1
|
Patton MH, Thomas KT, Bayazitov IT, Newman KD, Kurtz NB, Robinson CG, Ramirez CA, Trevisan AJ, Bikoff JB, Peters ST, Pruett-Miller SM, Jiang Y, Schild AB, Nityanandam A, Zakharenko SS. Synaptic plasticity in human thalamocortical assembloids. Cell Rep 2024; 43:114503. [PMID: 39018245 PMCID: PMC11407288 DOI: 10.1016/j.celrep.2024.114503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/23/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024] Open
Abstract
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA sequencing revealed that >80% of cells in thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
Collapse
Affiliation(s)
- Mary H Patton
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kristen T Thomas
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Ildar T Bayazitov
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Kyle D Newman
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Nathaniel B Kurtz
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Camenzind G Robinson
- Cell and Tissue Imaging Center, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Cody A Ramirez
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Alexandra J Trevisan
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Jay B Bikoff
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Samuel T Peters
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Shondra M Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children's Research Hospital, Memphis, TN 38105, USA; Department of Cell and Molecular Biology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Yanbo Jiang
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Andrew B Schild
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
2
|
Homberg JR, Brivio P, Greven CU, Calabrese F. Individuals being high in their sensitivity to the environment: Are sensitive period changes in play? Neurosci Biobehav Rev 2024; 159:105605. [PMID: 38417743 DOI: 10.1016/j.neubiorev.2024.105605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 02/13/2024] [Accepted: 02/25/2024] [Indexed: 03/01/2024]
Abstract
All individuals on planet earth are sensitive to the environment, but some more than others. These individual differences in sensitivity to environments are seen across many animal species including humans, and can influence personalities as well as vulnerability and resilience to mental disorders. Yet, little is known about the underlying brain mechanisms. Key genes that contribute to individual differences in environmental sensitivity are the serotonin transporter, dopamine D4 receptor and brain-derived neurotrophic factor genes. By synthesizing neurodevelopmental findings of these genetic factors, and discussing them through the lens of mechanisms related to sensitive periods, which are phases of heightened neuronal plasticity during which a certain network is being finetuned by experiences, we propose that these genetic factors delay but extend postnatal sensitive periods. This may explain why sensitive individuals show behavioral features that are characteristic of a young brain state at the level of sensory information processing, such as reduced filtering or blockade of irrelevant information, resulting in a sensory processing system that 'keeps all options open'.
Collapse
Affiliation(s)
- Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands.
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| | - Corina U Greven
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, the Netherlands; Karakter Child and Adolescent Psychiatry University Center, Nijmegen, the Netherlands; King's College London, Institute of Psychiatry, Psychology and Neuroscience, Social, Genetic and Developmental Psychiatry Center, London, United Kingdom
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences "Rodolfo Paoletti", Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
3
|
Mesik L, Parkins S, Severin D, Grier BD, Ewall G, Kotha S, Wesselborg C, Moreno C, Jaoui Y, Felder A, Huang B, Johnson MB, Harrigan TP, Knight AE, Lani SW, Lemaire T, Kirkwood A, Hwang GM, Lee HK. Transcranial Low-Intensity Focused Ultrasound Stimulation of the Visual Thalamus Produces Long-Term Depression of Thalamocortical Synapses in the Adult Visual Cortex. J Neurosci 2024; 44:e0784232024. [PMID: 38316559 PMCID: PMC10941064 DOI: 10.1523/jneurosci.0784-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 12/13/2023] [Accepted: 01/30/2024] [Indexed: 02/07/2024] Open
Abstract
Transcranial focused ultrasound stimulation (tFUS) is a noninvasive neuromodulation technique, which can penetrate deeper and modulate neural activity with a greater spatial resolution (on the order of millimeters) than currently available noninvasive brain stimulation methods, such as transcranial magnetic stimulation (TMS) and transcranial direct current stimulation (tDCS). While there are several studies demonstrating the ability of tFUS to modulate neuronal activity, it is unclear whether it can be used for producing long-term plasticity as needed to modify circuit function, especially in adult brain circuits with limited plasticity such as the thalamocortical synapses. Here we demonstrate that transcranial low-intensity focused ultrasound (LIFU) stimulation of the visual thalamus (dorsal lateral geniculate nucleus, dLGN), a deep brain structure, leads to NMDA receptor (NMDAR)-dependent long-term depression of its synaptic transmission onto layer 4 neurons in the primary visual cortex (V1) of adult mice of both sexes. This change is not accompanied by large increases in neuronal activity, as visualized using the cFos Targeted Recombination in Active Populations (cFosTRAP2) mouse line, or activation of microglia, which was assessed with IBA-1 staining. Using a model (SONIC) based on the neuronal intramembrane cavitation excitation (NICE) theory of ultrasound neuromodulation, we find that the predicted activity pattern of dLGN neurons upon sonication is state-dependent with a range of activity that falls within the parameter space conducive for inducing long-term synaptic depression. Our results suggest that noninvasive transcranial LIFU stimulation has a potential for recovering long-term plasticity of thalamocortical synapses in the postcritical period adult brain.
Collapse
Affiliation(s)
- Lukas Mesik
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Samuel Parkins
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Cell Molecular Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218
| | - Daniel Severin
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Bryce D Grier
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Gabrielle Ewall
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Sumasri Kotha
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Christian Wesselborg
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Cell Molecular Developmental Biology and Biophysics Graduate Program, Johns Hopkins University, Baltimore, Maryland 21218
| | - Cristian Moreno
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Yanis Jaoui
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Adrianna Felder
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Brian Huang
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
| | - Marina B Johnson
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Timothy P Harrigan
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Anna E Knight
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Shane W Lani
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Théo Lemaire
- Neuroscience Institute, New York University Langone Health, New York, New York 10016
| | - Alfredo Kirkwood
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| | - Grace M Hwang
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Johns Hopkins Applied Physics Laboratory, Johns Hopkins University, Laurel, Maryland 20723
| | - Hey-Kyoung Lee
- Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland 21218
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins School of Medicine, Baltimore, Maryland 21205
| |
Collapse
|
4
|
Patton MH, Thomas KT, Bayazitov IT, Newman KD, Kurtz NB, Robinson CG, Ramirez CA, Trevisan AJ, Bikoff JB, Peters ST, Pruett-Miller SM, Jiang Y, Schild AB, Nityanandam A, Zakharenko SS. Synaptic plasticity in human thalamocortical assembloids. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.01.578421. [PMID: 38352415 PMCID: PMC10862901 DOI: 10.1101/2024.02.01.578421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/25/2024]
Abstract
Synaptic plasticities, such as long-term potentiation (LTP) and depression (LTD), tune synaptic efficacy and are essential for learning and memory. Current studies of synaptic plasticity in humans are limited by a lack of adequate human models. Here, we modeled the thalamocortical system by fusing human induced pluripotent stem cell-derived thalamic and cortical organoids. Single-nucleus RNA-sequencing revealed that most cells in mature thalamic organoids were glutamatergic neurons. When fused to form thalamocortical assembloids, thalamic and cortical organoids formed reciprocal long-range axonal projections and reciprocal synapses detectable by light and electron microscopy, respectively. Using whole-cell patch-clamp electrophysiology and two-photon imaging, we characterized glutamatergic synaptic transmission. Thalamocortical and corticothalamic synapses displayed short-term plasticity analogous to that in animal models. LTP and LTD were reliably induced at both synapses; however, their mechanisms differed from those previously described in rodents. Thus, thalamocortical assembloids provide a model system for exploring synaptic plasticity in human circuits.
Collapse
Affiliation(s)
- Mary H. Patton
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Kristen T. Thomas
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Ildar T. Bayazitov
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Kyle D. Newman
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Nathaniel B. Kurtz
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Camenzind G. Robinson
- Cell and Tissue Imaging Center, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Cody A. Ramirez
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Alexandra J. Trevisan
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Jay B. Bikoff
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Samuel T. Peters
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Shondra M. Pruett-Miller
- Center for Advanced Genome Engineering, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
- Department of Cell & Molecular Biology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Yanbo Jiang
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Andrew B. Schild
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Anjana Nityanandam
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| | - Stanislav S. Zakharenko
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital; Memphis, TN 38105, USA
| |
Collapse
|
5
|
Bayazitov IT, Teubner BJW, Feng F, Wu Z, Li Y, Blundon JA, Zakharenko SS. Sound-evoked adenosine release in cooperation with neuromodulatory circuits permits auditory cortical plasticity and perceptual learning. Cell Rep 2024; 43:113758. [PMID: 38358887 PMCID: PMC10939737 DOI: 10.1016/j.celrep.2024.113758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/21/2023] [Accepted: 01/23/2024] [Indexed: 02/17/2024] Open
Abstract
Meaningful auditory memories are formed in adults when acoustic information is delivered to the auditory cortex during heightened states of attention, vigilance, or alertness, as mediated by neuromodulatory circuits. Here, we identify that, in awake mice, acoustic stimulation triggers auditory thalamocortical projections to release adenosine, which prevents cortical plasticity (i.e., selective expansion of neural representation of behaviorally relevant acoustic stimuli) and perceptual learning (i.e., experience-dependent improvement in frequency discrimination ability). This sound-evoked adenosine release (SEAR) becomes reduced within seconds when acoustic stimuli are tightly paired with the activation of neuromodulatory (cholinergic or dopaminergic) circuits or periods of attentive wakefulness. If thalamic adenosine production is enhanced, then SEAR elevates further, the neuromodulatory circuits are unable to sufficiently reduce SEAR, and associative cortical plasticity and perceptual learning are blocked. This suggests that transient low-adenosine periods triggered by neuromodulatory circuits permit associative cortical plasticity and auditory perceptual learning in adults to occur.
Collapse
Affiliation(s)
- Ildar T Bayazitov
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Brett J W Teubner
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Feng Feng
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Zhaofa Wu
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Yulong Li
- School of Life Sciences, Peking University, Beijing 100871, China
| | - Jay A Blundon
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | - Stanislav S Zakharenko
- Division of Neural Circuits and Behavior, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| |
Collapse
|
6
|
Lee HK. Metaplasticity framework for cross-modal synaptic plasticity in adults. Front Synaptic Neurosci 2023; 14:1087042. [PMID: 36685084 PMCID: PMC9853192 DOI: 10.3389/fnsyn.2022.1087042] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
Sensory loss leads to widespread adaptation of neural circuits to mediate cross-modal plasticity, which allows the organism to better utilize the remaining senses to guide behavior. While cross-modal interactions are often thought to engage multisensory areas, cross-modal plasticity is often prominently observed at the level of the primary sensory cortices. One dramatic example is from functional imaging studies in humans where cross-modal recruitment of the deprived primary sensory cortex has been observed during the processing of the spared senses. In addition, loss of a sensory modality can lead to enhancement and refinement of the spared senses, some of which have been attributed to compensatory plasticity of the spared sensory cortices. Cross-modal plasticity is not restricted to early sensory loss but is also observed in adults, which suggests that it engages or enables plasticity mechanisms available in the adult cortical circuit. Because adult cross-modal plasticity is observed without gross anatomical connectivity changes, it is thought to occur mainly through functional plasticity of pre-existing circuits. The underlying cellular and molecular mechanisms involve activity-dependent homeostatic and Hebbian mechanisms. A particularly attractive mechanism is the sliding threshold metaplasticity model because it innately allows neurons to dynamically optimize their feature selectivity. In this mini review, I will summarize the cellular and molecular mechanisms that mediate cross-modal plasticity in the adult primary sensory cortices and evaluate the metaplasticity model as an effective framework to understand the underlying mechanisms.
Collapse
|
7
|
Ewall G, Parkins S, Lin A, Jaoui Y, Lee HK. Cortical and Subcortical Circuits for Cross-Modal Plasticity Induced by Loss of Vision. Front Neural Circuits 2021; 15:665009. [PMID: 34113240 PMCID: PMC8185208 DOI: 10.3389/fncir.2021.665009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 04/14/2021] [Indexed: 11/29/2022] Open
Abstract
Cortical areas are highly interconnected both via cortical and subcortical pathways, and primary sensory cortices are not isolated from this general structure. In primary sensory cortical areas, these pre-existing functional connections serve to provide contextual information for sensory processing and can mediate adaptation when a sensory modality is lost. Cross-modal plasticity in broad terms refers to widespread plasticity across the brain in response to losing a sensory modality, and largely involves two distinct changes: cross-modal recruitment and compensatory plasticity. The former involves recruitment of the deprived sensory area, which includes the deprived primary sensory cortex, for processing the remaining senses. Compensatory plasticity refers to plasticity in the remaining sensory areas, including the spared primary sensory cortices, to enhance the processing of its own sensory inputs. Here, we will summarize potential cellular plasticity mechanisms involved in cross-modal recruitment and compensatory plasticity, and review cortical and subcortical circuits to the primary sensory cortices which can mediate cross-modal plasticity upon loss of vision.
Collapse
Affiliation(s)
- Gabrielle Ewall
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Samuel Parkins
- Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States
| | - Amy Lin
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Yanis Jaoui
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States
| | - Hey-Kyoung Lee
- Solomon H. Snyder Department of Neuroscience, Zanvyl-Krieger Mind/Brain Institute, Johns Hopkins School of Medicine, Baltimore, MD, United States.,Cell, Molecular, Developmental Biology and Biophysics (CMDB) Graduate Program, Johns Hopkins University, Baltimore, MD, United States.,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States
| |
Collapse
|
8
|
Ahn SY, Jie H, Jung WB, Jeong JH, Ko S, Im GH, Park WS, Lee JH, Chang YS, Chung S. Stem cell restores thalamocortical plasticity to rescue cognitive deficit in neonatal intraventricular hemorrhage. Exp Neurol 2021; 342:113736. [PMID: 33945790 DOI: 10.1016/j.expneurol.2021.113736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/07/2021] [Accepted: 04/29/2021] [Indexed: 10/21/2022]
Abstract
Severe neonatal intraventricular hemorrhage (IVH) patients incur long-term neurologic deficits such as cognitive disabilities. Recently, the intraventricular transplantation of allogeneic human umbilical cord blood-derived mesenchymal stem cells (MSCs) has drawn attention as a therapeutic potential to treat severe IVH. However, its pathological synaptic mechanism is still elusive. We here demonstrated that the integration of the somatosensory input was significantly distorted by suppressing feed-forward inhibition (FFI) at the thalamocortical (TC) inputs in the barrel cortices of neonatal rats with IVH by using BOLD-fMRI signal and brain slice patch-clamp technique. This is induced by the suppression of Hebbian plasticity via an increase in tumor necrosis factor-α expression during the critical period, which can be effectively reversed by the transplantation of MSCs. Furthermore, we showed that MSC transplantation successfully rescued IVH-induced learning deficits in the sensory-guided decision-making in correlation with TC FFI in the layer 4 barrel cortex.
Collapse
Affiliation(s)
- So Yoon Ahn
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea
| | - Hyesoo Jie
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Won-Beom Jung
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 86364, Republic of Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Ji-Hyun Jeong
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sukjin Ko
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Geun Ho Im
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 86364, Republic of Korea
| | - Won Soon Park
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea
| | - Jung Hee Lee
- Center for Neuroscience Imaging Research, Institute for Basic Science (IBS), Suwon 86364, Republic of Korea; Department of Global Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea; Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea.
| | - Yun Sil Chang
- Department of Pediatrics, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Republic of Korea; Stem Cell and Regenerative Medicine Institute, Samsung Medical Center, Seoul 06351, Republic of Korea; Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul 06351, Republic of Korea.
| | - Seungsoo Chung
- Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| |
Collapse
|
9
|
Abstract
Alcohol is one of the oldest pharmacological agents used for its sedative/hypnotic effects, and alcohol abuse and alcohol use disorder (AUD) continues to be major public health issue. AUD is strongly indicated to be a brain disorder, and the molecular and cellular mechanism/s by which alcohol produces its effects in the brain are only now beginning to be understood. In the brain, synaptic plasticity or strengthening or weakening of synapses, can be enhanced or reduced by a variety of stimulation paradigms. Synaptic plasticity is thought to be responsible for important processes involved in the cellular mechanisms of learning and memory. Long-term potentiation (LTP) is a form of synaptic plasticity, and occurs via N-methyl-D-aspartate type glutamate receptor (NMDAR or GluN) dependent and independent mechanisms. In particular, NMDARs are a major target of alcohol, and are implicated in different types of learning and memory. Therefore, understanding the effect of alcohol on synaptic plasticity and transmission mediated by glutamatergic signaling is becoming important, and this will help us understand the significant contribution of the glutamatergic system in AUD. In the first part of this review, we will briefly discuss the mechanisms underlying long term synaptic plasticity in the dorsal striatum, neocortex and the hippocampus. In the second part we will discuss how alcohol (ethanol, EtOH) can modulate long term synaptic plasticity in these three brain regions, mainly from neurophysiological and electrophysiological studies. Taken together, understanding the mechanism(s) underlying alcohol induced changes in brain function may lead to the development of more effective therapeutic agents to reduce AUDs.
Collapse
Affiliation(s)
| | - Chitra D Mandyam
- VA San Diego Healthcare System, San Diego, CA, USA.,Department of Anesthesiology, University of California San Diego, San Diego, CA, USA
| |
Collapse
|
10
|
He Q, Arroyo ED, Smukowski SN, Xu J, Piochon C, Savas JN, Portera-Cailliau C, Contractor A. Critical period inhibition of NKCC1 rectifies synapse plasticity in the somatosensory cortex and restores adult tactile response maps in fragile X mice. Mol Psychiatry 2019; 24:1732-1747. [PMID: 29703945 PMCID: PMC6204122 DOI: 10.1038/s41380-018-0048-y] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Revised: 01/10/2018] [Accepted: 02/19/2018] [Indexed: 12/15/2022]
Abstract
Sensory perturbations in visual, auditory and tactile perception are core problems in fragile X syndrome (FXS). In the Fmr1 knockout mouse model of FXS, the maturation of synapses and circuits during critical period (CP) development in the somatosensory cortex is delayed, but it is unclear how this contributes to altered tactile sensory processing in the mature CNS. Here we demonstrate that inhibiting the juvenile chloride co-transporter NKCC1, which contributes to altered chloride homeostasis in developing cortical neurons of FXS mice, rectifies the chloride imbalance in layer IV somatosensory cortex neurons and corrects the development of thalamocortical excitatory synapses during the CP. Comparison of protein abundances demonstrated that NKCC1 inhibition during early development caused a broad remodeling of the proteome in the barrel cortex. In addition, the abnormally large size of whisker-evoked cortical maps in adult Fmr1 knockout mice was corrected by rectifying the chloride imbalance during the early CP. These data demonstrate that correcting the disrupted driving force through GABAA receptors during the CP in cortical neurons restores their synaptic development, has an unexpectedly large effect on differentially expressed proteins, and produces a long-lasting correction of somatosensory circuit function in FXS mice.
Collapse
Affiliation(s)
- Qionger He
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | - Erica D Arroyo
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Samuel N Smukowski
- Department of Neurology, Northwestern University Feinberg School of Medicine
| | - Jian Xu
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | - Claire Piochon
- Department of Physiology, Northwestern University Feinberg School of Medicine
| | - Jeffrey N Savas
- Department of Neurology, Northwestern University Feinberg School of Medicine
| | - Carlos Portera-Cailliau
- Departments of Neurology and Neurobiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095
| | - Anis Contractor
- Department of Physiology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA. .,Department of Neurobiology, Weinberg College of Arts and Sciences, Northwestern University, Chicago, IL, 60611, USA.
| |
Collapse
|
11
|
Abstract
Fragile X syndrome (FXS) is a neurodevelopmental disorder that causes intellectual disability. It is a leading known genetic cause of autism. In addition to cognitive, social, and communication deficits, humans with FXS demonstrate abnormal sensory processing including sensory hypersensitivity. Sensory hypersensitivity commonly manifests as auditory, tactile, or visual defensiveness or avoidance. Clinical, behavioral, and electrophysiological studies consistently show auditory hypersensitivity, impaired habituation to repeated sounds, and reduced auditory attention in humans with FXS. Children with FXS also exhibit significant visuospatial impairments. Studies in infants and toddlers with FXS have documented impairments in processing texture-defined motion stimuli, temporal flicker, perceiving ordinal numerical sequence, and the ability to maintain the identity of dynamic object information during occlusion. Consistent with the observations in humans with FXS, fragile X mental retardation 1 ( Fmr1) gene knockout (KO) rodent models of FXS also show seizures, abnormal visual-evoked responses, auditory hypersensitivity, and abnormal processing at multiple levels of the auditory system, including altered acoustic startle responses. Among other sensory symptoms, individuals with FXS exhibit tactile defensiveness. Fmr1 KO mice also show impaired encoding of tactile stimulation frequency and larger size of receptive fields in the somatosensory cortex. Since sensory deficits are relatively more tractable from circuit mechanisms and developmental perspectives than more complex social behaviors, the focus of this review is on clinical, functional, and structural studies that outline the auditory, visual, and somatosensory processing deficits in FXS. The similarities in sensory phenotypes between humans with FXS and animal models suggest a likely conservation of basic sensory processing circuits across species and may provide a translational platform to not just develop biomarkers but also to understand underlying mechanisms. We argue that preclinical studies in animal models of FXS can facilitate the ongoing search for new therapeutic approaches in FXS by understanding mechanisms of basic sensory processing circuits and behaviors that are conserved across species.
Collapse
Affiliation(s)
- Maham Rais
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA
| | - Devin K Binder
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| | - Khaleel A Razak
- 2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA.,4 Psychology Department, University of California Riverside, CA, USA
| | - Iryna M Ethell
- 1 Division of Biomedical Sciences, University of California Riverside School of Medicine, CA, USA.,2 Biomedical Sciences Graduate Program, University of California Riverside, CA, USA.,3 Neuroscience Graduate Program, University of California Riverside, CA, USA
| |
Collapse
|
12
|
Sun YJ, Liu BH, Tao HW, Zhang LI. Selective Strengthening of Intracortical Excitatory Input Leads to Receptive Field Refinement during Auditory Cortical Development. J Neurosci 2019; 39:1195-1205. [PMID: 30587538 PMCID: PMC6381237 DOI: 10.1523/jneurosci.2492-18.2018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 11/17/2018] [Accepted: 12/07/2018] [Indexed: 11/21/2022] Open
Abstract
In the primary auditory cortex (A1) of rats, refinement of excitatory input to layer (L)4 neurons contributes to the sharpening of their frequency selectivity during postnatal development. L4 neurons receive both feedforward thalamocortical and recurrent intracortical inputs, but how potential developmental changes of each component can account for the sharpening of excitatory input tuning remains unclear. By combining in vivo whole-cell recording and pharmacological silencing of cortical spiking in young rats of both sexes, we examined developmental changes at three hierarchical stages: output of auditory thalamic neurons, thalamocortical input and recurrent excitatory input to an A1 L4 neuron. In the thalamus, the tonotopic map matured with an expanded range of frequency representations, while the frequency tuning of output responses was unchanged. On the other hand, the tuning shape of both thalamocortical and intracortical excitatory inputs to a L4 neuron became sharpened. In particular, the intracortical input became better tuned than thalamocortical excitation. Moreover, the weight of intracortical excitation around the optimal frequency was selectively strengthened, resulting in a dominant role of intracortical excitation in defining the total excitatory input tuning. Our modeling work further demonstrates that the frequency-selective strengthening of local recurrent excitatory connections plays a major role in the refinement of excitatory input tuning of L4 neurons.SIGNIFICANCE STATEMENT During postnatal development, sensory cortex undergoes functional refinement, through which the size of sensory receptive field is reduced. In the rat primary auditory cortex, such refinement in layer (L)4 is mainly attributed to improved selectivity of excitatory input a L4 neuron receives. In this study, we further examined three stages along the hierarchical neural pathway where excitatory input refinement might occur. We found that developmental refinement takes place at both thalamocortical and intracortical circuit levels, but not at the thalamic output level. Together with modeling results, we revealed that the optimal-frequency-selective strengthening of intracortical excitation plays a dominant role in the refinement of excitatory input tuning.
Collapse
Affiliation(s)
- Yujiao J Sun
- Zilkha Neurogenetic Institute
- Graduate Program in Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Bao-Hua Liu
- Zilkha Neurogenetic Institute
- Graduate Program in Physiology and Biophysics, Keck School of Medicine, University of Southern California, Los Angeles, California 90089
| | - Huizhong W Tao
- Zilkha Neurogenetic Institute,
- Department of Physiology and Neuroscience, and
| | - Li I Zhang
- Zilkha Neurogenetic Institute,
- Department of Physiology and Neuroscience, and
| |
Collapse
|
13
|
Vinokurova D, Zakharov AV, Lebedeva J, Burkhanova GF, Chernova KA, Lotfullina N, Khazipov R, Valeeva G. Pharmacodynamics of the Glutamate Receptor Antagonists in the Rat Barrel Cortex. Front Pharmacol 2018; 9:698. [PMID: 30018551 PMCID: PMC6038834 DOI: 10.3389/fphar.2018.00698] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/08/2018] [Indexed: 02/01/2023] Open
Abstract
Epipial application is one of the approaches for drug delivery into the cortex. However, passive diffusion of epipially applied drugs through the cortical depth may be slow, and different drug concentrations may be achieved at different rates across the cortical depth. Here, we explored the pharmacodynamics of the inhibitory effects of epipially applied ionotropic glutamate receptor antagonists CNQX and dAPV on sensory-evoked and spontaneous activity across layers of the cortical barrel column in urethane-anesthetized rats. The inhibitory effects of CNQX and dAPV were observed at concentrations that were an order higher than in slices in vitro, and they slowly developed from the cortical surface to depth after epipial application. The level of the inhibitory effects also followed the surface-to-depth gradient, with full inhibition of sensory evoked potentials (SEPs) in the supragranular layers and L4 and only partial inhibition in L5 and L6. During epipial CNQX and dAPV application, spontaneous activity and the late component of multiple unit activity (MUA) during sensory-evoked responses were suppressed faster than the short-latency MUA component. Despite complete suppression of SEPs in L4, sensory-evoked short-latency multiunit responses in L4 persisted, and they were suppressed by further addition of lidocaine suggesting that spikes in thalamocortical axons contribute ∼20% to early multiunit responses. Epipial CNQX and dAPV also completely suppressed sensory-evoked very fast (∼500 Hz) oscillations and spontaneous slow wave activity in L2/3 and L4. However, delta oscillations persisted in L5/6. Thus, CNQX and dAPV exert inhibitory actions on cortical activity during epipial application at much higher concentrations than in vitro, and the pharmacodynamics of their inhibitory effects is characterized by the surface-to-depth gradients in the rate of development and the level of inhibition of sensory-evoked and spontaneous cortical activity.
Collapse
Affiliation(s)
- Daria Vinokurova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Mediterranean Institute of Neurobiology - National Institute of Health and Medical Research, Aix-Marseille University, UMR1249, Marseille, France
| | | | - Julia Lebedeva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | | | | | - Nailya Lotfullina
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Mediterranean Institute of Neurobiology - National Institute of Health and Medical Research, Aix-Marseille University, UMR1249, Marseille, France
| | - Rustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.,Mediterranean Institute of Neurobiology - National Institute of Health and Medical Research, Aix-Marseille University, UMR1249, Marseille, France
| | - Guzel Valeeva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| |
Collapse
|
14
|
Chung S, Jeong JH, Ko S, Yu X, Kim YH, Isaac JTR, Koretsky AP. Peripheral Sensory Deprivation Restores Critical-Period-like Plasticity to Adult Somatosensory Thalamocortical Inputs. Cell Rep 2018; 19:2707-2717. [PMID: 28658619 DOI: 10.1016/j.celrep.2017.06.018] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Revised: 04/27/2017] [Accepted: 06/04/2017] [Indexed: 01/19/2023] Open
Abstract
Recent work has shown that thalamocortical (TC) inputs can be plastic after the developmental critical period has closed, but the mechanism that enables re-establishment of plasticity is unclear. Here, we find that long-term potentiation (LTP) at TC inputs is transiently restored in spared barrel cortex following either a unilateral infra-orbital nerve (ION) lesion, unilateral whisker trimming, or unilateral ablation of the rodent barrel cortex. Restoration of LTP is associated with increased potency at TC input and reactivates anatomical map plasticity induced by whisker follicle ablation. The reactivation of TC LTP is accompanied by reappearance of silent synapses. Both LTP and silent synapse formation are preceded by transient re-expression of synaptic GluN2B-containing N-methyl-D-aspartate (NMDA) receptors, which are required for the reappearance of TC plasticity. These results clearly demonstrate that peripheral sensory deprivation reactivates synaptic plasticity in the mature layer 4 barrel cortex with features similar to the developmental critical period.
Collapse
Affiliation(s)
- Seungsoo Chung
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea.
| | - Ji-Hyun Jeong
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Sukjin Ko
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA; Translational Neuroimaging and Neural Control Group, High-field Magnetic Resonance Department, Max Planck Institute for Biological Cybernetics, 72076 Tübingen, Germany
| | - Young-Hwan Kim
- Brain Korea 21 Plus Project for Medical Science, Department of Physiology, Yonsei University College of Medicine, Seoul 03722, Republic of Korea
| | - John T R Isaac
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK; Department of Physiology, University of Toronto, 1 King's Circle, Toronto, ON M5S 1A8, Canada.
| | - Alan P Koretsky
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
15
|
Abstract
Cortical circuits are known to be plastic and adaptable, as shown by an impressive body of evidence demonstrating the ability of cortical circuits to adapt to changes in environmental stimuli, development, learning, and insults. In this review, we will discuss some of the features of cortical circuits that are thought to facilitate cortical circuit versatility and flexibility. Throughout life, cortical circuits can be extensively shaped and refined by experience while preserving their overall organization, suggesting that mechanisms are in place to favor change but also to stabilize some aspects of the circuit. First, we will describe the basic organization and some of the common features of cortical circuits. We will then discuss how this underlying cortical structure provides a substrate for the experience- and learning-dependent processes that contribute to cortical flexibility.
Collapse
Affiliation(s)
- Melissa S. Haley
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| | - Arianna Maffei
- Department of Neurobiology and Behavior, SUNY–Stony Brook, Stony Brook, NY, USA
| |
Collapse
|
16
|
Abstract
One approach to examining how higher sensory, motor, and cognitive faculties emerge in the neocortex is to elucidate the underlying wiring principles of the brain during development. The mammalian neocortex is a layered structure generated from a sheet of proliferating ventricular cells that progressively divide to form specific functional areas, such as the primary somatosensory (S1) and motor (M1) cortices. The basic wiring pattern in each of these functional areas is based on a similar framework, but is distinct in detail. Functional specialization in each area derives from a combination of molecular cues within the cortex and neuronal activity-dependent cues provided by innervating axons from the thalamus. One salient feature of neocortical development is the establishment of topographic maps in which neighboring neurons receive input relayed from neighboring sensory afferents. Barrels, which are prominent sensory units in the somatosensory cortex of rodents, have been examined in detail, and data suggest that the initial, gross formation of the barrel map relies on molecular cues, but the refinement of this topography depends on neuronal activity. Several excellent reviews have been published on the patterning and plasticity of the barrel cortex and the precise targeting of ventrobasal thalamic axons. In this review, the authors will focus on the formation and functional maturation of synapses between thalamocortical axons and cortical neurons, an event that coincides with the formation of the barrel map. They will briefly review cortical patterning and the initial targeting of thalamic axons, with an emphasis on recent findings. The rest of the review will be devoted to summarizing their understanding of the cellular and molecular mechanisms underlying thalamocortical synapse maturation and its role in barrel map formation.
Collapse
Affiliation(s)
- Melis Inan
- Program in Developmental Biology, Baylor College of Medicine, Houston TX, USA
| | | |
Collapse
|
17
|
Abstract
Homochirality is fundamental for life. L-Amino acids are exclusively used as substrates for the polymerization and formation of peptides and proteins in living systems. However, D- amino acids were recently detected in various living organisms, including mammals. Of these D-amino acids, D-serine has been most extensively studied. D-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl- D-aspartate receptor (NMDAr). D-Serine binds with high affinity to a co-agonist site at the NMDAr and, along with glutamate, mediates several vital physiological and pathological processes, including NMDAr transmission, synaptic plasticity and neurotoxicity. Therefore, a key role for D-serine as a determinant of NMDAr mediated neurotransmission in mammalian CNS has been suggested. In this context, we review the known functions of D-serine in human physiology, such as CNS development, and pathology, such as neuro-psychiatric and neurodegenerative diseases related to NMDAr dysfunction.
Collapse
|
18
|
Akhmetshina D, Zakharov A, Vinokurova D, Nasretdinov A, Valeeva G, Khazipov R. The serotonin reuptake inhibitor citalopram suppresses activity in the neonatal rat barrel cortex in vivo. Brain Res Bull 2016; 124:48-54. [PMID: 27016034 DOI: 10.1016/j.brainresbull.2016.03.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 02/10/2016] [Accepted: 03/21/2016] [Indexed: 02/02/2023]
Abstract
Inhibition of serotonin uptake, which causes an increase in extracellular serotonin levels, disrupts the development of thalamocortical barrel maps in neonatal rodents. Previous in vitro studies have suggested that the disruptive effect of excessive serotonin on barrel map formation involves a depression at thalamocortical synapses. However, the effects of serotonin uptake inhibitors on the early thalamocortical activity patterns in the developing barrel cortex in vivo remain largely unknown. Here, using extracellular recordings of the local field potentials and multiple unit activity (MUA) we explored the effects of the selective serotonin reuptake inhibitor (SSRI) citalopram (10-20mg/kg, intraperitoneally) on sensory evoked activity in the barrel cortex of neonatal (postnatal days P2-5) rats in vivo. We show that administration of citalopram suppresses the amplitude and prolongs the delay of the sensory evoked potentials, reduces the power and frequency of the early gamma oscillations, and suppresses sensory evoked and spontaneous neuronal firing. In the adolescent P21-29 animals, citalopram affected neither sensory evoked nor spontaneous activity in barrel cortex. We suggest that suppression of the early thalamocortical activity patterns contributes to the disruption of the barrel map development caused by SSRIs and other conditions elevating extracellular serotonin levels.
Collapse
Affiliation(s)
| | - Andrei Zakharov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia; Department of Physiology, Kazan State Medical University, Kazan, Russia
| | - Daria Vinokurova
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Azat Nasretdinov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia
| | - Guzel Valeeva
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia.
| | - Roustem Khazipov
- Laboratory of Neurobiology, Kazan Federal University, Kazan, Russia; INMED-INSERM U901, Marseille, France; University Aix-Marseille II, Marseille, France
| |
Collapse
|
19
|
Abstract
A cardinal feature of early stages of human brain development centers on the sensory, cognitive, and emotional experiences that shape neuronal-circuit formation and refinement. Consequently, alterations in these processes account for many psychiatric and neurodevelopmental disorders. Neurodevelopment disorders affect 3-4% of the world population. The impact of these disorders presents a major challenge to clinicians, geneticists, and neuroscientists. Mutations that cause neurodevelopmental disorders are commonly found in genes encoding proteins that regulate synaptic function. Investigation of the underlying mechanisms using gain or loss of function approaches has revealed alterations in dendritic spine structure, function, and plasticity, consequently modulating the neuronal circuit formation and thereby raising the possibility of neurodevelopmental disorders resulting from synaptopathies. One such gene, SYNGAP1 (Synaptic Ras-GTPase-activating protein) has been shown to cause Intellectual Disability (ID) with comorbid Autism Spectrum Disorder (ASD) and epilepsy in children. SYNGAP1 is a negative regulator of Ras, Rap and of AMPA receptor trafficking to the postsynaptic membrane, thereby regulating not only synaptic plasticity, but also neuronal homeostasis. Recent studies on the neurophysiology of SYNGAP1, using Syngap1 mouse models, have provided deeper insights into how downstream signaling proteins and synaptic plasticity are regulated by SYNGAP1. This knowledge has led to a better understanding of the function of SYNGAP1 and suggests a potential target during critical period of development when the brain is more susceptible to therapeutic intervention.
Collapse
Affiliation(s)
- Nallathambi Jeyabalan
- Narayana Nethralaya Post-Graduate Institute of Ophthalmology, Narayana Nethralaya Foundation, Narayana Health City Bangalore, India
| | - James P Clement
- Neuroscience Unit, Jawaharlal Nehru Centre for Advanced Scientific Research Bangalore, India
| |
Collapse
|
20
|
Che A, Truong DT, Fitch RH, LoTurco JJ. Mutation of the Dyslexia-Associated Gene Dcdc2 Enhances Glutamatergic Synaptic Transmission Between Layer 4 Neurons in Mouse Neocortex. Cereb Cortex 2015; 26:3705-3718. [PMID: 26250775 DOI: 10.1093/cercor/bhv168] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Variants in DCDC2 have been associated with reading disability in humans, and targeted mutation of Dcdc2 in mice causes impairments in both learning and sensory processing. In this study, we sought to determine whether Dcdc2 mutation affects functional synaptic circuitry in neocortex. We found mutation in Dcdc2 resulted in elevated spontaneous and evoked glutamate release from neurons in somatosensory cortex. The probability of release was decreased to wild-type level by acute application of N-methyl-d-aspartate receptor (NMDAR) antagonists when postsynaptic NMDARs were blocked by intracellular MK-801, and could not be explained by elevated ambient glutamate, suggesting altered, nonpostsynaptic NMDAR activation in the mutants. In addition, we determined that the increased excitatory transmission was present at layer 4-layer 4 but not thalamocortical connections in Dcdc2 mutants, and larger evoked synaptic release appeared to enhance the NMDAR-mediated effect. These results demonstrate an NMDAR activation-gated, increased functional excitatory connectivity between layer 4 lateral connections in somatosensory neocortex of the mutants, providing support for potential changes in cortical connectivity and activation resulting from mutation of dyslexia candidate gene Dcdc2.
Collapse
Affiliation(s)
- Alicia Che
- Department of Physiology and Neurobiology.,Current address: Weill Cornell Medical College, Brain & Mind Research Institute, New York, NY 10021, USA
| | - Dongnhu T Truong
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA.,Current address: Department of Pediatrics, Yale University, New Haven, CT 06520, USA
| | - R Holly Fitch
- Department of Psychology, University of Connecticut, Storrs, CT 06269, USA
| | | |
Collapse
|
21
|
Simons DJ, Carvell GE, Kyriazi HT. Alterations in functional thalamocortical connectivity following neonatal whisker trimming with adult regrowth. J Neurophysiol 2015; 114:1912-22. [PMID: 26245317 DOI: 10.1152/jn.00488.2015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/05/2015] [Indexed: 11/22/2022] Open
Abstract
Neonatal whisker trimming followed by adult whisker regrowth leads to higher responsiveness and altered receptive field properties of cortical neurons in corresponding layer 4 barrels. Studies of functional thalamocortical (TC) connectivity in normally reared adult rats have provided insights into how experience-dependent TC synaptic plasticity could impact the establishment of feedforward excitatory and inhibitory receptive fields. The present study employed cross-correlation analyses to investigate lasting effects of neonatal whisker trimming on functional connections between simultaneously recorded thalamic neurons and regular-spike (RS), presumed excitatory, and fast-spike (FS), presumed inhibitory, barrel neurons. We find that, as reported previously, RS and FS cells in whisker-trimmed animals fire more during the earliest phase of their whisker-evoked responses, corresponding to the arrival of TC inputs, despite a lack of change or even a slight decrease in the firing of thalamic cells that contact them. Functional connections from thalamus to cortex are stronger. The probability of finding TC-RS connections was twofold greater in trimmed animals and similar to the frequency of TC-FS connections in control and trimmed animals, the latter being unaffected by whisker trimming. Unlike control cases, trimmed RS units are more likely to receive inputs from TC units (TCUs) and have mismatched angular tuning and even weakly responsive TCUs make strong functional connections on them. Results indicate that developmentally appropriate tactile experience early in life promotes the differential thalamic engagement of excitatory and inhibitory cortical neurons that underlies normal barrel function.
Collapse
Affiliation(s)
- D J Simons
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| | - G E Carvell
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and Department of Physical Therapy, School of Health and Rehabilitation Sciences, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - H T Kyriazi
- Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; and
| |
Collapse
|
22
|
Developmental decline in modulation of glutamatergic synapses in layer IV of the barrel cortex by group II metabotropic glutamate receptors. Neuroscience 2015; 290:41-8. [PMID: 25595969 DOI: 10.1016/j.neuroscience.2014.12.083] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 12/15/2014] [Accepted: 12/16/2014] [Indexed: 10/24/2022]
Abstract
Previously, we demonstrated that group II metabotropic glutamate receptors (mGluRs) reduce glutamate release from thalamocortical synapses during early postnatal development (P7-11). To further examine the role of group II mGluRs in the modulation of somatosensory circuitry, we determined whether group II mGluRs continue to modulate thalamocortical synapses until adulthood and whether these receptors also modulate intra-cortical synapses in the barrel cortex. To address these issues, we examined the effect of the group II mGluR agonists on thalamocortical excitatory postsynaptic currents (EPSCs) and intra-barrel EPSCs in slices from animals of different ages (P7-53). We found that the depression of thalamocortical EPSCs by group II mGluRs rapidly declined after the second postnatal week. In contrast, adenosine continued to depress thalamocortical EPSCs via a presynaptic mechanism in young adult mice (P30-50). Activation of group II mGluRs also reduced intra-barrel EPSCs through a postsynaptic mechanism in young mice (P7-11). Similar to the thalamocortical synapses, the group II mGluR modulation of intra-barrel excitatory synapses declined with development. In young adult animals (P30-50), group II mGluR stimulation had little effect on intra-barrel EPSCs but did hyperpolarize the neurons. Together our results demonstrate that group II mGluRs modulate barrel cortex circuitry by presynaptic and postsynaptic mechanisms depending on the source of the synapse and that this modulation declines with development.
Collapse
|
23
|
Urban-Ciecko J, Wen JA, Parekh PK, Barth AL. Experience-dependent regulation of presynaptic NMDARs enhances neurotransmitter release at neocortical synapses. ACTA ACUST UNITED AC 2014; 22:47-55. [PMID: 25512577 PMCID: PMC4274331 DOI: 10.1101/lm.035741.114] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Sensory experience can selectively alter excitatory synaptic strength at neocortical synapses. The rapid increase in synaptic strength induced by selective whisker stimulation (single-row experience/SRE, where all but one row of whiskers has been removed from the mouse face) is due, at least in part, to the trafficking of AMPA receptors (AMPARs) to the post-synaptic membrane, and is developmentally regulated. How enhanced sensory experience can alter presynaptic release properties in the developing neocortex has not been investigated. Using paired-pulse stimulation at layer 4-2/3 synapses in acute brain slices, we found that presynaptic release probability progressively increases in the spared-whisker barrel column over the first 24 h of SRE. Enhanced release probability can be at least partly attributed to presynaptic NMDA receptors (NMDARs). We find that the influence of presynaptic NMDARs in enhancing EPSC amplitude markedly increases during SRE. This occurs at the same time when recently potentiated synapses become highly susceptible to a NMDAR-dependent form of synaptic depression, during the labile phase of plasticity. Thus, these data show that augmented sensory stimulation can enhance release probability at layer 4-2/3 synapses and enhance the function of presynaptic NMDARs. Because presynaptic NMDARs have been linked to synaptic depression at layer 4-2/3 synapses, we propose that SRE-dependent up-regulation of presynaptic NMDARs is responsible for enhanced synaptic depression during the labile stage of plasticity.
Collapse
Affiliation(s)
- Joanna Urban-Ciecko
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Jing A Wen
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| | - Puja K Parekh
- Center for Neuroscience at the University of Pittsburgh, Department of Psychiatry, Pittsburgh, Pennsylvania 15219, USA
| | - Alison L Barth
- Department of Biological Sciences and Center for the Neural Basis of Cognition, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA
| |
Collapse
|
24
|
Abstract
PURPOSE OF REVIEW Neocortical and thalamic interactions are necessary for the execution of complex sensory-motor tasks and associated cognitive processes. Investigation of thalamocortical circuit development is therefore critical to understand developmental disorders involving abnormal cortical function. Here, we review recent advances in our understanding of thalamus-dependent cortical patterning and cortical neuron differentiation. RECENT FINDINGS Although the principles of cortical map patterning are increasingly understood, the extent to which thalamocortical inputs contribute to cortical neuron differentiation is still unclear. The recent development of genetic models allowing cell-type-specific dissection of cortical input pathways has shed light on some of the input-dependent and activity-dependent processes occurring during cortical development, which are discussed here. SUMMARY These recent studies have revealed interwoven links between thalamic and cortical neurons, in which cell intrinsic differentiation programs are tightly regulated by synaptic input during a prolonged period of development. Challenges in the years to come will be to identify the mechanisms underlying the reciprocal interactions between intrinsic and extrinsic differentiation programs, and their contribution to neurodevelopmental disorders and neuropsychiatric disorders at large.
Collapse
|
25
|
Abstract
Development of correct topographical connections between peripheral receptors and central somatosensory stations requires activity-dependent synapse refinement, in which the NMDA type of glutamate receptors plays a key role. Here we compared functional roles of GluN2B (GluRε2 or NR2B) and GluN2D (GluRε4 or NR2D), two major regulatory subunits of neonatal NMDA receptors, in development of whisker-related patterning at trigeminal relay stations. Compared with control littermates, both the appearance of whisker-related patterning and the termination of the critical period, as assessed by unilateral infraorbital nerve transection, were delayed by nearly a day in the somatosensory cortex of GluN2B(+/-) mice but advanced by nearly a day in GluN2D(-/-) mice. Similar temporal shifts were found at subcortical relay stations in the thalamus and brainstem of GluN2B(+/-) and GluN2D(-/-) mice. In comparison, the magnitude of lesion-induced critical period plasticity in the somatosensory cortex, as assessed following row-C whisker removal, was normal in both mutants. Thus, GluN2B and GluN2D play counteractive roles in temporal development and maturation of somatosensory maps without affecting the magnitude of critical period plasticity. To understand the opposing action, we then examined neuronal and synaptic expressions of the two subunits along the trigeminal pathway. At each trigeminal station, GluN2B was predominant at asymmetrical synapses of non-GABAergic neurons, whereas GluN2D was selective to asymmetrical synapses of GABAergic neurons. Together, our findings suggest that GluN2B expressed at glutamatergic synapses on glutamatergic projection neurons facilitates refinement of ascending pathway synapses directly, whereas GluN2D expressed at glutamatergic synapses on GABAergic interneurons delays it indirectly.
Collapse
|
26
|
Takesian AE, Hensch TK. Balancing plasticity/stability across brain development. PROGRESS IN BRAIN RESEARCH 2014; 207:3-34. [PMID: 24309249 DOI: 10.1016/b978-0-444-63327-9.00001-1] [Citation(s) in RCA: 376] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The potency of the environment to shape brain function changes dramatically across the lifespan. Neural circuits exhibit profound plasticity during early life and are later stabilized. A focus on the cellular and molecular bases of these developmental trajectories has begun to unravel mechanisms, which control the onset and closure of such critical periods. Two important concepts have emerged from the study of critical periods in the visual cortex: (1) excitatory-inhibitory circuit balance is a trigger; and (2) molecular "brakes" limit adult plasticity. The onset of the critical period is determined by the maturation of specific GABA circuits. Targeting these circuits using pharmacological or genetic approaches can trigger premature onset or induce a delay. These manipulations are so powerful that animals of identical chronological age may be at the peak, before, or past their plastic window. Thus, critical period timing per se is plastic. Conversely, one of the outcomes of normal development is to stabilize the neural networks initially sculpted by experience. Rather than being passively lost, the brain's intrinsic potential for plasticity is actively dampened. This is demonstrated by the late expression of brake-like factors, which reversibly limit excessive circuit rewiring beyond a critical period. Interestingly, many of these plasticity regulators are found in the extracellular milieu. Understanding why so many regulators exist, how they interact and, ultimately, how to lift them in noninvasive ways may hold the key to novel therapies and lifelong learning.
Collapse
Affiliation(s)
- Anne E Takesian
- FM Kirby Neurobiology Center, Boston Children's Hospital, Harvard Medical School, Boston, MA, USA
| | | |
Collapse
|
27
|
Han Y, Huang MD, Sun ML, Duan S, Yu YQ. Long-Term Synaptic Plasticity in Rat Barrel Cortex. Cereb Cortex 2014; 25:2741-51. [PMID: 24735674 DOI: 10.1093/cercor/bhu071] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Rats generate sweeping whisker movements in order to explore their environments and identify objects. In somatosensory pathways, neuronal activity is modulated by the frequency of whisker vibration. However, the potential role of rhythmic neuronal activity in the cerebral processing of sensory signals and its mechanism remain unclear. Here, we showed that rhythmic vibrissal stimulation with short duration in anesthetized rats resulted in an increase or decrease in the amplitude of somatosensory-evoked potentials (SEPs) in the contralateral barrel cortex. The plastic change of the SEPs was frequency dependent and long lasting. The long-lasting enhancement of the vibrissa-to-cortex evoked response was side- but not barrel-specific. Local application of dl-2-amino-5-phosphonopentanoic acid into the barrel cortex revealed that this vibrissa-to-cortex long-term plasticity in adult rats was N-methyl-d-aspartate receptor-dependent. Most interestingly, whisker trimming through postnatal day (P)1-7 but not P29-35 impaired the long-term plasticity induced by 100 Hz vibrissal stimulation. The short period of rhythmic vibrissal stimulation did not induce long-lasting plasticity of field potentials in the thalamus. In conclusion, our results suggest that natural rhythmic whisker activity modifies sensory information processing in cerebral cortex, providing further insight into sensory perception.
Collapse
Affiliation(s)
- Yong Han
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ming-De Huang
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Man-Li Sun
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Shumin Duan
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yan-Qin Yu
- Department of Neurobiology and Physiology, Key Laboratory of Medical Neurobiology of Ministry of Health of China, Zhejiang Province Key Laboratory of Neurobiology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
28
|
Nelson PA, Sage JR, Wood SC, Davenport CM, Anagnostaras SG, Boulanger LM. MHC class I immune proteins are critical for hippocampus-dependent memory and gate NMDAR-dependent hippocampal long-term depression. Learn Mem 2013; 20:505-17. [PMID: 23959708 PMCID: PMC3744042 DOI: 10.1101/lm.031351.113] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Memory impairment is a common feature of conditions that involve changes in inflammatory signaling in the brain, including traumatic brain injury, infection, neurodegenerative disorders, and normal aging. However, the causal importance of inflammatory mediators in cognitive impairments in these conditions remains unclear. Here we show that specific immune proteins, members of the major histocompatibility complex class I (MHC class I), are essential for normal hippocampus-dependent memory, and are specifically required for NMDAR-dependent forms of long-term depression (LTD) in the healthy adult hippocampus. In β2m−/−TAP−/−mice, which lack stable cell-surface expression of most MHC class I proteins, NMDAR-dependent LTD in area CA1 of adult hippocampus is abolished, while NMDAR-independent forms of potentiation, facilitation, and depression are unaffected. Altered NMDAR-dependent synaptic plasticity in the hippocampus of β2m−/−TAP−/−mice is accompanied by pervasive deficits in hippocampus-dependent memory, including contextual fear memory, object recognition memory, and social recognition memory. Thus normal MHC class I expression is essential for NMDAR-dependent hippocampal synaptic depression and hippocampus-dependent memory. These results suggest that changes in MHC class I expression could be an unexpected cause of disrupted synaptic plasticity and cognitive deficits in the aging, damaged, and diseased brain.
Collapse
Affiliation(s)
- P Austin Nelson
- Department of Neuroscience, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
29
|
Initiation, labile, and stabilization phases of experience-dependent plasticity at neocortical synapses. J Neurosci 2013; 33:8483-93. [PMID: 23658185 DOI: 10.1523/jneurosci.3575-12.2013] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Alteration of sensory input can change the strength of neocortical synapses. Selective activation of a subset of whiskers is sufficient to potentiate layer 4-layer 2/3 excitatory synapses in the mouse somatosensory (barrel) cortex, a process that is NMDAR dependent. By analyzing the time course of sensory-induced synaptic change, we have identified three distinct phases for synaptic strengthening in vivo. After an early, NMDAR-dependent phase where selective whisker activation is rapidly translated into increased synaptic strength, we identify a second phase where this potentiation is profoundly reduced by an input-specific, NMDAR-dependent depression. This labile phase is transient, lasting only a few hours, and may require ongoing sensory input for synaptic weakening. Residual synaptic strength is maintained in a third phase, the stabilization phase, which requires mGluR5 signaling. Identification of these three phases will facilitate a molecular dissection of the pathways that regulate synaptic lability and stabilization, and suggest potential approaches to modulate learning.
Collapse
|
30
|
Thalamocortical long-term potentiation becomes gated after the early critical period in the auditory cortex. J Neurosci 2013; 33:7345-57. [PMID: 23616541 DOI: 10.1523/jneurosci.4500-12.2013] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Cortical maps in sensory cortices are plastic, changing in response to sensory experience. The cellular site of such plasticity is currently debated. Thalamocortical (TC) projections deliver sensory information to sensory cortices. TC synapses are currently dismissed as a locus of cortical map plasticity because TC synaptic plasticity is thought to be limited to neonates, whereas cortical map plasticity can be induced in both neonates and adults. However, in the auditory cortex (ACx) of adults, cortical map plasticity can be induced if animals attend to a sound or receive sounds paired with activation of cholinergic inputs from the nucleus basalis. We now show that, in the ACx, long-term potentiation (LTP), a major form of synaptic plasticity, is expressed at TC synapses in both young and mature mice but becomes gated with age. Using single-cell electrophysiology, two-photon glutamate uncaging, and optogenetics in TC slices containing the auditory thalamus and ACx, we show that TC LTP is expressed postsynaptically and depends on group I metabotropic glutamate receptors. TC LTP in mature ACx can be unmasked by cortical disinhibition combined with activation of cholinergic inputs from the nucleus basalis. Cholinergic inputs passing through the thalamic radiation activate M1 muscarinic receptors on TC projections and sustain glutamate release at TC synapses via negative regulation of presynaptic adenosine signaling through A1 adenosine receptors. These data indicate that TC LTP in the ACx persists throughout life and therefore can potentially contribute to experience-dependent cortical map plasticity in the ACx in both young and adult animals.
Collapse
|
31
|
Abstract
Thalamocortical circuits are central to sensory and cognitive processing. Recent work suggests that the thalamocortical inputs onto L4 and L6, the main input layers of neocortex, are activated differently by visual stimulation. Whether these differences depend on layer-specific organization of thalamocortical circuits; or on specific properties of synapses onto receiving neurons is unknown. Here we combined optogenetic stimulation of afferents from the visual thalamus and paired recording electrophysiology in L4 and L6 of rat primary visual cortex to determine the organization and plasticity of thalamocortical synapses. We show that thalamocortical inputs onto L4 and L6 differ in synaptic dynamics and sensitivity to visual drive. We also demonstrate that the two layers differ in the organization of thalamocortical and recurrent intracortical connectivity. In L4, a significantly larger proportion of excitatory neurons responded to light activation of thalamocortical terminal fields than in L6. The local microcircuit in L4 showed a higher degree of recurrent connectivity between excitatory neurons than the microcircuit in L6. In addition, L4 recurrently connected neurons were driven by thalamocortical inputs of similar magnitude indicating the presence of local subnetworks that may be activated by the same axonal projection. Finally, brief manipulation of visual drive reduced the amplitude of light-evoked thalamocortical synaptic currents selectively onto L4. These data are the first direct indication that thalamocortical circuits onto L4 and L6 support different aspects of cortical function through layer-specific synaptic organization and plasticity.
Collapse
|
32
|
Blundon JA, Zakharenko SS. Presynaptic gating of postsynaptic synaptic plasticity: a plasticity filter in the adult auditory cortex. Neuroscientist 2013; 19:465-78. [PMID: 23558179 DOI: 10.1177/1073858413482983] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Sensory cortices can not only detect and analyze incoming sensory information but can also undergo plastic changes while learning behaviorally important sensory cues. This experience-dependent cortical plasticity is essential for shaping and modifying neuronal circuits to perform computations of multiple, previously unknown sensations, the adaptive process that is believed to underlie perceptual learning. Intensive efforts to identify the mechanisms of cortical plasticity have provided several important clues; however, the exact cellular sites and mechanisms within the intricate neuronal networks that underlie cortical plasticity have yet to be elucidated. In this review, we present several parallels between cortical plasticity in the auditory cortex and recently discovered mechanisms of synaptic plasticity gating at thalamocortical projections that provide the main input to sensory cortices. Striking similarities between the features and mechanisms of thalamocortical synaptic plasticity and those of experience-dependent cortical plasticity in the auditory cortex, especially in terms of regulation of an early critical period, point to thalamocortical projections as an important locus of plasticity in sensory cortices.
Collapse
Affiliation(s)
- Jay A Blundon
- Department of Development Neurobiology, St. Jude Children's Research Hospital, Memphis, TN 38105-2794, USA
| | | |
Collapse
|
33
|
Essential role of postsynaptic NMDA receptors in developmental refinement of excitatory synapses. Proc Natl Acad Sci U S A 2012; 110:1095-100. [PMID: 23277569 DOI: 10.1073/pnas.1212971110] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Neurons in the brains of newborns are usually connected with many other neurons through weak synapses. This early pattern of connectivity is refined through pruning of many immature connections and strengthening of the remaining ones. NMDA receptors (NMDARs) are essential for the development of excitatory synapses, but their role in synaptic refinement is controversial. Although chronic application of blockers or global knockdown of NMDARs disrupts developmental refinement in many parts of the brain, the ubiquitous presence of NMDARs makes it difficult to dissociate direct effects from indirect ones. We addressed this question in the thalamus by using genetic mosaic deletion of NMDARs. We demonstrate that pruning and strengthening of immature synapses are blocked in neurons without NMDARs, but occur normally in neighboring neurons with NMDARs. Our data support a model in which activation of NMDARs in postsynaptic neurons initiates synaptic refinement.
Collapse
|
34
|
Abstract
In primary sensory neocortical areas of mammals, the distribution of sensory receptors is mapped with topographic precision and amplification in proportion to the peripheral receptor density. The visual, somatosensory and auditory cortical maps are established during a critical period in development. Throughout this window in time, the developing cortical maps are vulnerable to deleterious effects of sense organ damage or sensory deprivation. The rodent barrel cortex offers an invaluable model system with which to investigate the mechanisms underlying the formation of topographic maps and their plasticity during development. Five rows of mystacial vibrissa (whisker) follicles on the snout and an array of sinus hairs are represented by layer IV neural modules ('barrels') and thalamocortical axon terminals in the primary somatosensory cortex. Perinatal damage to the whiskers or the sensory nerve innervating them irreversibly alters the structural organization of the barrels. Earlier studies emphasized the role of the sensory periphery in dictating whisker-specific brain maps and patterns. Recent advances in molecular genetics and analyses of genetically altered mice allow new insights into neural pattern formation in the neocortex and the mechanisms underlying critical period plasticity. Here, we review the development and patterning of the barrel cortex and the critical period plasticity.
Collapse
Affiliation(s)
- Reha S Erzurumlu
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD 21201-1075, USA.
| | | |
Collapse
|
35
|
Yu X, Chung S, Chen DY, Wang S, Dodd SJ, Walters JR, Isaac JTR, Koretsky AP. Thalamocortical inputs show post-critical-period plasticity. Neuron 2012; 74:731-42. [PMID: 22632730 DOI: 10.1016/j.neuron.2012.04.024] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/27/2012] [Indexed: 11/19/2022]
Abstract
Experience-dependent plasticity in the adult brain has clinical potential for functional rehabilitation following central and peripheral nerve injuries. Here, plasticity induced by unilateral infraorbital (IO) nerve resection in 4-week-old rats was mapped using MRI and synaptic mechanisms were elucidated by slice electrophysiology. Functional MRI demonstrates a cortical potentiation compared to thalamus 2 weeks after IO nerve resection. Tracing thalamocortical (TC) projections with manganese-enhanced MRI revealed circuit changes in the spared layer 4 (L4) barrel cortex. Brain slice electrophysiology revealed TC input strengthening onto L4 stellate cells due to an increase in postsynaptic strength and the number of functional synapses. This work shows that the TC input is a site for robust plasticity after the end of the previously defined critical period for this input. Thus, TC inputs may represent a major site for adult plasticity in contrast to the consensus that adult plasticity mainly occurs at cortico-cortical connections.
Collapse
Affiliation(s)
- Xin Yu
- Laboratory of Functional and Molecular Imaging, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | | | | | | | | | | | | | | |
Collapse
|
36
|
Thalamic activation modulates the responses of neurons in rat primary auditory cortex: an in vivo intracellular recording study. PLoS One 2012; 7:e34837. [PMID: 22514672 PMCID: PMC3325946 DOI: 10.1371/journal.pone.0034837] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2011] [Accepted: 03/06/2012] [Indexed: 11/28/2022] Open
Abstract
Auditory cortical plasticity can be induced through various approaches. The medial geniculate body (MGB) of the auditory thalamus gates the ascending auditory inputs to the cortex. The thalamocortical system has been proposed to play a critical role in the responses of the auditory cortex (AC). In the present study, we investigated the cellular mechanism of the cortical activity, adopting an in vivo intracellular recording technique, recording from the primary auditory cortex (AI) while presenting an acoustic stimulus to the rat and electrically stimulating its MGB. We found that low-frequency stimuli enhanced the amplitudes of sound-evoked excitatory postsynaptic potentials (EPSPs) in AI neurons, whereas high-frequency stimuli depressed these auditory responses. The degree of this modulation depended on the intensities of the train stimuli as well as the intervals between the electrical stimulations and their paired sound stimulations. These findings may have implications regarding the basic mechanisms of MGB activation of auditory cortical plasticity and cortical signal processing.
Collapse
|
37
|
Wu CS, Ballester Rosado CJ, Lu HC. What can we get from 'barrels': the rodent barrel cortex as a model for studying the establishment of neural circuits. Eur J Neurosci 2012; 34:1663-76. [PMID: 22103423 DOI: 10.1111/j.1460-9568.2011.07892.x] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Sensory inputs triggered by external stimuli are projected into discrete arrays of neuronal modules in the primary sensory cortex. This whisker-to-barrel pathway has gained in popularity as a model system for studying the development of cortical circuits and sensory processing because its clear patterns facilitate the identification of genetically modified mice with whisker map deficits and make possible coordinated in vitro and in vivo electrophysiological studies. Numerous whisker map determinants have been identified in the past two decades. In this review, we summarize what have we learned from the detailed studies conducted in various mutant mice with cortical whisker map deficits. We will specifically focus on the anatomical and functional establishment of the somatosensory thalamocortical circuits.
Collapse
Affiliation(s)
- Chia-Shan Wu
- The Cain Foundation Laboratories, Jan and Dan Duncan Neurological Research Institute at Texas Children's Hospital, Houston, TX, USA
| | | | | |
Collapse
|
38
|
Presynaptic gating of postsynaptically expressed plasticity at mature thalamocortical synapses. J Neurosci 2011; 31:16012-25. [PMID: 22049443 DOI: 10.1523/jneurosci.3281-11.2011] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Thalamocortical (TC) projections provide the major pathway for ascending sensory information to the mammalian neocortex. Arrays of these projections form synaptic inputs on thalamorecipient neurons, thus contributing to the formation of receptive fields (RFs) in sensory cortices. Experience-dependent plasticity of RFs persists throughout an organism's life span but in adults requires activation of cholinergic inputs to the cortex. In contrast, synaptic plasticity at TC projections is limited to the early postnatal period. This disconnect led to the widespread belief that TC synapses are the principal site of RF plasticity only in neonatal sensory cortices, but that they lose this plasticity upon maturation. Here, we tested an alternative hypothesis that mature TC projections do not lose synaptic plasticity but rather acquire gating mechanisms that prevent the induction of synaptic plasticity. Using whole-cell recordings and direct measures of postsynaptic and presynaptic activity (two-photon glutamate uncaging and two-photon imaging of the FM 1-43 assay, respectively) at individual synapses in acute mouse brain slices that contain the auditory thalamus and cortex, we determined that long-term depression (LTD) persists at mature TC synapses but is gated presynaptically. Cholinergic activation releases presynaptic gating through M(1) muscarinic receptors that downregulate adenosine inhibition of neurotransmitter release acting through A(1) adenosine receptors. Once presynaptic gating is released, mature TC synapses can express LTD postsynaptically through group I metabotropic glutamate receptors. These results indicate that synaptic plasticity at TC synapses is preserved throughout the life span and, therefore, may be a cellular substrate of RF plasticity in both neonate and mature animals.
Collapse
|
39
|
Pita-Almenar JD, Ranganathan GN, Koester HJ. Impact of cortical plasticity on information signaled by populations of neurons in the cerebral cortex. J Neurophysiol 2011; 106:1118-24. [PMID: 21653720 DOI: 10.1152/jn.01001.2010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The performance of neural codes to represent attributes of sensory signals has been evaluated in the vertebrate peripheral and central nervous system. Here, we determine how information signaled by populations of neurons is modified by plasticity. Suprathreshold neuronal responses from a large number of neurons were recorded in the juvenile mouse barrel cortex using dithered random-access scanning. Pairing of one input with another resulted in a long-lasting, input-specific modification of the cortical responses. Mutual information analysis indicated that cortical plasticity efficiently changed information signaled by populations of neurons. The contribution of neural correlations to the change in mutual information was negative. The largest factor limiting fidelity of mutual information after pairing was a low reliability of the modified cortical responses.
Collapse
Affiliation(s)
- Juan Diego Pita-Almenar
- Center for Learning and Memory, Section of Neurobiology, The University of Texas at Austin, 1 Univ. Sta., C7000, Austin, TX 78712, USA.
| | | | | |
Collapse
|
40
|
Fuchs SA, Berger R, de Koning TJ. D-serine: the right or wrong isoform? Brain Res 2011; 1401:104-17. [PMID: 21676380 DOI: 10.1016/j.brainres.2011.05.039] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2011] [Revised: 05/13/2011] [Accepted: 05/14/2011] [Indexed: 12/17/2022]
Abstract
Only recently, d-amino acids have been identified in mammals. Of these, d-serine has been most extensively studied. d-Serine was found to play an important role as a neurotransmitter in the human central nervous system (CNS) by binding to the N-methyl-d-aspartate receptor (NMDAr), similar to glycine. Therefore, d-serine may well play a role in all physiological and pathological processes in which NMDArs have been implied. In this review, we discuss the findings implying an important role for d-serine in human physiology (CNS development and memory and learning) and pathology (excitotoxicity, perinatal asphyxia, amyotrophic lateral sclerosis (ALS), Alzheimer's disease, epilepsy, schizophrenia and bipolar disorder). We will debate on the relative contribution of d-serine versus glycine and conclude with clinical applications derived from these results and future directions to progress in this field. In general, adequate concentrations of d-serine are required for normal CNS development and function, while both decreased and increased concentrations can lead to CNS pathology. Therefore, d-serine appears to be the right isoform when present in the right concentrations.
Collapse
Affiliation(s)
- Sabine A Fuchs
- Department of Metabolic and Endocrine Diseases, University Medical Center Utrecht, 3508 AB, Utrecht, The Netherlands.
| | | | | |
Collapse
|
41
|
Watanabe K, Kamatani D, Hishida R, Shibuki K. Timing-dependent effects of whisker trimming in thalamocortical slices including the mouse barrel cortex. Brain Res 2011; 1385:93-106. [DOI: 10.1016/j.brainres.2011.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2010] [Revised: 02/01/2011] [Accepted: 02/10/2011] [Indexed: 11/17/2022]
|
42
|
Zhang Z, Sun QQ. The balance between excitation and inhibition and functional sensory processing in the somatosensory cortex. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2011; 97:305-33. [PMID: 21708316 DOI: 10.1016/b978-0-12-385198-7.00012-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The balance between excitation and inhibition (E/I balance) is tightly regulated in adult cortices to maintain proper nervous system function. Disturbed E/I balance is associated with numerous neuropsychological disorders, such as autism, epilepsy and schizophrenia. The present review will discuss aspects of Hebbian and homeostatic mechanisms regulating excitatory and inhibitory balance related to sensory processing in somatosensory cortex of rodents. Additionally, changes in the E/I balance during sensory manipulation will be discussed.
Collapse
Affiliation(s)
- Zhi Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | |
Collapse
|
43
|
Zhang Z, Jiao YY, Sun QQ. Developmental maturation of excitation and inhibition balance in principal neurons across four layers of somatosensory cortex. Neuroscience 2010; 174:10-25. [PMID: 21115101 DOI: 10.1016/j.neuroscience.2010.11.045] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Revised: 10/27/2010] [Accepted: 11/21/2010] [Indexed: 11/29/2022]
Abstract
In adult cortices, the ratio of excitatory and inhibitory conductances (E/I ratio) is presumably balanced across a wide range of stimulus conditions. However, it is unknown how the E/I ratio is postnatally regulated, when the strength of synapses are rapidly changing. Yet, understanding of such a process is critically important, because there are numerous neuropsychological disorders, such as autism, epilepsy and schizophrenia, associated with disturbed E/I balances. Here we directly measured the E/I ratio underlying locally induced synaptic conductances in principal neurons from postnatal day 8 (P8) through 60. We found that (1) within each developmental period, the E/I ratio across four major cortical layers was maintained at a similar value under wide range of stimulation intensities; and (2) there was a rapid developmental decrease in the E/I ratio, which occurred within a sensitive period between P8 to P18 with exception of layer II/III. By comparing the excitatory and inhibitory conductances, as well as key synaptic protein expressions, we found a net increase in the number and strength of inhibitory, but not excitatory synapses, is responsible for the developmental decrease in the E/I ratio in the barrel cortex. The inhibitory markers were intrinsically co-regulated, gave rise to a sharp increase in the inhibitory conductance from P8 to P18. These results suggest that the tightly regulated E/I ratios in adults cortex is a result of drastic changes in relative weight of inhibitory but not excitatory synapses during critical period, and the local inhibitory structural changes are the underpinning of altered E/I ratio across postnatal development.
Collapse
Affiliation(s)
- Z Zhang
- Department of Zoology and Physiology, University of Wyoming, Laramie, WY 82071, USA
| | | | | |
Collapse
|
44
|
Nakashima AS, Dyck RH. Dynamic, experience-dependent modulation of synaptic zinc within the excitatory synapses of the mouse barrel cortex. Neuroscience 2010; 170:1015-9. [PMID: 20727945 DOI: 10.1016/j.neuroscience.2010.08.020] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/06/2010] [Accepted: 08/11/2010] [Indexed: 10/19/2022]
Abstract
Increasing evidence suggests that synaptic zinc, found within the axon terminals of a subset of glutamatergic neurons in the cerebral cortex, is intricately involved in cortical plasticity. Using the vibrissae/barrel cortex model of cortical plasticity, we have previously shown manipulations of sensory input leads to rapid changes in synaptic zinc levels within the corresponding regions of the somatotopic map in the cortex. Here, using electron microscopy, we show how some of these changes are mediated at the synaptic level. We found that the density of zincergic synapses increased significantly in layers II/III, IV, and V. In layers IV and V, this change occurred in the absence of a significant increase in excitatory synapse density, which seems to indicate that excitatory synapses, which previously did not contain synaptic zinc, begin to newly house zinc within its synaptic vesicles. Our results show that excitatory neurons can dynamically change the phenotype of the vesicular content of their synapses in response to changes in sensory input. Given the range of modulatory effects zinc can have on neurotransmission, such a change in the complement of vesicular contents presumably allow these neurons to utilize synaptic zinc to facilitate plasticity. Thus, our results further support the role of zinc as an active participant in the processes contributing to experience-dependent cortical plasticity.
Collapse
Affiliation(s)
- A S Nakashima
- Department of Psychology, University of Calgary, 2500 University Dr. N.W., Calgary, AB, Canada
| | | |
Collapse
|
45
|
Xue L, Zhang F, Chen X, Lin J, Shi J. PDZ protein mediated activity-dependent LTP/LTD developmental switch at rat retinocollicular synapses. Am J Physiol Cell Physiol 2010; 298:C1572-82. [PMID: 20457829 DOI: 10.1152/ajpcell.00012.2010] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The insertion of amino-3-hydroxy-5-methyl-4-isoxazole propionic acid (AMPA) receptors into the plasma membrane and removal via internalization are essential for regulating synaptic strength, which underlies the basic mechanism of learning and memory. The retinocollicular pathway undergoes synaptic refinement during development and shows a wide variety of long-term synaptic changes; however, still little is known about its underlying molecular regulation. Here we report a rapid developmental long-term potentiation (LTP)/long-term depression (LTD) switch and its intracellular mechanism at the rat retinocollicular pathway from postnatal day 5 (P5) to P14. Before P9, neurons always exhibited LTP, whereas LTD was observed only after P10. Blockade of GluR2/3-glutamate receptor-interacting protein (GRIP)/AMPA-receptor-binding protein (ABP)/protein interacting with C kinase 1 (PICK1) interactions with pep2-SVKI could sustain the LTP after P10. This suggests that the LTP/LTD switch relied on PDZ protein activities. Selective interruption of GluR2/3-PICK1 binding by pep2-EVKI blocked the long-lasting effects of both LTP and LTD, suggesting a role for PICK1 in the maintenance of long-term synaptic plasticity. Interestingly, synaptic expression of GRIP increased more than twofold from P7 to P11, whereas ABP and PICK1 expression levels remained stable. Blockade of spontaneous retinal input suppressed this increase and abolished the LTP/LTD switch. These results suggest that the increased GRIP synaptic expression may be a key regulatory factor in mediating the activity-dependent developmental LTP/LTD switch, whereas PICK1 may be required for both LTP and LTD to maintain their long-term effects.
Collapse
Affiliation(s)
- Lei Xue
- NINDS, National Institutes of Health, Porter Neuroscience Research Center, Bethesda, MD 20892, USA.
| | | | | | | | | |
Collapse
|
46
|
Harlow EG, Till SM, Russell TA, Wijetunge LS, Kind P, Contractor A. Critical period plasticity is disrupted in the barrel cortex of FMR1 knockout mice. Neuron 2010; 65:385-98. [PMID: 20159451 DOI: 10.1016/j.neuron.2010.01.024] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/08/2010] [Indexed: 12/18/2022]
Abstract
Alterations in sensory processing constitute prominent symptoms of fragile X syndrome; however, little is known about how disrupted synaptic and circuit development in sensory cortex contributes to these deficits. To investigate how the loss of fragile X mental retardation protein (FMRP) impacts the development of cortical synapses, we examined excitatory thalamocortical synapses in somatosensory cortex during the perinatal critical period in Fmr1 knockout mice. FMRP ablation resulted in dysregulation of glutamatergic signaling maturation. The fraction of silent synapses persisting to later developmental times was increased; there was a temporal delay in the window for synaptic plasticity, while other forms of developmental plasticity were not altered in Fmr1 knockout mice. Our results indicate that FMRP is required for the normal developmental progression of synaptic maturation, and loss of this important RNA binding protein impacts the timing of the critical period for layer IV synaptic plasticity.
Collapse
Affiliation(s)
- Emily G Harlow
- Department of Physiology, Northwestern University Feinberg School of Medicine, 303 E Chicago Avenue, Chicago, IL 60611, USA
| | | | | | | | | | | |
Collapse
|
47
|
Ichinohe N, Matsushita A, Ohta K, Rockland KS. Pathway-specific utilization of synaptic zinc in the macaque ventral visual cortical areas. ACTA ACUST UNITED AC 2010; 20:2818-31. [PMID: 20211942 PMCID: PMC2978239 DOI: 10.1093/cercor/bhq028] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Synaptic zinc is an activity-related neuromodulator, enriched in hippocampal mossy fibers and a subset of glutamatergic cortical projections, exclusive of thalamocortical or corticothalamic. Some degree of pathway specificity in the utilization of synaptic zinc has been reported in rodents. Here, we use focal injections of the retrograde tracer sodium selenite to identify zinc-positive (Zn+) projection neurons in the monkey ventral visual pathway. After injections in V1, V4, and TEO areas, neurons were detected preferentially in several feedback pathways but, unusually, were restricted to deeper layers without involvement of layers 2 or 3. Temporal injections resulted in more extensive labeling of both feedback and intratemporal association pathways. The Zn+ neurons had a broader laminar distribution, similar to results from standard retrograde tracers. After anterograde tracer injection in area posterior TE, electron microscopic analysis substantiated that a proportion of feedback synapses was co-labeled with zinc. Nearby injections, Zn+ intrinsic neurons concentrated in layer 2, but in temporal areas were also abundant in layer 6. These results indicate considerable pathway and laminar specificity as to which cortical neurons use synaptic zinc. Given the hypothesized roles of synaptic zinc, this is likely to result in distinct synaptic properties, possibly including differential synaptic plasticity within or across projections.
Collapse
Affiliation(s)
- Noritaka Ichinohe
- Laboratory for Cortical Organization and Systematics, Brain Science Institute, RIKEN, 2-1 Hirosawa, Wako-shi, Saitama, Japan.
| | | | | | | |
Collapse
|
48
|
Possible role of cooperative action of NMDA receptor and GABA function in developmental plasticity. J Comput Neurosci 2010; 28:347-59. [DOI: 10.1007/s10827-010-0212-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 12/04/2009] [Accepted: 01/05/2010] [Indexed: 11/27/2022]
|
49
|
Breton JD, Stuart GJ. Loss of sensory input increases the intrinsic excitability of layer 5 pyramidal neurons in rat barrel cortex. J Physiol 2009; 587:5107-19. [PMID: 19736297 PMCID: PMC2790252 DOI: 10.1113/jphysiol.2009.180943] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Development of the cortical map is experience dependent, with different critical periods in different cortical layers. Previous work in rodent barrel cortex indicates that sensory deprivation leads to changes in synaptic transmission and plasticity in layer 2/3 and 4. Here, we studied the impact of sensory deprivation on the intrinsic properties of layer 5 pyramidal neurons located in rat barrel cortex using simultaneous somatic and dendritic recording. Sensory deprivation was achieved by clipping all the whiskers on one side of the snout. Loss of sensory input did not change somatic active and resting membrane properties, and did not influence dendritic action potential (AP) backpropagation. In contrast, sensory deprivation led to an increase in the percentage of layer 5 pyramidal neurons showing burst firing. This was associated with a reduction in the threshold for generation of dendritic calcium spikes during high-frequency AP trains. Cell-attached recordings were used to assess changes in the properties and expression of dendritic HCN channels. These experiments indicated that sensory deprivation caused a decrease in HCN channel density in distal regions of the apical dendrite. To assess the contribution of HCN down-regulation on the observed increase in dendritic excitability following sensory deprivation, we investigated the impact of blocking HCN channels. Block of HCN channels removed differences in dendritic calcium electrogenesis between control and deprived neurons. In conclusion, these observations indicate that sensory loss leads to increased dendritic excitability of cortical layer 5 pyramidal neurons. Furthermore, they suggest that increased dendritic calcium electrogenesis following sensory deprivation is mediated in part via down-regulation of dendritic HCN channels.
Collapse
Affiliation(s)
- Jean-Didier Breton
- Division of Neuroscience, The John Curtin School of Medical Research, Australian National University, Canberra ACT 0200, Australia.
| | | |
Collapse
|
50
|
Abstract
Sensory experience and learning alter sensory representations in cerebral cortex. The synaptic mechanisms underlying sensory cortical plasticity have long been sought. Recent work indicates that long-term cortical plasticity is a complex, multicomponent process involving multiple synaptic and cellular mechanisms. Sensory use, disuse, and training drive long-term potentiation and depression (LTP and LTD), homeostatic synaptic plasticity and plasticity of intrinsic excitability, and structural changes including formation, removal, and morphological remodeling of cortical synapses and dendritic spines. Both excitatory and inhibitory circuits are strongly regulated by experience. This review summarizes these findings and proposes that these mechanisms map onto specific functional components of plasticity, which occur in common across the primary somatosensory, visual, and auditory cortices.
Collapse
Affiliation(s)
- Daniel E Feldman
- Department of Molecular and Cell Biology, and Helen Wills Neuroscience Institute, University of California, Berkeley, USA.
| |
Collapse
|