRENT PHYSICAL MEDICINE AND REHABILITATION REPORTS 2023; 11:188-198. [PMID: 39301152 PMCID: PMC11411792 DOI: 10.1007/s40141-023-00393-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/09/2023] [Indexed: 09/22/2024]
Abstract
Purpose of Review Dysphagia is highly prevalent in Parkinson disease (PD) but is not typically identified nor treated until later in the disease process. This review summarizes current pharmacological, surgical, and behavioral treatments for PD-associated dysphagia and contributions from translational animal research. Recent Findings Swallowing is a complex physiologic process controlled by multiple brain regions and neurotransmitter systems. As such, interventions that target nigrostriatal dopamine dysfunction have limited or detrimental effects on swallowing outcomes. Behavioral interventions can help target PD-associated dysphagia in mid-to-late stages. Animal research is necessary to refine treatments and useful in studying prodromal dysphagia. Summary Dysphagia is an early, common, and debilitating sign of PD. Current pharmacological and surgical interventions are not effective in ameliorating swallowing dysfunction; behavioral intervention remains the most effective approach for dysphagia treatment. Animal research has advanced our understanding of mechanisms underlying PD and PD-associated dysphagia, and continues to show translational promise for the study of dysphagia treatment options.
Collapse
Affiliation(s)
- Maryann N Krasko
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA
| | - Denis Michael Rudisch
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA
| | - Ryan J Burdick
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Nicole E Schaen-Heacock
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Courtney K Broadfoot
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Alex F Nisbet
- Perelman School of Medicine, University of Pennsylvania, 3400 Civic Center Blvd, Philadelphia, PA 19104, USA
| | - Nicole Rogus-Pulia
- Department of Medicine, Division of Geriatrics and Gerontology, School of Medicine and Public Health, University of Wisconsin-Madison, 1685 Highland Avenue, Madison, WI 53705, USA
- Geriatric Research Education and Clinical Center, William S. Middleton Memorial Veterans Hospital, 2500 Overlook Terrace, Madison, WI 53705, USA
| | - Michelle R Ciucci
- Department of Surgery, Division of Otolaryngology-Head and Neck Surgery, University of Wisconsin-Madison, 1300 University Ave, Madison, WI 53706, USA
- Department of Communication Sciences and Disorders, University of Wisconsin-Madison, 1975 Willow Drive, Madison, WI 53706, USA
- Neuroscience Training Program, University of Wisconsin-Madison, 1111 Highland Ave, Madison, WI 53705, USA
| |
Collapse
|
4
|
Martin V, Knecht C, Duerlinger S, Richter B, Ladinig A. A Pig Model to Assess Skin Lesions after Apomorphine Application. Biomedicines 2023; 11:biomedicines11051244. [PMID: 37238915 DOI: 10.3390/biomedicines11051244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/28/2023] Open
Abstract
Owing to their similarities, pigs are often used as experimental models for humans. In particular, the similarity of the skin allows them to be a good dermatological model. The aim of the study was to develop an animal model in conventional domestic pigs to evaluate skin lesions macroscopically and histologically after a continuous subcutaneous apomorphine application. A total of 16 pigs from two different age groups were injected with four different apomorphine formulations for 12 h daily over a period of 28 days into the subcutis, which was then evaluated macroscopically for nodules and erythema, as well as histologically. Differences in skin lesions between the formulations were found, with formulation 1 leading to the fewest nodules, least skin lesions, no lymph follicles, least necrosis, and best skin tolerance. Older pigs were easier to handle and, because of the thicker skin and subcutis of these animals, drug application with the appropriate needle length was safer. The experimental setup worked well and an animal model to assess skin lesions after a continuous subcutaneous application of drugs could be successfully established.
Collapse
Affiliation(s)
- Vera Martin
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Christian Knecht
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Sophie Duerlinger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Barbara Richter
- Institute of Pathology and Forensic Veterinary Medicine, University of Veterinary Medicine, 1210 Vienna, Austria
| | - Andrea Ladinig
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, 1210 Vienna, Austria
| |
Collapse
|
5
|
Oeur RA, Palaniswamy M, Ha M, Fernandez-Corazza M, Margulies SS. Regional variations distinguish auditory from visual evoked potentials in healthy 4 week old piglets. Physiol Meas 2023; 44:025006. [PMID: 36657178 PMCID: PMC9972182 DOI: 10.1088/1361-6579/acb4da] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 01/19/2023] [Indexed: 01/21/2023]
Abstract
Objective.Evoked potentials (EP), measured using electroencephalographic (EEG) recordings provide an opportunity to monitor cognitive dysfunctions after neurological diseases or traumatic brain injury (TBI). The 4 week old piglet is an established model of paediatric TBI; therefore, healthy piglets were studied to establish feasibility of obtaining responses to auditory and visual stimuli. A secondary aim was to input the EEG data into a piglet computational model to localize the brain sources related to processing. We tested the hypotheses: (1) visual, auditory-standard, and auditory-target stimuli elicit responses, (2) there is an effect of stimulus type, day tested, and electrode region on EPs from EEG, (3) there is an effect of stimulus type, day tested, and brain region on localized sources from a computational model.Approach.Eleven 4 week old female piglets were fitted with a 32-electrode net and presented with a simple white light stimulus and an auditory oddball click train (70 standard; 30 target tones).Main results.N1 andP2 amplitudes were consistently observed for all stimulus types. Significant interaction effects between brain region and stimulus for EP and current density demonstrate that cognitive responses are specific to each modality with auditory localizing to the temporal region and visual to the occipital regions. There was a day effect where larger responses were found on the first day than day 2 and 3 and may be due to the novelty of the stimulus on the first day. Visual stimuli had largerP1 amplitudes and earlier latencies (P1,N1) than auditory which coincides with current density results at 50 ms where larger activations were observed for visual. At 85 ms, auditory had significantly larger current densities coincident with larger and longerN1 amplitudes and latencies than visual.Significance.Auditory and visual processing were successfully and consistently obtained in a porcine model and can be evaluated as a diagnostic assessment for TBI.
Collapse
Affiliation(s)
- R Anna Oeur
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Maduran Palaniswamy
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Matthew Ha
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America
| | - Mariano Fernandez-Corazza
- LEICI Instituto de Investigaciones en Electrónica, Control y Procesamiento de Señales, Facultad de Ingeniería, Universidad Nacional de La Plata, Buenos Aires, Argentina
| | - Susan S Margulies
- Wallace H. Coulter Department of Biomedical Engineering, Emory University and Georgia Institute of Technology, Atlanta, Georgia, United States of America,Author to whom any correspondence should be addressed
| |
Collapse
|
6
|
Real CC, Binda KH, Thomsen MB, Lillethorup TP, Brooks DJ, Landau AM. Selecting the Best Animal Model of Parkinson's Disease for Your Research Purpose: Insight from in vivo PET Imaging Studies. Curr Neuropharmacol 2023; 21:1241-1272. [PMID: 36797611 PMCID: PMC10286593 DOI: 10.2174/1570159x21666230216101659] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 09/08/2022] [Accepted: 09/08/2022] [Indexed: 02/18/2023] Open
Abstract
Parkinson's disease (PD) is a debilitating neurodegenerative multisystem disorder leading to motor and non-motor symptoms in millions of individuals. Despite intense research, there is still no cure, and early disease biomarkers are lacking. Animal models of PD have been inspired by basic elements of its pathogenesis, such as dopamine dysfunction, alpha-synuclein accumulation, neuroinflammation and disruption of protein degradation, and these have been crucial for a deeper understanding of the mechanisms of pathology, the identification of biomarkers, and evaluation of novel therapies. Imaging biomarkers are non-invasive tools to assess disease progression and response to therapies; their discovery and validation have been an active field of translational research. Here, we highlight different considerations of animal models of PD that can be applied to future research, in terms of their suitability to answer different research questions. We provide the reader with important considerations of the best choice of model to use based on the disease features of each model, including issues related to different species. In addition, positron emission tomography studies conducted in PD animal models in the last 5 years are presented. With a variety of different species, interventions and genetic information, the choice of the most appropriate model to answer research questions can be daunting, especially since no single model recapitulates all aspects of this complex disorder. Appropriate animal models in conjunction with in vivo molecular imaging tools, if selected properly, can be a powerful combination for the assessment of novel therapies and developing tools for early diagnosis.
Collapse
Affiliation(s)
- Caroline Cristiano Real
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Karina Henrique Binda
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Majken Borup Thomsen
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - David James Brooks
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Institute of Translational and Clinical Research, University of Newcastle, Upon Tyne, UK
| | - Anne Marlene Landau
- Department of Nuclear Medicine and PET Center, Aarhus University Hospital, Aarhus, Denmark
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| |
Collapse
|
7
|
Lin HC, Wu YH, Huang CW, Ker MD. Verification of the beta oscillations in the subthalamic nucleus of the MPTP-induced parkinsonian minipig model. Brain Res 2022; 1798:148165. [DOI: 10.1016/j.brainres.2022.148165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 11/14/2022]
|
8
|
Steinmüller JB, Binda KH, Lillethorup TP, Søgaard B, Orlowski D, Landau AM, Bjarkam CR, Sørensen JCH, Glud AN. Quantitative assessment of motor function in minipig models of neurological disorders using a pressure-sensitive gait mat. J Neurosci Methods 2022; 380:109678. [PMID: 35872152 DOI: 10.1016/j.jneumeth.2022.109678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/07/2022] [Accepted: 07/20/2022] [Indexed: 11/26/2022]
Affiliation(s)
- Johannes Bech Steinmüller
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Department of Neurosurgery, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, DK-9000 Aalborg, Denmark.
| | - Karina Henrique Binda
- Department of Nuclear Medicine & PET-Center, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, 2B, DK-8000 Aarhus, Denmark
| | - Thea Pinholt Lillethorup
- Department of Nuclear Medicine & PET-Center, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, 2B, DK-8000 Aarhus, Denmark
| | - Bjarke Søgaard
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| | - Dariusz Orlowski
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine & PET-Center, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark; Translational Neuropsychiatry Unit, Aarhus University, Universitetsbyen 13, 2B, DK-8000 Aarhus, Denmark
| | - Carsten Reidies Bjarkam
- Department of Neurosurgery, Aalborg University Hospital, and Department of Clinical Medicine, Aalborg University, Hobrovej 18-22, DK-9000 Aalborg, Denmark
| | - Jens Christian Hedemann Sørensen
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| | - Andreas Nørgaard Glud
- CENSE, Department of Neurosurgery, Aarhus University Hospital, and Department of Clinical Medicine, Faculty of Health, Aarhus University, Palle Juul-Jensens Boulevard 165, Entrance J, DK-8200 Aarhus N, Denmark
| |
Collapse
|
9
|
Lillethorup TP, Noer O, Alstrup AKO, Real CC, Stokholm K, Thomsen MB, Zaer H, Orlowski D, Mikkelsen TW, Glud AN, Nielsen EHT, Schacht AC, Winterdahl M, Brooks DJ, Sørensen JCH, Landau AM. Spontaneous Partial Recovery of Striatal Dopaminergic Uptake Despite Nigral Cell Loss in Asymptomatic MPTP-Lesioned Female Minipigs. Neurotoxicology 2022; 91:166-176. [DOI: 10.1016/j.neuro.2022.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/06/2022] [Accepted: 05/09/2022] [Indexed: 11/16/2022]
|
10
|
Lunney JK, Van Goor A, Walker KE, Hailstock T, Franklin J, Dai C. Importance of the pig as a human biomedical model. Sci Transl Med 2021; 13:eabd5758. [PMID: 34818055 DOI: 10.1126/scitranslmed.abd5758] [Citation(s) in RCA: 343] [Impact Index Per Article: 85.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Joan K Lunney
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Angelica Van Goor
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Kristen E Walker
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Taylor Hailstock
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Jasmine Franklin
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA
| | - Chaohui Dai
- Animal Parasitic Diseases Laboratory, BARC, NEA, ARS, USDA, Beltsville, MD 20705, USA.,College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225009, China
| |
Collapse
|
11
|
Archie SR, Al Shoyaib A, Cucullo L. Blood-Brain Barrier Dysfunction in CNS Disorders and Putative Therapeutic Targets: An Overview. Pharmaceutics 2021; 13:pharmaceutics13111779. [PMID: 34834200 PMCID: PMC8622070 DOI: 10.3390/pharmaceutics13111779] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/22/2023] Open
Abstract
The blood-brain barrier (BBB) is a fundamental component of the central nervous system (CNS). Its functional and structural integrity is vital to maintain the homeostasis of the brain microenvironment by controlling the passage of substances and regulating the trafficking of immune cells between the blood and the brain. The BBB is primarily composed of highly specialized microvascular endothelial cells. These cells’ special features and physiological properties are acquired and maintained through the concerted effort of hemodynamic and cellular cues from the surrounding environment. This complex multicellular system, comprising endothelial cells, astrocytes, pericytes, and neurons, is known as the neurovascular unit (NVU). The BBB strictly controls the transport of nutrients and metabolites into brain parenchyma through a tightly regulated transport system while limiting the access of potentially harmful substances via efflux transcytosis and metabolic mechanisms. Not surprisingly, a disruption of the BBB has been associated with the onset and/or progression of major neurological disorders. Although the association between disease and BBB disruption is clear, its nature is not always evident, specifically with regard to whether an impaired BBB function results from the pathological condition or whether the BBB damage is the primary pathogenic factor prodromal to the onset of the disease. In either case, repairing the barrier could be a viable option for treating and/or reducing the effects of CNS disorders. In this review, we describe the fundamental structure and function of the BBB in both healthy and altered/diseased conditions. Additionally, we provide an overview of the potential therapeutic targets that could be leveraged to restore the integrity of the BBB concomitant to the treatment of these brain disorders.
Collapse
Affiliation(s)
- Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Abdullah Al Shoyaib
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA; (S.R.A.); (A.A.S.)
| | - Luca Cucullo
- Department of Foundational Medical Studies, Oakland University William Beaumont School of Medicine, Rochester, MI 48309, USA
- Correspondence: ; Tel.: +1-248-370-3884; Fax: +1-248-370-4060
| |
Collapse
|
12
|
Shadrina M, Slominsky P. Modeling Parkinson's Disease: Not Only Rodents? Front Aging Neurosci 2021; 13:695718. [PMID: 34421573 PMCID: PMC8377290 DOI: 10.3389/fnagi.2021.695718] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 06/29/2021] [Indexed: 01/12/2023] Open
Abstract
Parkinson’s disease (PD) is a common chronic progressive multifactorial neurodegenerative disease. In most cases, PD develops as a sporadic idiopathic disease. However, in 10%–15% of all patients, Mendelian inheritance of the disease is observed in an autosomal dominant or autosomal recessive manner. To date, mutations in seven genes have been convincingly confirmed as causative in typical familial forms of PD, i.e., SNCA, LRRK2, VPS35, PRKN, PINK1, GBA, and DJ-1. Family and genome-wide association studies have also identified a number of candidate disease genes and a common genetic variability at 90 loci has been linked to risk for PD. The analysis of the biological function of both proven and candidate genes made it possible to conclude that mitochondrial dysfunction, lysosomal dysfunction, impaired exosomal transport, and immunological processes can play important roles in the development of the pathological process of PD. The mechanisms of initiation of the pathological process and its earliest stages remain unclear. The study of the early stages of the disease (before the first motor symptoms appear) is extremely complicated by the long preclinical period. In addition, at present, the possibility of performing complex biochemical and molecular biological studies familial forms of PD is limited. However, in this case, the analysis of the state of the central nervous system can only be assessed by indirect signs, such as the level of metabolites in the cerebrospinal fluid, peripheral blood, and other biological fluids. One of the potential solutions to this problem is the analysis of disease models, in which it is possible to conduct a detailed in-depth study of all aspects of the pathological process, starting from its earliest stages. Many modeling options are available currently. An analysis of studies published in the 2000s suggests that toxic models in rodents are used in the vast majority of cases. However, interesting and important data for understanding the pathogenesis of PD can be obtained from other in vivo models. Within the framework of this review, we will consider various models of PD that were created using various living organisms, from unicellular yeast (Saccharomyces cerevisiae) and invertebrate (Nematode and Drosophila) forms to various mammalian species.
Collapse
Affiliation(s)
- Maria Shadrina
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| | - Petr Slominsky
- Laboratory of Molecular Genetics of Hereditary Diseases, Institute of Molecular Genetics of National Research Centre "Kurchatov Institute", Moscow, Russia
| |
Collapse
|
13
|
Pardo ID, Manno RA, Capobianco R, Sargeant AM, Morrison JP, Bolon B, Garman RH. Nervous System Sampling for General Toxicity and Neurotoxicity Studies in the Laboratory Minipig With Emphasis on the Göttingen Minipig. Toxicol Pathol 2021; 49:1140-1163. [PMID: 34423710 DOI: 10.1177/01926233211019941] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The use of minipigs as an alternative nonclinical species has increased in the last 20 years. The Society of Toxicologic Pathology (STP) has produced generic "best practice" recommendations for nervous system sampling in nonrodents during general toxicity studies (Toxicol Pathol 41[7]: 1028-1048, 2013), but their adaptation to the minipig has not been attempted. Here, we describe 2 trimming schemes suitable for evaluating the unique neuroanatomic features of the minipig brain in nonclinical toxicity studies. The first scheme is intended for general toxicity studies (Tier 1) to screen agents with unknown or no anticipated neurotoxic potential; this approach using 7 coronal hemisections accords with the published STP "best practice" recommendations. The second trimming scheme for neurotoxicity studies (Tier 2) uses 14 coronal hemisections and 2 full coronal sections to investigate toxicants where the nervous system is a suspected or known target organ. Collection of spinal cord, ganglia (somatic and autonomic), and nerves from minipigs during nonclinical studies should follow published STP "best practice" recommendations for sampling the central (CNS, Toxicol Pathol 41[7]: 1028-1048, 2013) and peripheral (PNS, Toxicol Pathol 46[4]: 372-402, 2018) nervous systems.
Collapse
Affiliation(s)
- Ingrid D Pardo
- Pfizer, Inc, Global Pathology and Investigative Toxicology, Groton, CT, USA
| | - Rosa A Manno
- Pathology Science, ERBC Group, Pomezia (RM), Italy
| | - Raffaella Capobianco
- 426218Janssen Pharmaceutical Companies of Johnson & Johnson, Janssen Research & Development, Nonclinical Safety, Beerse, Belgium
| | | | | | | | - Robert H Garman
- Consultants in Veterinary Pathology, Inc, Murrysville, PA, USA
| |
Collapse
|
14
|
Capucciati A, Zucca FA, Monzani E, Zecca L, Casella L, Hofer T. Interaction of Neuromelanin with Xenobiotics and Consequences for Neurodegeneration; Promising Experimental Models. Antioxidants (Basel) 2021; 10:antiox10060824. [PMID: 34064062 PMCID: PMC8224073 DOI: 10.3390/antiox10060824] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 05/14/2021] [Accepted: 05/18/2021] [Indexed: 01/14/2023] Open
Abstract
Neuromelanin (NM) accumulates in catecholamine long-lived brain neurons that are lost in neurodegenerative diseases. NM is a complex substance made of melanic, peptide and lipid components. NM formation is a natural protective process since toxic endogenous metabolites are removed during its formation and as it binds excess metals and xenobiotics. However, disturbances of NM synthesis and function could be toxic. Here, we review recent knowledge on NM formation, toxic mechanisms involving NM, go over NM binding substances and suggest experimental models that can help identifying xenobiotic modulators of NM formation or function. Given the high likelihood of a central NM role in age-related human neurodegenerative diseases such as Parkinson’s and Alzheimer’s, resembling such diseases using animal models that do not form NM to a high degree, e.g., mice or rats, may not be optimal. Rather, use of animal models (i.e., sheep and goats) that better resemble human brain aging in terms of NM formation, as well as using human NM forming stem cellbased in vitro (e.g., mid-brain organoids) models can be more suitable. Toxicants could also be identified during chemical synthesis of NM in the test tube.
Collapse
Affiliation(s)
- Andrea Capucciati
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.C.); (E.M.); (L.C.)
| | - Fabio A. Zucca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20054 Milan, Italy; (F.A.Z.); (L.Z.)
| | - Enrico Monzani
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.C.); (E.M.); (L.C.)
| | - Luigi Zecca
- Institute of Biomedical Technologies, National Research Council of Italy, Segrate, 20054 Milan, Italy; (F.A.Z.); (L.Z.)
| | - Luigi Casella
- Department of Chemistry, University of Pavia, 27100 Pavia, Italy; (A.C.); (E.M.); (L.C.)
| | - Tim Hofer
- Department of Environmental Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, N-0213 Oslo, Norway
- Correspondence: ; Tel.: +47-21076671
| |
Collapse
|
15
|
Bhalerao A, Sivandzade F, Archie SR, Chowdhury EA, Noorani B, Cucullo L. In vitro modeling of the neurovascular unit: advances in the field. Fluids Barriers CNS 2020; 17:22. [PMID: 32178700 PMCID: PMC7077137 DOI: 10.1186/s12987-020-00183-7] [Citation(s) in RCA: 99] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The blood–brain barrier (BBB) is a fundamental component of the central nervous system. Its functional and structural integrity is vital in maintaining the homeostasis of the brain microenvironment. On the other hand, the BBB is also a major hindering obstacle for the delivery of effective therapies to treat disorders of the Central Nervous System (CNS). Over time, various model systems have been established to simulate the complexities of the BBB. The development of realistic in vitro BBB models that accurately mimic the physiological characteristics of the brain microcapillaries in situ is of fundamental importance not only in CNS drug discovery but also in translational research. Successful modeling of the Neurovascular Unit (NVU) would provide an invaluable tool that would aid in dissecting out the pathological factors, mechanisms of action, and corresponding targets prodromal to the onset of CNS disorders. The field of BBB in vitro modeling has seen many fundamental changes in the last few years with the introduction of novel tools and methods to improve existing models and enable new ones. The development of CNS organoids, organ-on-chip, spheroids, 3D printed microfluidics, and other innovative technologies have the potential to advance the field of BBB and NVU modeling. Therefore, in this review, summarize the advances and progress in the design and application of functional in vitro BBB platforms with a focus on rapidly advancing technologies.
Collapse
Affiliation(s)
- Aditya Bhalerao
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Farzane Sivandzade
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Sabrina Rahman Archie
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Ekram Ahmed Chowdhury
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Behnam Noorani
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA
| | - Luca Cucullo
- Department of Pharmaceutical Sciences, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, 1300 S. Coulter Street, Amarillo, TX, 79106, USA. .,Center for Blood-Brain Barrier Research, Texas Tech University Health Sciences Center, Amarillo, TX, 79106, USA.
| |
Collapse
|
16
|
Seo J, Yeo HG, Park J, Won J, Kim K, Jin YB, Koo BS, Lim KS, Jeong KJ, Kang P, Lee HY, Son HC, Baek SH, Jeon CY, Song BS, Huh JW, Lee DS, Lee SR, Kim SU, Lee Y. A pilot study on assessment of locomotor behavior using a video tracking system in minipigs. Exp Anim 2020; 69:62-69. [PMID: 31484848 PMCID: PMC7004810 DOI: 10.1538/expanim.19-0065] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Pigs are often selected for large animal models including for neuroscience and behavioral research, because their anatomy and biochemistry are similar to those of humans. However, behavioral assessments, in combination with objective long-term monitoring, is difficult. In this study, we introduced an automated video tracking system which was previously used in rodent studies, for use with pig models. Locomotor behaviors (total distance, number of zone transitions, and velocity) were evaluated and their changes were validated by different 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) administration methods and dosing regimens. Three minipigs (23-29 kg) received subcutaneous or intravenous MPTP, either 1 or 3 times per week. Immediately after MPTP injection, the minipigs remained in a corner and exhibited reduced trajectory. In addition, the total distance travelled, number of zone transitions, and velocity were greatly reduced at every MPTP administration in all the minipigs, accompanying to increased resting time. However, the MPTP-induced symptoms were reversed when MPTP administration was terminated. In conclusion, this automated video-tracking system was able to monitor long-term locomotor activity and differentiate detailed alterations in large animals. It has the advantages of being easy to use, higher resolution, less effort, and more delicate tracking. Additionally, as our method can be applied to the animals' home pen, no habituation is needed.
Collapse
Affiliation(s)
- Jincheol Seo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Hyeon-Gu Yeo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Junghyung Park
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Jinyoung Won
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Keonwoo Kim
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Physical Therapy, Graduate School of Inje University, 197 Inje-ro, Gimhae, Gyeongnam 50834, Republic of Korea
| | - Yeung Bae Jin
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Bon-Sang Koo
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Kyung Seob Lim
- Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Kang-Jin Jeong
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Philyong Kang
- Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hwal-Yong Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Hee-Chang Son
- Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Seung Ho Baek
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Bong-Seok Song
- Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Jae-Won Huh
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Dong-Seok Lee
- School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Sang-Rae Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| | - Sun-Uk Kim
- Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea.,Futuristic Animal Resource & Research Center, KRIBB, 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea
| | - Youngjeon Lee
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), 30 Yeongudanji-ro, Ochang-eup, Cheongwon-gu, Cheongju, Chungbuk 28116, Republic of Korea.,Department of Functional Genomics, KRIBB School of Bioscience, Korea University of Science and Technology, 217 Gajeong-ro, Yuseong-gu, Daejeon 34113, Republic of Korea
| |
Collapse
|
17
|
Stoddard-Bennett T, Reijo Pera R. Treatment of Parkinson's Disease through Personalized Medicine and Induced Pluripotent Stem Cells. Cells 2019; 8:E26. [PMID: 30621042 PMCID: PMC6357081 DOI: 10.3390/cells8010026] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2018] [Revised: 12/28/2018] [Accepted: 12/30/2018] [Indexed: 12/18/2022] Open
Abstract
Parkinson's Disease (PD) is an intractable disease resulting in localized neurodegeneration of dopaminergic neurons of the substantia nigra pars compacta. Many current therapies of PD can only address the symptoms and not the underlying neurodegeneration of PD. To better understand the pathophysiological condition, researchers continue to seek models that mirror PD's phenotypic manifestations as closely as possible. Recent advances in the field of cellular reprogramming and personalized medicine now allow for previously unattainable cell therapies and patient-specific modeling of PD using induced pluripotent stem cells (iPSCs). iPSCs can be selectively differentiated into a dopaminergic neuron fate naturally susceptible to neurodegeneration. In iPSC models, unlike other artificially-induced models, endogenous cellular machinery and transcriptional feedback are preserved, a fundamental step in accurately modeling this genetically complex disease. In addition to accurately modeling PD, iPSC lines can also be established with specific genetic risk factors to assess genetic sub-populations' differing response to treatment. iPS cell lines can then be genetically corrected and subsequently transplanted back into the patient in hopes of re-establishing function. Current techniques focus on iPSCs because they are patient-specific, thereby reducing the risk of immune rejection. The year 2018 marked history as the year that the first human trial for PD iPSC transplantation began in Japan. This form of cell therapy has shown promising results in other model organisms and is currently one of our best options in slowing or even halting the progression of PD. Here, we examine the genetic contributions that have reshaped our understanding of PD, as well as the advantages and applications of iPSCs for modeling disease and personalized therapies.
Collapse
Affiliation(s)
- Theo Stoddard-Bennett
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT 59717, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| | - Renee Reijo Pera
- Department of Cell Biology and Neurosciences, Montana State University, Bozeman, MT 59717, USA.
- Department of Chemistry and Biochemistry, Montana State University, Bozeman, MT 59717, USA.
| |
Collapse
|
18
|
Pirouetting pigs: A large non-primate animal model based on unilateral 6-hydroxydopamine lesioning of the nigrostriatal pathway. Brain Res Bull 2018; 139:167-173. [PMID: 29462643 DOI: 10.1016/j.brainresbull.2018.02.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/29/2018] [Accepted: 02/04/2018] [Indexed: 12/24/2022]
Abstract
INTRODUCTION The rotating 6-hydroxydopamine (6-OHDA) rat model has long been important when developing new treatment strategies for Parkinson's disease (PD). Similar non-human primate models have been developed for translational research purposes as large animal models are required by regulatory bodies as an intermediate "phase 0" trial step. However, experimental research in non-human primates encounters several economical and regulatory issues, which may be avoided by the alternative use of pigs as a large animal model for experimental brain research. OBJECTIVE The primary aim of this study was to examine if unilateral injections of 6-OHDA into the Göttingen minipig nigrostriatal pathway would lead to dopaminergic imbalance and rotational behavior similar to the 6-OHDA unilateral symptomatic model of PD created in other species. The secondary aim was to attempt to verify the rotational behavior as a parkinsonian symptom using subthalamic deep brain stimulation (STN-DBS) to minimize the elicited rotational pattern. MATERIALS AND METHODS Using an MRI-based stereotactic procedure, ten female Göttingen minipigs were injected unilaterally with 6-OHDA in the nigrostriatal pathway. Postoperatively, an MRI was performed, and the animals were injected with amphetamine and apomorphine and observed for rotational behavior. After a survival period of three months the brains were removed and immunohistochemically stained for tyrosine hydroxylase (TH). One week before sacrifice two animals had DBS electrodes unilaterally implanted in the subthalamic nucleus and various stimulation protocols were conducted during amphetamine challenge. RESULTS As expected most animals rotated towards the side of the lesion when given amphetamine (3.5-4.0 mg/kg), whereas the predicted opposite response to apomorphine were much harder to reproduce. T1- and T2-weighted postoperative MRI could demonstrate the size and the location of the 6-OHDA injection. Postmortem TH-staining of the final two animals receiving a medial and a lateral injection of 25 μL of 6-OHDA (8 μg/μL, injection rate 5 μL/min) into the diencephalic nigrostriatal pathway showed a prominent unilateral decrease in TH-staining of the substantia nigra pars compacta, the ventral tegmental area and the nigrostriatal pathway on the lesioned side. These two animals displayed spontaneous rotational behavior toward the lesioned side for the first 2-3 days postoperatively, and this behavior could later on be reelicited by amphetamine and attenuated by ipsilateral STN-DBS. CONCLUSION Female Göttingen minipigs are susceptible to unilateral dopaminergic degeneration when properly injected unilaterally with sufficient amounts of 6-OHDA in the nigrostriatal pathway. The location of the 6-OHDA injections and thus the accuracy of the employed stereotaxy can be verified in vivo using MRI postoperatively. The injected minipigs display unilateral parkinsonism with a well-defined rotational response to amphetamine that may be ameliated by STN-DBS performed on the lesioned side. The response to apomorphine was, however, not consistent, illustrating that further work on this promising non-primate large animal model is needed, before it is fully similar to the established 6-OHDA models in other species.
Collapse
|
19
|
Lillethorup TP, Glud AN, Alstrup AKO, Mikkelsen TW, Nielsen EH, Zaer H, Doudet DJ, Brooks DJ, Sørensen JCH, Orlowski D, Landau AM. Nigrostriatal proteasome inhibition impairs dopamine neurotransmission and motor function in minipigs. Exp Neurol 2018; 303:142-152. [PMID: 29428213 DOI: 10.1016/j.expneurol.2018.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/29/2018] [Accepted: 02/06/2018] [Indexed: 01/09/2023]
Abstract
Parkinson's disease (PD) is characterized by degeneration of dopaminergic neurons in the substantia nigra leading to slowness and stiffness of limb movement with rest tremor. Using ubiquitin proteasome system inhibitors, rodent models have shown nigrostriatal degeneration and motor impairment. We translated this model to the Göttingen minipig by administering lactacystin into the medial forebrain bundle (MFB). Minipigs underwent positron emission tomography (PET) imaging with (+)-α-[11C]dihydrotetrabenazine ([11C]DTBZ), a marker of vesicular monoamine transporter 2 availability, at baseline and three weeks after the unilateral administration of 100 μg lactacystin into the MFB. Compared to their baseline values, minipigs injected with lactacystin showed on average a 36% decrease in ipsilateral striatal binding potential corresponding to impaired presynaptic dopamine terminals. Behaviourally, minipigs displayed asymmetrical motor disability with spontaneous rotations in one of the animals. Immunoreactivity for tyrosine hydroxylase (TH) and HLA-DR-positive microglia confirmed asymmetrical reduction in nigral TH-positive neurons with an inflammatory response in the lactacystin-injected minipigs. In conclusion, direct injection of lactacystin into the MFB of minipigs provides a model of PD with reduced dopamine neurotransmission, TH-positive neuron reduction, microglial activation and behavioural deficits. This large animal model could be useful in studies of symptomatic and neuroprotective therapies with translatability to human PD.
Collapse
Affiliation(s)
- Thea P Lillethorup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark
| | - Andreas N Glud
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Aage K O Alstrup
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark
| | - Trine W Mikkelsen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Erik H Nielsen
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark
| | - Hamed Zaer
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Doris J Doudet
- Department of Medicine/Neurology, University of British Columbia, Vancouver, BC, Canada
| | - David J Brooks
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark; Division of Neuroscience, Department of Medicine, Imperial College London, UK; Division of Neuroscience, Newcastle University, UK
| | - Jens Christian H Sørensen
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Dariusz Orlowski
- Center for Experimental Neuroscience (CENSE), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University, Denmark
| | - Anne M Landau
- Department of Nuclear Medicine and PET Center, Institute of Clinical Medicine, Aarhus University and Hospital, Denmark; Translational Neuropsychiatry Unit, Institute of Clinical Medicine, Aarhus University, Denmark.
| |
Collapse
|
20
|
Trigo-Damas I, del Rey NLG, Blesa J. Novel models for Parkinson’s disease and their impact on future drug discovery. Expert Opin Drug Discov 2018; 13:229-239. [DOI: 10.1080/17460441.2018.1428556] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ines Trigo-Damas
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Spain
- CIBERNED, Instituto Carlos III, Madrid, Spain
| | | | - Javier Blesa
- HM CINAC, Hospital Universitario HM Puerta del Sur, Móstoles, Spain
- CIBERNED, Instituto Carlos III, Madrid, Spain
| |
Collapse
|
21
|
Jensen KL, Runegaard AH, Weikop P, Gether U, Rickhag M. Assessment of Dopaminergic Homeostasis in Mice by Use of High-performance Liquid Chromatography Analysis and Synaptosomal Dopamine Uptake. J Vis Exp 2017. [PMID: 28994779 DOI: 10.3791/56093] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Dopamine (DA) is a modulatory neurotransmitter controlling motor activity, reward processes and cognitive function. Impairment of dopaminergic (DAergic) neurotransmission is strongly associated with several central nervous system-associated diseases such as Parkinson's disease, attention-deficit-hyperactivity disorder and drug addiction1,2,3,4. Delineating disease mechanisms involving DA imbalance is critically dependent on animal models to mimic aspects of the diseases, and thus protocols that assess specific parts of the DA homeostasis are important to provide novel insights and possible therapeutic targets for these diseases. Here, we present two useful experimental protocols that when combined provide a functional read-out of the DAergic system in mice. Biochemical and functional parameters on DA homeostasis are obtained through assessment of DA levels and dopamine transporter (DAT) functionality5. When investigating the DA system, the ability to reliably measure endogenous levels of DA from adult brain is essential. Therefore, we present how to perform high-performance liquid chromatography (HPLC) on brain tissue from mice to determine levels of DA. We perform the experiment on tissue from dorsal striatum (dStr) and nucleus accumbens (NAc), but the method is also suitable for other DA-innervated brain areas. DAT is essential for reuptake of DA into the presynaptic terminal, thereby controlling the temporal and spatial activity of released DA. Knowing the levels and functionality of DAT in the striatum is of major importance when assessing DA homeostasis. Here, we provide a protocol that allows to simultaneously deduce information on surface levels and function using a synaptosomal6 DA uptake assay. Current methods combined with standard immunoblotting protocols provide the researcher with relevant tools to characterize the DAergic system.
Collapse
Affiliation(s)
- Kathrine L Jensen
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Annika H Runegaard
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Pia Weikop
- Laboratory of Neuropsychiatry, Psychiatric Center Copenhagen and Department of Neuroscience and Pharmacology, University of Copenhagen
| | - Ulrik Gether
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen
| | - Mattias Rickhag
- Molecular Neuropharmacology and Genetics Laboratory, Lundbeck Foundation Center for Biomembranes in Nanomedicine, Department of Neuroscience and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen;
| |
Collapse
|
22
|
Eaton SL, Wishart TM. Bridging the gap: large animal models in neurodegenerative research. Mamm Genome 2017; 28:324-337. [PMID: 28378063 PMCID: PMC5569151 DOI: 10.1007/s00335-017-9687-6] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Accepted: 03/25/2017] [Indexed: 01/08/2023]
Abstract
The world health organisation has declared neurological disorders as one of the greatest public health risks in the world today. Yet, despite this growing concern, the mechanisms underpinning many of these conditions are still poorly understood. This may in part be due to the seemingly diverse nature of the initiating insults ranging from genetic (such as the Ataxia's and Lysosomal storage disorders) through to protein misfolding and aggregation (i.e. Prions), and those of a predominantly unknown aetiology (i.e. Alzheimer's and Parkinson's disease). However, efforts to elucidate mechanistic regulation are also likely to be hampered because of the complexity of the human nervous system, the apparent selective regional vulnerability and differential degenerative progression. The key to elucidating these aetiologies is determining the regional molecular cascades, which are occurring from the early through to terminal stages of disease progression. Whilst much molecular data have been captured at the end stage of disease from post-mortem analysis in humans, the very early stages of disease are often conspicuously asymptomatic, and even if they were not, repeated sampling from multiple brain regions of "affected" patients and "controls" is neither ethical nor possible. Model systems therefore become fundamental for elucidating the mechanisms governing these complex neurodegenerative conditions. However, finding a model that precisely mimics the human condition can be challenging and expensive. Whilst cellular and invertebrate models are frequently used in neurodegenerative research and have undoubtedly yielded much useful data, the comparatively simplistic nature of these systems makes insights gained from such a stand alone model limited when it comes to translation. Given the recent advances in gene editing technology, the options for novel model generation in higher order species have opened up new and exciting possibilities for the field. In this review, we therefore explain some of the reasons why larger animal models often appear to give a more robust recapitulation of human neurological disorders and why they may be a critical stepping stone for effective therapeutic translation.
Collapse
Affiliation(s)
- S L Eaton
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK
| | - T M Wishart
- Roslin Institute and Royal (Dick) Veterinary studies, University of Edinburgh, Easter Bush Campus, Edinburgh, EH25 9RG, UK.
- Euan MacDonald Centre for MND Research, Chancellor's Building, 49 Little France, Edinburgh, EH16 4SB, UK.
| |
Collapse
|
23
|
Dall AM, Danielsen EH, Sørensen JC, Andersen F, Møller A, Zimmer J, Gjedde AH, Cumming P, Zimmer J, Brevig T, Dall AM, Meyer M, Pedersen EB, Gjedde A, Danielsen EH, Cumming P, Andersen F, Bender D, Falborg L, Gee A, Gillings NM, Hansen SB, Hermansen F, Jørgensen HA, Munk O, Poulsen PH, Rodell AB, Sakoh M, Simonsen CZ, Smith DF, Sørensen JC, Østergård L, Moller A, Johansen TE. Quantitative [18F]Fluorodopa/PET and Histology of Fetal Mesencephalic Dopaminergic Grafts to the Striatum of MPTP-Poisoned Minipigs. Cell Transplant 2017. [DOI: 10.3727/000000002783985314] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The functional restoration of the dopamine innervation of striatum in MPTP-poisoned Göttingen minipigs was assessed for 6 months following grafting of fetal pig mesencephalic neurons. Pigs were assigned to a normal control group and a MPTP-poisoned group, members of which received no further treatment, or which received bilateral grafts to the striatum of tissue blocks harvested from E28 fetal pig mesencephalon with and without immunosuppressive treatment after grafting, or with additional co-grafting with immortalized rat neural cells transfected to produce GDNF. In the baseline condition, and again at 3 and 6 months postsurgery, all animals were subjected to quantitative [18F]fluorodopa PET scans and testing for motor impairment. At the end of 6 months, tyrosine hydroxylase (TH)-containing neurons were counted in the grafts by stereological methods. The MPTP poisoning persistently reduced the magnitude of k3D, the relative activity of DOPA decarboxylase in striatum, by 60%. Grafting restored the rate of [18F]fluorodopa decarboxylation to the normal range, and normalized the scores in motor function. The biochemical and functional recovery was associated with survival of approximately 100,000 TH-positive graft neurons in each hemisphere. Immunosuppression did not impart a greater recovery of [18F]fluorodopa uptake, nor were the number of TH-positive graft neurons or the volumes of the grafts increased in the immunosuppressed group. Contrary to expectation, co-grafting of transfected GDNF-expressing HiB5 cells, a rat-derived neural cell line, tended to impair the survival of the grafts with the lowest values for graft volumes, TH-positive cell numbers, behavioral scores, and relative DOPA decarboxylase activity. From the results we conclude that pig ventral mesencephalic allografts can restore functional dopamine innervation in adult MPTP-lesioned minipigs.
Collapse
Affiliation(s)
- Annette Møller Dall
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
| | | | | | | | | | - Jens Zimmer
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
| | - Albert H. Gjedde
- Department of Anatomy and Neurobiology, University of Southern Denmark, 5000 Odense C, Denmark
- McGill University, Montreal, Quebec, Canada
| | - Paul Cumming
- PET Centre, Aarhus General Hospital, 8000 Aarhus C, Denmark
| | - J. Zimmer
- Department of Anatomy and Neurobiology, SDU Odense University
| | - T. Brevig
- Department of Anatomy and Neurobiology, SDU Odense University
| | - A. M. Dall
- Department of Anatomy and Neurobiology, SDU Odense University
| | - M. Meyer
- Department of Anatomy and Neurobiology, SDU Odense University
| | - E. B. Pedersen
- Department of Anatomy and Neurobiology, SDU Odense University
| | - A. Gjedde
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - E. H. Danielsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - P. Cumming
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - F. Andersen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - D. Bender
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - L. Falborg
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - A. Gee
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - N. M. Gillings
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - S. B. Hansen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - F. Hermansen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - H. A. Jørgensen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - O. Munk
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - P. H. Poulsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - A. B. Rodell
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - M. Sakoh
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - C. Z. Simonsen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - D. F. Smith
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - J. C. Sørensen
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | - L. Østergård
- PET-Center and Departments of Neuroradiology, Neurosurgery, Neuroanaesthesia, and Biological Psychiatry, Aarhus University Hospital
| | | | | | | |
Collapse
|
24
|
Bjarkam CR, Orlowski D, Tvilling L, Bech J, Glud AN, Sørensen JCH. Exposure of the Pig CNS for Histological Analysis: A Manual for Decapitation, Skull Opening, and Brain Removal. J Vis Exp 2017. [PMID: 28447999 DOI: 10.3791/55511] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Pigs have become increasingly popular in large-animal translational neuroscience research as an economically and ethically feasible substitute to non-human primates. The large brain size of the pig allows the use of conventional clinical brain imagers and the direct use and testing of neurosurgical procedures and equipment from the human clinic. Further macroscopic and histological analysis, however, requires postmortem exposure of the pig central nervous system (CNS) and subsequent brain removal. This is not an easy task, as the pig CNS is encapsulated by a thick, bony skull and spinal column. The goal of this paper and instructional video is to describe how to expose and remove the postmortem pig brain and the pituitary gland in an intact state, suitable for subsequent macroscopic and histological analysis.
Collapse
Affiliation(s)
- Carsten R Bjarkam
- Department of Neurosurgery, Clinical Institute of Medicine, Aalborg University Hospital;
| | - Dariusz Orlowski
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| | - Laura Tvilling
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| | - Johannes Bech
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| | - Andreas N Glud
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| | - Jens-Christian H Sørensen
- Center of Experimental Neuroscience (Cense), Department of Neurosurgery, Institute of Clinical Medicine, Aarhus University Hospital
| |
Collapse
|
25
|
The telencephalon of the Göttingen minipig, cytoarchitecture and cortical surface anatomy. Brain Struct Funct 2016; 222:2093-2114. [PMID: 27778106 DOI: 10.1007/s00429-016-1327-5] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2016] [Accepted: 10/15/2016] [Indexed: 12/19/2022]
Abstract
During the last 20 years pigs have become increasingly popular in large animal translational neuroscience research as an economical and ethical feasible substitute to non-human primates. The anatomy of the pig telencephalon is, however, not well known. We present, accordingly, a detailed description of the surface anatomy and cytoarchitecture of the Göttingen minipig telencephalon based on macrophotos and consecutive high-power microphotographs of 15 μm thick paraffin embedded Nissl-stained coronal sections. In 1-year-old specimens the formalin perfused brain measures approximately 55 × 47 × 36 mm (length, width, height) and weighs around 69 g. The telencephalic part of the Göttingen minipig cerebrum covers a large surface area, which can be divided into a neocortical gyrencephalic part located dorsal to the rhinal fissure, and a ventral subrhinal part dominated by olfactory, amygdaloid, septal, and hippocampal structures. This part of the telencephalon is named the subrhinal lobe, and based on cytoarchitectural and sulcal anatomy, can be discerned from the remaining dorsally located neocortical perirhinal/insular, pericallosal, frontal, parietal, temporal, and occipital lobes. The inner subcortical structure of the minipig telencephalon is dominated by a prominent ventricular system and large basal ganglia, wherein the putamen and the caudate nucleus posterior and dorsally are separated into two entities by the internal capsule, whereas both structures ventrally fuse into a large accumbens nucleus. The presented anatomical data is accompanied by surface renderings and high-power macrophotographs illustrating the telencephalic sulcal pattern, and the localization of the identified lobes and cytoarchitectonic areas. Additionally, 24 representative Nissl-stained telencephalic coronal sections are presented as supplementary material in atlas form on http://www.cense.dk/minipig_atlas/index.html and referred to as S1-S24 throughout the manuscript.
Collapse
|
26
|
Zhang Q, Chen W, Tan S, Lin T. Stem Cells for Modeling and Therapy of Parkinson's Disease. Hum Gene Ther 2016; 28:85-98. [PMID: 27762639 DOI: 10.1089/hum.2016.116] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Parkinson's disease (PD) is the second most frequent neurodegenerative disease after Alzheimer's disease, which is characterized by a low level of dopamine being expressing in the striatum and a deterioration of dopaminergic neurons (DAn) in the substantia nigra pars compacta. Generation of PD-derived DAn, including differentiation of human embryonic stem cells, human neural stem cells, human-induced pluripotent stem cells, and direct reprogramming, provides an ideal tool to model PD, creating the possibility of mimicking key essential pathological processes and charactering single-cell changes in vitro. Furthermore, thanks to the understanding of molecular neuropathogenesis of PD and new advances in stem-cell technology, it is anticipated that optimal functionally transplanted DAn with targeted correction and transgene-free insertion will be generated for use in cell transplantation. This review elucidates stem-cell technology for modeling PD and offering desired safe cell resources for cell transplantation therapy.
Collapse
Affiliation(s)
- Qingxi Zhang
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Wanling Chen
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Sheng Tan
- 2 Department of Neurology, Zhujiang Hospital of Southern Medical University , Guangzhou, China
| | - Tongxiang Lin
- 1 Center for Regenerative and Translational Medicine, The Second Affiliated Hospital, Guangzhou University of Chinese Medicine (Guangdong Provincial Hospital of Chinese Medicine) , Guangzhou, China .,3 Stem Cell Research Center, Fujian Agriculture and Forestry University , Fuzhou, China
| |
Collapse
|
27
|
Mahady LJ, Perez SE, Emerich DF, Wahlberg LU, Mufson EJ. Cholinergic profiles in the Goettingen miniature pig (Sus scrofa domesticus) brain. J Comp Neurol 2016; 525:553-573. [PMID: 27490949 DOI: 10.1002/cne.24087] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 08/02/2016] [Accepted: 08/03/2016] [Indexed: 11/10/2022]
Abstract
Central cholinergic structures within the brain of the even-toed hoofed Goettingen miniature domestic pig (Sus scrofa domesticus) were evaluated by immunohistochemical visualization of choline acetyltransferase (ChAT) and the low-affinity neurotrophin receptor, p75NTR . ChAT-immunoreactive (-ir) perikarya were seen in the olfactory tubercle, striatum, medial septal nucleus, vertical and horizontal limbs of the diagonal band of Broca, and the nucleus basalis of Meynert, medial habenular nucleus, zona incerta, neurosecretory arcuate nucleus, cranial motor nuclei III and IV, Edinger-Westphal nucleus, parabigeminal nucleus, pedunculopontine nucleus, and laterodorsal tegmental nucleus. Cholinergic ChAT-ir neurons were also found within transitional cortical areas (insular, cingulate, and piriform cortices) and hippocampus proper. ChAT-ir fibers were seen throughout the dentate gyrus and hippocampus, in the mediodorsal, laterodorsal, anteroventral, and parateanial thalamic nuclei, the fasciculus retroflexus of Meynert, basolateral and basomedial amygdaloid nuclei, anterior pretectal and interpeduncular nuclei, as well as select laminae of the superior colliculus. Double immunofluorescence demonstrated that virtually all ChAT-ir basal forebrain neurons were also p75NTR -positive. The present findings indicate that the central cholinergic system in the miniature pig is similar to other mammalian species. Therefore, the miniature pig may be an appropriate animal model for preclinical studies of neurodegenerative diseases where the cholinergic system is compromised. J. Comp. Neurol. 525:553-573, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Laura J Mahady
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, Arizona
| | - Sylvia E Perez
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| | | | | | - Elliott J Mufson
- Department of Neurobiology, Barrow Neurological Institute, Phoenix, Arizona
| |
Collapse
|
28
|
Asakawa T, Fang H, Sugiyama K, Nozaki T, Hong Z, Yang Y, Hua F, Ding G, Chao D, Fenoy AJ, Villarreal SJ, Onoe H, Suzuki K, Mori N, Namba H, Xia Y. Animal behavioral assessments in current research of Parkinson's disease. Neurosci Biobehav Rev 2016; 65:63-94. [PMID: 27026638 DOI: 10.1016/j.neubiorev.2016.03.016] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 03/22/2016] [Accepted: 03/22/2016] [Indexed: 12/21/2022]
Abstract
Parkinson's disease (PD), a neurodegenerative disorder, is traditionally classified as a movement disorder. Patients typically suffer from many motor dysfunctions. Presently, clinicians and scientists recognize that many non-motor symptoms are associated with PD. There is an increasing interest in both motor and non-motor symptoms in clinical studies on PD patients and laboratory research on animal models that imitate the pathophysiologic features and symptoms of PD patients. Therefore, appropriate behavioral assessments are extremely crucial for correctly understanding the mechanisms of PD and accurately evaluating the efficacy and safety of novel therapies. This article systematically reviews the behavioral assessments, for both motor and non-motor symptoms, in various animal models involved in current PD research. We addressed the strengths and weaknesses of these behavioral tests and their appropriate applications. Moreover, we discussed potential mechanisms behind these behavioral tests and cautioned readers against potential experimental bias. Since most of the behavioral assessments currently used for non-motor symptoms are not particularly designed for animals with PD, it is of the utmost importance to greatly improve experimental design and evaluation in PD research with animal models. Indeed, it is essential to develop specific assessments for non-motor symptoms in PD animals based on their characteristics. We concluded with a prospective view for behavioral assessments with real-time assessment with mobile internet and wearable device in future PD research.
Collapse
Affiliation(s)
- Tetsuya Asakawa
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan; Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan.
| | - Huan Fang
- Department of Pharmacy, Jinshan Hospital of Fudan University, Shanghai, China
| | - Kenji Sugiyama
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Takao Nozaki
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Zhen Hong
- Department of Neurology, Huashan Hospital of Fudan University, Shanghai, China
| | - Yilin Yang
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Fei Hua
- The First People's Hospital of Changzhou, Soochow University School of Medicine, Changzhou, China
| | - Guanghong Ding
- Shanghai Key Laboratory of Acupuncture Mechanism and Acupoint Function, Fudan University, Shanghai, China
| | - Dongman Chao
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Albert J Fenoy
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Sebastian J Villarreal
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA
| | - Hirotaka Onoe
- Functional Probe Research Laboratory, RIKEN Center for Life Science Technologies, Kobe, Japan
| | - Katsuaki Suzuki
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Norio Mori
- Department of Psychiatry, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Hiroki Namba
- Department of Neurosurgery, Hamamatsu University School of Medicine, Hamamatsu-city, Shizuoka, Japan
| | - Ying Xia
- Department of Neurosurgery, The University of Texas McGovern Medical School,Houston, TX, USA.
| |
Collapse
|
29
|
Yun JW, Ahn JB, Kang BC. Modeling Parkinson's disease in the common marmoset (Callithrix jacchus): overview of models, methods, and animal care. Lab Anim Res 2015; 31:155-65. [PMID: 26755918 PMCID: PMC4707143 DOI: 10.5625/lar.2015.31.4.155] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2015] [Revised: 11/04/2015] [Accepted: 11/11/2015] [Indexed: 12/14/2022] Open
Abstract
The common marmoset (Callithrix jacchus) is a small-bodied, popular New World monkey and is used widely in reproductive biology, neuroscience, and drug development, due to its comparative ease of handling, high reproductive efficiency, and its unique behavioral characters. In this review, we discuss the marmoset models in Parkinson's disease (PD), which is a neurological movement disorder primarily resulting from a degeneration of dopaminergic neurons with clinical features of tremor, rigidity, postural instability, and akinesia. The most common PD models involve the administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) or 6-hydroxydopamine to study the pathogenesis and to evaluate novel therapies. Following the systemic or local administration of these neurotoxins, the marmosets with very severe Parkinson's symptoms are recommended to be placed in an intensive care unit with artificial feeding to increase survival rate. All procedures with MPTP should be conducted in a special room with enclosed cages under negative-pressure by trained researchers with personal protection. Behavioral tests are conducted to provide an external measure of the brain pathology. Along with several biomarkers, including α-synuclein and DJ-1, non-invasive neuroimaging techniques such as positron emission tomography and magnetic resonance imaging are used to evaluate the functional changes associated with PD. With the recent growing interest in potential and novel therapies such as stem cell and gene therapy for PD in Korea, the marmoset can be considered as a suitable non-human primate model in PD research to bridge the gap between rodent studies and clinical applications.
Collapse
Affiliation(s)
- Jun-Won Yun
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
| | - Jae-Bum Ahn
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
| | - Byeong-Cheol Kang
- Department of Experimental Animal Research, Biomedical Research Institute, Seoul National University Hospital, Seoul, Korea
- Graduate School of Translational Medicine, Seoul National University College of Medicine, Seoul, Korea
- Designed Animal Research Center, Institute of GreenBio Science Technology, Seoul National University, Pyeongchang-gun, Gangwon, Korea
| |
Collapse
|
30
|
Holm IE, Alstrup AKO, Luo Y. Genetically modified pig models for neurodegenerative disorders. J Pathol 2015; 238:267-87. [DOI: 10.1002/path.4654] [Citation(s) in RCA: 72] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Revised: 09/22/2015] [Accepted: 10/05/2015] [Indexed: 12/12/2022]
Affiliation(s)
- Ida E Holm
- Department of Pathology; Randers Hospital; 8930 Randers Denmark
- Department of Clinical Medicine; Aarhus University; 8000 Aarhus C Denmark
| | | | - Yonglun Luo
- Department of Biomedicine; Aarhus University; 8000 Aarhus C Denmark
| |
Collapse
|
31
|
Abstract
Molecular scissors (MS), incl. Zinc Finger Nucleases (ZFN), Transcription-activator like endoncleases (TALENS) and meganucleases possess long recognition sites and are thus capable of cutting DNA in a very specific manner. These molecular scissors mediate targeted genetic alterations by enhancing the DNA mutation rate via induction of double-strand breaks at a predetermined genomic site. Compared to conventional homologous recombination based gene targeting, MS can increase the targeting rate 10,000-fold, and gene disruption via mutagenic DNA repair is stimulated at a similar frequency. The successful application of different MS has been shown in different organisms, including insects, amphibians, plants, nematodes, and mammals, including humans. Recently, another novel class of molecular scissors was described that uses RNAs to target a specific genomic site. The CRISPR/Cas9 system is capable of targeting even multiple genomic sites in one shot and thus could be superior to ZFNs or TALEN, especially by its easy design. MS can be successfully employed for improving the understanding of complex physiological systems, producing transgenic animals, incl. creating large animal models for human diseases, creating specific cell lines, and plants, and even for treating human genetic diseases. This review provides an update on molecular scissors, their underlying mechanism and focuses on new opportunities for generating genetically modified farm animals.
Collapse
|
32
|
Petersen B, Niemann H. Molecular scissors and their application in genetically modified farm animals. Transgenic Res 2015; 24:381-96. [DOI: 10.1007/s11248-015-9862-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2014] [Accepted: 01/02/2015] [Indexed: 11/21/2022]
|
33
|
Bassols A, Costa C, Eckersall PD, Osada J, Sabrià J, Tibau J. The pig as an animal model for human pathologies: A proteomics perspective. Proteomics Clin Appl 2014; 8:715-31. [DOI: 10.1002/prca.201300099] [Citation(s) in RCA: 158] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Revised: 04/28/2014] [Accepted: 07/30/2014] [Indexed: 12/15/2022]
Affiliation(s)
- Anna Bassols
- Departament de Bioquímica i Biologia Molecular; Facultat de Veterinària; Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Cristina Costa
- New Therapies of Genes and Transplants Group; Institut d'Investigació Biomèdica de Bellvitge (IDIBELL); L'Hospitalet de Llobregat; Barcelona Spain
| | - P. David Eckersall
- Institute of Biodiversity, Animal Health and Comparative Medicine; University of Glasgow; Glasgow UK
| | - Jesús Osada
- Departamento de Bioquímica y Biología Molecular; Facultad de Ciencias; Universidad de Zaragoza; CIBEROBN; Zaragoza Spain
| | - Josefa Sabrià
- Departament de Bioquímica i Biologia Molecular; Facultat de Medicina; Institut de Neurociències (INc); Universitat Autònoma de Barcelona; Cerdanyola del Vallès Spain
| | - Joan Tibau
- IRTA - Food Technology; Animal Genetics Program; Finca Camps i Armet; Monells Spain
| |
Collapse
|
34
|
Kulikov VA, Khotskin NV, Nikitin SV, Lankin VS, Kulikov AV, Trapezov OV. Application of 3-D imaging sensor for tracking minipigs in the open field test. J Neurosci Methods 2014; 235:219-25. [DOI: 10.1016/j.jneumeth.2014.07.012] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 07/16/2014] [Accepted: 07/16/2014] [Indexed: 11/26/2022]
|
35
|
Dolezalova D, Hruska-Plochan M, Bjarkam CR, Sørensen JCH, Cunningham M, Weingarten D, Ciacci JD, Juhas S, Juhasova J, Motlik J, Hefferan MP, Hazel T, Johe K, Carromeu C, Muotri A, Bui J, Strnadel J, Marsala M. Pig models of neurodegenerative disorders: Utilization in cell replacement-based preclinical safety and efficacy studies. J Comp Neurol 2014; 522:2784-801. [DOI: 10.1002/cne.23575] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2013] [Revised: 02/13/2014] [Accepted: 02/14/2014] [Indexed: 12/12/2022]
Affiliation(s)
- Dasa Dolezalova
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
| | | | - Carsten R. Bjarkam
- Department of Neurosurgery; Aalborg University Hospital; Aalborg Denmark
- Department of Biomedicine; Institute of Anatomy, University of Aarhus; Aarhus Denmark
| | | | - Miles Cunningham
- MRC 312, McLean Hospital, Harvard Medical School; Belmont MA 02478 USA
| | - David Weingarten
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Joseph D. Ciacci
- UCSD Division of Neurosurgery; University of California; San Diego CA USA
| | - Stefan Juhas
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jana Juhasova
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | - Jan Motlik
- Institute of Animal Physiology and Genetics, Czech Academy of Sciences; 277 21 Libechov Czech Republic
| | | | | | | | - Cassiano Carromeu
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Alysson Muotri
- Department of Cellular and Molecular Medicine; University of California; San Diego CA USA
| | - Jack Bui
- Department of Pathology; University of California; San Diego CA USA
| | - Jan Strnadel
- Department of Pathology; University of California; San Diego CA USA
| | - Martin Marsala
- Department of Anesthesiology; University of California; San Diego La Jolla CA USA
- Institute of Neurobiology, Slovak Academy of Sciences; Kosice Slovakia
| |
Collapse
|
36
|
Duberstein KJ, Platt SR, Holmes SP, Dove CR, Howerth EW, Kent M, Stice SL, Hill WD, Hess DC, West FD. Gait analysis in a pre- and post-ischemic stroke biomedical pig model. Physiol Behav 2013; 125:8-16. [PMID: 24286894 DOI: 10.1016/j.physbeh.2013.11.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 11/13/2013] [Indexed: 11/18/2022]
Abstract
Severity of neural injury including stroke in human patients, as well as recovery from injury, can be assessed through changes in gait patterns of affected individuals. Similar quantification of motor function deficits has been measured in rodent animal models of such injuries. However, due to differences in fundamental structure of human and rodent brains, there is a need to develop a large animal model to facilitate treatment development for neurological conditions. Porcine brain structure is similar to that of humans, and therefore the pig may make a more clinically relevant animal model. The current study was undertaken to determine key gait characteristics in normal biomedical miniature pigs and dynamic changes that occur post-neural injury in a porcine middle cerebral artery (MCA) occlusion ischemic stroke model. Yucatan miniature pigs were trained to walk through a semi-circular track and were recorded with high speed cameras to detect changes in key gait parameters. Analysis of normal pigs showed overall symmetry in hindlimb swing and stance times, forelimb stance time, along with step length, step velocity, and maximum hoof height on both fore and hindlimbs. A subset of pigs were again recorded at 7, 5 and 3 days prior to MCA occlusion and then at 1, 3, 5, 7, 14 and 30 days following surgery. MRI analysis showed that MCA occlusion resulted in significant infarction. Gait analysis indicated that stroke resulted in notable asymmetries in both temporal and spatial variables. Pigs exhibited lower maximum front hoof height on the paretic side, as well as shorter swing time and longer stance time on the paretic hindlimb. These results support that gait analysis of stroke injury is a highly sensitive detection method for changes in gait parameters in pig.
Collapse
Affiliation(s)
- Kylee Jo Duberstein
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - Simon R Platt
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Small Animal and Surgery, University of Georgia, Athens, GA 30602, USA
| | - Shannon P Holmes
- Department of Veterinary Biosciences & Diagnostic Imaging, University of Georgia, Athens, GA 30602, USA
| | - C Robert Dove
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | | | - Marc Kent
- Department of Small Animal and Surgery, University of Georgia, Athens, GA 30602, USA
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA
| | - William D Hill
- Department of Neurology, Georgia Regents University, Augusta, GA 30912, USA; Department of Cellular Biology & Anatomy, Georgia Regents University, Augusta, GA 30912, USA
| | - David C Hess
- Department of Neurology, Georgia Regents University, Augusta, GA 30912, USA
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA 30602, USA; Department of Animal and Dairy Science, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
37
|
Hauschild-Quintern J, Petersen B, Cost GJ, Niemann H. Gene knockout and knockin by zinc-finger nucleases: current status and perspectives. Cell Mol Life Sci 2013; 70:2969-83. [PMID: 23161061 PMCID: PMC11113862 DOI: 10.1007/s00018-012-1204-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Revised: 10/19/2012] [Accepted: 10/22/2012] [Indexed: 12/01/2022]
Abstract
Zinc-finger nucleases (ZFNs) are engineered site-specific DNA cleavage enzymes that may be designed to recognize long target sites and thus cut DNA with high specificity. ZFNs mediate permanent and targeted genetic alteration via induction of a double-strand break at a specific genomic site. Compared to conventional homology-based gene targeting, ZFNs can increase the targeting rate by up to 100,000-fold; gene disruption via mutagenic DNA repair is similarly efficient. The utility of ZFNs has been shown in many organisms, including insects, amphibians, plants, nematodes, and several mammals, including humans. This broad range of tractable species renders ZFNs a useful tool for improving the understanding of complex physiological systems, to produce transgenic animals, cell lines, and plants, and to treat human disease.
Collapse
Affiliation(s)
- J. Hauschild-Quintern
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Hoeltystrasse 10, 31535 Neustadt a. Rbge., Germany
| | - B. Petersen
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Hoeltystrasse 10, 31535 Neustadt a. Rbge., Germany
| | - G. J. Cost
- Sangamo BioSciences, 501 Canal Blvd., Richmond, CA 94804 USA
| | - H. Niemann
- Institute of Farm Animal Genetics, Friedrich-Loeffler-Institut, Mariensee, Hoeltystrasse 10, 31535 Neustadt a. Rbge., Germany
- Rebirth, Cluster of Excellence, Hannover Medical School, Hannover, Germany
| |
Collapse
|
38
|
Glerup S, Lume M, Olsen D, Nyengaard J, Vaegter C, Gustafsen C, Christensen E, Kjolby M, Hay-Schmidt A, Bender D, Madsen P, Saarma M, Nykjaer A, Petersen C. SorLA Controls Neurotrophic Activity by Sorting of GDNF and Its Receptors GFRα1 and RET. Cell Rep 2013; 3:186-99. [DOI: 10.1016/j.celrep.2012.12.011] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2012] [Revised: 10/23/2012] [Accepted: 12/14/2012] [Indexed: 01/01/2023] Open
|
39
|
Helke KL, Swindle MM. Animal models of toxicology testing: the role of pigs. Expert Opin Drug Metab Toxicol 2012; 9:127-39. [PMID: 23216131 DOI: 10.1517/17425255.2013.739607] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
INTRODUCTION In regulatory toxicological testing, both a rodent and non-rodent species are required. Historically, dogs and non-human primates (NHP) have been the species of choice of the non-rodent portion of testing. The pig is an appropriate option for these tests based on metabolic pathways utilized in xenobiotic biotransformation. AREAS COVERED This review focuses on the Phase I and Phase II biotransformation pathways in humans and pigs and highlights the similarities and differences of these models. This is a growing field and references are sparse. Numerous breeds of pigs are discussed along with specific breed differences in these enzymes that are known. While much available data are presented, it is grossly incomplete and sometimes contradictory based on methods used. EXPERT OPINION There is no ideal species to use in toxicology. The use of dogs and NHP in xenobiotic testing continues to be the norm. Pigs present a viable and perhaps more reliable model of non-rodent testing.
Collapse
Affiliation(s)
- Kristi L Helke
- Medical University South Carolina, Comparative Medicine, 114 Doughty St, Ste 648, MSC777, Charleston, SC 29425, USA.
| | | |
Collapse
|
40
|
Characterization of Porcine Ventral Mesencephalic Precursor Cells following Long-Term Propagation in 3D Culture. Stem Cells Int 2012; 2012:761843. [PMID: 23258982 PMCID: PMC3508616 DOI: 10.1155/2012/761843] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 09/04/2012] [Indexed: 01/08/2023] Open
Abstract
The potential use of predifferentiated neural precursor cells for treatment of a neurological disorder like Parkinson's disease combines stem cell research with previous experimental and clinical transplantation of developing dopaminergic neurons. One current obstacle is, however, the lack of ability to generate dopaminergic neurons after long-term in vitro propagation of the cells. The domestic pig is considered a useful nonprimate large animal model in neuroscience, because of a better resemblance of the larger gyrencephalic pig brain to the human brain than the commonly used brains of smaller rodents. In the present study, porcine embryonic (28–30 days), ventral mesencephalic precursor cells were isolated and propagated as free-floating neural tissue spheres in medium containing epidermal growth factor and fibroblast growth factor 2. For passaging, the tissue spheres were cut into quarters, avoiding mechanical or enzymatic dissociation in order to minimize cellular trauma and preserve intercellular contacts. Spheres were propagated for up to 237 days with analysis of cellular content and differentiation at various time points. Our study provides the first demonstration that porcine ventral mesencephalic precursor cells can be long-term propagated as neural tissue spheres, thereby providing an experimental 3D in vitro model for studies of neural precursor cells, their niche, and differentiation capacity.
Collapse
|
41
|
Application of immunohistochemistry in stereology for quantitative assessment of neural cell populations illustrated in the Göttingen minipig. PLoS One 2012; 7:e43556. [PMID: 22905271 PMCID: PMC3419655 DOI: 10.1371/journal.pone.0043556] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Accepted: 07/23/2012] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Stereology is the study of estimating geometric quantities. When successfully applied, the combination of immunohistochemistry (IHC) and stereology eliminates intra- and interobserver variability for cell type identification. METHODOLOGY/PRINCIPAL FINDINGS We propose a method to validate existing antibody based cell type markers for stereological application. Comparison was made on the 100-days-old Göttingen minipig (G-mini) neocortex between estimates of total neuron number derived from Giemsa staining using morphological criteria and immunohistochemistry-based cell counting with NeuN. The mean total neuron numbers estimated by the two staining methods were not significantly different. Estimated quantities, including glial cell number, neocortical volume, cell densities and glial-to-neuron ratio were also presented. Additionally, we assessed other commonly used glial markers and discussed how to evaluate the advantages and disadvantages of these markers for stereological estimation of cell number. CONCLUSION/SIGNIFICANCE The concordance in quantitative estimates of total neuron number derived from NeuN- and Giemsa-stained sections provides evidence for the sensitivity and specificity of NeuN as a neuronal marker in the G-mini. Although time-consuming, quantitative validation of IHC should always be considered in stereological studies if there is doubt of the sensitivity, specificity, or reproducibility of cell type markers. Inaccurate staining may cause both over- and underestimation of the total cell number and inflict considerable limitation when analyzing the results.
Collapse
|
42
|
de Almeida AM, Bendixen E. Pig proteomics: A review of a species in the crossroad between biomedical and food sciences. J Proteomics 2012; 75:4296-314. [DOI: 10.1016/j.jprot.2012.04.010] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2012] [Revised: 04/04/2012] [Accepted: 04/08/2012] [Indexed: 11/29/2022]
|
43
|
Luo Y, Lin L, Bolund L, Jensen TG, Sørensen CB. Genetically modified pigs for biomedical research. J Inherit Metab Dis 2012; 35:695-713. [PMID: 22453682 DOI: 10.1007/s10545-012-9475-0] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/09/2012] [Accepted: 03/02/2012] [Indexed: 01/17/2023]
Abstract
During the last two decades, pigs have been used to develop some of the most important large animal models for biomedical research. Advances in pig genome research, genetic modification (GM) of primary pig cells and pig cloning by nuclear transfer, have facilitated the generation of GM pigs for xenotransplantation and various human diseases. This review summarizes the key technologies used for generating GM pigs, including pronuclear microinjection, sperm-mediated gene transfer, somatic cell nuclear transfer by traditional cloning, and somatic cell nuclear transfer by handmade cloning. Broadly used genetic engineering tools for porcine cells are also discussed. We also summarize the GM pig models that have been generated for xenotransplantation and human disease processes, including neurodegenerative diseases, cardiovascular diseases, eye diseases, bone diseases, cancers and epidermal skin diseases, diabetes mellitus, cystic fibrosis, and inherited metabolic diseases. Thus, this review provides an overview of the progress in GM pig research over the last two decades and perspectives for future development.
Collapse
Affiliation(s)
- Yonglun Luo
- Department of Biomedicine, Aarhus University, Aarhus C, Denmark.
| | | | | | | | | |
Collapse
|
44
|
Food preferences and aversions in human health and nutrition: how can pigs help the biomedical research? Animal 2012; 6:118-36. [DOI: 10.1017/s1751731111001315] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
|
45
|
Hou J, Eriksen N, Pakkenberg B. The temporal pattern of postnatal neurogenesis found in the neocortex of the Göttingen minipig brain. Neuroscience 2011; 195:176-9. [PMID: 21878372 DOI: 10.1016/j.neuroscience.2011.08.025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Revised: 08/10/2011] [Accepted: 08/11/2011] [Indexed: 11/28/2022]
Abstract
The Göttingen minipig (G-mini) is increasingly used as a non-primate model for human neurological diseases. We applied design-based stereology on five groups of G-minis aged 1 day, 14 days, 30 days, 100 days, and 2 years or older to estimate the pattern of postnatal neuron number development in the neocortex. Two time periods for the postnatal increase of neocortical neuron number were observed from the time of birth to day 14 (P=0.013) and from day 30 to day 100 (P<0.001). No significant change in neuron number was found from day 14 to 30 (P=0.58) and day 100 onward (P=0.39). The average estimated total number of neurons in the neocortex was 236, 274, 264, 338, and 353 million, respectively. Since neurogenesis and neuronal migration in the human neocortex are generally accepted to be complete before term, the application of G-mini as human disease models may be inappropriate before day 100. However, G-mini may serve as a valuable model for the studies of ongoing neurogenesis in the living brain.
Collapse
Affiliation(s)
- J Hou
- Research Laboratory for Stereology and Neuroscience, Bispebjerg University Hospital, 2400 Copenhagen NV, Denmark.
| | | | | |
Collapse
|
46
|
Guidi S, Bianchi P, Alstrup AKO, Henningsen K, Smith DF, Bartesaghi R. Postnatal neurogenesis in the hippocampal dentate gyrus and subventricular zone of the Göttingen minipig. Brain Res Bull 2011; 85:169-79. [PMID: 21501667 DOI: 10.1016/j.brainresbull.2011.03.028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Revised: 03/24/2011] [Accepted: 03/31/2011] [Indexed: 01/18/2023]
Abstract
Postnatal neurogenesis is currently viewed as important for neuroplasticity and brain repair. We are, therefore, interested in animal models for neuroimaging of postnatal neurogenesis. A recent stereological study found an age-dependent increase in the number of neurons and glial cells in the neocortex of Göttingen minipigs, suggesting that this species may be characterized by a prolonged postnatal neurogenesis. Since there is no direct evidence on this issue, the goal of our study was to quantify cell proliferation in the two major neurogenic regions of the postnatal brain - the subventricular zone of the lateral ventricle (SVZ) and the hippocampal dentate gyrus (DG) - at two separate points during the lifespan of the minipig. Göttingen minipigs aged 6-7 and 32 weeks were injected with bromodeoxyuridine (BrdU), a marker of cycling cells, and killed after 2h. We found BrdU-positive cells numbering 165,000 in the SVZ and 35,000 in the DG at 6-7 weeks and 66,000 in the SVZ and 19,000 in the DG at 32 weeks-of-age. Stereology showed a 60% increase in the total number of DG granule cells between 6-7 and 32 weeks-of-age. Our findings show a continued postnatal neurogenesis in the major neurogenic regions of Göttingen minipigs, thereby providing a potential animal model for studies aimed at examining ongoing neurogenesis in the living brain with molecular neuroimaging technology.
Collapse
Affiliation(s)
- Sandra Guidi
- Dipartimento di Fisiologia Umana e Generale, Università di Bologna, Piazza di Porta San Donato 2, I-40126 Bologna, Italy
| | | | | | | | | | | |
Collapse
|
47
|
Swindle MM, Makin A, Herron AJ, Clubb FJ, Frazier KS. Swine as models in biomedical research and toxicology testing. Vet Pathol 2011; 49:344-56. [PMID: 21441112 DOI: 10.1177/0300985811402846] [Citation(s) in RCA: 941] [Impact Index Per Article: 67.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Swine are considered to be one of the major animal species used in translational research, surgical models, and procedural training and are increasingly being used as an alternative to the dog or monkey as the choice of nonrodent species in preclinical toxicologic testing of pharmaceuticals. There are unique advantages to the use of swine in this setting given that they share with humans similar anatomic and physiologic characteristics involving the cardiovascular, urinary, integumentary, and digestive systems. However, the investigator needs to be familiar with important anatomic, histopathologic, and clinicopathologic features of the laboratory pig and minipig in order to put background lesions or xenobiotically induced toxicologic changes in their proper perspective and also needs to consider specific anatomic differences when using the pig as a surgical model. Ethical considerations, as well as the existence of significant amounts of background data, from a regulatory perspective, provide further support for the use of this species in experimental or pharmaceutical research studies. It is likely that pigs and minipigs will become an increasingly important animal model for research and pharmaceutical development applications.
Collapse
Affiliation(s)
- M M Swindle
- Medical University of South Carolina, Department of Comparative Medicine, MSC 777, 114 Doughty St, Charleston, SC 29425-7770, USA.
| | | | | | | | | |
Collapse
|
48
|
Gieling ET, Nordquist RE, van der Staay FJ. Assessing learning and memory in pigs. Anim Cogn 2011; 14:151-73. [PMID: 21203792 PMCID: PMC3040303 DOI: 10.1007/s10071-010-0364-3] [Citation(s) in RCA: 93] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Revised: 11/23/2010] [Accepted: 11/25/2010] [Indexed: 01/12/2023]
Abstract
In recent years, there has been a surge of interest in (mini) pigs (Sus scrofa) as species for cognitive research. A major reason for this is their physiological and anatomical similarity with humans. For example, pigs possess a well-developed, large brain. Assessment of the learning and memory functions of pigs is not only relevant to human research but also to animal welfare, given the nature of current farming practices and the demands they make on animal health and behavior. In this article, we review studies of pig cognition, focusing on the underlying processes and mechanisms, with a view to identifying. Our goal is to aid the selection of appropriate cognitive tasks for research into pig cognition. To this end, we formulated several basic criteria for pig cognition tests and then applied these criteria and knowledge about pig-specific sensorimotor abilities and behavior to evaluate the merits, drawbacks, and limitations of the different types of tests used to date. While behavioral studies using (mini) pigs have shown that this species can perform learning and memory tasks, and much has been learned about pig cognition, results have not been replicated or proven replicable because of the lack of validated, translational behavioral paradigms that are specially suited to tap specific aspects of pig cognition. We identified several promising types of tasks for use in studies of pig cognition, such as versatile spatial free-choice type tasks that allow the simultaneous measurement of several behavioral domains. The use of appropriate tasks will facilitate the collection of reliable and valid data on pig cognition.
Collapse
Affiliation(s)
- Elise Titia Gieling
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Emotion and Cognition Program, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
- Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, Utrecht, The Netherlands
| | - Rebecca Elizabeth Nordquist
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Emotion and Cognition Program, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
- Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, Utrecht, The Netherlands
| | - Franz Josef van der Staay
- Faculty of Veterinary Medicine, Department of Farm Animal Health, Emotion and Cognition Program, Utrecht University, Yalelaan 7, 3584 CL Utrecht, The Netherlands
- Rudolf Magnus Institute of Neuroscience, Universiteitsweg 100, Utrecht, The Netherlands
| |
Collapse
|
49
|
Kornum BR, Knudsen GM. Cognitive testing of pigs (Sus scrofa) in translational biobehavioral research. Neurosci Biobehav Rev 2011; 35:437-51. [DOI: 10.1016/j.neubiorev.2010.05.004] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2009] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/16/2022]
|
50
|
Bode G, Clausing P, Gervais F, Loegsted J, Luft J, Nogues V, Sims J. The utility of the minipig as an animal model in regulatory toxicology. J Pharmacol Toxicol Methods 2010; 62:196-220. [DOI: 10.1016/j.vascn.2010.05.009] [Citation(s) in RCA: 309] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2009] [Revised: 05/21/2010] [Accepted: 05/24/2010] [Indexed: 11/26/2022]
|