1
|
Constantin S, Sokanovic SJ, Mochimaru Y, Dams AL, Smiljanic K, Prévide RM, Nessa N, Carmona GN, Stojilkovic SS. Protein Tyrosine Phosphatase Receptors N and N2 Control Pituitary Melanotroph Development and POMC Expression. Endocrinology 2024; 165:bqae076. [PMID: 38923438 PMCID: PMC11242453 DOI: 10.1210/endocr/bqae076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 06/28/2024]
Abstract
The neuroendocrine marker genes Ptprn and Ptprn2 encode protein tyrosine phosphatase receptors N and N2, 2 members of protein tyrosine phosphatase receptors void of enzymatic activity, and whose function and mechanism of action have not been elucidated. To explore the role(s) of Ptprn and Ptprn2 on the hypothalamic-pituitary-adrenal axis, we used mice in which both genes were knocked out (DKO). The focus in this study was on corticotrophs and melanotrophs from the anterior and intermediate lobes of the pituitary gland, respectively. In both sexes, DKO caused an increase in the expression of the corticotroph/melanotroph genes Pomc and Tbx19 and the melanotroph-specific gene Pax7. We also found in vivo and in vitro increased synthesis and release of beta-endorphin, alpha-melanocyte-stimulating hormone, and ACTH in DKO mice, which was associated with increased serum corticosterone levels and adrenal mass. DKO also increased the expression of other melanotroph-specific genes, but not corticotroph-specific genes. The dopaminergic pathway in the hypothalamus and dopaminergic receptors in melanotrophs were not affected in DKO mice. However, hyperplasia of the intermediate lobe was observed in DKO females and males, accompanied by increased proopiomelanocortin immunoreactivity per cell. These results indicate that protein tyrosine phosphatase receptor type N contributes to hypothalamic-pituitary-adrenal function by being involved in processes governing postnatal melanotroph development and Pomc expression.
Collapse
Affiliation(s)
- Stephanie Constantin
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Srdjan J Sokanovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Yuta Mochimaru
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Aloa Lamarca Dams
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Kosara Smiljanic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Rafael M Prévide
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Naseratun Nessa
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| | - Gilberto N Carmona
- National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, MD 20892, USA
| | - Stanko S Stojilkovic
- Section on Cellular Signaling, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, Bethesda, MD 20892, USA
| |
Collapse
|
2
|
Vahle JL, Dybowski J, Graziano M, Hisada S, Lebron J, Nolte T, Steigerwalt R, Tsubota K, Sistare FD. ICH S1 prospective evaluation study and weight of evidence assessments: commentary from industry representatives. FRONTIERS IN TOXICOLOGY 2024; 6:1377990. [PMID: 38845817 PMCID: PMC11153695 DOI: 10.3389/ftox.2024.1377990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/03/2024] [Indexed: 06/09/2024] Open
Abstract
Industry representatives on the ICH S1B(R1) Expert Working Group (EWG) worked closely with colleagues from the Drug Regulatory Authorities to develop an addendum to the ICH S1B guideline on carcinogenicity studies that allows for a weight-of-evidence (WoE) carcinogenicity assessment in some cases, rather than conducting a 2-year rat carcinogenicity study. A subgroup of the EWG composed of regulators have published in this issue a detailed analysis of the Prospective Evaluation Study (PES) conducted under the auspices of the ICH S1B(R1) EWG. Based on the experience gained through the Prospective Evaluation Study (PES) process, industry members of the EWG have prepared the following commentary to aid sponsors in assessing the standard WoE factors, considering how novel investigative approaches may be used to support a WoE assessment, and preparing appropriate documentation of the WoE assessment for presentation to regulatory authorities. The commentary also reviews some of the implementation challenges sponsors must consider in developing a carcinogenicity assessment strategy. Finally, case examples drawn from previously marketed products are provided as a supplement to this commentary to provide additional examples of how WoE criteria may be applied. The information and opinions expressed in this commentary are aimed at increasing the quality of WoE assessments to ensure the successful implementation of this approach.
Collapse
Affiliation(s)
- John L. Vahle
- Lilly Research Laboratories, Indianapolis, IN, United States
| | - Joe Dybowski
- Alnylam Pharmaceuticals, Cambridge, MA, United States
| | | | - Shigeru Hisada
- Formerly ASKA Pharmaceutical Co., Ltd., Fujisawa-shi, Kanagawa, Japan
| | - Jose Lebron
- Merck & Co., Inc., Rahway, NJ, United States
| | - Thomas Nolte
- Development NCE, Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach an der Riss, Germany
| | | | | | | |
Collapse
|
3
|
Al-Karagholi MAM, Kalatharan V, Ghanizada H, Gram C, Dussor G, Ashina M. Prolactin in headache and migraine: A systematic review of clinical studies. Cephalalgia 2023; 43:3331024221136286. [PMID: 36718026 DOI: 10.1177/03331024221136286] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
OBJECTIVE To systemically review clinical studies investigating the role of prolactin and its receptors in headache and migraine. BACKGROUND Migraine prevalence is more common in women compared to men. As prolactin is a crucial regulator of the hypothalamus-pituitary-gonadal axis, prolactin and its receptors might contribute to signaling mechanisms underlying migraine. METHODS In this systematic review, we searched PubMed and EMBASE with the terms: prolactin, hyperprolactinemia, macroprolactinemia, hypoprolactinemia, migraine, headache, head pain and trigeminal pain pathway for clinical studies investigating prolactin signaling in headache and migraine. Two reviewers independently screened 841 articles for population, intervention, comparison, outcome, and study design. Studies were restricted to the English language and were excluded if they had a nonexperimental methodology. RESULTS Nineteen clinical studies met the inclusion criteria and were included in the qualitative and quantitative analysis. The main findings were that serum prolactin levels were found to be higher in individuals with migraine compared to healthy controls, and prolactinomas (prolactin-secreting pituitary adenomas) were correlated with higher incidence of headache in otherwise healthy individuals and migraine attacks in individuals with migraine. CONCLUSION Considerable evidence suggests a key role of prolactin and its receptors in migraine pathophysiology. Further randomized and placebo-controlled clinical studies targeting prolactin signaling are needed to further clarify influences of prolactin in migraine attack initiation.
Collapse
Affiliation(s)
- Mohammad Al-Mahdi Al-Karagholi
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Veberka Kalatharan
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Hashmat Ghanizada
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Christian Gram
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, Center for Advanced Pain Studies, The University of Texas at Dallas, Richardson, USA
| | - Messoud Ashina
- Danish Headache Center, Department of Neurology, Rigshospitalet- Glostrup, Faculty of Health and Medical Sciences, University of Copenhagen, Glostrup, Denmark.,Danish Headache Knowledge Center on Headache Disorders, Rigshospitalet - Glostrup, Glostrup, Denmark
| |
Collapse
|
4
|
Transcriptomic Profiles of Normal Pituitary Cells and Pituitary Neuroendocrine Tumor Cells. Cancers (Basel) 2022; 15:cancers15010110. [PMID: 36612109 PMCID: PMC9817686 DOI: 10.3390/cancers15010110] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 12/28/2022] Open
Abstract
The pituitary gland is one of the most cellularly diverse regions of the brain. Recent advancements in transcriptomic biology, such as single-cell RNA sequencing, bring an unprecedented glimpse into the molecular composition of the pituitary, both in its normal physiological state and in disease. Deciphering the normal pituitary transcriptomic signatures provides a better insight into the ontological origin and development of five types of endocrine cells, a process involving complex cascades of transcription factors that are still being established. In parallel with these observations about normal pituitary development, recent transcriptomic findings on pituitary neuroendocrine tumors (PitNETs) demonstrate both preservations and changes in transcription factor expression patterns compared to those seen during gland development. Furthermore, recent studies also identify differentially expressed genes that drive various tumor behaviors, including hormone hypersecretion and tumor aggression. Understanding the comprehensive multiomic profiles of PitNETs is essential in developing molecular profile-based therapies for PitNETs not curable with current treatment modalities and could eventually help align PitNETs with the breakthroughs being made in applying precision medicine to other tumors.
Collapse
|
5
|
Stewart C, Marshall CJ. Seasonality of prolactin in birds and mammals. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2022; 337:919-938. [PMID: 35686456 PMCID: PMC9796654 DOI: 10.1002/jez.2634] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 04/21/2022] [Accepted: 05/23/2022] [Indexed: 01/07/2023]
Abstract
In most animals, annual rhythms in environmental cues and internal programs regulate seasonal physiology and behavior. Prolactin, an evolutionarily ancient hormone, serves as a molecular correlate of seasonal timing in most species. Prolactin is highly pleiotropic with a wide variety of well-documented physiological effects; in a seasonal context prolactin is known to regulate annual changes in pelage and molt. While short-term homeostatic variation of prolactin secretion is under the control of the hypothalamus, long-term seasonal rhythms of prolactin are programmed by endogenous timers that reside in the pituitary gland. The molecular basis of these rhythms is generally understood to be melatonin dependent in mammals. Prolactin rhythmicity persists for several years in many species, in the absence of hypothalamic signaling. Such evidence in mammals has supported the hypothesis that seasonal rhythms in prolactin derive from an endogenous timer within the pituitary gland that is entrained by external photoperiod. In this review, we describe the conserved nature of prolactin signaling in birds and mammals and highlight its role in regulating multiple diverse physiological systems. The review will cover the current understanding of the molecular control of prolactin seasonality and propose a mechanism by which long-term rhythms may be generated in amniotes.
Collapse
Affiliation(s)
- Calum Stewart
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| | - Christopher J. Marshall
- Institute of Biodiversity, Animal Health & Comparative MedicineUniversity of GlasgowGlasgowUK
| |
Collapse
|
6
|
Abeledo-Machado A, Peña-Zanoni M, Bornancini D, Camilletti MA, Faraoni EY, Marcial A, Rulli S, Alhenc-Gelas F, Díaz-Torga GS. Sex-specific Regulation of Prolactin Secretion by Pituitary Bradykinin Receptors. Endocrinology 2022; 163:6648127. [PMID: 35863039 DOI: 10.1210/endocr/bqac108] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Indexed: 11/19/2022]
Abstract
Sex differences in the control of prolactin secretion are well documented. Sex-related differences in intrapituitary factors regulating lactotroph function have recently attracted attention. Sex differences in prolactinoma development are well documented in clinic, prolactinomas being more frequent in women but more aggressive in men, for poorly understood reasons. Kallikrein, the enzyme releasing kinins has been found in the pituitary, but there is no information on pituitary kinin receptors and their function. In the present work, we characterized pituitary bradykinin receptors (BRs) at the messenger RNA and protein levels in 2 mouse models of prolactinoma, Drd2 receptor gene inactivation and hCGβ gene overexpression, in both males and females, wild type or genomically altered. BR B2 (B2R) accounted for 97% or more of total pituitary BRs in both models, regardless of genotype, and was present in lactotrophs, somatotrophs, and gonadotrophs. Male pituitaries displayed higher level of B2R than females, regardless of genotype. Pituitary B2R gene expression was downregulated by estrogen in both males and females but only in females by dopamine. Activation of B1R or B2R by selective pharmacological agonists induced prolactin release in male pituitaries but inhibited prolactin secretion in female pituitaries. Increased B2R content was observed in pituitaries of mutated animals developing prolactinomas, compared to their respective wild-type controls. The present study documents a novel sex-related difference in the control of prolactin secretion and suggests that kinins are involved, through B2R activation, in lactotroph function and prolactinoma development.
Collapse
Affiliation(s)
- Alejandra Abeledo-Machado
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Milagros Peña-Zanoni
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Dana Bornancini
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - María Andrea Camilletti
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Erika Yanil Faraoni
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Agustina Marcial
- Laboratorio de Endocrinología Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Susana Rulli
- Laboratorio de Endocrinología Molecular de la Reproducción, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| | - Francois Alhenc-Gelas
- INSERM U1138, Universite Paris-Cite, Sorbonne Universite, Centre de Recherche des Cordeliers, Paris, France
| | - Graciela Susana Díaz-Torga
- Laboratorio de Fisio-Patología Hormonal, Instituto de Biología y Medicina Experimental (IBYME), CONICET, Buenos Aires, Argentina
| |
Collapse
|
7
|
Guérineau NC, Campos P, Le Tissier PR, Hodson DJ, Mollard P. Cell Networks in Endocrine/Neuroendocrine Gland Function. Compr Physiol 2022; 12:3371-3415. [PMID: 35578964 DOI: 10.1002/cphy.c210031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Reproduction, growth, stress, and metabolism are determined by endocrine/neuroendocrine systems that regulate circulating hormone concentrations. All these systems generate rhythms and changes in hormone pulsatility observed in a variety of pathophysiological states. Thus, the output of endocrine/neuroendocrine systems must be regulated within a narrow window of effective hormone concentrations but must also maintain a capacity for plasticity to respond to changing physiological demands. Remarkably most endocrinologists still have a "textbook" view of endocrine gland organization which has emanated from 20th century histological studies on thin 2D tissue sections. However, 21st -century technological advances, including in-depth 3D imaging of specific cell types have vastly changed our knowledge. We now know that various levels of multicellular organization can be found across different glands, that organizational motifs can vary between species and can be modified to enhance or decrease hormonal release. This article focuses on how the organization of cells regulates hormone output using three endocrine/neuroendocrine glands that present different levels of organization and complexity: the adrenal medulla, with a single neuroendocrine cell type; the anterior pituitary, with multiple intermingled cell types; and the pancreas with multiple intermingled cell types organized into distinct functional units. We give an overview of recent methodologies that allow the study of the different components within endocrine systems, particularly their temporal and spatial relationships. We believe the emerging findings about network organization, and its impact on hormone secretion, are crucial to understanding how homeostatic regulation of endocrine axes is carried out within endocrine organs themselves. © 2022 American Physiological Society. Compr Physiol 12:3371-3415, 2022.
Collapse
Affiliation(s)
| | - Pauline Campos
- College of Engineering, Mathematics and Physical Sciences, University of Exeter, Exeter, UK
| | - Paul R Le Tissier
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, Scotland, UK
| | - David J Hodson
- Institute of Metabolism and Systems Research (IMSR), University of Birmingham, Edgbaston, UK.,Centre for Endocrinology, Diabetes and Metabolism, Birmingham Health Partners, Birmingham, UK.,COMPARE University of Birmingham and University of Nottingham Midlands, UK.,Oxford Centre for Diabetes, Endocrinology and Metabolism (OCDEM), NIHR Oxford Biomedical Research Centre, Churchill Hospital, Radcliffe Department of Medicine, University of Oxford, Oxford, UK
| | - Patrice Mollard
- IGF, University of Montpellier, CNRS, INSERM, Montpellier, France
| |
Collapse
|
8
|
Biagetti B, Simò R. Molecular Pathways in Prolactinomas: Translational and Therapeutic Implications. Int J Mol Sci 2021; 22:ijms222011247. [PMID: 34681905 PMCID: PMC8538771 DOI: 10.3390/ijms222011247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/11/2021] [Accepted: 10/16/2021] [Indexed: 11/17/2022] Open
Abstract
Prolactinoma has the highest incidence rate among patients with functional pituitary tumours. Although mostly benign, there is a subgroup that can be aggressive. Some clinical, radiological and pathology features have been associated with a poor prognostic. Therefore, it can be considered as a group of heterogeneous tumours. The aim of this paper is to give an overview of the molecular pathways involved in the behaviour of prolactinoma in order to improve our approach and gain deeper insight into the better understanding of tumour development and its management. This is essential for identifying patients harbouring aggressive prolactinoma and to establish personalised therapeutics options.
Collapse
|
9
|
Shareef M, Nasrallah MP, AlArab N, Atweh LA, Zadeh C, Hourani R. Pituitary incidentalomas in paediatric population: Incidence and characteristics. Clin Endocrinol (Oxf) 2021; 94:269-276. [PMID: 33098093 DOI: 10.1111/cen.14353] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 09/17/2020] [Accepted: 10/12/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To determine the incidence of pituitary incidentalomas in the paediatric population and among its different age subgroups as well as to identify the characteristics of these lesions. Additionally, we aim to give a perspective on the management and follow-up of these patients. DESIGN AND PATIENTS We retrospectively studied MRI of children aged 18 years or below who underwent MRI with sellar region within their field of view between January 2010 and December 2018. MEASUREMENTS Pituitary lesions were considered incidental according to the definition by the Endocrine Society. We reported the size, location and signal characteristics of each lesion. Medical charts of the subjects were reviewed for age, sex, the MRI indication and the hormonal assays levels. RESULTS We identified 40 pituitary lesions of which 31 were incidental lesions. The incidence of pituitary incidentaloma in our cohort was 22 per 1000 patients with female predisposition ( 64.5%) and a mean age of 11 ± 6 years. Rathke's cleft cyst was the most prevalent lesion, accounting for 67.7% followed by cystic pituitary lesions and microadenomas. The most common indications for imaging were growth disturbance (12.9%) followed by headache (9.7%). Abnormal laboratory workup was present in 13% of the subjects. Incidental lesions were more common in the older age groups compared to young children. CONCLUSION Incidental pituitary lesions in the paediatric population are relatively infrequent and increases with age. Rathke's cleft cyst is the most common incidentally encountered pituitary lesion followed by cystic pituitary lesions and microadenomas.
Collapse
Affiliation(s)
- Muhammed Shareef
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Mona P Nasrallah
- Division of Endocrinology and Metabolism, Department of Internal Medicine, American University of Beirut Medical Center, Beirut, Lebanon
| | - Natally AlArab
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Lamya A Atweh
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Catherina Zadeh
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| | - Roula Hourani
- Department of Diagnostic Radiology, American University of Beirut Medical Center, Beirut, Lebanon
| |
Collapse
|
10
|
Dobolyi A, Oláh S, Keller D, Kumari R, Fazekas EA, Csikós V, Renner É, Cservenák M. Secretion and Function of Pituitary Prolactin in Evolutionary Perspective. Front Neurosci 2020; 14:621. [PMID: 32612510 PMCID: PMC7308720 DOI: 10.3389/fnins.2020.00621] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2020] [Accepted: 05/19/2020] [Indexed: 12/16/2022] Open
Abstract
The hypothalamo-pituitary system developed in early vertebrates. Prolactin is an ancient vertebrate hormone released from the pituitary that exerts particularly diverse functions. The purpose of the review is to take a comparative approach in the description of prolactin, its secretion from pituitary lactotrophs, and hormonal functions. Since the reproductive and osmoregulatory roles of prolactin are best established in a variety of species, these functions are the primary subjects of discussion. Different types of prolactin and prolactin receptors developed during vertebrate evolution, which will be described in this review. The signal transduction of prolactin receptors is well conserved among vertebrates enabling us to describe the whole subphylum. Then, the review focuses on the regulation of prolactin release in mammals as we have the most knowledge on this class of vertebrates. Prolactin secretion in response to different reproductive stimuli, such as estrogen-induced release, mating, pregnancy and suckling is detailed. Reproduction in birds is different from that in mammals in several aspects. Prolactin is released during incubation in avian species whose regulation and functional significance are discussed. Little information is available on prolactin in reptiles and amphibians; therefore, they are mentioned only in specific cases to explain certain evolutionary aspects. In turn, the osmoregulatory function of prolactin is well established in fish. The different types of pituitary prolactin in fish play particularly important roles in the adaptation of eutherian species to fresh water environments. To achieve this function, prolactin is released from lactotrophs in hyposmolarity, as they are directly osmosensitive in fish. In turn, the released prolactin acts on branchial epithelia, especially ionocytes of the gill to retain salt and excrete water. This review will highlight the points where comparative data give new ideas or suggest new approaches for investigation in other taxa.
Collapse
Affiliation(s)
- Arpád Dobolyi
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Szilvia Oláh
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Dávid Keller
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest, Hungary
| | - Rashmi Kumari
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Emese A. Fazekas
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Vivien Csikós
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| | - Éva Renner
- Human Brain Tissue Bank and Microdissection Laboratory, Semmelweis University, Budapest, Hungary
| | - Melinda Cservenák
- MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Institute of Biology, Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
11
|
Wang H, Lane K, Lou Z, Parker S, Placke M. Genotoxicity and carcinogenicity risk assessment of prucalopride, a selective 5-hydroxytryptamine 4 receptor agonist. Regul Toxicol Pharmacol 2020; 112:104586. [DOI: 10.1016/j.yrtph.2020.104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/05/2019] [Accepted: 01/15/2020] [Indexed: 10/25/2022]
|
12
|
Phillipps HR, Yip SH, Grattan DR. Patterns of prolactin secretion. Mol Cell Endocrinol 2020; 502:110679. [PMID: 31843563 DOI: 10.1016/j.mce.2019.110679] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/11/2022]
Abstract
Prolactin is pleotropic in nature affecting multiple tissues throughout the body. As a consequence of the broad range of functions, regulation of anterior pituitary prolactin secretion is complex and atypical as compared to other pituitary hormones. Many studies have provided insight into the complex hypothalamic-pituitary networks controlling prolactin secretion patterns in different species using a range of techniques. Here, we review prolactin secretion in both males and females; and consider the different patterns of prolactin secretion across the reproductive cycle in representative female mammals with short versus long luteal phases and in seasonal breeders. Additionally, we highlight changes in the pattern of secretion during pregnancy and lactation, and discuss the wide range of adaptive functions that prolactin may have in these important physiological states.
Collapse
Affiliation(s)
- Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - Siew H Yip
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, 9016, New Zealand.
| |
Collapse
|
13
|
Grattan DR, Ladyman SR. Neurophysiological and cognitive changes in pregnancy. HANDBOOK OF CLINICAL NEUROLOGY 2020; 171:25-55. [PMID: 32736755 DOI: 10.1016/b978-0-444-64239-4.00002-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The hormonal fluctuations in pregnancy drive a wide range of adaptive changes in the maternal brain. These range from specific neurophysiological changes in the patterns of activity of individual neuronal populations, through to complete modification of circuit characteristics leading to fundamental changes in behavior. From a neurologic perspective, the key hormone changes are those of the sex steroids, estradiol and progesterone, secreted first from the ovary and then from the placenta, the adrenal glucocorticoid cortisol, as well as the anterior pituitary peptide hormone prolactin and its pregnancy-specific homolog placental lactogen. All of these hormones are markedly elevated during pregnancy and cross the blood-brain barrier to exert actions on neuronal populations through receptors expressed in specific regions. Many of the hormone-induced changes are in autonomic or homeostatic systems. For example, patterns of oxytocin and prolactin secretion are dramatically altered to support novel physiological functions. Appetite is increased and feedback responses to metabolic hormones such as leptin and insulin are suppressed to promote a positive energy balance. Fundamental physiological systems such as glucose homeostasis and thermoregulation are modified to optimize conditions for fetal development. In addition to these largely autonomic changes, there are also changes in mood, behavior, and higher processes such as cognition. This chapter summarizes the hormonal changes associated with pregnancy and reviews how these changes impact on brain function, drawing on examples from animal research, as well as available information about human pregnancy.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| | - Sharon R Ladyman
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| |
Collapse
|
14
|
Lin S, Zhang A, Zhang X, Wu ZB. Treatment of Pituitary and Other Tumours with Cabergoline: New Mechanisms and Potential Broader Applications. Neuroendocrinology 2020; 110:477-488. [PMID: 31597135 DOI: 10.1159/000504000] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 10/09/2019] [Indexed: 11/19/2022]
Abstract
Cabergoline is a dopamine agonist that has been used as the first-line treatment option for prolactin-secreting pituitary adenomas for several decades. It not only suppresses hormone production from these prolactinomas, but also causes tumour shrinkage. Recent studies revealed some novel mechanisms by which cabergoline suppresses tumour cell proliferation and induces cell death. In this article, we review the most recent findings in cabergoline studies, focusing on its anti-tumour function. These studies suggest the potential broader clinical use of cabergoline in the treatment of other tumours such as breast cancer, pancreatic neuroendocrine tumours, and lung cancer.
Collapse
Affiliation(s)
- Shaojian Lin
- Center of Pituitary Tumour, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Anke Zhang
- Department of Neurosurgery, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xun Zhang
- Neuroendocrine Research Laboratory, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Zhe Bao Wu
- Center of Pituitary Tumour, Department of Neurosurgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China,
| |
Collapse
|
15
|
Aoki M, Wartenberg P, Grünewald R, Phillipps HR, Wyatt A, Grattan DR, Boehm U. Widespread Cell-Specific Prolactin Receptor Expression in Multiple Murine Organs. Endocrinology 2019; 160:2587-2599. [PMID: 31373638 DOI: 10.1210/en.2019-00234] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 07/26/2019] [Indexed: 11/19/2022]
Abstract
The prolactin receptor (Prlr) mediates not only the multiple effects of prolactin, but also those of the placental lactogens and, in humans, some actions of growth hormone. Although Prlr expression has been reported to be widespread in the body, specific cellular expression patterns within tissues are undefined for many organs. One persisting problem in investigating Prlr function is that the protein is difficult to detect using conventional methods. To allow investigation of Prlr expression with a single cell resolution, we have recently developed a knock-in mouse strain in which Cre recombinase is expressed together with the long isoform of the Prlr using an internal ribosome entry site. When crossed to a Cre-dependent reporter mouse strain, Cre-mediated recombination will genetically label cells that acutely express the Prlr as well as cells that have transiently expressed the Prlr during development. We report here the anatomical distribution of cells which express the fluorescent reporter τ green fluorescent protein in a total of 38 organs prepared from young adult male and female Prlr reporter mice. Our results establish a resource for dissecting the functional role of Prlr in multiple murine tissues.
Collapse
Affiliation(s)
- Mari Aoki
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Philipp Wartenberg
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Ramona Grünewald
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - Hollian R Phillipps
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Amanda Wyatt
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| | - David R Grattan
- Centre for Neuroendocrinology and Department of Anatomy, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Ulrich Boehm
- Experimental Pharmacology, Center for Molecular Signaling, Saarland University School of Medicine, Homburg, Germany
| |
Collapse
|
16
|
Dufour S, Quérat B, Tostivint H, Pasqualini C, Vaudry H, Rousseau K. Origin and Evolution of the Neuroendocrine Control of Reproduction in Vertebrates, With Special Focus on Genome and Gene Duplications. Physiol Rev 2019; 100:869-943. [PMID: 31625459 DOI: 10.1152/physrev.00009.2019] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
In humans, as in the other mammals, the neuroendocrine control of reproduction is ensured by the brain-pituitary gonadotropic axis. Multiple internal and environmental cues are integrated via brain neuronal networks, ultimately leading to the modulation of the activity of gonadotropin-releasing hormone (GnRH) neurons. The decapeptide GnRH is released into the hypothalamic-hypophysial portal blood system and stimulates the production of pituitary glycoprotein hormones, the two gonadotropins luteinizing hormone and follicle-stimulating hormone. A novel actor, the neuropeptide kisspeptin, acting upstream of GnRH, has attracted increasing attention in recent years. Other neuropeptides, such as gonadotropin-inhibiting hormone/RF-amide related peptide, and other members of the RF-amide peptide superfamily, as well as various nonpeptidic neuromediators such as dopamine and serotonin also provide a large panel of stimulatory or inhibitory regulators. This paper addresses the origin and evolution of the vertebrate gonadotropic axis. Brain-pituitary neuroendocrine axes are typical of vertebrates, the pituitary gland, mediator and amplifier of brain control on peripheral organs, being a vertebrate innovation. The paper reviews, from molecular and functional perspectives, the evolution across vertebrate radiation of some key actors of the vertebrate neuroendocrine control of reproduction and traces back their origin along the vertebrate lineage and in other metazoa before the emergence of vertebrates. A focus is given on how gene duplications, resulting from either local events or from whole genome duplication events, and followed by paralogous gene loss or conservation, might have shaped the evolutionary scenarios of current families of key actors of the gonadotropic axis.
Collapse
Affiliation(s)
- Sylvie Dufour
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Bruno Quérat
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hervé Tostivint
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Catherine Pasqualini
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Hubert Vaudry
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| | - Karine Rousseau
- Muséum National d'Histoire Naturelle, Biology of Aquatic Organisms and Ecosystems, CNRS, IRD, Sorbonne Université, Université Caen Normandie, Université des Antilles, Paris, France; Université Paris Diderot, Sorbonne Paris Cite, Biologie Fonctionnelle et Adaptative, Paris, France; INSERM U1133, Physiologie de l'axe Gonadotrope, Paris, France; Muséum National d'Histoire Naturelle, Physiologie Moléculaire et Adaptation, Muséum National d'Histoire Naturelle, Paris, France; Université Paris-Saclay, Université Paris-Sud, CNRS, Paris-Saclay Institute of Neuroscience (UMR 9197), Gif-sur-Yvette, France; and Université de Rouen Normandie, Rouen, France
| |
Collapse
|
17
|
Piórkowska K, Żukowski K, Tyra M, Szyndler-Nędza M, Szulc K, Skrzypczak E, Ropka-Molik K. The Pituitary Transcriptional Response Related to Feed Conversion in Pigs. Genes (Basel) 2019; 10:genes10090712. [PMID: 31540087 PMCID: PMC6771146 DOI: 10.3390/genes10090712] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 09/11/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022] Open
Abstract
Over the decades, pig breeding objectives have focused on improving the meat content in the carcass without taking into consideration the more effective fattening indicators that affect feed conversion. At present, pig growth traits associated particularly with animal feeding have become crucial due to their economic significance. This is especially evident in countries where pigs are maintained on large farms. The present study indicates that pituitary differentially expressed genes (DEGs) are activated in response to variable feed conversion (FC) in pigs. The experiment included two native Polish breeds: Puławska and Złotnicka White (ZW). The whole pituitary transcriptome was sequenced using next-generation sequencing (NGS) technology. The RNA-seq method identified over 500 and 300 DEGs in the pituitaries of the ZW and the Puławska pig populations, respectively, that were associated with hormonal regulation, notch signaling, and Wnt pathways. Lower FC in the ZW pigs favoured increased fat content in the body and significantly higher prolactin expression. The obtained results indicate that low FC values in pigs are related to slower growth or increased fat content, which suggests various pituitary responses. Therefore, the identified candidate genes were not directly associated with feed conversion values but with other factors. However, the present study delivers new insights into pituitary regulation in pigs.
Collapse
Affiliation(s)
- Katarzyna Piórkowska
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| | - Kacper Żukowski
- Department of Cattle Breeding, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| | - Mirosław Tyra
- Department of Pig Breeding, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| | - Magdalena Szyndler-Nędza
- Department of Pig Breeding, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| | - Karolina Szulc
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, 60-637 Poznań, Poland.
| | - Ewa Skrzypczak
- Department of Animal Breeding and Product Quality Assessment, Poznań University of Life Sciences, 60-637 Poznań, Poland.
| | - Katarzyna Ropka-Molik
- Department of Animal Molecular Biology, National Research Institute of Animal Production, 31-047 Cracow, Poland.
| |
Collapse
|
18
|
Recouvreux MV, Faraoni EY, Camilletti MA, Ratner L, Abeledo-Machado A, Rulli SB, Díaz-Torga G. Sex differences in the pituitary TGFβ1 system: The role of TGFβ1 in prolactinoma development. Front Neuroendocrinol 2018; 50:118-122. [PMID: 29074127 DOI: 10.1016/j.yfrne.2017.10.003] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 09/21/2017] [Accepted: 10/11/2017] [Indexed: 02/07/2023]
Abstract
Prolactinomas are the most frequent functioning pituitary adenomas, and sex differences in tumor size, behavior and incidence have been described. These differences have been associated with earlier diagnosis in woman, as well as with serum estradiol levels. Experimental models of prolactinomas in rodents also show a higher incidence in females, and recent findings suggest that gender differences in the transforming growth factor beta 1 (TGFβ1) system might be involved in the sex-specific development of prolactinomas in these models. The aim of this review is to summarize the literature supporting the important role of TGFβ1 as a local modulator of pituitary lactotroph function and to provide recent evidence for TGFβ1 involvement in the sex differences found in prolactinoma development in animal models.
Collapse
Affiliation(s)
- M Victoria Recouvreux
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina; Tumor Initiation and Maintenance Program, Sanford Burnham Prebys Medical Discovery Institute, 10901 N. Torrey Pines Rd, La Jolla, CA 92037, United States.
| | - Erika Y Faraoni
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - M Andrea Camilletti
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Laura Ratner
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Alejandra Abeledo-Machado
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Susana B Rulli
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina Experimental, Consejo Nacional de Investigaciones Científicas y Técnicas, V. Obligado 2490, 1428 Buenos Aires, Argentina.
| |
Collapse
|
19
|
Relation among Aromatase P450 and Tumoral Growth in Human Prolactinomas. Int J Mol Sci 2017; 18:ijms18112299. [PMID: 29104246 PMCID: PMC5713269 DOI: 10.3390/ijms18112299] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 10/25/2017] [Accepted: 10/27/2017] [Indexed: 02/01/2023] Open
Abstract
The pituitary gland is part of hypothalamic-pituitary–gonadal axis, which controls development, reproduction, and aging in humans and animals. In addition, the pituitary gland is regulated mainly by hormones and neurotransmitters released from the hypothalamus and by systemic hormones secreted by target glands. Aromatase P450, the enzyme responsible for the catabolization of aromatizable androgens to estrogens, is expressed in different parts of body, including the pituitary gland. Moreover, aromatase P450 is involved in sexual dimorphism where alteration in the level of aromatase can initiate a number of diseases in both genders. On the other hand, the direct actions of estrogens, mainly estradiol, are well known for stimulating prolactin release. Numerous studies have shown that changes in the levels of estrogens, among other factors, have been implicated in the genesis and development of prolactinoma. The pituitary gland can produce estradiol locally in several types of endocrine cells, and it is possible that aromatase could be responsible for the maintenance of the population of lactotroph cells and the modulation of the action of central or peripheral regulators. Aromatase overexpression due to inappropriate gene regulation has clinical effects such as the pathogenesis of prolactinomas. The present study reports on the synthesis of pituitary aromatase, its regulation by gonadal steroids, and the physiological roles of aromatase on pituitary endocrine cells. The involvement of aromatase in the pathogenesis of pituitary tumors, mainly prolactinomas, through the auto-paracrine production of estradiol is reviewed.
Collapse
|
20
|
Gangisetty O, Jabbar S, Wynne O, Sarkar DK. MicroRNA-9 regulates fetal alcohol-induced changes in D2 receptor to promote prolactin production. J Endocrinol 2017; 235:1-14. [PMID: 28710248 DOI: 10.1530/joe-17-0135] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Accepted: 07/13/2017] [Indexed: 11/08/2022]
Abstract
Fetal alcohol exposure (FAE) is known to increase prolactin (PRL) secretion from the pituitary lactotropes. In this study, we determined whether microRNAs (miRs) are involved in FAE-induced alteration in PRL release. We employed a rat animal model of FAE involving feeding pregnant Fisher 344 rats with a liquid diet containing 6.7% alcohol between gestational days 7-21 (AF). Both cyclic and estradiol-implanted FAE females showed increased levels of plasma PRL and pituitary Prl mRNA but reduced levels of pituitary dopamine D2 receptor (D2r) and its short spliced form (D2s). FAE increased the expression levels of miR-9 and miR-326 and did not produce any significant changes in miR-153 or miR-200a levels in the pituitary. Effects of FAE on miR-9 and miR-326 were associated with reduced levels of D2r and D2s, increased levels of Prl in the pituitary, and in plasma. These effects of FAE on D2r, D2s and Prl were enhanced following estradiol treatment. In PRL-producing MMQ cells, ethanol increased miR-9 but not miR-326, reduced levels of D2r and D2s and increased levels of Prl Treatment of MMQ cells with an anti-miR-9 oligo reduced ethanol effects on miR-9, D2r, D2s and Prl miR-9 mimic oligos reduced the luciferase activity of reporter vector containing D2r 3'UTR, but failed to reduce the mutant luciferase activity. These data suggest that FAE programs the pituitary to produce increased amounts of miR-9 expression that represses the D2r gene and its spliced variant D2s by targeting its 3'UTR leading to an increase in PRL production and secretion.
Collapse
Affiliation(s)
- Omkaram Gangisetty
- Endocrine ProgramDepartment of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Shaima Jabbar
- Endocrine ProgramDepartment of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Olivia Wynne
- Endocrine ProgramDepartment of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| | - Dipak K Sarkar
- Endocrine ProgramDepartment of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, USA
| |
Collapse
|
21
|
Conditional Deletion of the Prolactin Receptor Reveals Functional Subpopulations of Dopamine Neurons in the Arcuate Nucleus of the Hypothalamus. J Neurosci 2017; 36:9173-85. [PMID: 27581458 DOI: 10.1523/jneurosci.1471-16.2016] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2016] [Accepted: 07/19/2016] [Indexed: 11/21/2022] Open
Abstract
UNLABELLED Tuberoinfundibular dopamine (TIDA) neurons, known as neuroendocrine regulators of prolactin secretion from the pituitary gland, also release GABA within the hypothalamic arcuate nucleus. As these neurons express prolactin receptors (Prlr), prolactin may regulate GABA secretion from TIDA neurons, potentially mediating actions of prolactin on hypothalamic function. To investigate whether GABA is involved in feedback regulation of TIDA neurons, we examined the physiological consequences of conditional deletion of Prlr in GABAergic neurons. For comparison, we also examined mice in which Prlr were deleted from most forebrain neurons. Both neuron-specific and GABA-specific recombination of the Prlr gene occurred throughout the hypothalamus and in some extrahypothalamic regions, consistent with the known distribution of Prlr expression, indicative of knock-out of Prlr. This was confirmed by a significant loss of prolactin-induced phosphorylation of STAT5, a marker of prolactin action. Several populations of GABAergic neurons that were not previously known to be prolactin-sensitive, notably in the medial amygdala, were identified. Approximately 50% of dopamine neurons within the arcuate nucleus were labeled with a GABA-specific reporter, but Prlr deletion from these dopamine/GABA neurons had no effect on feedback regulation of prolactin secretion. In contrast, Prlr deletion from all dopamine neurons resulted in profound hyperprolactinemia. The absence of coexpression of tyrosine hydroxylase, a marker for dopamine production, in GABAergic nerve terminals in the median eminence suggested that rather than a functional redundancy within the TIDA population, the dopamine/GABA neurons in the arcuate nucleus represent a subpopulation with a functional role distinct from the regulation of prolactin secretion. SIGNIFICANCE STATEMENT Using a novel conditional deletion of the prolactin receptor, we have identified functional subpopulations in hypothalamic dopamine neurons. Although commonly considered a uniform population of neuroendocrine neurons involved in the control of prolactin secretion, we have shown that approximately half of these neurons express GABA as well as dopamine, but these neurons are not necessary for the feedback regulation of prolactin secretion. The absence of tyrosine hydroxylase in GABAergic nerve terminals in the median eminence suggests that only the non-GABAergic dopamine neurons are involved in the control of pituitary prolactin secretion, and the GABAergic subpopulation may function as interneurons within the arcuate nucleus to regulate other aspects of hypothalamic function.
Collapse
|
22
|
Soni BK, Joish UK, Sahni H, George RA, Sivasankar R, Aggarwal R. A Comparative Study of Pituitary Volume Variations in MRI in Acute Onset of Psychiatric Conditions. J Clin Diagn Res 2017; 11:TC01-TC04. [PMID: 28384955 DOI: 10.7860/jcdr/2017/23585.9330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2016] [Accepted: 09/22/2016] [Indexed: 11/24/2022]
Abstract
INTRODUCTION The growing belief that endocrine abnormalities may underlie many mental conditions has led to increased use of imaging and hormonal assays in patients attending to psychiatric OPDs. People who are in an acute phase of a psychiatric disorder show Hypothalamic Pituitary Adrenal (HPA) axis hyperactivity, but the precise underlying central mechanisms are unclear. AIM To assess the pituitary gland volume variations in patients presenting with new onset acute psychiatric illness in comparison with age and gender matched controls by using MRI. MATERIALS AND METHODS The study included 50 patients, with symptoms of acute psychiatric illness presenting within one month of onset of illness and 50 age and gender matched healthy controls. Both patients and controls were made to undergo MRI of the Brain. A 0.9 mm slices of entire brain were obtained by 3 dimensional T1 weighted sequence. Pituitary gland was traced in all sagittal slices. Anterior pituitary and posterior pituitary bright spot were measured separately in each slice. Volume of the pituitary (in cubic centimetre- cm3) was calculated by summing areas. Significance of variations in pituitary gland volumes was compared between the cases and controls using Analysis of Covariance (ANOVA). RESULTS There were significantly larger pituitary gland volumes in the cases than the controls, irrespective of psychiatric diagnosis (ANOVA, f=15.56; p=0.0002). Pituitary volumes in cases were 15.36% (0.73 cm3) higher than in controls. CONCLUSION There is a strong likelihood of HPA axis overactivity during initial phase of all mental disorders along with increased pituitary gland volumes. Further studies including hormonal assays and correlation with imaging are likely to provide further insight into neuroanatomical and pathological basis of psychiatric disorders.
Collapse
Affiliation(s)
- Brijesh Kumar Soni
- Classified Specialist (Radiodiagnosis), Department of Radiology, Command Hospital Air Force , Bangalore, Karnataka, India
| | - Upendra Kumar Joish
- Assistant Professor, Department of Radiology, JJM Medical College , Davangere, Bangalore, Karnataka, India
| | - Hirdesh Sahni
- Air Officer Commanding, 5 Air Force Hospital , Jorhat, Assam, India
| | - Raju A George
- Head of Department and Senior Advisor (Radiodiagnosis), Department of Radiology, Command Hospital Air Force , Bangalore, Karnataka, India
| | - Rajeev Sivasankar
- Senior Advisor and Interventional Neuroradiologist, Department of Radiology, Command Hospital Air Force , Bangalore, Karnataka, India
| | - Rohit Aggarwal
- Classified Specialist (Radiodiagnosis), Department of Radiology, Command Hospital Air Force , Bangalore, Karnataka, India
| |
Collapse
|
23
|
Abstract
Dopamine receptors are targets for drugs with antipsychotic potency, and they are also the primary target in the treatment of Parkinson’s disease. Molecular cloning has identified five genes that code for dopamine receptors. These receptors belong in two functionally distinct classes of G-protein-coupled receptors, known as the D1 class of receptors (D1 and D5) and the D2 class of receptors (D2, D3, and D4). The diversity of dopamine receptor subtypes that belong to the same functional class, their high degree of structural similarity, and the lack of antagonists with selectivity for each of the individual subtypes have challenged studies on the function of the individual receptor subtypes. This review focuses on the recent progress made with studies on the expression and function of D1, D2, and D3 receptors. It summarizes results of studies that suggest that these receptor proteins are expressed in monomeric and oligomeric forms and reviews results of a growing number of gene-targeting studies that begin to illustrate major differences in the phenotypes of D1-, D2-, and D3-mutant mice.
Collapse
Affiliation(s)
- Claudia Schmauss
- Department of Psychiatry/Neuroscience, Columbia University, New York, NY
| |
Collapse
|
24
|
Recouvreux MV, Camilletti MA, Rifkin DB, Díaz-Torga G. The pituitary TGFβ1 system as a novel target for the treatment of resistant prolactinomas. J Endocrinol 2016; 228:R73-83. [PMID: 26698564 PMCID: PMC4760866 DOI: 10.1530/joe-15-0451] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/22/2015] [Indexed: 02/03/2023]
Abstract
Prolactinomas are the most frequently observed pituitary adenomas and most of them respond well to conventional treatment with dopamine agonists (DAs). However, a subset of prolactinomas fails to respond to such therapies and is considered as DA-resistant prolactinomas (DARPs). New therapeutic approaches are necessary for these tumors. Transforming growth factor β1 (TGFβ1) is a known inhibitor of lactotroph cell proliferation and prolactin secretion, and it partly mediates dopamine inhibitory action. TGFβ1 is secreted to the extracellular matrix as an inactive latent complex, and its bioavailability is tightly regulated by different components of the TGFβ1 system including latent binding proteins, local activators (thrombospondin-1, matrix metalloproteases, integrins, among others), and TGFβ receptors. Pituitary TGFβ1 activity and the expression of different components of the TGFβ1 system are regulated by dopamine and estradiol. Prolactinomas (animal models and humans) present reduced TGFβ1 activity as well as reduced expression of several components of the TGFβ1 system. Therefore, restoration of TGFβ1 inhibitory activity represents a novel therapeutic approach to bypass dopamine action in DARPs. The aim of this review is to summarize the large literature supporting TGFβ1 important role as a local modulator of pituitary lactotroph function and to provide recent evidence of the restoration of TGFβ1 activity as an effective treatment in experimental prolactinomas.
Collapse
Affiliation(s)
- M Victoria Recouvreux
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA
| | - M Andrea Camilletti
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA
| | - Daniel B Rifkin
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA
| | - Graciela Díaz-Torga
- Instituto de Biología y Medicina ExperimentalConsejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, 1428 Buenos Aires, ArgentinaDepartment of MedicineCedars Sinai Medical Center, Los Angeles, California 90048, USADepartment of Cell BiologyNew York University Medical Center, 550 First Avenue, New York, New York 10016, USA
| |
Collapse
|
25
|
Gangisetty O, Wynne O, Jabbar S, Nasello C, Sarkar DK. Fetal Alcohol Exposure Reduces Dopamine Receptor D2 and Increases Pituitary Weight and Prolactin Production via Epigenetic Mechanisms. PLoS One 2015; 10:e0140699. [PMID: 26509893 PMCID: PMC4624904 DOI: 10.1371/journal.pone.0140699] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 09/28/2015] [Indexed: 11/30/2022] Open
Abstract
Recent evidence indicated that alcohol exposure during the fetal period increases the susceptibility to tumor development in mammary and prostate tissues. Whether fetal alcohol exposure increases the susceptibility to prolactin-producing tumor (prolactinoma) development in the pituitary was studied by employing the animal model of estradiol-induced prolactinomas in Fischer 344 female rats. We employed an animal model of fetal alcohol exposure that simulates binge alcohol drinking during the first two trimesters of human pregnancy and involves feeding pregnant rats with a liquid diet containing 6.7% alcohol during gestational day 7 to day 21. Control rats were pair-fed with isocaloric liquid diet or fed ad libitum with rat chow diet. Adult alcohol exposed and control female offspring rats were used in this study on the day of estrus or after estrogen treatment. Results show that fetal alcohol-exposed rats had increased levels of pituitary weight, pituitary prolactin (PRL) protein and mRNA, and plasma PRL. However, these rats show decreased pituitary levels of dopamine D2 receptor (D2R) mRNA and protein and increased pituitary levels of D2R promoter methylation. Also, they show elevated pituitary mRNA levels of DNA methylating genes (DNMT1, DNMT3b, MeCP2) and histone modifying genes (HDAC2, HDAC4, G9a). When fetal alcohol exposed rats were treated neonatally with a DNA methylation inhibitor 5-Aza deoxycytidine and/or a HDAC inhibitor trichostatin-A their pituitary D2R mRNA, pituitary weights and plasma PRL levels were normalized. These data suggest that fetal alcohol exposure programs the pituitary to increase the susceptibility to the development of prolactinomas possibly by enhancing the methylation of the D2R gene promoter and repressing the synthesis and control of D2R on PRL-producing cells.
Collapse
Affiliation(s)
- Omkaram Gangisetty
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
| | - Olivia Wynne
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
| | - Shaima Jabbar
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
| | - Cara Nasello
- Department of Genetics, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
| | - Dipak K. Sarkar
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey 08901, United States of America
- * E-mail:
| |
Collapse
|
26
|
Abstract
The hypothalamic control of prolactin secretion is different from other anterior pituitary hormones, in that it is predominantly inhibitory, by means of dopamine from the tuberoinfundibular dopamine neurons. In addition, prolactin does not have an endocrine target tissue, and therefore lacks the classical feedback pathway to regulate its secretion. Instead, it is regulated by short loop feedback, whereby prolactin itself acts in the brain to stimulate production of dopamine and thereby inhibit its own secretion. Finally, despite its relatively simple name, prolactin has a broad range of functions in the body, in addition to its defining role in promoting lactation. As such, the hypothalamo-prolactin axis has many characteristics that are quite distinct from other hypothalamo-pituitary systems. This review will provide a brief overview of our current understanding of the neuroendocrine control of prolactin secretion, in particular focusing on the plasticity evident in this system, which keeps prolactin secretion at low levels most of the time, but enables extended periods of hyperprolactinemia when necessary for lactation. Key prolactin functions beyond milk production will be discussed, particularly focusing on the role of prolactin in inducing adaptive responses in multiple different systems to facilitate lactation, and the consequences if prolactin action is impaired. A feature of this pleiotropic activity is that functions that may be adaptive in the lactating state might be maladaptive if prolactin levels are elevated inappropriately. Overall, my goal is to give a flavour of both the history and current state of the field of prolactin neuroendocrinology, and identify some exciting new areas of research development.
Collapse
Affiliation(s)
- David R Grattan
- Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand Centre for Neuroendocrinology and Department of AnatomyUniversity of Otago, PO Box 913, Dunedin 9054, New ZealandMaurice Wilkins Centre for Molecular BiodiscoveryAuckland, New Zealand
| |
Collapse
|
27
|
Sweeney LM, Kester JE, Kirman CR, Gentry PR, Banton MI, Bus JS, Gargas ML. Risk assessments for chronic exposure of children and prospective parents to ethylbenzene (CAS No. 100-41-4). Crit Rev Toxicol 2015; 45:662-726. [PMID: 25997510 DOI: 10.3109/10408444.2015.1046157] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Potential chronic health risks for children and prospective parents exposed to ethylbenzene were evaluated in response to the Voluntary Children's Chemical Evaluation Program. Ethylbenzene exposure was found to be predominately via inhalation with recent data demonstrating continuing decreases in releases and both outdoor and indoor concentrations over the past several decades. The proportion of ethylbenzene in ambient air that is attributable to the ethylbenzene/styrene chain of commerce appears to be relatively very small, less than 0.1% based on recent relative emission estimates. Toxicity reference values were derived from the available data, with physiologically based pharmacokinetic models and benchmark dose methods used to assess dose-response relationships. An inhalation non-cancer reference concentration or RfC of 0.3 parts per million (ppm) was derived based on ototoxicity. Similarly, an oral non-cancer reference dose or RfD of 0.5 mg/kg body weight/day was derived based on liver effects. For the cancer assessment, emphasis was placed upon mode of action information. Three of four rodent tumor types were determined not to be relevant to human health. A cancer reference value of 0.48 ppm was derived based on mouse lung tumors. The risk characterization for ethylbenzene indicated that even the most highly exposed children and prospective parents are not at risk for non-cancer or cancer effects of ethylbenzene.
Collapse
|
28
|
Yoon DH, Yoon S, Kim D, Kim H, Baik JH. Regulation of dopamine D2 receptor-mediated extracellular signal-regulated kinase signaling and spine formation by GABAA receptors in hippocampal neurons. Neurosci Lett 2014; 586:24-30. [PMID: 25483619 DOI: 10.1016/j.neulet.2014.12.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 11/12/2014] [Accepted: 12/02/2014] [Indexed: 01/11/2023]
Abstract
Dopamine (DA) signaling via DA receptors is known to control hippocampal activity that contributes to learning, memory, and synaptic plasticity. In primary hippocampal neuronal culture, we observed that dopamine D2 receptors (D2R) co-localized with certain subtypes of GABAA receptors, namely α1, β3, and γ2 subunits, as revealed by double immunofluorocytochemical analysis. Treatment with the D2R agonist, quinpirole, was shown to elicit an increase in phosphorylation of extracellular signal-regulated kinase (ERK) in hippocampal neurons. This phosphorylation was inhibited by pretreatment with the GABAA receptor agonist, muscimol. Furthermore, treatment of hippocampal neurons with quinpirole increased the dendritic spine density and this regulation was totally blocked by pretreatment with a MAP kinase kinase (MEK) inhibitor (PD98059), D2R antagonist (haloperidol), or by the GABAA receptor agonist, muscimol. These results suggest that D2R-mediated ERK phosphorylation can control spine formation and that the GABAA receptor negatively regulates the D2R-induced spine formation through ERK signaling in hippocampal neurons, thus indicating a potential role of D2R in the control of hippocampal neuronal excitability.
Collapse
Affiliation(s)
- Dong-Hoon Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Sehyoun Yoon
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Donghoon Kim
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea
| | - Hyun Kim
- Department of Anatomy, College of Medicine, Korea University, Brain Korea 21, Seoul 136-705, South Korea
| | - Ja-Hyun Baik
- Molecular Neurobiology Laboratory, Department of Life Sciences, College of Life Sciences and Biotechnology, Korea University, Seoul 136-701, South Korea.
| |
Collapse
|
29
|
A peripherally restricted P2Y 12 receptor antagonist altered rat tumor incidences with no human relevance: Mode of action consistent with dopamine agonism. Toxicol Rep 2014; 1:1202-1212. [PMID: 28962330 PMCID: PMC5598522 DOI: 10.1016/j.toxrep.2014.11.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2014] [Revised: 11/10/2014] [Accepted: 11/11/2014] [Indexed: 12/26/2022] Open
Abstract
Background Ticagrelor is an orally available, direct acting and reversible P2Y12 receptor antagonist approved for treatment of acute coronary syndrome. The objectives of these studies were to (1) evaluate the Ticagrelor 2-year rat carcinogenicity bioassay data; (2) investigate potential mode of action (MOA) and (3) interpret human relevance. Methods The following studies were done (1) rat two-year carcinogenicity study in male and female rats, (2) in vitro and in vivo genotoxicity assays, (3) quantitative whole body autoradiography (QWBA; male and female rats), (4) in vitro pharmacological profiling for more than 300 assays, and (5) in vivo ovariectomized rat assay. Results The carcinogenicity study indicated Ticagrelor increased uterine tumor incidence while decreasing mammary and pituitary tumors/hyperplasia incidences in only high dose female rats. However, this altered tumor incidences were not P2Y12 target related since marketed non-reversible P2Y12 receptor antagonists were not associated with alter tumor incidences. MOA studies determined Ticagrelor exposure in the anterior pituitary and Ticagrelor was (1) non-genotoxic, (2) peripherally-restricted, (3) a dopamine transport (DAT) inhibitor with an IC50 lower than systemic free exposure in the rat carcinogenic study and more than a log higher than the free systemic exposure seen in clinical trials and (4) an inhibitor of estradiol-induced prolactin secretion. Discussion Similar to Ticagrelor, centrally active dopamine agonists induce the same altered tumor incidence patterns that according to literature do not translate into the clinical setting, with a MOA involving decreased prolactin secretion. The Ticagrelor MOA data and literature suggest that altered dopamine levels in the hypophyseal part of the hypothalamus–hypophyseal axis (by Ticagrelor) will result in similar altered tumor incidences in rat that do not translate into the clinical setting, based on qualitative species differences. In conclusion Ticagrelor increased uterine tumors in the rat carcinogenesis study by a MOA consistent with reduced dopamine inhibition of prolactin, which is not a patient safety risk.
Collapse
Key Words
- ADP, adenosine-5′-diphosphate
- AUC, area under the curve
- CHO, Chinese hamster ovary
- Carcinogenicity
- Cmax, maximal concentration, DAT, dopamine transport
- Dopamine transport inhibitor
- E2, estradiol
- GLP, good laboratory practice
- H&E, hematoxylin and eosin
- IC50, inhibitory concentration fifty percent
- Ki, inhibition concentration
- LC-MS/MS, liquid chromatography-mass spectrometric
- LLOQ, lower limits of quantification
- MOA, mode of action
- MTD, maximum tolerated dose
- NH, Hill coefficient
- Prolactin
- QWBA, quantitative whole body autoradiography
- TK, toxicokinetics
- Translational
- Uterine tumor
Collapse
|
30
|
Lyons DJ, Broberger C. TIDAL WAVES: Network mechanisms in the neuroendocrine control of prolactin release. Front Neuroendocrinol 2014; 35:420-38. [PMID: 24561279 DOI: 10.1016/j.yfrne.2014.02.001] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Revised: 12/22/2013] [Accepted: 02/10/2014] [Indexed: 11/19/2022]
Abstract
Neuroendocrine tuberoinfundibular dopamine (TIDA) neurons tonically inhibit pituitary release of the hormone, prolactin. Through the powerful actions of prolactin in promoting lactation and maternal behaviour while suppressing sexual drive and fertility, TIDA neurons play a key role in reproduction. We summarize insights from recent in vitro studies into the membrane properties and network behaviour of TIDA neurons including the observations that TIDA neurons exhibit a robust oscillation that is synchronized between cells and depends on intact gap junction communication. Comparisons are made with phasic firing patterns in other neuronal populations. Modulators involved in the control of lactation - including serotonin, thyrotropin-releasing hormone and prolactin itself - have been shown to change the electrical behaviour of TIDA cells. We propose that TIDA discharge mode may play a central role in tuning the amount of dopamine delivered to the pituitary and hence circulating prolactin concentrations in different reproductive states and pathological conditions.
Collapse
Affiliation(s)
- David J Lyons
- Dept. of Neuroscience, Karolinska Institutet, Retzius v. 8, 171 77 Stockholm, Sweden
| | - Christian Broberger
- Dept. of Neuroscience, Karolinska Institutet, Retzius v. 8, 171 77 Stockholm, Sweden.
| |
Collapse
|
31
|
Ferraris J, Zárate S, Jaita G, Boutillon F, Bernadet M, Auffret J, Seilicovich A, Binart N, Goffin V, Pisera D. Prolactin induces apoptosis of lactotropes in female rodents. PLoS One 2014; 9:e97383. [PMID: 24859278 PMCID: PMC4032245 DOI: 10.1371/journal.pone.0097383] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 04/16/2014] [Indexed: 11/18/2022] Open
Abstract
Anterior pituitary cell turnover occurring during female sexual cycle is a poorly understood process that involves complex regulation of cell proliferation and apoptosis by multiple hormones. In rats, the prolactin (PRL) surge that occurs at proestrus coincides with the highest apoptotic rate. Since anterior pituitary cells express the prolactin receptor (PRLR), we aimed to address the actual role of PRL in the regulation of pituitary cell turnover in cycling females. We showed that acute hyperprolactinemia induced in ovariectomized rats using PRL injection or dopamine antagonist treatment rapidly increased apoptosis and decreased proliferation specifically of PRL producing cells (lactotropes), suggesting a direct regulation of these cell responses by PRL. To demonstrate that apoptosis naturally occurring at proestrus was regulated by transient elevation of endogenous PRL levels, we used PRLR-deficient female mice (PRLRKO) in which PRL signaling is totally abolished. According to our hypothesis, no increase in lactotrope apoptotic rate was observed at proestrus, which likely contributes to pituitary tumorigenesis observed in these animals. To decipher the molecular mechanisms underlying PRL effects, we explored the isoform-specific pattern of PRLR expression in cycling wild type females. This analysis revealed dramatic changes of long versus short PRLR ratio during the estrous cycle, which is particularly relevant since these isoforms exhibit distinct signaling properties. This pattern was markedly altered in a model of chronic PRLR signaling blockade involving transgenic mice expressing a pure PRLR antagonist (TGΔ1-9-G129R-hPRL), providing evidence that PRL regulates the expression of its own receptor in an isoform-specific manner. Taken together, these results demonstrate that i) the PRL surge occurring during proestrus is a major proapoptotic signal for lactotropes, and ii) partial or total deficiencies in PRLR signaling in the anterior pituitary may result in pituitary hyperplasia and eventual prolactinoma development, as observed in TGΔ1-9-G129R-hPRL and PRLRKO mice, respectively.
Collapse
Affiliation(s)
- Jimena Ferraris
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
| | - Sandra Zárate
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
| | - Gabriela Jaita
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
| | - Florence Boutillon
- INSERM, Unit 1151, Institut Necker Enfants Malades (INEM), Team “PRL/GH Pathophysiology”, University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment LERICHE, 14 Rue Maria Helena Vieira Da Silva, CS61431, 75993 Paris Cedex 14, France
| | - Marie Bernadet
- INSERM, Unit 1151, Institut Necker Enfants Malades (INEM), Team “PRL/GH Pathophysiology”, University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment LERICHE, 14 Rue Maria Helena Vieira Da Silva, CS61431, 75993 Paris Cedex 14, France
| | - Julien Auffret
- INSERM U693 and Université Paris-Sud, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin-Bicêtre, F-94276 France
| | - Adriana Seilicovich
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
| | - Nadine Binart
- INSERM U693 and Université Paris-Sud, Faculté de Médecine Paris-Sud, UMR-S693, Le Kremlin-Bicêtre, F-94276 France
| | - Vincent Goffin
- INSERM, Unit 1151, Institut Necker Enfants Malades (INEM), Team “PRL/GH Pathophysiology”, University Paris Descartes, Sorbonne Paris Cité, Faculty of Medicine, Bâtiment LERICHE, 14 Rue Maria Helena Vieira Da Silva, CS61431, 75993 Paris Cedex 14, France
| | - Daniel Pisera
- Instituto de Investigaciones Biomédicas, UBA-CONICET, Paraguay, Ciudad Autónoma de Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
32
|
Chang HW, Huang CY, Yang SY, Wu VC, Chu TS, Chen YM, Hsieh BS, Wu KD. Role of D2 dopamine receptor in adrenal cortical cell proliferation and aldosterone-producing adenoma tumorigenesis. J Mol Endocrinol 2014; 52:87-96. [PMID: 24293642 DOI: 10.1530/jme-13-0044] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Aldosterone-producing adenoma (APA) and bilateral adrenal hyperplasia are the two characteristic types of primary aldosteronism. Dysregulation of adrenal cortical cell proliferation contributes to both diseases. We previously demonstrated that APA expressed less dopamine D2 receptor than the respective non-tumor tissue and might contribute to the overproduction of aldosterone. As activation of D2 receptor inhibits the proliferation of various cells, downregulation of D2 receptor in APA may play a role in the tumorigenesis of APA. In this study, we demonstrate that D2 receptor plays a role in angiotensin II (AII)-stimulated adrenal cortical cell proliferation. The D2 receptor agonist, bromocriptine, inhibited AII-stimulated cell proliferation in primary cultures of the normal human adrenal cortex and APA through attenuating AII-induced phosphorylation of PK-stimulated cyclin D1 protein expression and cell proliferation. D2 receptor also inhibited AII-induced ERK1/2 phosphorylation. Our results demonstrate that, in addition to inhibiting aldosterone synthesis/production, D2 receptor exerts an anti-proliferative effect in adrenal cortical and APA cells by attenuating PKCμ and ERK phosphorylation. The lower level of expression of D2 receptor in APA may augment cell proliferation and plays a crucial role in the tumorigenesis of APA. Our novel finding suggests a new therapeutic target for primary aldosteronism.
Collapse
Affiliation(s)
- Hong-Wei Chang
- Nephrology Division, Department of Internal Medicine, Room 1419, National Taiwan University Hospital, Clinical Research Building, 7 Chung-Sun South Road, Taipei 100, Taiwan Department of Urology, National Taiwan University Hospital, Taipei, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Provenzano G, Clementi E, Genovesi S, Scali M, Tripathi PP, Sgadò P, Bozzi Y. GH Dysfunction in Engrailed-2 Knockout Mice, a Model for Autism Spectrum Disorders. Front Pediatr 2014; 2:92. [PMID: 25225635 PMCID: PMC4150208 DOI: 10.3389/fped.2014.00092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 08/18/2014] [Indexed: 11/13/2022] Open
Abstract
Insulin-like growth factor 1 (IGF-1) signaling promotes brain development and plasticity. Altered IGF-1 expression has been associated to autism spectrum disorders (ASD). IGF-1 levels were found increased in the blood and decreased in the cerebrospinal fluid of ASD children. Accordingly, IGF-1 treatment can rescue behavioral deficits in mouse models of ASD, and IGF-1 trials have been proposed for ASD children. IGF-1 is mainly synthesized in the liver, and its synthesis is dependent on growth hormone (GH) produced in the pituitary gland. GH also modulates cognitive functions, and altered levels of GH have been detected in ASD patients. Here, we analyzed the expression of GH, IGF-1, their receptors, and regulatory hormones in the neuroendocrine system of adult male mice lacking the homeobox transcription factor Engrailed-2 (En2 (-/-) mice). En2 (-/-) mice display ASD-like behaviors (social interactions, defective spatial learning, increased seizure susceptibility) accompanied by relevant neuropathological changes (loss of cerebellar and forebrain inhibitory neurons). Recent studies showed that En2 modulates IGF-1 activity during postnatal cerebellar development. We found that GH mRNA expression was markedly deregulated throughout the neuroendocrine axis in En2 (-/-) mice, as compared to wild-type controls. In mutant mice, GH mRNA levels were significantly increased in the pituitary gland, blood, and liver, whereas decreased levels were detected in the hippocampus. These changes were paralleled by decreased levels of GH protein in the hippocampus but not other tissues of En2 (-/-) mice. IGF-1 mRNA was significantly up-regulated in the liver and down-regulated in the En2 (-/-) hippocampus, but no differences were detected in the levels of IGF-1 protein between the two genotypes. Our data strengthen the notion that altered GH levels in the hippocampus may be involved in learning disabilities associated to ASD.
Collapse
Affiliation(s)
- Giovanni Provenzano
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy
| | - Elena Clementi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy
| | - Sacha Genovesi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy
| | - Manuela Scali
- Neuroscience Institute, National Research Council (CNR) , Pisa , Italy ; Laboratory of Neurobiology, Scuola Normale Superiore , Pisa , Italy
| | - Prem Prakash Tripathi
- Neuroscience Institute, National Research Council (CNR) , Pisa , Italy ; Laboratory of Neurobiology, Scuola Normale Superiore , Pisa , Italy
| | - Paola Sgadò
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy
| | - Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology (CIBIO), University of Trento , Trento , Italy ; Neuroscience Institute, National Research Council (CNR) , Pisa , Italy
| |
Collapse
|
34
|
Recouvreux MV, Lapyckyj L, Camilletti MA, Guida MC, Ornstein A, Rifkin DB, Becu-Villalobos D, Díaz-Torga G. Sex differences in the pituitary transforming growth factor-β1 system: studies in a model of resistant prolactinomas. Endocrinology 2013; 154:4192-205. [PMID: 24008346 PMCID: PMC3800752 DOI: 10.1210/en.2013-1433] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Accepted: 08/27/2013] [Indexed: 12/29/2022]
Abstract
Dopamine and estradiol interact in the regulation of lactotroph cell proliferation and prolactin secretion. Ablation of the dopamine D2 receptor gene (Drd2(-/-)) in mice leads to a sexually dimorphic phenotype of hyperprolactinemia and pituitary hyperplasia, which is stronger in females. TGF-β1 is a known inhibitor of lactotroph proliferation. TGF-β1 is regulated by dopamine and estradiol, and it is usually down-regulated in prolactinoma experimental models. To understand the role of TGF-β1 in the gender-specific development of prolactinomas in Drd2(-/-) mice, we compared the expression of different components of the pituitary TGF-β1 system, including active cytokine content, latent TGF-β-binding protein isoforms, and possible local TGF-β1 activators, in males and females in this model. Furthermore, we evaluated the effects of dopamine and estradiol administration to elucidate their role in TGF-β1 system regulation. The expression of active TGF-β1, latent TGF-β-binding protein isoforms, and several putative TGF-β1 activators evaluated was higher in male than in female mouse pituitary glands. However, Drd2(-/-) female mice were more sensitive to the decrease in active TGF-β1 content, as reflected by the down-regulation of TGF-β1 target genes. Estrogen and dopamine caused differential regulation of several components of the TGF-β1 system. In particular, we found sex- and genotype- dependent regulation of active TGF-β1 content and a similar expression pattern for 2 of the putative TGF-β1 activators, thrombospondin-1 and kallikrein-1, suggesting that these proteins could mediate TGF-β1 activation elicited by dopamine and estradiol. Our results indicate that (1) the loss of dopaminergic tone affects the pituitary TGF-β1 system more strongly in females than in males, (2) males express higher levels of pituitary TGF-β1 system components including active cytokine, and (3) estradiol negatively controls most of the components of the system. Because TGF-β1 inhibits lactotroph proliferation, we propose that the higher levels of the TGF-β1 system in males could protect or delay the development of prolactinomas in Drd2(-/-) male mice.
Collapse
Affiliation(s)
- M Victoria Recouvreux
- Instituto de Biología y Medicina Experimental-Consejo Nacional de Investigaciones Científicas y Técnicas, Vuelta de Obligado 2490, Buenos Aires 1428, Argentina.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
Bozzi Y, Borrelli E. The role of dopamine signaling in epileptogenesis. Front Cell Neurosci 2013; 7:157. [PMID: 24062645 PMCID: PMC3774988 DOI: 10.3389/fncel.2013.00157] [Citation(s) in RCA: 110] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/29/2013] [Indexed: 01/11/2023] Open
Abstract
Clinical and experimental studies implicate most neuromodulatory systems in epileptogenesis. The dopaminergic system has a seizure-modulating effect that crucially depends on the different subtypes of dopamine (DA) receptors involved and the brain regions in which they are activated. Specifically, DA plays a major role in the control of seizures arising in the limbic system. Studies performed in a wide variety of animal models contributed to illustrate the opposite actions of D1-like and D2-like receptor signaling in limbic epileptogenesis. Indeed, signaling from D1-like receptors is generally pro-epileptogenic, whereas D2-like receptor signaling exerts an anti-epileptogenic effect. However, this view might appear quite simplistic as the complex neuromodulatory action of DA in the control of epileptogenesis likely requires a physiological balance in the activation of circuits modulated by these two major DA receptor subtypes, which determines the response to seizure-promoting stimuli. Here we will review recent evidences on the identification of molecules activated by DA transduction pathways in the generation and spread of seizures in the limbic system. We will discuss the intracellular signaling pathways triggered by activation of different DA receptors in relation to their role in limbic epileptogenesis, which lead to the activation of neuronal death/survival cascades. A deep understanding of the signaling pathways involved in epileptogenesis is crucial for the identification of novel targets for the treatment of epilepsy.
Collapse
Affiliation(s)
- Yuri Bozzi
- Laboratory of Molecular Neuropathology, Centre for Integrative Biology, University of Trento Trento, Italy ; Neuroscience Institute, National Research Council Pisa, Italy
| | | |
Collapse
|
36
|
Radl D, De Mei C, Chen E, Lee H, Borrelli E. Each individual isoform of the dopamine D2 receptor protects from lactotroph hyperplasia. Mol Endocrinol 2013; 27:953-65. [PMID: 23608643 DOI: 10.1210/me.2013-1008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Dopamine acting through D2 receptors (D2Rs) controls lactotroph proliferation and prolactin (PRL) levels. Ablation of this receptor in mice results in lactotroph hyperplasia and prolactinomas in aged females. Alternative splicing of the Drd2 gene generates 2 independent isoforms, a long (D2L) and a short (D2S) isoform, which are present in all D2R-expressing cells. Here, we addressed the role of D2L and D2S on lactotroph physiology through the generation and analysis of D2S-null mice and their comparison with D2L-null animals. These mice represent a valuable tool with which to investigate dopamine-dependent isoform-specific signaling in the pituitary gland. We sought to assess the existence of a more prominent role of D2L or D2S in controlling PRL expression and lactotroph hyperplasia. Importantly, we found that D2L and D2S are specifically linked to independent transduction pathways in the pituitary. D2L-mediated signaling inhibits the AKT/protein kinase B kinase activity whereas D2S, in contrast, is required for the activation of the ERK 1/2 pathway. Under normal conditions, presence of only 1 of the 2 D2R isoforms in vivo prevents hyperprolactinemia, formation of lactotroph's hyperplasia, and tumorigenesis that is observed when both isoforms are deleted as in D2R-/- mice. However, the protective function of the single D2R isoforms is overridden when single isoform-knockout mice are challenged by chronic estrogen treatments as they show increased PRL production and lactotroph hyperplasia. Our study indicates that signaling from each of the D2R isoforms is sufficient to maintain lactotroph homeostasis in physiologic conditions; however, signaling from both is necessary in conditions simulating pathologic states.
Collapse
Affiliation(s)
- Daniela Radl
- Department of Microbiology and Molecular Genetics, Institut National de la Santé et de la Recherche Médicale INSERM/UCI U904, France
| | | | | | | | | |
Collapse
|
37
|
Sim HR, Choi TY, Lee HJ, Kang EY, Yoon S, Han PL, Choi SY, Baik JH. Role of dopamine D2 receptors in plasticity of stress-induced addictive behaviours. Nat Commun 2013; 4:1579. [DOI: 10.1038/ncomms2598] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2012] [Accepted: 02/12/2013] [Indexed: 12/14/2022] Open
|
38
|
Ferraris J, Bernichtein S, Pisera D, Goffin V. Use of prolactin receptor antagonist to better understand prolactin regulation of pituitary homeostasis. Neuroendocrinology 2013; 98:171-9. [PMID: 23969780 DOI: 10.1159/000354701] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2013] [Accepted: 07/19/2013] [Indexed: 11/19/2022]
Abstract
The anterior pituitary is permanently regulated by processes of apoptosis and proliferation in order to maintain tissue homeostasis. Several factors have been implicated in this regulation and lately, prolactin (PRL) has been included into that list. However, since PRL is secreted by anterior pituitary lactotropes, the actual outcome of its autocrine/paracrine actions on pituitary cells has remained difficult to assess. The availability of the pure PRL receptor antagonist Del1-9-G129R-hPRL has been helpful to circumvent this problem. While PRL has been traditionally associated with increased cell proliferation, recent studies revealed that this hormone actually induces apoptosis and decreases proliferation of anterior pituitary cells, by mechanisms involving the PRL receptor. The aim of this short review is to overview our current understanding of the regulation of pituitary homeostasis by PRL. Moreover, studies involving Del1-9-G129R-hPRL have helped anticipate to what extent future treatments involving PRL receptor inhibitors may interfere with processes regulated by PRL at the central level.
Collapse
Affiliation(s)
- Jimena Ferraris
- Institute of Biomedical Research, School of Medicine, University of Buenos Aires-CONICET, Buenos Aires, Argentina
| | | | | | | |
Collapse
|
39
|
|
40
|
Sengupta A, Sarkar DK. Roles of dopamine 2 receptor isoforms and g proteins in ethanol regulated prolactin synthesis and lactotropic cell proliferation. PLoS One 2012; 7:e45593. [PMID: 23029123 PMCID: PMC3445509 DOI: 10.1371/journal.pone.0045593] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2012] [Accepted: 08/23/2012] [Indexed: 11/18/2022] Open
Abstract
Alcohol consumption has been shown to increase prolactin (PRL) production and cell proliferation of pituitary lactotropes. It also causes a reduction in the lactotrope's response to dopaminergic agents and a differential expression of dopamine 2 receptor short (D2S) and long (D2L) isoforms in the pituitary. However, the role of each of these D2 receptor isoforms and its coupled G protein in mediation of ethanol actions on lactotropes is not known. We have addressed this issue by comparing ethanol effects on the level of PRL production gene transcription rate cellular protein, G proteins and cell proliferation in enriched lactotropes and lactotrope-derived PR1 cells containing various D2 receptor isoforms. Additionally, we determined the effects of G protein blockade on ethanol-induced PRL production and cell proliferation in these cells. We show here that the D2 receptor, primarily the D2S isoform, is critically involved in the regulation of ethanol actions on PRL production and cell proliferation in lactotropes. We also present data to elucidate that the presence of the pertussis toxin (PTX)-sensitive D2S receptor is critical to mediate the ethanol stimulatory action on Gs and the ethanol's inhibitory action on Gi3 protein in lactotropes. Additionally, we provide evidence for the existence of an inhibitory action of Gi3 on Gs that is under the control of the D2S receptor and is inhibited by ethanol. These results suggest that ethanol via the inhibitory action on D2S receptor activity suppresses Gi3 repression of Gs expression resulting in stimulation of PRL synthesis and cell proliferation in lactotropes.
Collapse
Affiliation(s)
- Amitabha Sengupta
- Endocrine Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
| | - Dipak K. Sarkar
- Endocrine Program, Department of Animal Sciences, Rutgers University, New Brunswick, New Jersey, United States of America
- * E-mail:
| |
Collapse
|
41
|
Brott DA, Werkheiser JL, Campbell P, Bentley P, Andersson HHAS, Stewart J, Huby R, Altekar M, Kinter LB. Inhibition of Oestradiol-induced Prolactin Release in a Dual-Cannulated Ovariectomized Rat Model by Carmoxirole, a Peripherally Restricted Dopamine Agonist. Basic Clin Pharmacol Toxicol 2012; 111:411-6. [DOI: 10.1111/j.1742-7843.2012.00918.x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2012] [Accepted: 06/20/2012] [Indexed: 11/29/2022]
Affiliation(s)
- David A. Brott
- Global Safety Assessment; AstraZeneca Pharmaceuticals; R&D; Wilmington DE USA
| | | | - Pam Campbell
- Global Safety Assessment; AstraZeneca Pharmaceuticals; R&D; Wilmington DE USA
| | - Patricia Bentley
- Global Safety Assessment; AstraZeneca Pharmaceuticals; R&D; Wilmington DE USA
| | | | - Jane Stewart
- Global Safety Assessment; AstraZeneca Pharmaceuticals; R&D; Alderley Park UK
| | - Russell Huby
- Global Safety Assessment; AstraZeneca Pharmaceuticals; R&D; Alderley Park UK
| | - Maneesha Altekar
- Global Operations; AstraZeneca Pharmaceuticals; R&D; Wilmington DE USA
| | - Lewis B. Kinter
- Global Safety Assessment; AstraZeneca Pharmaceuticals; R&D; Wilmington DE USA
| |
Collapse
|
42
|
Ferraris J, Boutillon F, Bernadet M, Seilicovich A, Goffin V, Pisera D. Prolactin receptor antagonism in mouse anterior pituitary: effects on cell turnover and prolactin receptor expression. Am J Physiol Endocrinol Metab 2012; 302:E356-64. [PMID: 22094470 DOI: 10.1152/ajpendo.00333.2011] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Since anterior pituitary expresses prolactin receptors, prolactin secreted by lactotropes could exert autocrine or paracrine actions on anterior pituitary cells. In fact, it has been observed that prolactin inhibits its own expression by lactotropes. Our hypothesis is that prolactin participates in the control of anterior pituitary cell turnover. In the present study, we explored the action of prolactin on proliferation and apoptosis of anterior pituitary cells and its effect on the expression of the prolactin receptor. To determine the activity of endogenous prolactin, we evaluated the effect of the competitive prolactin receptor antagonist Δ1-9-G129R-hPRL in vivo, using transgenic mice that constitutively and systemically express this antagonist. The weight of the pituitary gland and the anterior pituitary proliferation index, determined by BrdU incorporation, were higher in transgenic mice expressing the antagonist than in wild-type littermates. In addition, blockade of prolactin receptor in vitro by Δ1-9-G129R-hPRL increased proliferation and inhibited apoptosis of somatolactotrope GH3 cells and of primary cultures of male rat anterior pituitary cells, including lactotropes. These results suggest that prolactin acts as an autocrine/paracrine antiproliferative and proapoptotic factor in the anterior pituitary gland. In addition, anterior pituitary expression of the long isoform of the prolactin receptor, measured by real-time PCR, increased about 10-fold in transgenic mice expressing the prolactin receptor antagonist, whereas only a modest increase in the S3 short-isoform expression was observed. These results suggest that endogenous prolactin may regulate its own biological actions in the anterior pituitary by inhibiting the expression of the long isoform of the prolactin receptor. In conclusion, our observations suggest that prolactin is involved in the maintenance of physiological cell renewal in the anterior pituitary. Alterations in this physiological role of prolactin could contribute to pituitary tumor development.
Collapse
MESH Headings
- Animals
- Apoptosis/drug effects
- Cell Line
- Cell Proliferation/drug effects
- Cells, Cultured
- Gene Expression Regulation/drug effects
- Hormone Antagonists/metabolism
- Hormone Antagonists/pharmacology
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Transgenic
- Organ Size
- Pituitary Gland, Anterior/cytology
- Pituitary Gland, Anterior/drug effects
- Pituitary Gland, Anterior/metabolism
- Pituitary Gland, Anterior/pathology
- Prolactin/analogs & derivatives
- Prolactin/antagonists & inhibitors
- Prolactin/genetics
- Prolactin/metabolism
- Prolactin/pharmacology
- Prolactin/physiology
- Protein Isoforms/genetics
- Protein Isoforms/metabolism
- RNA, Messenger/metabolism
- Rats
- Rats, Wistar
- Receptors, Prolactin/antagonists & inhibitors
- Receptors, Prolactin/genetics
- Receptors, Prolactin/metabolism
- Recombinant Proteins/metabolism
- Recombinant Proteins/pharmacology
- Signal Transduction/drug effects
Collapse
Affiliation(s)
- Jimena Ferraris
- Instituto de Investigaciones en Reproducción, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | | | |
Collapse
|
43
|
Park E, Iaccarino C, Lee J, Kwon I, Baik SM, Kim M, Seong JY, Son GH, Borrelli E, Kim K. Regulatory roles of heterogeneous nuclear ribonucleoprotein M and Nova-1 protein in alternative splicing of dopamine D2 receptor pre-mRNA. J Biol Chem 2011; 286:25301-8. [PMID: 21622564 DOI: 10.1074/jbc.m110.206540] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The dopamine D2 receptor (D2R) plays a crucial role in the regulation of diverse key physiological functions, including motor control, reward, learning, and memory. This receptor is present in vivo in two isoforms, D2L and D2S, generated from the same gene by alternative pre-mRNA splicing. Each isoform has a specific role in vivo, underlining the importance of a strict control of its synthesis, yet the molecular mechanism modulating alternative D2R pre-mRNA splicing has not been completely elucidated. Here, we identify heterogeneous nuclear ribonucleoprotein M (hnRNP M) as a key molecule controlling D2R splicing. We show that binding of hnRNP M to exon 6 inhibited the inclusion of this exon in the mRNA. Importantly, the splicing factor Nova-1 counteracted hnRNP M effects on D2R pre-mRNA splicing. Indeed, mutations of the putative Nova-1-binding site on exon 6 disrupted Nova-1 RNA assembly and diminished the inhibitory effect of Nova-1 on hnRNP M-dependent exon 6 exclusion. These results identify Nova-1 and hnRNP M as D2R pre-mRNA-binding proteins and show their antagonistic role in the alternative splicing of D2R pre-mRNA.
Collapse
Affiliation(s)
- Eonyoung Park
- School of Biological Sciences, Seoul National University, Seoul 151-742, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Radl DB, Ferraris J, Boti V, Seilicovich A, Sarkar DK, Pisera D. Dopamine-induced apoptosis of lactotropes is mediated by the short isoform of D2 receptor. PLoS One 2011; 6:e18097. [PMID: 21464994 PMCID: PMC3064585 DOI: 10.1371/journal.pone.0018097] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 02/21/2011] [Indexed: 11/18/2022] Open
Abstract
Dopamine, through D2 receptor (D2R), is the major regulator of lactotrope function in the anterior pituitary gland. Both D2R isoforms, long (D2L) and short (D2S), are expressed in lactotropes. Although both isoforms can transduce dopamine signal, they differ in the mechanism that leads to cell response. The administration of D2R agonists, such as cabergoline, is the main pharmacological treatment for prolactinomas, but resistance to these drugs exists, which has been associated with alterations in D2R expression. We previously reported that dopamine and cabergoline induce apoptosis of lactotropes in primary culture in an estrogen-dependent manner. In this study we used an in vivo model to confirm the permissive action of estradiol in the apoptosis of anterior pituitary cells induced by D2R agonists. Administration of cabergoline to female rats induced apoptosis, measured by Annexin-V staining, in anterior pituitary gland from estradiol-treated rats but not from ovariectomized rats. To evaluate the participation of D2R isoforms in the apoptosis induced by dopamine we used lactotrope-derived PR1 cells stably transfected with expression vectors encoding D2L or D2S receptors. In the presence of estradiol, dopamine induced apoptosis, determined by ELISA and TUNEL assay, only in PR1-D2S cells. To study the role of p38 MAPK in apoptosis induced by D2R activation, anterior pituitary cells from primary culture or PR1-D2S were incubated with an inhibitor of the p38 MAPK pathway (SB203850). SB203580 blocked the apoptotic effect of D2R activation in lactotropes from primary cultures and PR1-D2S cells. Dopamine also induced p38 MAPK phosphorylation, determined by western blot, in PR1-D2S cells and estradiol enhanced this effect. These data suggest that, in the presence of estradiol, D2R agonists induce apoptosis of lactotropes by their interaction with D2S receptors and that p38 MAPK is involved in this process.
Collapse
Affiliation(s)
- Daniela Betiana Radl
- Facultad de Medicina, Instituto de Investigaciones en Reproducción, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Jimena Ferraris
- Facultad de Medicina, Instituto de Investigaciones en Reproducción, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Valeria Boti
- Facultad de Medicina, Instituto de Investigaciones en Reproducción, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Adriana Seilicovich
- Facultad de Medicina, Instituto de Investigaciones en Reproducción, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Dipak Kumar Sarkar
- Endocrine Program, Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey, United States of America
| | - Daniel Pisera
- Facultad de Medicina, Instituto de Investigaciones en Reproducción, Universidad de Buenos Aires, Buenos Aires, Argentina
- * E-mail:
| |
Collapse
|
45
|
Donohue C, Marion S, Erickson RP. Expression of Npc1 in glial cells corrects sterility in Npc1(-/-) mice. J Appl Genet 2010; 50:385-90. [PMID: 19875890 DOI: 10.1007/bf03195698] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Niemann-Pick type C1 (NPC) disease is an autosomal recessive neurodegenerative disorder. One feature of the mouse model of NPC1 is it's infertility. We have made transgenic mice which express the Npc1 protein exclusively in fibrillary astrocytes, using the glial fibrillary acidic protein (GFAP) promoter. This selective expression of Npc1 corrects sterility in GFAP-Npc1(-/-), Npc1(-/-) mice. Counts of acidophils in the pituitary of GFAP-Npc1E, Npc1(-/-) mice, as compared Npc1(-/-) mice, and measurements of dopamine D2 receptor (DRD2) mRNA in the pituitary, suggest mechanisms for fertility enhancement. We conclude that the correction of sterility in GFAP-Npc1E, Npc1(-/-) mice is a result of restoring hypothalamic control of the pituitary.
Collapse
Affiliation(s)
- C Donohue
- Department of Pediatrics, University of Arizona, Tucson, Arizona, USA
| | | | | |
Collapse
|
46
|
Filopanti M, Lania AG, Spada A. Pharmacogenetics of D2 dopamine receptor gene in prolactin-secreting pituitary adenomas. Expert Opin Drug Metab Toxicol 2010; 6:43-53. [PMID: 19929252 DOI: 10.1517/17425250903352501] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
IMPORTANCE OF THE FIELD Dopamine-agonists are the treatment of choice of prolactin-secreting pituitary adenomas (PRL-omas). Their actions on D2 dopamine receptor (DRD2) and the clinical outcome may be affected by polymorphisms. AREAS COVERED IN THIS REVIEW PRL-omas are well-differentiated endocrine tumors expressing DRD2. The dopamine-agonist cabergoline (CB), normalizes prolactin and reduces tumor size in about 80 - 90% of patients. DRD2 polymorphisms correlate with neuropsychiatric disorders, in particular alcoholism and schizophrenia. This review describes the DRD2 polymorphisms, their functional effects, and their impact on susceptibility and response to dopamine-agonists treatment. Searching PubMed database for pertinent articles we found that some DRD2 polymorphisms, particularly TaqIA, TaqIB and NcoI, are associated with different receptor binding in brain areas. One study carried out in patients with PRL-omas found a correlation between NcoI and TaqIA and resistance to CB. In particular, resistant patients had higher prevalence of NcoI-T allele than the responsive patients, while the commonest haplotype (having TaqIA2 allele) was associated with better response. WHAT THE READER WILL GAIN This review deals with the connection between DRD2 polymorphisms and PRL-oma treatment and suggests hypotheses for further studies. TAKE HOME MESSAGE Only one study was carried out to analyze the role of DRD2 polymorphisms in PRLomas response to CB. Further studies, including pituitary and hypothalamus in vivo determination of DRD2 binding according to DRD2 genotypes, investigation of possible post-receptorial mechanisms involved, as well as population studies in collaboration with psychiatrists and neurologists, are needed.
Collapse
Affiliation(s)
- M Filopanti
- Fondazione IRCCS Policlinico Mangiagalli Regina Elena, Unit of Endocrinology and Diabetology, Milan, Italy
| | | | | |
Collapse
|
47
|
Yoon S, Noh JS, Choi SY, Baik JH. Effects of atypical antipsychotic drugs on body weight and food intake in dopamine D2 receptor knockout mice. Biochem Biophys Res Commun 2010; 393:235-41. [PMID: 20117094 DOI: 10.1016/j.bbrc.2010.01.108] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2010] [Accepted: 01/27/2010] [Indexed: 11/17/2022]
Abstract
Many atypical antipsychotic drugs cause weight gain, but the mechanism of this weight gain is unclear. To dissect the role of the dopamine D2 receptor (D2R), an important receptor in the pharmacology of antipsychotic drugs, we analyzed the effect of olanzapine, risperidone, and ziprasidone on changes in body weight and food intake in male wild-type (WT) and D2R knockout (D2R(-/-)) mice. The oral delivery of atypical antipsychotics, olanzapine (5 and 10mg/kg), risperidone (0.1 and 1.0mg/kg) and ziprasidone (10 and 20mg/kg) in both strains mice for 2 weeks suppressed body weight gain, except for olanzapine treatment in D2R(-/-) mice. Olanzapine treatment suppressed body weight gain and decreased food intake in WT mice, but also reduced fat body mass and locomotor activity, whereas D2R(-/-) mice did not show these changes. Ziprasidone and risperidone treatment produced similar responses in WT and D2R(-/-) mice. These data suggest the involvement of D2R in the effect of olanzapine on metabolic regulation. Further studies are required to explore the implications of D2R activity in antipsychotic-mediated metabolic complications.
Collapse
|
48
|
Kim KS, Yoon YR, Lee HJ, Yoon S, Kim SY, Shin SW, An JJ, Kim MS, Choi SY, Sun W, Baik JH. Enhanced hypothalamic leptin signaling in mice lacking dopamine D2 receptors. J Biol Chem 2010; 285:8905-17. [PMID: 20080963 DOI: 10.1074/jbc.m109.079590] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The dopamine D(2) receptor (D2R) plays a critical role in diverse neurophysiological functions. D2R knock-out mice (D2R(-/-)) show reduced food intake and body weight while displaying an increased basal energy expenditure level, compared with their wild type littermates. Thus, these mice show a lean phenotype. D2R(-/-) mice displayed increased leptin sensitivity, and leptin injection induced increased phosphorylation of the hypothalamic signal transducer and activator of transcription 3 (STAT3) in D2R(-/-) mice relative to wild type littermates. Using double immunofluorescence histochemistry, we have demonstrated that D2Rs are present in leptin-sensitive STAT3-positive cells in the arcuate nucleus of the hypothalamus and that leptin injection induces STAT3 phosphorylation in hypothalamic neurons expressing D2Rs. Stimulation of D2R by the D2R agonist quinpirole suppressed the leptin-induced STAT3 phosphorylation and nuclear trans-localization of phospho-STAT3 in the hypothalamus of wild type mice. However, this regulation was not detected in the D2R(-/-) mice. Treatment of D2R agonist and antagonist could modulate the leptin-induced food intake and body weight changes in wild type mice but not in D2R(-/-) mice. Together, our findings suggest that the interaction between the dopaminergic system and leptin signaling in hypothalamus is important in control of energy homeostasis.
Collapse
Affiliation(s)
- Kyu Seok Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Gallelli MF, Cabrera Blatter MF, Castillo V. A comparative study by age and gender of the pituitary adenoma and ACTH and alpha-MSH secretion in dogs with pituitary-dependent hyperadrenocorticism. Res Vet Sci 2009; 88:33-40. [PMID: 19683322 DOI: 10.1016/j.rvsc.2009.06.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2008] [Revised: 06/04/2009] [Accepted: 06/28/2009] [Indexed: 11/25/2022]
Abstract
Pituitary-dependent hyperadrenocorticism (PDH) is frequent in dogs. Little is known about its presentation in different age groups and its characteristics. Dividing the population under study (n=107) into three age groups we observed that 11.2% were young, 51.4% adults and 37.4% aged. Using magnetic resonance, pituitary tumours were intra-sellar (IS) in 30.8% and extra-sellar (ES) in 62.6% and the pars intermedia (PI) was affected in 6.5%. ES are predominant in females and IS in males (p<0.0001). In the adult-aged population, the ES and PI are predominant, while in the young, the IS predominate (p<0.0001). ACTH concentration was greater in the ES vs. IS (p<0.05). alpha-MSH did not present significant differences according to tumour size, showing a negative correlation (r=-0.47; p<0.01) vs. ACTH. Differences in adenoma size according to gender and their age-related frequency of apparition could be because of different origins of the corticotrophinoma.
Collapse
Affiliation(s)
- M F Gallelli
- U. Endocrinología, Htal. Escuela de Medicina Veterinaria, Facultad de Ciencias Veterinarias, Universidad de Buenos Aires, Av. Chorroarín 280, 1427 Ciudad, Autónoma de Buenos Aires, Argentina
| | | | | |
Collapse
|
50
|
Giacomini D, Páez-Pereda M, Stalla J, Stalla GK, Arzt E. Molecular interaction of BMP-4, TGF-beta, and estrogens in lactotrophs: impact on the PRL promoter. Mol Endocrinol 2009; 23:1102-14. [PMID: 19342445 DOI: 10.1210/me.2008-0425] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The regulatory role of estrogen, bone morphogenetic protein-4 (BMP-4), and TGF-beta has a strong impact on hormone secretion, gene transcription, and cellular growth of prolactin (PRL)-producing cells. In contrast to TGF-beta, BMP-4 induces the secretion of PRL in GH3 cells. Therefore, we studied the mechanism of their transcriptional regulation. Both BMP-4 and TGF-beta inhibited the transcriptional activity of the estrogen receptor (ER). Estrogens had no effect on TGF-beta-specific Smad protein transcriptional activity but presented a stimulatory action on the transcriptional activity of the BMP-4-specific Smads. BMP-4/estrogen cross talk was observed both on PRL hormone secretion and on the PRL promoter. This cross talk was abolished by the expression of a dominant-negative form for Smad-1 and treatment with ICI 182780 but not by point mutagenesis of the estrogen response element site within the promoter, suggesting that Smad/ER interaction might be dependent on the ER and a Smad binding element. By serial deletions of the PRL promoter, we observed that indeed a region responsive to BMP-4 is located between -2000 and -1500 bp upstream of the transcriptional start site. Chromatin immunoprecipitation confirmed Smad-4 binding to this region, and by specific mutation and gel shift assay, a Smad binding element responsible site was characterized. These results demonstrate that the different transcriptional factors involved in the Smad/ER complexes regulate their transcriptional activity in differential ways and may account for the different regulatory roles of BMP-4, TGF-beta, and estrogens in PRL-producing cells.
Collapse
Affiliation(s)
- Damiana Giacomini
- Laboratorio de Fisiología y Biología Molecular, Departamento de Fisiología, Biología Molecular y Celular, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | | | | | | | | |
Collapse
|