1
|
Zhang L, Wei Z, Dai Y, He F, Sun T. The role of CAPS in Ca 2+-regulated exocytosis: Promotion of vesicle tethering, priming, and fusion. Neuropharmacology 2025; 265:110247. [PMID: 39631678 DOI: 10.1016/j.neuropharm.2024.110247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/27/2024] [Accepted: 12/02/2024] [Indexed: 12/07/2024]
Abstract
Neurotransmitter and neuromodulator release by Ca2+-regulated exocytosis is essential for information transmisson between cells. Formation of SNARE complex (soluble N-ethylmaleimide sensitive factor attachment protein receptors) provide energy to bring vesicles and the plasma membranes together and catalyze membrane fusion. The "Ca2+-dependent activator protein for secretion" (CAPS) assumes a pivotal role in facilitating vesicle content release, not only in the nervous system but also in various other secretory tissues. In recent years, great progress has been made in the study of the mechanism of CAPS regulating vesicle secretion. In this review, we summarize recent advances toward the functions and molecular mechanisms of CAPSs in vesicle exocytosis, and contemplate future research directions that will illuminate the molecular mechanisms of neurodegeneration.
Collapse
Affiliation(s)
- Li Zhang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ziqing Wei
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China; Henan Key Laboratory of Cerebrovascular Diseases, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yuwan Dai
- Henan Provincial People's Hospital, 450003, Henan, China
| | - Fucheng He
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Ting Sun
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
2
|
Stankewich MC, Peters LL, Morrow JS. The loss of βΙ spectrin alters synaptic size and composition in the ja/ja mouse. Front Neurosci 2024; 18:1415115. [PMID: 39165342 PMCID: PMC11333264 DOI: 10.3389/fnins.2024.1415115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/26/2024] [Indexed: 08/22/2024] Open
Abstract
Introduction Deletion or mutation of members of the spectrin gene family contributes to many neurologic and neuropsychiatric disorders. While each spectrinopathy may generate distinct neuropathology, the study of βΙ spectrin's role (Sptb) in the brain has been hampered by the hematologic consequences of its loss. Methods Jaundiced mice (ja/ja) that lack βΙ spectrin suffer a rapidly fatal hemolytic anemia. We have used exchange transfusion of newborn ja/ja mice to blunt their hemolytic pathology, enabling an examination of βΙ spectrin deficiency in the mature mouse brain by ultrastructural and biochemical analysis. Results βΙ spectrin is widely utilized throughout the brain as the βΙΣ2 isoform; it appears by postnatal day 8, and concentrates in the CA1,3 region of the hippocampus, dentate gyrus, cerebellar granule layer, cortical layer 2, medial habenula, and ventral thalamus. It is present in a subset of dendrites and absent in white matter. Without βΙ spectrin there is a 20% reduction in postsynaptic density size in the granule layer of the cerebellum, a selective loss of ankyrinR in cerebellar granule neurons, and a reduction in the level of the postsynaptic adhesion molecule NCAM. While we find no substitution of another spectrin for βΙ at dendrites or synapses, there is curiously enhanced βΙV spectrin expression in the ja/ja brain. Discussion βΙΣ2 spectrin appears to be essential for refining postsynaptic structures through interactions with ankyrinR and NCAM. We speculate that it may play additional roles yet to be discovered.
Collapse
Affiliation(s)
- Michael C. Stankewich
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
| | | | - Jon S. Morrow
- Department of Pathology, Yale University School of Medicine, New Haven, CT, United States
- Department Molecular Cellular and Developmental Biology, Yale University, New Haven, CT, United States
| |
Collapse
|
3
|
Frank MM, Sitko AA, Suthakar K, Torres Cadenas L, Hunt M, Yuk MC, Weisz CJC, Goodrich LV. Experience-dependent flexibility in a molecularly diverse central-to-peripheral auditory feedback system. eLife 2023; 12:e83855. [PMID: 36876911 PMCID: PMC10147377 DOI: 10.7554/elife.83855] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 03/03/2023] [Indexed: 03/07/2023] Open
Abstract
Brainstem olivocochlear neurons (OCNs) modulate the earliest stages of auditory processing through feedback projections to the cochlea and have been shown to influence hearing and protect the ear from sound-induced damage. Here, we used single-nucleus sequencing, anatomical reconstructions, and electrophysiology to characterize murine OCNs during postnatal development, in mature animals, and after sound exposure. We identified markers for known medial (MOC) and lateral (LOC) OCN subtypes, and show that they express distinct cohorts of physiologically relevant genes that change over development. In addition, we discovered a neuropeptide-enriched LOC subtype that produces Neuropeptide Y along with other neurotransmitters. Throughout the cochlea, both LOC subtypes extend arborizations over wide frequency domains. Moreover, LOC neuropeptide expression is strongly upregulated days after acoustic trauma, potentially providing a sustained protective signal to the cochlea. OCNs are therefore poised to have diffuse, dynamic effects on early auditory processing over timescales ranging from milliseconds to days.
Collapse
Affiliation(s)
- Michelle M Frank
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Austen A Sitko
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Kirupa Suthakar
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lester Torres Cadenas
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Mackenzie Hunt
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Mary Caroline Yuk
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| | - Catherine JC Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication DisordersBethesdaUnited States
| | - Lisa V Goodrich
- Department of Neurobiology, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
4
|
Arabiotorre A, Formanowicz M, Bankaitis VA, Grabon A. Phosphatidylinositol-4-phosphate signaling regulates dense granule biogenesis and exocytosis in Toxoplasma gondii. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.09.523261. [PMID: 36712082 PMCID: PMC9882004 DOI: 10.1101/2023.01.09.523261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Phosphoinositide metabolism defines the foundation of a major signaling pathway that is conserved throughout the eukaryotic kingdom. The 4-OH phosphorylated phosphoinositides such as phosphatidylinositol-4-phosphate (PtdIns4P) and phosphatidylinositol-4,5-bisphosphate are particularly important molecules as these execute intrinsically essential activities required for the viability of all eukaryotic cells studied thus far. Using intracellular tachyzoites of the apicomplexan parasite Toxoplasma gondii as model for assessing primordial roles for PtdIns4P signaling, we demonstrate the presence of PtdIns4P pools in Golgi/trans-Golgi (TGN) system and in post-TGN compartments of the parasite. Moreover, we show that deficits in PtdIns4P signaling result in structural perturbation of compartments that house dense granule cargo with accompanying deficits in dense granule exocytosis. Taken together, the data report a direct role for PtdIns4P in dense granule biogenesis and exocytosis. The data further indicate that the biogenic pathway for secretion-competent dense granule formation in T. gondii is more complex than simple budding of fully matured dense granules from the TGN.
Collapse
Affiliation(s)
- Angela Arabiotorre
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| | - Megan Formanowicz
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
| | - Vytas A. Bankaitis
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
- Department of Biochemistry & Biophysics, Texas A&M University, College Station, Texas 77843-2128
- Department of Chemistry, Texas A&M University, College Station, Texas 77843-2128
| | - Aby Grabon
- Department of Cell Biology & Genetics, College of Medicine, Texas A&M Health Sciences Center, College Station, Texas 77843-1114, USA
| |
Collapse
|
5
|
Wang ZW, Riaz S, Niu L. Roles and Sources of Calcium in Synaptic Exocytosis. ADVANCES IN NEUROBIOLOGY 2023; 33:139-170. [PMID: 37615866 DOI: 10.1007/978-3-031-34229-5_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Calcium ions (Ca2+) play a critical role in triggering neurotransmitter release. The rate of release is directly related to the concentration of Ca2+ at the presynaptic site, with a supralinear relationship. There are two main sources of Ca2+ that trigger synaptic vesicle fusion: influx through voltage-gated Ca2+ channels in the plasma membrane and release from the endoplasmic reticulum via ryanodine receptors. This chapter will cover the sources of Ca2+ at the presynaptic nerve terminal, the relationship between neurotransmitter release rate and Ca2+ concentration, and the mechanisms that achieve the necessary Ca2+ concentrations for triggering synaptic exocytosis at the presynaptic site.
Collapse
Affiliation(s)
- Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA.
| | - Sadaf Riaz
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut School of Medicine, Farmington, CT, USA
| |
Collapse
|
6
|
Eiden LE, Hernández VS, Jiang SZ, Zhang L. Neuropeptides and small-molecule amine transmitters: cooperative signaling in the nervous system. Cell Mol Life Sci 2022; 79:492. [PMID: 35997826 PMCID: PMC11072502 DOI: 10.1007/s00018-022-04451-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 06/15/2022] [Accepted: 06/23/2022] [Indexed: 12/17/2022]
Abstract
Neuropeptides are expressed in cell-specific patterns throughout mammalian brain. Neuropeptide gene expression has been useful for clustering neurons by phenotype, based on single-cell transcriptomics, and for defining specific functional circuits throughout the brain. How neuropeptides function as first messengers in inter-neuronal communication, in cooperation with classical small-molecule amine transmitters (SMATs) is a current topic of systems neurobiology. Questions include how neuropeptides and SMATs cooperate in neurotransmission at the molecular, cellular and circuit levels; whether neuropeptides and SMATs always co-exist in neurons; where neuropeptides and SMATs are stored in the neuron, released from the neuron and acting, and at which receptors, after release; and how neuropeptides affect 'classical' transmitter function, both directly upon co-release, and indirectly, via long-term regulation of gene transcription and neuronal plasticity. Here, we review an extensive body of data about the distribution of neuropeptides and their receptors, their actions after neuronal release, and their function based on pharmacological and genetic loss- and gain-of-function experiments, that addresses these questions, fundamental to understanding brain function, and development of neuropeptide-based, and potentially combinatorial peptide/SMAT-based, neurotherapeutics.
Collapse
Affiliation(s)
- Lee E Eiden
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA.
| | - Vito S Hernández
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Sunny Z Jiang
- Section On Molecular Neuroscience, National Institute of Mental Health, Intramural Research Program, National Institutes of Health, 49 Convent Drive, Room 5A38, Bethesda, MD, 20892, USA
| | - Limei Zhang
- Department of Physiology, School of Medicine, National Autonomous University of Mexico, Mexico City, Mexico.
| |
Collapse
|
7
|
Shumate KM, Tas ST, Kavalali ET, Emeson RB. RNA editing-mediated regulation of calcium-dependent activator protein for secretion (CAPS1) localization and its impact on synaptic transmission. J Neurochem 2021; 158:182-196. [PMID: 33894004 DOI: 10.1111/jnc.15372] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 03/16/2021] [Accepted: 04/07/2021] [Indexed: 12/12/2022]
Abstract
Calcium-dependent activator protein for secretion 1 (CAPS1) is a SNARE accessory protein that facilitates formation of the SNARE complex to enable neurotransmitter release. Messenger RNAs encoding CAPS1 are subject to a site-specific adenosine-to-inosine (A-to-I) editing event resulting in a glutamate-to-glycine (E-to-G) substitution in the C-terminal domain of the encoded protein product. The C-terminal domain of CAPS1 is necessary for its synaptic enrichment and Cadps RNA editing has been shown previously to enhance the release of neuromodulatory transmitters. Using mutant mouse lines engineered to solely express CAPS1 protein isoforms encoded by either the non-edited or edited Cadps transcript, primary neuronal cultures from mouse hippocampus were used to explore the effect of Cadps editing on neurotransmission and CAPS1 synaptic localization at both glutamatergic and GABAergic synapses. While the editing of Cadps does not alter baseline evoked neurotransmission, it enhances short-term synaptic plasticity, specifically short-term depression, at inhibitory synapses. Cadps editing also alters spontaneous inhibitory neurotransmission. Neurons that solely express edited Cadps have a greater proportion of synapses that contain CAPS1 than neurons that solely express non-edited Cadps for both glutamatergic and GABAergic synapses. Editing of Cadps transcripts is regulated by neuronal activity, as global network stimulation increases the extent of transcripts edited in wild-type hippocampal neurons, whereas chronic network silencing decreases the level of Cadps editing. Taken together, these results provide key insights into the importance of Cadps editing in modulating its own synaptic localization, as well as the modulation of neurotransmission at inhibitory synapses in hippocampal neurons.
Collapse
Affiliation(s)
- Kayla M Shumate
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Sadik T Tas
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ege T Kavalali
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Training Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| | - Ronald B Emeson
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, TN, USA.,Training Program in Neuroscience, Vanderbilt University School of Medicine, Nashville, TN, USA
| |
Collapse
|
8
|
Lima VSS, Mariano DOC, Vigerelli H, Janussi SC, Baptista TVL, Claudino MA, Pimenta DC, Sciani JM. Effects of Kynurenic Acid on the Rat Aorta Ischemia-Reperfusion Model: Pharmacological Characterization and Proteomic Profiling. Molecules 2021; 26:2845. [PMID: 34064778 PMCID: PMC8150825 DOI: 10.3390/molecules26102845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/09/2021] [Accepted: 04/12/2021] [Indexed: 12/28/2022] Open
Abstract
Kynurenic acid (KYNA) is derived from tryptophan, formed by the kynurenic pathway. KYNA is being widely studied as a biomarker for neurological and cardiovascular diseases, as it is found in ischemic conditions as a protective agent; however, little is known about its effect after ischemia-reperfusion in the vascular system. We induced ischemia for 30 min followed by 5 min reperfusion (I/R) in the rat aorta for KYNA evaluation using functional assays combined with proteomics. KYNA recovered the exacerbated contraction induced by phenylephrine and relaxation induced by acetylcholine or sodium nitroprussiate in the I/R aorta, with vessel responses returning to values observed without I/R. The functional recovery can be related to the antioxidant activity of KYNA, which may be acting on the endothelium-injury prevention, especially during reperfusion, and to proteins that regulate neurotransmission and cell repair/growth, expressed after the KYNA treatment. These proteins interacted in a network, confirming a protein profile expression for endothelium and neuron repair after I/R. Thus, the KYNA treatment had the ability to recover the functionality of injured ischemic-reperfusion aorta, by tissue repairing and control of neurotransmitter release, which reinforces its role in the post-ischemic condition, and can be useful in the treatment of such disease.
Collapse
Affiliation(s)
- Viviane Soares Souza Lima
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| | | | - Hugo Vigerelli
- Laboratório de Genética, Instituto Butantan, 05503-900 São Paulo, Brazil;
| | - Sabrina Cardoso Janussi
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| | - Thayz Vanalli Lima Baptista
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| | - Mário Angelo Claudino
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| | - Daniel Carvalho Pimenta
- Laboratório de Bioquímica e Biofísica, Instituto Butantan, 05503-900 São Paulo, Brazil; (D.O.C.M.); (D.C.P.)
| | - Juliana Mozer Sciani
- Laboratório Multidisciplinar em Pesquisa, Universidade São Francisco, 12916-900 Bragança Paulista, Brazil; (V.S.S.L.); (S.C.J.); (T.V.L.B.); (M.A.C.)
| |
Collapse
|
9
|
Gulyássy P, Puska G, Györffy BA, Todorov-Völgyi K, Juhász G, Drahos L, Kékesi KA. Proteomic comparison of different synaptosome preparation procedures. Amino Acids 2020; 52:1529-1543. [PMID: 33211194 PMCID: PMC7695668 DOI: 10.1007/s00726-020-02912-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 11/05/2020] [Indexed: 01/10/2023]
Abstract
Synaptosomes are frequently used research objects in neurobiology studies focusing on synaptic transmission as they mimic several aspects of the physiological synaptic functions. They contain the whole apparatus for neurotransmission, the presynaptic nerve ending with synaptic vesicles, synaptic mitochondria and often a segment of the postsynaptic membrane along with the postsynaptic density is attached to its outer surface. As being artificial functional organelles, synaptosomes are viable for several hours, retain their activity, membrane potential, and capable to store, release, and reuptake neurotransmitters. Synaptosomes are ideal subjects for proteomic analysis. The recently available separation and protein detection techniques can cope with the reduced complexity of the organelle and enable the simultaneous qualitative and quantitative analysis of thousands of proteins shaping the structural and functional characteristics of the synapse. Synaptosomes are formed during the homogenization of nervous tissue in the isoosmotic milieu and can be isolated from the homogenate by various approaches. Each enrichment method has its own benefits and drawbacks and there is not a single method that is optimal for all research purposes. For a proper proteomic experiment, it is desirable to preserve the native synaptic structure during the isolation procedure and keep the degree of contamination from other organelles or cell types as low as possible. In this article, we examined five synaptosome isolation methods from a proteomic point of view by the means of electron microscopy, Western blot, and liquid chromatography-mass spectrometry to compare their efficiency in the isolation of synaptosomes and depletion of contaminating subcellular structures. In our study, the different isolation procedures led to a largely overlapping pool of proteins with a fairly similar distribution of presynaptic, active zone, synaptic vesicle, and postsynaptic proteins; however, discrete differences were noticeable in individual postsynaptic proteins and in the number of identified transmembrane proteins. Much pronounced variance was observed in the degree of contamination with mitochondrial and glial structures. Therefore, we suggest that in selecting the appropriate isolation method for any neuroproteomics experiment carried out on synaptosomes, the degree and sort/source of contamination should be considered as a primary aspect.
Collapse
Affiliation(s)
- Péter Gulyássy
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary.
| | - Gina Puska
- Department of Anatomy, Cell and Development Biology, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary.,Department of Ecology, University of Veterinary Medicine Budapest, Budapest, 1078, Hungary.,MTA-ELTE NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Balázs A Györffy
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary.,ELTE-NAP Neuroimmunology Research Group, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Katalin Todorov-Völgyi
- MTA-ELTE NAP Laboratory of Molecular and Systems Neurobiology, Institute of Biology, Hungarian Academy of Sciences and ELTE Eötvös Loránd University, Budapest, 1117, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - Gábor Juhász
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary.,Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| | - László Drahos
- MTA-TTK NAP B MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest, 1117, Hungary.,MS Proteomics Research Group, Research Centre for Natural Sciences, Budapest, 1117, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Institute of Biology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary.,Department of Physiology and Neurobiology, ELTE Eötvös Loránd University, Budapest, 1117, Hungary
| |
Collapse
|
10
|
Abstract
Neuropeptides are important for regulating numerous neural functions and behaviors. Release of neuropeptides requires long-lasting, high levels of cytosolic Ca2+ However, the molecular regulation of neuropeptide release remains to be clarified. Recently, Stac3 was identified as a key regulator of L-type Ca2+ channels (CaChs) and excitation-contraction coupling in vertebrate skeletal muscles. There is a small family of stac genes in vertebrates with other members expressed by subsets of neurons in the central nervous system. The function of neural Stac proteins, however, is poorly understood. Drosophila melanogaster contain a single stac gene, Dstac, which is expressed by muscles and a subset of neurons, including neuropeptide-expressing motor neurons. Here, genetic manipulations, coupled with immunolabeling, Ca2+ imaging, electrophysiology, and behavioral analysis, revealed that Dstac regulates L-type CaChs (Dmca1D) in Drosophila motor neurons and this, in turn, controls the release of neuropeptides.
Collapse
|
11
|
CAPS1 Suppresses Tumorigenesis in Cholangiocarcinoma. Dig Dis Sci 2020; 65:1053-1063. [PMID: 31562609 DOI: 10.1007/s10620-019-05843-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 08/02/2019] [Indexed: 12/09/2022]
Abstract
BACKGROUND CAPS1 (calcium-dependent activator protein for secretion) is a multi-domain protein involved in regulating exocytosis of synaptic vesicles and dense-core vesicles. However, the expression and function of CAPS1 in cholangiocarcinoma (CCA) remains unclear. In the present study, we explored the role of CAPS1 in CCA carcinogenesis. METHODS CAPS1 expression was explored using western blotting and immunohistochemistry in four CCA cell lines and clinical samples from 90 cases of CCA. The clinical significance of CAPS1 was analyzed. The biological function of CAPS1 in CCA cells was detected in vitro and in vivo. The underlying mechanism of CAPS1 function was explored by detecting the expression of critical molecules in its associated signaling pathways. The mechanism of CAPS1 downregulation in tumor tissues was explored using in silico prediction and luciferase reporter assays. RESULTS CAPS1 expression was reduced in CCA cell lines and human tumor tissues. Loss of CAPS1 in tumor tissues was closely associated with poor prognosis of patients with CCA. Moreover, CAPS1 expression correlated significantly with tumor-node-metastasis stage, lymph node metastasis, and vascular invasion. Lentivirus-mediated CAPS1 overexpression substantially prevented clone formation, cell proliferation, and cell cycle progression. CAPS1 overexpression also suppressed carcinogenesis in nude mice. Mechanistically, CAPS1 overexpression greatly accelerated the ERK and p38 MAPK signal pathways. In addition, microRNA miR-30e-5p negatively regulated CAPS1 expression. CONCLUSION These data showed that CAPS1 functions as a tumor suppressor in CCA. Reduced CAPS1 expression could indicate poor prognosis of patients with CCA.
Collapse
|
12
|
Iron Oxide Nanoparticles Affects Behaviour and Monoamine Levels in Mice. Neurochem Res 2019; 44:1533-1548. [PMID: 30941547 DOI: 10.1007/s11064-019-02774-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 03/08/2019] [Accepted: 03/09/2019] [Indexed: 10/27/2022]
Abstract
Iron oxide (Fe2O3) nanoparticles (NPs) attract the attention of clinicians for its unique magnetic and paramagnetic properties, which are exclusively used in neurodiagnostics and therapeutics among the other biomedical applications. Despite numerous research findings has already proved neurotoxicity of Fe2O3-NPs, factors affecting neurobehaviour has not been elucidated. In this study, mice were exposed to Fe2O3-NPs (25 and 50 mg/kg body weight) by oral intubation daily for 30 days. It was observed that Fe2O3-NPs remarkably impair motor coordination and memory. In the treated brain regions, mitochondrial damage, depleted energy level and decreased ATPase (Mg2+, Ca2+ and Na+/K+) activities were observed. Disturbed ion homeostasis and axonal demyelination in the treated brain regions contributes to poor motor coordination. Increased intracellular calcium ([Ca2+]i) and decreased expression of growth associated protein 43 (GAP43) impairs vesicular exocytosis could result in insufficient signal between neurons. In addition, levels of dopamine (DA), norepinephrine (NE) and epinephrine (EP) were found to be altered in the subjected brain regions in correspondence to the expression of monoamine oxidases (MAO). Along with all these factors, over expression of glial fibrillary acidic protein (GFAP) confirms the neuronal damage, suggesting the evidences for behavioural changes.
Collapse
|
13
|
Shinoda Y, Sadakata T, Akagi T, Sakamaki Y, Hashikawa T, Sano Y, Furuichi T. Calcium-dependent activator protein for secretion 2 (CADPS2) deficiency causes abnormal synapse development in hippocampal mossy fiber terminals. Neurosci Lett 2018; 677:65-71. [PMID: 29689341 DOI: 10.1016/j.neulet.2018.04.036] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2018] [Revised: 04/06/2018] [Accepted: 04/18/2018] [Indexed: 12/27/2022]
Abstract
Hippocampal mossy fibers (MFs) project from dentate gyrus granule cells onto the CA2-CA3 region. MF-mediated synaptic transmission plays an important role in hippocampal learning and memory. However, the molecular mechanisms underlying MF synaptic development and subsequent functional organization are not fully understood. We previously reported that calcium-dependent activator protein for secretion 2 (CADPS2, also known as CAPS2) regulates the secretion of dense-core vesicles (DCVs). Because CADPS2 is strongly expressed in MF terminals, we hypothesized that CADPS2 regulates the development and functional organization of MF synapses by controlling the secretion of DCVs and their contents. To test this, we compared the synaptic microstructures of hippocampal MF terminals in Cadps2 knockout (KO) mice and wild-type (WT) mice by electron microscopy (EM). On postnatal day 15 (P15), KO mice exhibited morphological abnormalities in MF boutons, including smaller bouton size, a larger number of DCVs and a smaller number of post-synaptic densities (PSDs), compared with WT mice. In adults (P56), MF boutons were larger in KO mice. Synaptic vesicles (SVs) were increased but with a lower density compared with the WT. Furthermore, the number of SVs was decreased near the active zone. Moreover, MF-innervated CA3 postsynapses in KO mice displayed aberrant structures at the postsynaptic density (PSD), with an increased number of PSDs (likely because of a larger number of perforated PSDs), compared with WT mice. Taken together, our findings suggest that CADPS2 plays a critical role in MF synaptic development and functional organization.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Environmental Health, School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan; Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| | - Tetsushi Sadakata
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan; Education and Research Support Center, Gunma University Graduate School of Medicine, Maebashi, Gunma 371-8511, Japan
| | - Takumi Akagi
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama 351-0106, Japan; Department of Physiology, Nippon Medical School, Bunkyo-ku, Tokyo 113-8602, Japan
| | - Yuriko Sakamaki
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama 351-0106, Japan; Research Core, Tokyo Medical and Dental University, Bunkyo-ku, Tokyo 113-8510, Japan
| | - Tsutomu Hashikawa
- Research Resource Center, RIKEN Brain Science Institute, Wako, Saitama 351-0106, Japan; Laboratory for Molecular Mechanisms of Thalamus Development, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Faculty of Science and Technology, Tokyo University of Science, Noda, Chiba 278-8510, Japan; Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan.
| |
Collapse
|
14
|
Calahorro F, Izquierdo PG. The presynaptic machinery at the synapse of C. elegans. INVERTEBRATE NEUROSCIENCE : IN 2018; 18:4. [PMID: 29532181 PMCID: PMC5851683 DOI: 10.1007/s10158-018-0207-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Accepted: 02/22/2018] [Indexed: 11/17/2022]
Abstract
Synapses are specialized contact sites that mediate information flow between neurons and their targets. Important physical interactions across the synapse are mediated by synaptic adhesion molecules. These adhesions regulate formation of synapses during development and play a role during mature synaptic function. Importantly, genes regulating synaptogenesis and axon regeneration are conserved across the animal phyla. Genetic screens in the nematode Caenorhabditis elegans have identified a number of molecules required for synapse patterning and assembly. C. elegans is able to survive even with its neuronal function severely compromised. This is in comparison with Drosophila and mice where increased complexity makes them less tolerant to impaired function. Although this fact may reflect differences in the function of the homologous proteins in the synapses between these organisms, the most likely interpretation is that many of these components are equally important, but not absolutely essential, for synaptic transmission to support the relatively undemanding life style of laboratory maintained C. elegans. Here, we review research on the major group of synaptic proteins, involved in the presynaptic machinery in C. elegans, showing a strong conservation between higher organisms and highlight how C. elegans can be used as an informative tool for dissecting synaptic components, based on a simple nervous system organization.
Collapse
Affiliation(s)
- Fernando Calahorro
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK.
| | - Patricia G Izquierdo
- Biological Sciences, University of Southampton, Life Sciences Building 85, Southampton, SO17 1BJ, UK
| |
Collapse
|
15
|
Deletion Involving the 7q31-32 Band at the CADPS2 Gene Locus in a Patient with Autism Spectrum Disorder and Recurrent Psychotic Syndrome Triggered by Stress. Case Rep Psychiatry 2017; 2017:4254152. [PMID: 29201482 PMCID: PMC5671701 DOI: 10.1155/2017/4254152] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 09/13/2017] [Indexed: 11/17/2022] Open
Abstract
Autism spectrum disorder (ASD) is a neurodevelopmental disorder marked by impairments in social functioning, language, communication, and behavior. Recent genome-wide association studies show some microdeletions on the 7q31-32 region, including the CADPS2 locus in autistic patients. This paper reports the case of a patient with ASD and recurrent psychotic syndrome, in which a deletion on the 7q31-32 band at the CADPS2 gene locus was evidenced, as well as a brief review of the literature on the CADPS2 gene and its association with ASD.
Collapse
|
16
|
van Keimpema L, Kooistra R, Toonen RF, Verhage M. CAPS-1 requires its C2, PH, MHD1 and DCV domains for dense core vesicle exocytosis in mammalian CNS neurons. Sci Rep 2017; 7:10817. [PMID: 28883501 PMCID: PMC5589909 DOI: 10.1038/s41598-017-10936-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 08/16/2017] [Indexed: 01/11/2023] Open
Abstract
CAPS (calcium-dependent activator protein for secretion) are multi-domain proteins involved in regulated exocytosis of synaptic vesicles (SVs) and dense core vesicles (DCVs). Here, we assessed the contribution of different CAPS-1 domains to its subcellular localization and DCV exocytosis by expressing CAPS-1 mutations in four functional domains in CAPS-1/-2 null mutant (CAPS DKO) mouse hippocampal neurons, which are severely impaired in DCV exocytosis. CAPS DKO neurons showed normal development and no defects in DCV biogenesis and their subcellular distribution. Truncation of the CAPS-1 C-terminus (CAPS Δ654-1355) impaired CAPS-1 synaptic enrichment. Mutations in the C2 (K428E or G476E) or pleckstrin homology (PH; R558D/K560E/K561E) domain did not. However, all mutants rescued DCV exocytosis in CAPS DKO neurons to only 20% of wild type CAPS-1 exocytosis capacity. To assess the relative importance of CAPS for both secretory pathways, we compared effect sizes of CAPS-1/-2 deficiency on SV and DCV exocytosis. Using the same (intense) stimulation, DCV exocytosis was impaired relatively strong (96% inhibition) compared to SV exocytosis (39%). Together, these data show that the CAPS-1 C-terminus regulates synaptic enrichment of CAPS-1. All CAPS-1 functional domains are required, and the C2 and PH domain together are not sufficient, for DCV exocytosis in mammalian CNS neurons.
Collapse
Affiliation(s)
- Linda van Keimpema
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands
- Sylics (Synaptologics BV), PO box 71033, 1008 BA, Amsterdam, The Netherlands
| | - Robbelien Kooistra
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands
| | - Ruud F Toonen
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands.
| | - Matthijs Verhage
- Department of Functional Genomics, Center for Neurogenomics and Cognitive Research, VU University, 1081 HV, Amsterdam, The Netherlands.
| |
Collapse
|
17
|
Udvari EB, Völgyi K, Gulyássy P, Dimén D, Kis V, Barna J, Szabó ÉR, Lubec G, Juhász G, Kékesi KA, Dobolyi Á. Synaptic proteome changes in the hypothalamus of mother rats. J Proteomics 2017; 159:54-66. [PMID: 28286321 DOI: 10.1016/j.jprot.2017.03.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Revised: 02/01/2017] [Accepted: 03/07/2017] [Indexed: 12/16/2022]
Abstract
To establish synaptic proteome changes associated with motherhood, we isolated synaptosome fractions from the hypothalamus of mother rats and non-maternal control females at the 11th postpartum day. Proteomic analysis by two-dimensional differential gel electrophoresis combined with mass spectrometric protein identification established 26 significant proteins, 7 increasing and 19 decreasing protein levels in the dams. The altered proteins are mainly involved in energy homeostasis, protein folding, and metabolic processes suggesting the involvement of these cellular processes in maternal adaptations. The decrease in a significantly altered protein, complement component 1q subcomponent-binding protein (C1qbp) was validated with Western blotting. Furthermore, immunohistochemistry showed its presence in hypothalamic fibers and terminals in agreement with its presence in synaptosomes. We also found the expression of C1qbp in different hypothalamic nuclei including the preoptic area and the paraventricular hypothalamic nucleus at the protein and at the mRNA level using immunohistochemistry and in situ hybridization histochemistry, respectively. Bioinformatical network analysis revealed that cytokines, growth factors, and protein kinases are common regulators, which indicates a complex regulation of the proteome change in mothers. The results suggest that maternal responsiveness is associated with synaptic proteins level changes in the hypothalamus, and that growth factors and cytokines may govern these alterations. BIOLOGICAL SIGNIFICANCE The period of motherhood is accompanied with several behavioral, neuroendocrine, emotional and metabolic adaptations in the brain. Although it is established that various hypothalamic networks participate in the maternal adaptations of the rodent brain, our knowledge on the molecular background of these alterations remains seriously limited. In the present study, we first determined that the functional alterations of the maternal brain can be detected at the level of the synaptic proteome in the hypothalamus. Independent confirmation of synaptic localization, and also the established decrease in the level of C1qbp protein suggest the validity of the data. Common regulators of altered proteins belonging to the growth factor and cytokine family suggest that the synaptic adaptation is governed by these extracellular signals and future studies should focus on their specific roles. Our study was also the first to describe the expression pattern of C1qbp in the hypothalamus, a protein potentially involved in mitochondrial and neuroimmunological regulations of synaptic plasticity. Its presence in the preoptic area responsible for maternal behaviors and also in the paraventricular hypothalamic and arcuate nuclei regulating hormonal levels suggests that the same proteins may be involved in different aspects of maternal adaptations. The conclusions of the present work contribute to establishing the molecular alterations that determine different maternal adaptations in the brain. Since maternal changes are models of neuronal plasticity in all social interactions, the reported results can affect a wide field of molecular and behavioral neuroscience.
Collapse
Affiliation(s)
- Edina Brigitta Udvari
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary; Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Katalin Völgyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary
| | - Péter Gulyássy
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Pharmaceutical Chemistry, University of Vienna, Vienna A-1090, Austria; MTA-TTK NAP MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Diána Dimén
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Viktor Kis
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary; Department of Anatomy, Cell and Developmental Biology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - János Barna
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest H-1094, Hungary
| | - Éva Rebeka Szabó
- Laboratory of Neuromorphology, Department of Anatomy, Histology and Embryology, Semmelweis University, Budapest H-1094, Hungary
| | - Gert Lubec
- Department of Pharmaceutical Chemistry, University of Vienna, Vienna A-1090, Austria
| | - Gábor Juhász
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; MTA-TTK NAP MS Neuroproteomics Research Group, Hungarian Academy of Sciences, Budapest H-1117, Hungary
| | - Katalin Adrienna Kékesi
- Laboratory of Proteomics, Institute of Biology, Eötvös Loránd University, Budapest H-1117, Hungary; Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest H-1117, Hungary
| | - Árpád Dobolyi
- MTA-ELTE NAP B Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary; MTA-ELTE Laboratory of Molecular and Systems Neurobiology, Department of Physiology and Neurobiology, Hungarian Academy of Sciences and Eötvös Loránd University, Budapest H-1117, Hungary.
| |
Collapse
|
18
|
Analysis of gene expression in Ca2+-dependent activator protein for secretion 2 (Cadps2) knockout cerebellum using GeneChip and KEGG pathways. Neurosci Lett 2017; 639:88-93. [DOI: 10.1016/j.neulet.2016.12.068] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Revised: 12/09/2016] [Accepted: 12/28/2016] [Indexed: 11/20/2022]
|
19
|
Shinoda Y, Ishii C, Fukazawa Y, Sadakata T, Ishii Y, Sano Y, Iwasato T, Itohara S, Furuichi T. CAPS1 stabilizes the state of readily releasable synaptic vesicles to fusion competence at CA3-CA1 synapses in adult hippocampus. Sci Rep 2016; 6:31540. [PMID: 27545744 PMCID: PMC4992871 DOI: 10.1038/srep31540] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 07/21/2016] [Indexed: 01/06/2023] Open
Abstract
Calcium-dependent activator protein for secretion 1 (CAPS1) regulates exocytosis of dense-core vesicles in neuroendocrine cells and of synaptic vesicles in neurons. However, the synaptic function of CAPS1 in the mature brain is unclear because Caps1 knockout (KO) results in neonatal death. Here, using forebrain-specific Caps1 conditional KO (cKO) mice, we demonstrate, for the first time, a critical role of CAPS1 in adult synapses. The amplitude of synaptic transmission at CA3–CA1 synapses was strongly reduced, and paired-pulse facilitation was significantly increased, in acute hippocampal slices from cKO mice compared with control mice, suggesting a perturbation in presynaptic function. Morphological analysis revealed an accumulation of synaptic vesicles in the presynapse without any overall morphological change. Interestingly, however, the percentage of docked vesicles was markedly decreased in the Caps1 cKO. Taken together, our findings suggest that CAPS1 stabilizes the state of readily releasable synaptic vesicles, thereby enhancing neurotransmitter release at hippocampal synapses.
Collapse
Affiliation(s)
- Yo Shinoda
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan.,School of Pharmacy, Tokyo University of Pharmacy and Life Sciences, Hachioji, Tokyo 192-0392, Japan
| | - Chiaki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yugo Fukazawa
- Department of Brain Structure and Function, Faculty of Medical Sciences, University of Fukui, Yoshida-gun, Fukui 910-1193, Japan
| | - Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Maebashi, Gunma 371-8511, Japan
| | - Yuki Ishii
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Yoshitake Sano
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| | - Takuji Iwasato
- Division of Neurogenetics, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan.,Department of Genetics, SOKENDAI, Mishima, Shizuoka 411-8540, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Teiichi Furuichi
- Department of Applied Biological Science, Tokyo University of Science, Noda, Chiba 278-8510, Japan
| |
Collapse
|
20
|
Interaction of Ca(2+)-dependent activator protein for secretion 1 (CAPS1) with septin family proteins in mouse brain. Neurosci Lett 2016; 617:232-5. [PMID: 26917099 DOI: 10.1016/j.neulet.2016.02.035] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 02/18/2016] [Accepted: 02/19/2016] [Indexed: 01/22/2023]
Abstract
The Ca(2+)-dependent activator protein for secretion 1 (CAPS1) protein plays a regulatory role in the dense-core vesicle exocytosis pathway. To clarify the functions of this protein in the brain, we searched for novel interaction partners of CAPS1 by mass spectrometry. We identified a specific interaction of CAPS1 with septin family proteins. We also demonstrated that the C-terminal region of the CAPS1 protein binds to part of the deduced GTP-binding domain of septin proteins. It is possible that a tertiary complex of septin, CAPS, and syntaxin contributes to dense-core vesicle trafficking and exocytosis in neurons.
Collapse
|
21
|
Axonal localization of Ca2+-dependent activator protein for secretion 2 is critical for subcellular locality of brain-derived neurotrophic factor and neurotrophin-3 release affecting proper development of postnatal mouse cerebellum. PLoS One 2014; 9:e99524. [PMID: 24923991 PMCID: PMC4055771 DOI: 10.1371/journal.pone.0099524] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 05/15/2014] [Indexed: 12/12/2022] Open
Abstract
Ca2+-dependent activator protein for secretion 2 (CAPS2) is a protein that is essential for enhanced release of brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3) from cerebellar granule cells. We previously identified dex3, a rare alternative splice variant of CAPS2, which is overrepresented in patients with autism and is missing an exon 3 critical for axonal localization. We recently reported that a mouse model CAPS2Δex3/Δex3 expressing dex3 showed autistic-like behavioral phenotypes including impaired social interaction and cognition and increased anxiety in an unfamiliar environment. Here, we verified impairment in axonal, but not somato-dendritic, localization of dex3 protein in cerebellar granule cells and demonstrated cellular and physiological phenotypes in postnatal cerebellum of CAPS2Δex3/Δex3 mice. Interestingly, both BDNF and NT-3 were markedly reduced in axons of cerebellar granule cells, resulting in a significant decrease in their release. As a result, dex3 mice showed developmental deficits in dendritic arborization of Purkinje cells, vermian lobulation and fissurization, and granule cell precursor proliferation. Paired-pulse facilitation at parallel fiber-Purkinje cell synapses was also impaired. Together, our results indicate that CAPS2 plays an important role in subcellular locality (axonal vs. somato-dendritic) of enhanced BDNF and NT-3 release, which is indispensable for proper development of postnatal cerebellum.
Collapse
|
22
|
Sharrad DF, Gai WP, Brookes SJH. Selective coexpression of synaptic proteins, α-synuclein, cysteine string protein-α, synaptophysin, synaptotagmin-1, and synaptobrevin-2 in vesicular acetylcholine transporter-immunoreactive axons in the guinea pig ileum. J Comp Neurol 2014; 521:2523-37. [PMID: 23296877 DOI: 10.1002/cne.23296] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2012] [Revised: 12/10/2012] [Accepted: 12/27/2012] [Indexed: 12/25/2022]
Abstract
Parkinson's disease is a neurodegenerative disorder characterized by Lewy bodies and neurites composed mainly of the presynaptic protein α-synuclein. Frequently, Lewy bodies and neurites are identified in the gut of Parkinson's disease patients and may underlie associated gastrointestinal dysfunctions. We recently reported selective expression of α-synuclein in the axons of cholinergic neurons in the guinea pig and human distal gut; however, it is not clear whether α-synuclein expression varies along the gut, nor how closely expression is associated with other synaptic proteins. We used multiple-labeling immunohistochemistry to quantify which neurons in the guinea pig ileum expressed α-synuclein, cysteine string protein-α (CSPα), synaptophysin, synaptotagmin-1, or synaptobrevin-2 in their axons. Among the 10 neurochemically defined axonal populations, a significantly greater proportion of vesicular acetylcholine transporter-immunoreactive (VAChT-IR) varicosities (80% ± 1.7%, n = 4, P < 0.001) contained α-synuclein immunoreactivity, and a significantly greater proportion of α-synuclein-IR axons also contained VAChT immunoreactivity (78% ± 1.3%, n = 4) compared with any of the other nine populations (P < 0.001). Among synaptophysin-, synaptotagmin-1-, synaptobrevin-2-, and CSPα-IR varicosities, 98% ± 0.7%, 96% ± 0.7%, 88% ± 1.6%, and 85% ± 2.9% (n = 4) contained α-synuclein immunoreactivity, respectively. Among α-synuclein-IR varicosities, 96% ± 0.9%, 99% ± 0.6%, 83% ± 1.9%, and 87% ± 2.3% (n = 4) contained synaptophysin-, synaptotagmin-1-, synaptobrevin-2-, and CSPα immunoreactivity, respectively. We report a close association between the expression of α-synuclein and the expression of other synaptic proteins in cholinergic axons in the guinea pig ileum. Selective expression of α-synuclein may relate to the neurotransmitter system utilized and predispose cholinergic enteric neurons to degeneration in Parkinson's disease.
Collapse
Affiliation(s)
- Dale F Sharrad
- Department of Human Physiology and Centre for Neuroscience, Flinders Medical Science and Technology, School of Medicine, Flinders University, Bedford Park, South Australia 5042, Australia
| | | | | |
Collapse
|
23
|
CAPS1 deficiency perturbs dense-core vesicle trafficking and Golgi structure and reduces presynaptic release probability in the mouse brain. J Neurosci 2013; 33:17326-34. [PMID: 24174665 DOI: 10.1523/jneurosci.2777-13.2013] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Ca(2+)-dependent activator protein for secretion 1 (CAPS1) plays a regulatory role in the dense-core vesicle (DCV) exocytosis pathway, but its functions at the cellular and synaptic levels in the brain are essentially unknown because of neonatal death soon after birth in Caps1 knock-out mice. To clarify the functions of the protein in the brain, we generated two conditional knock-out (cKO) mouse lines: 1) one lacking Caps1 in the forebrain; and 2) the other lacking Caps1 in the cerebellum. Both cKO mouse lines were born normally and grew to adulthood, although they showed subcellular and synaptic abnormalities. Forebrain-specific Caps1 cKO mice showed reduced immunoreactivity for the DCV marker secretogranin II (SgII) and the trans-Golgi network (TGN) marker syntaxin 6, a reduced number of presynaptic DCVs, and dilated trans-Golgi cisternae in the CA3 region. Cerebellum-specific Caps1 cKO mice had decreased immunoreactivity for SgII and brain-derived neurotrophic factor (BDNF) along the climbing fibers. At climbing fiber-Purkinje cell synapses, the number of DCVs was markedly lower and the number of synaptic vesicles was also reduced. Correspondingly, the mean amplitude of EPSCs was decreased, whereas paired-pulse depression was significantly increased. Our results suggest that loss of CAPS1 disrupts the TGN-DCV pathway, which possibly impairs synaptic transmission by reducing the presynaptic release probability.
Collapse
|
24
|
Schweizer DF, Schweizer R, Zhang S, Kamat P, Contaldo C, Rieben R, Eberli D, Giovanoli P, Erni D, Plock JA. Botulinum toxin A and B raise blood flow and increase survival of critically ischemic skin flaps. J Surg Res 2013; 184:1205-13. [DOI: 10.1016/j.jss.2013.04.004] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2012] [Revised: 02/23/2013] [Accepted: 04/04/2013] [Indexed: 10/26/2022]
|
25
|
Chen RHC, Wislet-Gendebien S, Samuel F, Visanji NP, Zhang G, Marsilio D, Langman T, Fraser PE, Tandon A. α-Synuclein membrane association is regulated by the Rab3a recycling machinery and presynaptic activity. J Biol Chem 2013; 288:7438-7449. [PMID: 23344955 DOI: 10.1074/jbc.m112.439497] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
α-Synuclein is an abundant presynaptic protein and a primary component of Lewy bodies in Parkinson disease. Although its pathogenic role remains unclear, in healthy nerve terminals α-synuclein undergoes a cycle of membrane binding and dissociation. An α-synuclein binding assay was used to screen for vesicle proteins involved in α-synuclein membrane interactions and showed that antibodies directed to the Ras-related GTPase Rab3a and its chaperone RabGDI abrogated α-synuclein membrane binding. Biochemical analyses, including density gradient sedimentation and co-immunoprecipitation, suggested that α-synuclein interacts with membrane-associated GTP-bound Rab3a but not to cytosolic GDP-Rab3a. Accumulation of membrane-bound α-synuclein was induced by the expression of a GTPase-deficient Rab3a mutant, by a dominant-negative GDP dissociation inhibitor mutant unable to recycle Rab3a off membranes, and by Hsp90 inhibitors, radicicol and geldanamycin, which are known to inhibit Rab3a dissociation from membranes. Thus, all treatments that inhibited Rab3a recycling also increased α-synuclein sequestration on intracellular membranes. Our results suggest that membrane-bound GTP-Rab3a stabilizes α-synuclein on synaptic vesicles and that the GDP dissociation inhibitor·Hsp90 complex that controls Rab3a membrane dissociation also regulates α-synuclein dissociation during synaptic activity.
Collapse
Affiliation(s)
- Robert H C Chen
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2
| | - Sabine Wislet-Gendebien
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2
| | - Filsy Samuel
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2
| | - Naomi P Visanji
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2
| | - Gang Zhang
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2
| | - Diana Marsilio
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2
| | - Tammy Langman
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2
| | - Paul E Fraser
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2; Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Anurag Tandon
- Tanz Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2; Department of Medicine, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
26
|
Reduced axonal localization of a Caps2 splice variant impairs axonal release of BDNF and causes autistic-like behavior in mice. Proc Natl Acad Sci U S A 2012; 109:21104-9. [PMID: 23213205 DOI: 10.1073/pnas.1210055109] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Ca(2)(+)-dependent activator protein for secretion 2 (CAPS2 or CADPS2) potently promotes the release of brain-derived neurotrophic factor (BDNF). A rare splicing form of CAPS2 with deletion of exon3 (dex3) was identified to be overrepresented in some patients with autism. Here, we generated Caps2-dex3 mice and verified a severe impairment in axonal Caps2-dex3 localization, contributing to a reduction in BDNF release from axons. In addition, circuit connectivity, measured by spine and interneuron density, was diminished globally. The collective effect of reduced axonal BDNF release during development was a striking and selective repertoire of deficits in social- and anxiety-related behaviors. Together, these findings represent a unique mouse model of a molecular mechanism linking BDNF-mediated coordination of brain development to autism-related behaviors and patient genotype.
Collapse
|
27
|
Autistic-like behavioral phenotypes in a mouse model with copy number variation of the CAPS2/CADPS2 gene. FEBS Lett 2012; 587:54-9. [PMID: 23159942 DOI: 10.1016/j.febslet.2012.10.047] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2012] [Revised: 09/24/2012] [Accepted: 10/29/2012] [Indexed: 01/04/2023]
Abstract
Ca²⁺-dependent activator protein for secretion 2 (CAPS2 or CADPS2) facilitates secretion and trafficking of dense-core vesicles. Recent genome-wide association studies of autism have identified several microdeletions due to copy number variation (CNV) in one of the chromosome 7q31.32 alleles on which the locus for CAPS2 is located in autistic patients. To evaluate the biological significance of reducing CAPS2 copy number, we analyzed CAPS2 heterozygous mice. Our present findings suggest that adequate levels of CAPS2 protein are critical for normal brain development and behavior, and that allelic changes due to CNV may contribute to autistic symptoms in combination with deficits in other autism-associated genes.
Collapse
|
28
|
Fusion pore regulation in peptidergic vesicles. Cell Calcium 2012; 52:270-6. [PMID: 22571866 DOI: 10.1016/j.ceca.2012.04.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Revised: 04/02/2012] [Accepted: 04/14/2012] [Indexed: 12/19/2022]
Abstract
Regulated exocytosis, which involves fusion of secretory vesicles with the plasma membrane, is an important mode of communication between cells. In this process, signalling molecules that are stored in secretory vesicles are released into the extracellular space. During the initial stage of fusion, the interior of the vesicle is connected to the exterior of the cell with a narrow, channel-like structure: the fusion pore. It was long believed that the fusion pore is a short-lived intermediate state leading irreversibly to fusion pore dilation. However, recent results show that the diameter of the fusion pore can fluctuate, suggesting that the fusion pore is a subject of stabilization. A possible mechanism is addressed in this article, involving the local anisotropicity of membrane constituents that can stabilize the fusion pore. The molecular nature of such a stable fusion pore to predict how interacting molecules (proteins and/or lipids) mediate changes that affect the stability of the fusion pore and exocytosis is also considered. The fusion pore likely attains stability via multiple mechanisms, which include the shape of the lipid and protein membrane constituents and the interactions between them.
Collapse
|
29
|
Abstract
Synaptic transmission is amongst the most sophisticated and tightly controlled biological phenomena in higher eukaryotes. In the past few decades, tremendous progress has been made in our understanding of the molecular mechanisms underlying multiple facets of neurotransmission, both pre- and postsynaptically. Brought under the spotlight by pioneer studies in the areas of secretion and signal transduction, phosphoinositides and their metabolizing enzymes have been increasingly recognized as key protagonists in fundamental aspects of neurotransmission. Not surprisingly, dysregulation of phosphoinositide metabolism has also been implicated in synaptic malfunction associated with a variety of brain disorders. In the present chapter, we summarize current knowledge on the role of phosphoinositides at the neuronal synapse and highlight some of the outstanding questions in this research field.
Collapse
Affiliation(s)
- Samuel G Frere
- Department of Pathology and Cell Biology, Taub Institute for Research on Alzheimer's Disease and the Aging Brain, Columbia University Medical Center, 630 West 168th Street, P&S 12-420C, 10032, New York, USA
| | | | | |
Collapse
|
30
|
Sadakata T, Sekine Y, Oka M, Itakura M, Takahashi M, Furuichi T. Calcium-dependent activator protein for secretion 2 interacts with the class II ARF small GTPases and regulates dense-core vesicle trafficking. FEBS J 2011; 279:384-94. [PMID: 22111578 DOI: 10.1111/j.1742-4658.2011.08431.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The Ca(2+) -dependent activator protein for secretion (CAPS) family consists of two members (CAPS1 and CAPS2) and regulates the exocytosis of catecholamine-containing or neuropeptide-containing dense-core vesicles (DCVs) at secretion sites such as nerve terminals. A large fraction of CAPS1, however, is localized in the cell soma, and we have recently shown the possible involvement of somal CAPS1 in DCV trafficking in the trans-Golgi network. CAPS1 and CAPS2 are differentially expressed in various regions of the mouse brain but exhibit similar expression patterns in other tissues, such as the spleen. Thus, in the present study we analyzed whether CAPS2 displays similar subcellular localization and functional roles in the cell soma as CAPS1. We found that somal CAPS2 is associated with the Golgi membrane, and mediates binding and recruitment of the GDP-bound form of ARF4 and ARF5 (members of the membrane-trafficking small GTPase family) to the Golgi membrane. CAPS2 knockdown and overexpression of CAPS2-binding-deficient ARF4/ARF5 both induced accumulation of the DCV resident protein chromogranin A around the Golgi apparatus. CAPS2 knockout mice have dilated trans-Golgi structures when viewed by electron microscopy. These results for CAPS2 strongly support our idea that the CAPS family proteins exert dual roles in DCV trafficking, mediating trafficking at both the secretion site for exocytosis and at the Golgi complex for biogenesis.
Collapse
Affiliation(s)
- Tetsushi Sadakata
- Advanced Scientific Research Leaders Development Unit, Gunma University, Japan
| | | | | | | | | | | |
Collapse
|
31
|
Visanji NP, Wislet-Gendebien S, Oschipok LW, Zhang G, Aubert I, Fraser PE, Tandon A. Effect of Ser-129 phosphorylation on interaction of α-synuclein with synaptic and cellular membranes. J Biol Chem 2011; 286:35863-35873. [PMID: 21849493 DOI: 10.1074/jbc.m111.253450] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
In the healthy brain, less than 5% of α-synuclein (α-syn) is phosphorylated at serine 129 (Ser(P)-129). However, within Parkinson disease (PD) Lewy bodies, 89% of α-syn is Ser(P)-129. The effects of Ser(P)-129 modification on α-syn distribution and solubility are poorly understood. As α-syn normally exists in both membrane-bound and cytosolic compartments, we examined the binding and dissociation of Ser(P)-129 α-syn and analyzed the effects of manipulating Ser(P)-129 levels on α-syn membrane interactions using synaptosomal membranes and neural precursor cells from α-syn-deficient mice or transgenic mice expressing human α-syn. We first evaluated the recovery of the Ser(P)-129 epitope following either α-syn membrane binding or dissociation. We demonstrate a rapid turnover of Ser(P)-129 during both binding to and dissociation from synaptic membranes. Although the membrane binding of WT α-syn was insensitive to modulation of Ser(P)-129 levels by multiple strategies (the use of phosphomimic S129D and nonphosphorylated S129A α-syn mutants; by enzymatic dephosphorylation of Ser(P)-129 or proteasome inhibitor-induced elevation in Ser(P)-129; or by inhibition or stable overexpression of PLK2), PD mutant Ser(P)-129 α-syn showed a preferential membrane association compared with WT Ser(P)-129 α-syn. Collectively, these data suggest that phosphorylation at Ser-129 is dynamic and that the subcellular distribution of α-syn bearing PD-linked mutations, A30P or A53T, is influenced by the phosphorylation state of Ser-129.
Collapse
Affiliation(s)
- Naomi P Visanji
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | | | - Loren W Oschipok
- Brain Research Centre, University of British Columbia, British Columbia V6T 2B5, Canada
| | - Gang Zhang
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2, Canada
| | - Isabelle Aubert
- Sunnybrook Research Institute and Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario M4N 3M5, Canada
| | - Paul E Fraser
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2, Canada; Department of Medical Biophysics, University of Toronto, Toronto, Ontario M5S 1A8, Canada
| | - Anurag Tandon
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario M5S 3H2, Canada; Department of Medicine, University of Toronto, Toronto, Ontario M5S 1A8, Canada.
| |
Collapse
|
32
|
Matsuoka H, Harada K, Nakamura J, Fukuda M, Inoue M. Differential distribution of synaptotagmin-1, -4, -7, and -9 in rat adrenal chromaffin cells. Cell Tissue Res 2011; 344:41-50. [PMID: 21287204 DOI: 10.1007/s00441-011-1131-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 01/12/2011] [Indexed: 11/27/2022]
Abstract
Neurons and certain kinds of endocrine cells, such as adrenal chromaffin cells, have large dense-core vesicles (LDCVs) and synaptic vesicles or synaptic-like microvesicles (SLMVs). These secretory vesicles exhibit differences in Ca(2+) sensitivity and contain diverse signaling substances. The present work was undertaken to identify the synaptotagmin (Syt) isoforms present in secretory vesicles. Fractionation analysis of lysates of the bovine adrenal medulla and immunocytochemistry in rat chromaffin cells indicated that Syt 1 was localized in LDCVs and SLMVs, whereas Syt 7 was the predominant isoform present in LDCVs. In contrast to PC12 cells and the pancreatic β cell line INS-1, Syt 9 was not immunodetected in LDCVs in rat chromaffin cells. Double-staining revealed that Syt 9-like immunoreactivity was nearly identical with fluorescent thapsigargin binding, suggesting the presence of Syt 9 in the endoplasmic reticulum (ER).The exogenous expression of Syt 1-GFP in INS-1 cells, which had a negligible level of endogenous Syt 1, resulted in an increase in the amount of Syt 9 in the ER, suggesting that Syt 9 competes with Syt 1 for trafficking from the ER to the Golgi complex. We conclude that LDCVs mainly contain Syt 7, whereas SLMVs contain Syt 1, but not Syt 7, in rat and bovine chromaffin cells.
Collapse
Affiliation(s)
- Hidetada Matsuoka
- Department of Cell and Systems Physiology, University of Occupational and Environmental Health School of Medicine, Kitakyushu, 807-8555, Japan
| | | | | | | | | |
Collapse
|
33
|
Calcium-dependent activator protein for secretion 2 (CAPS2) promotes BDNF secretion and is critical for the development of GABAergic interneuron network. Proc Natl Acad Sci U S A 2010; 108:373-8. [PMID: 21173225 DOI: 10.1073/pnas.1012220108] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Calcium-dependent activator protein for secretion 2 (CAPS2) is a dense-core vesicle-associated protein that is involved in the secretion of BDNF. BDNF has a pivotal role in neuronal survival and development, including the development of inhibitory neurons and their circuits. However, how CAPS2 affects BDNF secretion and its biological significance in inhibitory neurons are largely unknown. Here we reveal the role of CAPS2 in the regulated secretion of BDNF and show the effect of CAPS2 on the development of hippocampal GABAergic systems. We show that CAPS2 is colocalized with BDNF, both synaptically and extrasynaptically in axons of hippocampal neurons. Overexpression of exogenous CAPS2 in hippocampal neurons of CAPS2-KO mice enhanced depolarization-induced BDNF exocytosis events in terms of kinetics, frequency, and amplitude. We also show that in the CAPS2-KO hippocampus, BDNF secretion is reduced, and GABAergic systems are impaired, including a decreased number of GABAergic neurons and their synapses, a decreased number of synaptic vesicles in inhibitory synapses, and a reduced frequency and amplitude of miniature inhibitory postsynaptic currents. Conversely, excitatory neurons in the CAPS2-KO hippocampus were largely unaffected with respect to field excitatory postsynaptic potentials, miniature excitatory postsynaptic currents, and synapse number and morphology. Moreover, CAPS2-KO mice exhibited several GABA system-associated deficits, including reduced late-phase long-term potentiation at CA3-CA1 synapses, decreased hippocampal theta oscillation frequency, and increased anxiety-like behavior. Collectively, these results suggest that CAPS2 promotes activity-dependent BDNF secretion during the postnatal period that is critical for the development of hippocampal GABAergic networks.
Collapse
|
34
|
Sadakata T, Shinoda Y, Sekine Y, Saruta C, Itakura M, Takahashi M, Furuichi T. Interaction of calcium-dependent activator protein for secretion 1 (CAPS1) with the class II ADP-ribosylation factor small GTPases is required for dense-core vesicle trafficking in the trans-Golgi network. J Biol Chem 2010; 285:38710-9. [PMID: 20921225 PMCID: PMC2992304 DOI: 10.1074/jbc.m110.137414] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Revised: 09/30/2010] [Indexed: 11/06/2022] Open
Abstract
Ca(2+)-dependent activator protein for secretion (CAPS) regulates exocytosis of catecholamine- or neuropeptide-containing dense-core vesicles (DCVs) at secretion sites, such as nerve terminals. However, large amounts of CAPS protein are localized in the cell soma, and the role of somal CAPS protein remains unclear. The present study shows that somal CAPS1 plays an important role in DCV trafficking in the trans-Golgi network. The anti-CAPS1 antibody appeared to pull down membrane fractions, including many Golgi-associated proteins, such as ADP-ribosylation factor (ARF) small GTPases. Biochemical analyses of the protein-protein interaction showed that CAPS1 interacted specifically with the class II ARF4/ARF5, but not with other classes of ARFs, via the pleckstrin homology domain in a GDP-bound ARF form-specific manner. The pleckstrin homology domain of CAPS1 showed high affinity for the Golgi membrane, thereby recruiting ARF4/ARF5 to the Golgi complex. Knockdown of either CAPS1 or ARF4/ARF5 expression caused accumulation of chromogranin, a DCV marker protein, in the Golgi, thereby reducing its DCV secretion. In addition, the overexpression of CAPS1 binding-deficient ARF5 mutants induced aberrant chromogranin accumulation in the Golgi and consequently reduced its DCV secretion. These findings implicate a functional role for CAPS1 protein in the soma, a major subcellular localization site of CAPS1 in many cell types, in regulating DCV trafficking in the trans-Golgi network; this activity occurs via protein-protein interaction with ARF4/ARF5 in a GDP-dependent manner.
Collapse
Affiliation(s)
- Tetsushi Sadakata
- From the Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Japan Science and Technology Agency/CREST, Kawaguchi, Saitama 332-0012, Japan, and
| | - Yo Shinoda
- From the Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Japan Science and Technology Agency/CREST, Kawaguchi, Saitama 332-0012, Japan, and
| | - Yukiko Sekine
- From the Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Chihiro Saruta
- From the Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Makoto Itakura
- Japan Science and Technology Agency/CREST, Kawaguchi, Saitama 332-0012, Japan, and
- the Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | - Masami Takahashi
- Japan Science and Technology Agency/CREST, Kawaguchi, Saitama 332-0012, Japan, and
- the Department of Biochemistry, Kitasato University School of Medicine, Sagamihara, Kanagawa 228-8555, Japan
| | - Teiichi Furuichi
- From the Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
- Japan Science and Technology Agency/CREST, Kawaguchi, Saitama 332-0012, Japan, and
| |
Collapse
|
35
|
Sadakata T, Furuichi T. Ca2+-dependent activator protein for secretion 2 and autistic-like phenotypes. Neurosci Res 2010; 67:197-202. [DOI: 10.1016/j.neures.2010.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Revised: 03/10/2010] [Accepted: 03/11/2010] [Indexed: 11/16/2022]
|
36
|
Harada K, Matsuoka H, Nakamura J, Fukuda M, Inoue M. Storage of GABA in chromaffin granules and not in synaptic-like microvesicles in rat adrenal medullary cells. J Neurochem 2010; 114:617-26. [DOI: 10.1111/j.1471-4159.2010.06792.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
37
|
Nojiri M, Loyet KM, Klenchin VA, Kabachinski G, Martin TFJ. CAPS activity in priming vesicle exocytosis requires CK2 phosphorylation. J Biol Chem 2009; 284:18707-14. [PMID: 19460754 DOI: 10.1074/jbc.m109.017483] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
CAPS (Ca(2+)-dependent activator protein for secretion) functions in priming Ca(2+)-dependent vesicle exocytosis, but the regulation of CAPS activity has not been characterized. Here we show that phosphorylation by protein kinase CK2 is required for CAPS activity. Dephosphorylation eliminated CAPS activity in reconstituting Ca(2+)-dependent vesicle exocytosis in permeable and intact PC12 cells. Ser-5, -6, and -7 and Ser-1281 were identified by mass spectrometry as the major phosphorylation sites in the 1289 residue protein. Ser-5, -6, and -7 but not Ser-1281 to Ala substitutions abolished CAPS activity. Protein kinase CK2 phosphorylated CAPS in vitro at these sites and restored the activity of dephosphorylated CAPS. CK2 is the likely in vivo CAPS protein kinase based on inhibition of phosphorylation by tetrabromo-2-benzotriazole in PC12 cells and by the identity of in vivo and in vitro phosphorylation sites. CAPS phosphorylation by CK2 was constitutive, but the elevation of Ca(2+) in synaptosomes increased CAPS Ser-5 and -6 dephosphorylation, which terminates CAPS activity. These results identify a functionally important N-terminal phosphorylation site that regulates CAPS activity in priming vesicle exocytosis.
Collapse
Affiliation(s)
- Mari Nojiri
- Department of Biochemistry, University of Wisconsin, Madison, Wisconsin 53706, USA
| | | | | | | | | |
Collapse
|
38
|
Sadakata T, Furuichi T. Developmentally regulated Ca2+-dependent activator protein for secretion 2 (CAPS2) is involved in BDNF secretion and is associated with autism susceptibility. THE CEREBELLUM 2009; 8:312-22. [PMID: 19238500 DOI: 10.1007/s12311-009-0097-5] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2008] [Accepted: 02/05/2009] [Indexed: 12/22/2022]
Abstract
The postnatal development of the cerebellum is accomplished via a series of cytogenetic and morphogenetic events encoded in the genome. To decipher the underlying genetic basis of these events we have systematized the spatio-temporal gene expression profiles during mouse cerebellar development in the Cerebellar Development Transcriptome Database (CDT-DB). Using the CDT-DB, Ca(2+)-dependent activator protein for secretion 2 (CAPS2 or CADPS2) was identified as a developmentally regulated gene that is predominantly expressed in cerebellar granule cells (GCs) with an expression peak around the first or second postnatal week. CAPS2 protein is concentrated in parallel fiber (PF) terminals and is associated with secretory vesicles containing brain-derived neurotrophic factor (BDNF) and neurotrophin-3 (NT-3). CAPS2 enhances release of BDNF and NT-3, both of which are essential for normal cerebellar development. CAPS2-deficient (CAPS2(-/-)) mice show reduced secretion of BDNF and NT-3; consequently, the cerebella of these mice exhibit developmental deficits, such as delayed development and increased cell death in GCs, fewer branched dendrites on Purkinje cells (PCs), and loss of the intercrural fissure. The PF-PC synapses have aberrant cytoarchitectures and electrophysiological properties. These abnormal cellular and morphological phenotypes are more severe around the cerebellar vermis, in which hypoplasia has been reported in autism patients. Moreover, CAPS2(-/-) mice had fewer cortical and hippocampal parvalbumin-positive interneurons and some autistic-like behavioral phenotypes. In the CAPS2 genes of some autistic patients an aberrant splicing variant and non-synonymous SNPs have been identified. These recent studies implicate CAPS2 in autism susceptibility. Therefore, CAPS2(-/-) mice will be a useful model animal in which to study aspects of the neuropathology and behaviors characteristic of developmental disorders.
Collapse
Affiliation(s)
- Tetsushi Sadakata
- Laboratory for Molecular Neurogenesis, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | | |
Collapse
|
39
|
Estradiol facilitates the release of neuropeptide Y to suppress hippocampus-dependent seizures. J Neurosci 2009; 29:1457-68. [PMID: 19193892 DOI: 10.1523/jneurosci.4688-08.2009] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
About one-third of women with epilepsy have a catamenial seizure pattern, in which seizures fluctuate with the menstrual cycle. Catamenial seizures occur more frequently when the ratio of circulating estradiol to progesterone is high, suggesting that estradiol is proconvulsant. We used adult female rats to test how estradiol-induced suppression of GABAergic inhibition in the hippocampus affects behavioral seizures induced by kainic acid. As expected, estradiol decreased the latency to initiate seizures, indicating increased seizure susceptibility. At the same time, however, estradiol also shortened the duration of late-stage seizures, indicating decreased seizure severity. Additional analyses showed that the decrease in seizure severity was attributable to greater release of the anticonvulsant neuropeptide, neuropeptide Y (NPY). First, blocking hippocampal NPY during seizures eliminated the estradiol-induced decrease in seizure duration. Second, light and electron microscopic studies indicated that estradiol increases the potentially releasable pool of NPY in inhibitory presynaptic boutons and facilitates the release of NPY from inhibitory boutons during seizures. Finally, the presence of estrogen receptor-alpha on large dense-core vesicles (LDCVs) in the hippocampus suggests that estradiol could facilitate neuropeptide release by acting directly on LDCVs themselves. Understanding how estradiol regulates NPY-containing LDCVs could point to molecular targets for novel anticonvulsant therapies.
Collapse
|
40
|
Stevens DR, Rettig J. The Ca(2+)-dependent activator protein for secretion CAPS: do I dock or do I prime? Mol Neurobiol 2009; 39:62-72. [PMID: 19160073 DOI: 10.1007/s12035-009-8052-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2008] [Accepted: 01/08/2009] [Indexed: 10/21/2022]
Abstract
The "Ca(2+)-dependent activator protein for secretion" (CAPS) is a protein which reconstitutes regulated secretion in permeabilized neuroendocrine cells. It is generally accepted that CAPS plays an important role in the release of the contents of dense core vesicles in the nervous system as well as in a variety of other secretory tissues. At which step in the exocytotic process CAPS functions as well as its role in the fusion of synaptic vesicles is still under dispute. A recent growth spurt in the CAPS field has been fueled by genetic approaches in Caenorhabditis elegans and Drosophila as well as the application of knockout and knockdown approaches in mouse cells and in cell lines, respectively. We have attempted to review the body of work that established CAPS as an important regulator of secretion and to describe new information that has furthered our understanding of how CAPS may function. We discuss the conclusions, point out areas where controversy remains, and suggest directions for future experiments.
Collapse
Affiliation(s)
- David R Stevens
- Physiologisches Institut, Universität des Saarlandes, Gebäude 59, Kirrberger Str. 8, 66421, Homburg/Saar, Germany
| | | |
Collapse
|
41
|
Perez-Mansilla B, Nurrish S. A network of G-protein signaling pathways control neuronal activity in C. elegans. ADVANCES IN GENETICS 2009; 65:145-192. [PMID: 19615533 DOI: 10.1016/s0065-2660(09)65004-5] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The Caenorhabditis elegans neuromuscular junction (NMJ) is one of the best studied synapses in any organism. A variety of genetic screens have identified genes required both for the essential steps of neurotransmitter release from motorneurons as well as the signaling pathways that regulate rates of neurotransmitter release. A number of these regulatory genes encode proteins that converge to regulate neurotransmitter release. In other cases genes are known to regulate signaling at the NMJ but how they act remains unknown. Many of the proteins that regulate activity at the NMJ participate in a network of heterotrimeric G-protein signaling pathways controlling the release of synaptic vesicles and/or dense-core vesicles (DCVs). At least four heterotrimeric G-proteins (Galphaq, Galpha12, Galphao, and Galphas) act within the motorneurons to control the activity of the NMJ. The Galphaq, Galpha12, and Galphao pathways converge to control production and destruction of the lipid-bound second messenger diacylglycerol (DAG) at sites of neurotransmitter release. DAG acts via at least two effectors, MUNC13 and PKC, to control the release of both neurotransmitters and neuropeptides from motorneurons. The Galphas pathway converges with the other three heterotrimeric G-protein pathways downstream of DAG to regulate neuropeptide release. Released neurotransmitters and neuropeptides then act to control contraction of the body-wall muscles to control locomotion. The lipids and proteins involved in these networks are conserved between C. elegans and mammals. Thus, the C. elegans NMJ acts as a model synapse to understand how neuronal activity in the human brain is regulated.
Collapse
Affiliation(s)
- Borja Perez-Mansilla
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| | - Stephen Nurrish
- MRC Cell Biology Unit, MRC Laboratory for Molecular Cell Biology and Department of Neurobiology, Physiology and Pharmacology, University College London, London, United Kingdom
| |
Collapse
|
42
|
A TRPV channel modulates C. elegans neurosecretion, larval starvation survival, and adult lifespan. PLoS Genet 2008; 4:e1000213. [PMID: 18846209 PMCID: PMC2556084 DOI: 10.1371/journal.pgen.1000213] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2008] [Accepted: 09/03/2008] [Indexed: 12/22/2022] Open
Abstract
For most organisms, food is only intermittently available; therefore, molecular mechanisms that couple sensation of nutrient availability to growth and development are critical for survival. These mechanisms, however, remain poorly defined. In the absence of nutrients, newly hatched first larval (L1) stage Caenorhabditis elegans halt development and survive in this state for several weeks. We isolated mutations in unc-31, encoding a calcium-activated regulator of neural dense-core vesicle release, which conferred enhanced starvation survival. This extended survival was reminiscent of that seen in daf-2 insulin-signaling deficient mutants and was ultimately dependent on daf-16, which encodes a FOXO transcription factor whose activity is inhibited by insulin signaling. While insulin signaling modulates metabolism, adult lifespan, and dauer formation, insulin-independent mechanisms that also regulate these processes did not promote starvation survival, indicating that regulation of starvation survival is a distinct program. Cell-specific rescue experiments identified a small subset of primary sensory neurons where unc-31 reconstitution modulated starvation survival, suggesting that these neurons mediate perception of food availability. We found that OCR-2, a transient receptor potential vanilloid (TRPV) channel that localizes to the cilia of this subset of neurons, regulates peptide-hormone secretion and L1 starvation survival. Moreover, inactivation of ocr-2 caused a significant extension in adult lifespan. These findings indicate that TRPV channels, which mediate sensation of diverse noxious, thermal, osmotic, and mechanical stimuli, couple nutrient availability to larval starvation survival and adult lifespan through modulation of neural dense-core vesicle secretion. Starvation is a common physiological condition encountered by most organisms in their natural environments. However, the molecular mechanisms that allow organisms to accurately sense nutrient availability and match their energetic demands accordingly are not well understood. To elucidate these mechanisms, we isolated mutants in C. elegans that survive about 50% longer than wild-type animals when starved. For one such mutant, we found that the extended survival was due to mutation in the unc-31 gene, which functions in the nervous system to mediate release of neuroendocrine signaling molecules including insulin. Although this gene is broadly expressed in the nervous system, we found that its activity is required in a small subset of sensory neurons to regulate starvation survival. These neurons have ciliated endings that function in detection of environmental cues. Disruption of these cilia, or inactivation of a TRPV channel localized to these cilia, mimicked the perception of nutrient deprivation leading to extended starvation survival, which is dependent on an insulin-regulated transcription factor. Disruption of this channel also extended adult lifespan. Taken together, our findings reveal that TRPV channels couple nutritional cues to neuroendocrine secretion, which in turn determines adult lifespan and larval starvation survival.
Collapse
|
43
|
Wislet-Gendebien S, Visanji NP, Whitehead SN, Marsilio D, Hou W, Figeys D, Fraser PE, Bennett SAL, Tandon A. Differential regulation of wild-type and mutant alpha-synuclein binding to synaptic membranes by cytosolic factors. BMC Neurosci 2008; 9:92. [PMID: 18808659 PMCID: PMC2562387 DOI: 10.1186/1471-2202-9-92] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2008] [Accepted: 09/22/2008] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND Alpha-Synuclein (alpha-syn), a 140 amino acid protein associated with presynaptic membranes in brain, is a major constituent of Lewy bodies in Parkinson's disease (PD). Three missense mutations (A30P, A53T and E46K) in the alpha-syn gene are associated with rare autosomal dominant forms of familial PD. However, the regulation of alpha-syn's cellular localization in neurons and the effects of the PD-linked mutations are poorly understood. RESULTS In the present study, we analysed the ability of cytosolic factors to regulate alpha-syn binding to synaptic membranes. We show that co-incubation with brain cytosol significantly increases the membrane binding of normal and PD-linked mutant alpha-syn. To characterize cytosolic factor(s) that modulate alpha-syn binding properties, we investigated the ability of proteins, lipids, ATP and calcium to modulate alpha-syn membrane interactions. We report that lipids and ATP are two of the principal cytosolic components that modulate Wt and A53T alpha-syn binding to the synaptic membrane. We further show that 1-O-hexadecyl-2-acetyl-sn-glycero-3-phosphocholine (C16:0 PAF) is one of the principal lipids found in complex with cytosolic proteins and is required to enhance alpha-syn interaction with synaptic membrane. In addition, the impaired membrane binding observed for A30P alpha-syn was significantly mitigated by the presence of protease-sensitive factors in brain cytosol. CONCLUSION These findings suggest that endogenous brain cytosolic factors regulate Wt and mutant alpha-syn membrane binding, and could represent potential targets to influence alpha-syn solubility in brain.
Collapse
Affiliation(s)
- Sabine Wislet-Gendebien
- Centre for Research in Neurodegenerative Diseases, University of Toronto, Toronto, Ontario, M5S 3H2 Canada.
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Abstract
Calcium-activator protein for secretion (CAPS) is a cytosolic protein that associates with large dense-core vesicles and is involved in their secretion. Mammals express two CAPS isoforms, which share a similar domain structure including a Munc13 homology domain that is believed to be involved in the priming of secretory vesicles. A variety of studies designed to perturb CAPS function indicate that CAPS is involved in the secretion of large dense-core vesicles, but where in the secretory pathway CAPS acts is still under debate. Mice in which one allele of the CAPS-1 gene is deleted exhibit a deficit in catecholamine secretion from chromaffin cells. We have examined catecholamine secretion from chromaffin cells in which both CAPS genes were deleted and show that the deletion of both CAPS isoforms causes a strong reduction in the pool of rapidly releasable chromaffin granules and of sustained release during ongoing stimulation. We conclude that CAPS is required for the adequate refilling and/or maintenance of a rapidly releasable granule pool.
Collapse
|
45
|
Jockusch WJ, Speidel D, Sigler A, Sørensen JB, Varoqueaux F, Rhee JS, Brose N. CAPS-1 and CAPS-2 are essential synaptic vesicle priming proteins. Cell 2008; 131:796-808. [PMID: 18022372 DOI: 10.1016/j.cell.2007.11.002] [Citation(s) in RCA: 152] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2007] [Revised: 09/22/2007] [Accepted: 11/01/2007] [Indexed: 11/19/2022]
Abstract
Before transmitter-filled synaptic vesicles can fuse with the plasma membrane upon stimulation they have to be primed to fusion competence. The regulation of this priming process controls the strength and plasticity of synaptic transmission between neurons, which in turn determines many complex brain functions. We show that CAPS-1 and CAPS-2 are essential components of the synaptic vesicle priming machinery. CAPS-deficient neurons contain no or very few fusion competent synaptic vesicles, which causes a selective impairment of fast phasic transmitter release. Increases in the intracellular Ca(2+) levels can transiently revert this defect. Our findings demonstrate that CAPS proteins generate and maintain a highly fusion competent synaptic vesicle pool that supports phasic Ca(2+) triggered release of transmitters.
Collapse
Affiliation(s)
- Wolf J Jockusch
- Max Planck Institute of Experimental Medicine, Department of Molecular Neurobiology, Hermann-Rein-Str. 3, D-37075 Göttingen, Germany
| | | | | | | | | | | | | |
Collapse
|
46
|
Hammarlund M, Watanabe S, Schuske K, Jorgensen EM. CAPS and syntaxin dock dense core vesicles to the plasma membrane in neurons. ACTA ACUST UNITED AC 2008; 180:483-91. [PMID: 18250196 PMCID: PMC2234227 DOI: 10.1083/jcb.200708018] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Docking to the plasma membrane prepares vesicles for rapid release. Here, we describe a mechanism for dense core vesicle docking in neurons. In Caenorhabditis elegans motor neurons, dense core vesicles dock at the plasma membrane but are excluded from active zones at synapses. We have found that the calcium-activated protein for secretion (CAPS) protein is required for dense core vesicle docking but not synaptic vesicle docking. In contrast, we see that UNC-13, a docking factor for synaptic vesicles, is not essential for dense core vesicle docking. Both the CAPS and UNC-13 docking pathways converge on syntaxin, a component of the SNARE (soluble N-ethyl-maleimide-sensitive fusion protein attachment receptor) complex. Overexpression of open syntaxin can bypass the requirement for CAPS in dense core vesicle docking. Thus, CAPS likely promotes the open state of syntaxin, which then docks dense core vesicles. CAPS function in dense core vesicle docking parallels UNC-13 in synaptic vesicle docking, which suggests that these related proteins act similarly to promote docking of independent vesicle populations.
Collapse
Affiliation(s)
- Marc Hammarlund
- Department of Biology, University of Utah, Salt Lake City, UT 84112, USA
| | | | | | | |
Collapse
|
47
|
Speese S, Petrie M, Schuske K, Ailion M, Ann K, Iwasaki K, Jorgensen EM, Martin TFJ. UNC-31 (CAPS) is required for dense-core vesicle but not synaptic vesicle exocytosis in Caenorhabditis elegans. J Neurosci 2007; 27:6150-62. [PMID: 17553987 PMCID: PMC6672138 DOI: 10.1523/jneurosci.1466-07.2007] [Citation(s) in RCA: 232] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Previous studies indicated that CAPS (calcium-dependent activator protein for secretion) functions as an essential component for the Ca2+-dependent exocytosis of dense-core vesicles in neuroendocrine cells. However, recent mouse knock-out studies suggested an alternative role in the vesicular uptake or storage of catecholamines. To genetically assess the functional role of CAPS, we characterized the sole Caenorhabditis elegans CAPS ortholog UNC-31 (uncoordinated family member) and determined its role in dense-core vesicle-mediated peptide secretion and in synaptic vesicle recycling. Novel assays for dense-core vesicle exocytosis were developed by expressing a prepro-atrial natriuretic factor-green fluorescent protein fusion protein in C. elegans. unc-31 mutants exhibited reduced peptide release in vivo and lacked evoked peptide release in cultured neurons. In contrast, cultured neurons from unc-31 mutants exhibited normal stimulated synaptic vesicle recycling measured by FM4-64 [N-(3-triethylammoniumpropyl)-4-(6-(4-diethylamino)phenyl)hexatrienyl)pyridinium dibromide] dye uptake. Conversely, UNC-13, which exhibits sequence homology to CAPS/UNC-31, was found to be essential for synaptic vesicle but not dense-core vesicle exocytosis. These findings indicate that CAPS/UNC-31 function is not restricted to catecholaminergic vesicles but is generally required for and specific to dense-core vesicle exocytosis. Our results suggest that CAPS/UNC-31 and UNC-13 serve parallel and dedicated roles in dense-core vesicle and synaptic vesicle exocytosis, respectively, in the C. elegans nervous system.
Collapse
Affiliation(s)
- Sean Speese
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Matt Petrie
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, and
| | - Kim Schuske
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Michael Ailion
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Kyoungsook Ann
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, and
| | - Kouichi Iwasaki
- Department of Molecular Pharmacology and Biological Chemistry, Northwestern University Medical School, Chicago, Illinois 60611
| | - Erik M. Jorgensen
- Department of Biology, University of Utah, Salt Lake City, Utah 84112
| | - Thomas F. J. Martin
- Department of Biochemistry, University of Wisconsin–Madison, Madison, Wisconsin 53706, and
| |
Collapse
|
48
|
Alternative splicing variations in mouse CAPS2: differential expression and functional properties of splicing variants. BMC Neurosci 2007; 8:25. [PMID: 17428348 PMCID: PMC1853102 DOI: 10.1186/1471-2202-8-25] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2007] [Accepted: 04/12/2007] [Indexed: 11/25/2022] Open
Abstract
Background Ca2+-dependent activator protein 2 (CAPS2/CADPS2) is a secretory vesicle-associated protein involved in the release of neurotrophin. We recently reported that an aberrant, alternatively spliced CAPS2 mRNA that lacks exon 3 (CAPS2Δexon3) is detected in some patients with autism. Splicing variations in mouse CAPS2 and their expression and functions remain unclear. Results In this study, we defined 31 exons in the mouse CAPS2 gene and identified six alternative splicing variants, CAPS2a-f. CAPS2a is an isoform lacking exons 22 and 25, which encode part of the Munc13-1-homologous domain (MHD). CAPS2b lacks exon 25. CAPS2c lacks exons 11 and 22. CAPS2d, 2e, and 2f have C-terminal deletions from exon 14, exon 12, and exon 5, respectively. On the other hand, a mouse counterpart of CAPS2Δexon3 was not detected in the mouse tissues tested. CAPS2b was expressed exclusively in the brain, and the other isoforms were highly expressed in the brain, but also in some non-neural tissues. In the brain, all isoforms showed predominant expression patterns in the cerebellum. In the developing cerebellum, CAPS2b showed an up-regulated expression pattern, whereas the other isoforms exhibited transiently peaked expression patterns. CAPS2 proteins were mostly recovered in soluble fractions, but some were present in membrane fractions, except for CAPS2c and 2f, both of which lack the PH domain, suggesting that the PH domain is important for membrane association. In contrast to CAPS2a and 2b, CAPS2c showed slightly decreased BDNF-releasing activity, which is likely due to the C-terminal truncation of the PH domain in CAPS2c. Conclusion This study indicates that, in mouse, there are six splicing variants of CAPS2 (CAPS2a-f), and that these are subdivided into two groups: a long form containing the C-terminal MHD and a short form lacking the C-terminal MHD. These results demonstrate that the splicing variations correlate with their expression patterns and intracellular distribution, and affect BDNF release; however, whether or not the short forms possess activities other than BDNF release, for example as natural dominant-negative isoforms, remains to be determined.
Collapse
|
49
|
Sadakata T, Kakegawa W, Mizoguchi A, Washida M, Katoh-Semba R, Shutoh F, Okamoto T, Nakashima H, Kimura K, Tanaka M, Sekine Y, Itohara S, Yuzaki M, Nagao S, Furuichi T. Impaired cerebellar development and function in mice lacking CAPS2, a protein involved in neurotrophin release. J Neurosci 2007; 27:2472-82. [PMID: 17344385 PMCID: PMC6672497 DOI: 10.1523/jneurosci.2279-06.2007] [Citation(s) in RCA: 128] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Ca2+-dependent activator protein for secretion 2 (CAPS2/CADPS2) is a secretory granule-associated protein that is abundant at the parallel fiber terminals of granule cells in the mouse cerebellum and is involved in the release of neurotrophin-3 (NT-3) and brain-derived neurotrophic factor (BDNF), both of which are required for cerebellar development. The human homolog gene on chromosome 7 is located within susceptibility locus 1 of autism, a disease characterized by several cerebellar morphological abnormalities. Here we report that CAPS2 knock-out mice are deficient in the release of NT-3 and BDNF, and they consequently exhibit suppressed phosphorylation of Trk receptors in the cerebellum; these mice exhibit pronounced impairments in cerebellar development and functions, including neuronal survival, differentiation and migration of postmitotic granule cells, dendritogenesis of Purkinje cells, lobulation between lobules VI and VII, structure and vesicular distribution of parallel fiber-Purkinje cell synapses, paired-pulse facilitation at parallel fiber-Purkinje cell synapses, rotarod motor coordination, and eye movement plasticity in optokinetic training. Increased granule cell death of the external granular layer was noted in lobules VI-VII and IX, in which high BDNF and NT-3 levels are specifically localized during cerebellar development. Therefore, the deficiency of CAPS2 indicates that CAPS2-mediated neurotrophin release is indispensable for normal cerebellar development and functions, including neuronal differentiation and survival, morphogenesis, synaptic function, and motor learning/control. The possible involvement of the CAPS2 gene in the cerebellar deficits of autistic patients is discussed.
Collapse
Affiliation(s)
| | - Wataru Kakegawa
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | - Akira Mizoguchi
- Department of Anatomy, School of Medicine, Mie University, Tsu, Mie 514-8507, Japan, and
| | | | - Ritsuko Katoh-Semba
- Department of Perinatology, Institute for Developmental Research, Aichi Human Service Center, Kasugai, Aichi 480-0392, Japan
| | | | | | - Hisako Nakashima
- Department of Anatomy, School of Medicine, Mie University, Tsu, Mie 514-8507, Japan, and
| | - Kazushi Kimura
- Department of Anatomy, School of Medicine, Mie University, Tsu, Mie 514-8507, Japan, and
| | | | | | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Brain Science Institute, Wako, Saitama 351-0198, Japan
| | - Michisuke Yuzaki
- Department of Physiology, School of Medicine, Keio University, Tokyo 160-8582, Japan
| | | | | |
Collapse
|
50
|
Sadakata T, Washida M, Iwayama Y, Shoji S, Sato Y, Ohkura T, Katoh-Semba R, Nakajima M, Sekine Y, Tanaka M, Nakamura K, Iwata Y, Tsuchiya KJ, Mori N, Detera-Wadleigh SD, Ichikawa H, Itohara S, Yoshikawa T, Furuichi T. Autistic-like phenotypes in Cadps2-knockout mice and aberrant CADPS2 splicing in autistic patients. J Clin Invest 2007; 117:931-43. [PMID: 17380209 PMCID: PMC1821065 DOI: 10.1172/jci29031] [Citation(s) in RCA: 158] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 01/16/2007] [Indexed: 12/15/2022] Open
Abstract
Autism, characterized by profound impairment in social interactions and communicative skills, is the most common neurodevelopmental disorder, and its underlying molecular mechanisms remain unknown. Ca(2+)-dependent activator protein for secretion 2 (CADPS2; also known as CAPS2) mediates the exocytosis of dense-core vesicles, and the human CADPS2 is located within the autism susceptibility locus 1 on chromosome 7q. Here we show that Cadps2-knockout mice not only have impaired brain-derived neurotrophic factor release but also show autistic-like cellular and behavioral phenotypes. Moreover, we found an aberrant alternatively spliced CADPS2 mRNA that lacks exon 3 in some autistic patients. Exon 3 was shown to encode the dynactin 1-binding domain and affect axonal CADPS2 protein distribution. Our results suggest that a disturbance in CADPS2-mediated neurotrophin release contributes to autism susceptibility.
Collapse
Affiliation(s)
- Tetsushi Sadakata
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Miwa Washida
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Yoshimi Iwayama
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Satoshi Shoji
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Yumi Sato
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Takeshi Ohkura
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Ritsuko Katoh-Semba
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Mizuho Nakajima
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Yukiko Sekine
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Mika Tanaka
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Kazuhiko Nakamura
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Yasuhide Iwata
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Kenji J. Tsuchiya
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Norio Mori
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Sevilla D. Detera-Wadleigh
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Hironobu Ichikawa
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Shigeyoshi Itohara
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Takeo Yoshikawa
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| | - Teiichi Furuichi
- Laboratory for Molecular Neurogenesis and Laboratory
for Molecular Psychiatry, RIKEN Brain Science Institute, Saitama, Japan.
Tokyo Metropolitan Umegaoka Hospital, Tokyo, Japan.
Department of Perinatology, Institute for Developmental Research,
Aichi Human Service Center, Kasugai, Japan. Research Resource
Center, RIKEN Brain Science Institute, Saitama, Japan. Department of
Psychiatry and Neurology, Hamamatsu University School of Medicine, Hamamatsu, Japan.
Mood and Anxiety Disorders Program, National Institute of Mental
Health, Bethesda, Maryland, USA. Laboratory for Behavioral Genetics,
RIKEN Brain Science Institute, Saitama, Japan
| |
Collapse
|