1
|
Lin YE, Jaimon E, Tonelli F, Pfeffer SR. Pathogenic LRRK2 mutations cause loss of primary cilia and Neurturin in striatal parvalbumin interneurons. Life Sci Alliance 2025; 8:e202402922. [PMID: 39537338 PMCID: PMC11561259 DOI: 10.26508/lsa.202402922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Parkinson's disease-associated, activating mutations in the LRRK2 kinase block primary cilium formation in cell culture and in specific cell types in the brain. In the striatum that is important for movement control, about half of astrocytes and cholinergic interneurons, but not the predominant medium spiny neurons, lose their primary cilia. Here, we show that mouse and human striatal parvalbumin interneurons that are inhibitory regulators of movement also lose primary cilia. Without cilia, these neurons are not able to respond to Sonic hedgehog signals that normally induce the expression of Patched RNA, and their numbers decrease. In addition, in mouse, glial cell line-derived neurotrophic factor-related Neurturin RNA is significantly decreased. These experiments highlight the importance of parvalbumin neurons in cilium-dependent, neuroprotective signaling pathways and show that LRRK2 activation correlates with decreased Neurturin production, resulting in less neuroprotection for dopamine neurons.
Collapse
Affiliation(s)
- Yu-En Lin
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Bethesda, MD, USA
| | - Ebsy Jaimon
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Bethesda, MD, USA
| | - Francesca Tonelli
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Bethesda, MD, USA
- MRC Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Scotland, UK
| | - Suzanne R Pfeffer
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Aligning Science Across Parkinson's (ASAP) Collaborative Research Network, Bethesda, MD, USA
| |
Collapse
|
2
|
Liang C, Wei S, Ji Y, Lin J, Jiao W, Li Z, Yan F, Jing X. The role of enteric nervous system and GDNF in depression: Conversation between the brain and the gut. Neurosci Biobehav Rev 2024; 167:105931. [PMID: 39447778 DOI: 10.1016/j.neubiorev.2024.105931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 10/14/2024] [Accepted: 10/20/2024] [Indexed: 10/26/2024]
Abstract
Depression is a debilitating mental disorder that causes a persistent feeling of sadness and loss of interest. Approximately 280 million individuals worldwide suffer from depression by 2023. Despite the heavy medical and social burden imposed by depression, pathophysiology remains incompletely understood. Emerging evidence indicates various bidirectional interplay enable communication between the gut and brain. These interplays provide a link between intestinal and central nervous system as well as feedback from cortical and sensory centers to enteric activities, which also influences physiology and behavior in depression. This review aims to overview the significant role of the enteric nervous system (ENS) in the pathophysiology of depression and gut-brain axis's contribution to depressive disorders. Additionally, we explore the alterations in enteric glia cells (EGCs) and glial cell line-derived neurotrophic factor (GDNF) in depression and their involvement in neuronal support, intestinal homeostasis maintains and immune response activation. Modulating ENS function, EGCs and GDNF level could serve as novel strategies for future antidepressant therapy.
Collapse
Affiliation(s)
- Chuoyi Liang
- School of Nursing, Jinan University, Guangzhou, China
| | - Sijia Wei
- School of Nursing, Jinan University, Guangzhou, China
| | - Yelin Ji
- School of Nursing, Jinan University, Guangzhou, China
| | - Jiayi Lin
- School of Nursing, Jinan University, Guangzhou, China
| | - Wenli Jiao
- School of Nursing, Jinan University, Guangzhou, China
| | - Zhiying Li
- School of Nursing, Jinan University, Guangzhou, China
| | - Fengxia Yan
- School of Nursing, Jinan University, Guangzhou, China.
| | - Xi Jing
- School of Nursing, Jinan University, Guangzhou, China; Guangdong-Hong Kong-Macau Great Bay Area Geoscience Joint Laboratory, School of Medicine, Jinan University, Guangzhou, China.
| |
Collapse
|
3
|
Goel K, Chhetri A, Ludhiadch A, Munshi A. Current Update on Categorization of Migraine Subtypes on the Basis of Genetic Variation: a Systematic Review. Mol Neurobiol 2024; 61:4804-4833. [PMID: 38135854 DOI: 10.1007/s12035-023-03837-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/22/2023] [Indexed: 12/24/2023]
Abstract
Migraine is a complex neurovascular disorder that is characterized by severe behavioral, sensory, visual, and/or auditory symptoms. It has been labeled as one of the ten most disabling medical illnesses in the world by the World Health Organization (Aagaard et al Sci Transl Med 6(237):237ra65, 2014). According to a recent report by the American Migraine Foundation (Shoulson et al Ann Neurol 25(3):252-9, 1989), around 148 million people in the world currently suffer from migraine. On the basis of presence of aura, migraine is classified into two major subtypes: migraine with aura (Aagaard et al Sci Transl Med 6(237):237ra65, 2014) and migraine without aura. (Aagaard K et al Sci Transl Med 6(237):237ra65, 2014) Many complex genetic mechanisms have been proposed in the pathophysiology of migraine but specific pathways associated with the different subtypes of migraine have not yet been explored. Various approaches including candidate gene association studies (CGAS) and genome-wide association studies (Fan et al Headache: J Head Face Pain 54(4):709-715, 2014). have identified the genetic markers associated with migraine and its subtypes. Several single nucleotide polymorphisms (Kaur et al Egyp J Neurol, Psychiatry Neurosurg 55(1):1-7, 2019) within genes involved in ion homeostasis, solute transport, synaptic transmission, cortical excitability, and vascular function have been associated with the disorder. Currently, the diagnosis of migraine is majorly behavioral with no focus on the genetic markers and thereby the therapeutic intervention specific to subtypes. Therefore, there is a need to explore genetic variants significantly associated with MA and MO as susceptibility markers in the diagnosis and targets for therapeutic interventions in the specific subtypes of migraine. Although the proper characterization of pathways based on different subtypes is yet to be studied, this review aims to make a first attempt to compile the information available on various genetic variants and the molecular mechanisms involved with the development of MA and MO. An attempt has also been made to suggest novel candidate genes based on their function to be explored by future research.
Collapse
Affiliation(s)
- Kashish Goel
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Aakash Chhetri
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Abhilash Ludhiadch
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401
| | - Anjana Munshi
- Complex Disease Genomics and Precision Medicine Laboratory, Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, Punjab, India, 151401.
| |
Collapse
|
4
|
Gadomski S, Fielding C, García-García A, Korn C, Kapeni C, Ashraf S, Villadiego J, Toro RD, Domingues O, Skepper JN, Michel T, Zimmer J, Sendtner R, Dillon S, Poole KES, Holdsworth G, Sendtner M, Toledo-Aral JJ, De Bari C, McCaskie AW, Robey PG, Méndez-Ferrer S. A cholinergic neuroskeletal interface promotes bone formation during postnatal growth and exercise. Cell Stem Cell 2022; 29:528-544.e9. [PMID: 35276096 PMCID: PMC9033279 DOI: 10.1016/j.stem.2022.02.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 12/02/2021] [Accepted: 02/10/2022] [Indexed: 11/30/2022]
Abstract
The autonomic nervous system is a master regulator of homeostatic processes and stress responses. Sympathetic noradrenergic nerve fibers decrease bone mass, but the role of cholinergic signaling in bone has remained largely unknown. Here, we describe that early postnatally, a subset of sympathetic nerve fibers undergoes an interleukin-6 (IL-6)-induced cholinergic switch upon contacting the bone. A neurotrophic dependency mediated through GDNF-family receptor-α2 (GFRα2) and its ligand, neurturin (NRTN), is established between sympathetic cholinergic fibers and bone-embedded osteocytes, which require cholinergic innervation for their survival and connectivity. Bone-lining osteoprogenitors amplify and propagate cholinergic signals in the bone marrow (BM). Moderate exercise augments trabecular bone partly through an IL-6-dependent expansion of sympathetic cholinergic nerve fibers. Consequently, loss of cholinergic skeletal innervation reduces osteocyte survival and function, causing osteopenia and impaired skeletal adaptation to moderate exercise. These results uncover a cholinergic neuro-osteocyte interface that regulates skeletogenesis and skeletal turnover through bone-anabolic effects.
Collapse
Affiliation(s)
- Stephen Gadomski
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA; NIH Oxford-Cambridge Scholars Program in Partnership with Medical University of South Carolina, Charleston, SC 29425, USA
| | - Claire Fielding
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Andrés García-García
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Claudia Korn
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Chrysa Kapeni
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK
| | - Sadaf Ashraf
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Javier Villadiego
- Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, (CIBERNED), Madrid 28029, Spain
| | - Raquel Del Toro
- Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur Alzette, Luxembourg
| | - Jeremy N Skepper
- Department of Physiology, Development, and Neuroscience, Cambridge Advanced Imaging Centre, University of Cambridge, Cambridge CB2 3DY, UK
| | - Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur Alzette, Luxembourg
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, 4354 Esch-sur Alzette, Luxembourg
| | - Regine Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany
| | - Scott Dillon
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK
| | - Kenneth E S Poole
- Cambridge NIHR Biomedical Research Centre, Department of Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | | | - Michael Sendtner
- Institute of Clinical Neurobiology, University Hospital of Wuerzburg, 97080 Wuerzburg, Germany
| | - Juan J Toledo-Aral
- Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain; Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas, (CIBERNED), Madrid 28029, Spain
| | - Cosimo De Bari
- Arthritis and Regenerative Medicine Laboratory, Aberdeen Centre for Arthritis and Musculoskeletal Health, Institute of Medical Sciences, University of Aberdeen, Aberdeen AB25 2ZD, UK
| | - Andrew W McCaskie
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Surgery, School of Clinical Medicine, University of Cambridge, Cambridge CB2 0QQ, UK
| | - Pamela G Robey
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD 20892, USA
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge CB2 0AW, UK; Department of Hematology, University of Cambridge, Cambridge CB2 0AW, UK; National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge CB2 0AW, UK; Instituto de Biomedicina de Sevilla-IBiS (Hospitales Universitarios Virgen del Rocío y Macarena/CSIC/Universidad de Sevilla), 41013 Seville, Spain; Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009 Seville, Spain.
| |
Collapse
|
5
|
Fielding C, García-García A, Korn C, Gadomski S, Fang Z, Reguera JL, Pérez-Simón JA, Göttgens B, Méndez-Ferrer S. Cholinergic signals preserve haematopoietic stem cell quiescence during regenerative haematopoiesis. Nat Commun 2022; 13:543. [PMID: 35087060 PMCID: PMC8795384 DOI: 10.1038/s41467-022-28175-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Accepted: 01/12/2022] [Indexed: 12/15/2022] Open
Abstract
The sympathetic nervous system has been evolutionary selected to respond to stress and activates haematopoietic stem cells via noradrenergic signals. However, the pathways preserving haematopoietic stem cell quiescence and maintenance under proliferative stress remain largely unknown. Here we found that cholinergic signals preserve haematopoietic stem cell quiescence in bone-associated (endosteal) bone marrow niches. Bone marrow cholinergic neural signals increase during stress haematopoiesis and are amplified through cholinergic osteoprogenitors. Lack of cholinergic innervation impairs balanced responses to chemotherapy or irradiation and reduces haematopoietic stem cell quiescence and self-renewal. Cholinergic signals activate α7 nicotinic receptor in bone marrow mesenchymal stromal cells leading to increased CXCL12 expression and haematopoietic stem cell quiescence. Consequently, nicotine exposure increases endosteal haematopoietic stem cell quiescence in vivo and impairs hematopoietic regeneration after haematopoietic stem cell transplantation in mice. In humans, smoking history is associated with delayed normalisation of platelet counts after allogeneic haematopoietic stem cell transplantation. These results suggest that cholinergic signals preserve stem cell quiescence under proliferative stress.
Collapse
Affiliation(s)
- Claire Fielding
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Andrés García-García
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Claudia Korn
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Stephen Gadomski
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
- Skeletal Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Department of Health and Human Services, Bethesda, MD, 20892, USA
- NIH-Oxford-Cambridge Scholars Program in partnership with Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Zijian Fang
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK
| | - Juan L Reguera
- Department of Hematology, University Hospital Virgen del Rocio, 41013, Sevilla, Spain
| | - José A Pérez-Simón
- NIH-Oxford-Cambridge Scholars Program in partnership with Medical University of South Carolina, Charleston, SC, 29425, USA
- Department of Hematology, University Hospital Virgen del Rocio, 41013, Sevilla, Spain
| | - Berthold Göttgens
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK
| | - Simón Méndez-Ferrer
- Wellcome-MRC Cambridge Stem Cell Institute, Cambridge, CB2 0AW, UK.
- Department of Hematology, University of Cambridge, Cambridge, CB2 0AW, UK.
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, CB2 0AW, UK.
- Instituto de Biomedicina de Sevilla (IBiS/CSIC), Universidad de Sevilla, 41013, Seville, Spain.
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, 41009, Seville, Spain.
| |
Collapse
|
6
|
Cardoso F, Klein Wolterink RGJ, Godinho-Silva C, Domingues RG, Ribeiro H, da Silva JA, Mahú I, Domingos AI, Veiga-Fernandes H. Neuro-mesenchymal units control ILC2 and obesity via a brain-adipose circuit. Nature 2021; 597:410-414. [PMID: 34408322 PMCID: PMC7614847 DOI: 10.1038/s41586-021-03830-7] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2020] [Accepted: 07/16/2021] [Indexed: 12/12/2022]
Abstract
Signals from sympathetic neurons and immune cells regulate adipocytes and thereby contribute to fat tissue biology. Interactions between the nervous and immune systems have recently emerged as important regulators of host defence and inflammation1-4. Nevertheless, it is unclear whether neuronal and immune cells co-operate in brain-body axes to orchestrate metabolism and obesity. Here we describe a neuro-mesenchymal unit that controls group 2 innate lymphoid cells (ILC2s), adipose tissue physiology, metabolism and obesity via a brain-adipose circuit. We found that sympathetic nerve terminals act on neighbouring adipose mesenchymal cells via the β2-adrenergic receptor to control the expression of glial-derived neurotrophic factor (GDNF) and the activity of ILC2s in gonadal fat. Accordingly, ILC2-autonomous manipulation of the GDNF receptor machinery led to alterations in ILC2 function, energy expenditure, insulin resistance and propensity to obesity. Retrograde tracing and chemical, surgical and chemogenetic manipulations identified a sympathetic aorticorenal circuit that modulates ILC2s in gonadal fat and connects to higher-order brain areas, including the paraventricular nucleus of the hypothalamus. Our results identify a neuro-mesenchymal unit that translates cues from long-range neuronal circuitry into adipose-resident ILC2 function, thereby shaping host metabolism and obesity.
Collapse
Affiliation(s)
- Filipa Cardoso
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Faculdade de Medicina, Universidade de Lisboa, Lisboa, Portugal
| | | | | | - Rita G Domingues
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
- Lydia Becker Institute of Immunology and Inflammation, Manchester Collaborative Centre for Inflammation Research (MCCIR), Division of Infection, Immunity and Respiratory Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Hélder Ribeiro
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | | | - Inês Mahú
- Max Planck Institute for Metabolism Research, Köln, Germany
| | - Ana I Domingos
- Department of Physiology, Anatomy & Genetics, Oxford University, Oxford, UK
| | | |
Collapse
|
7
|
Li H, Kurtzeborn K, Kupari J, Gui Y, Siefker E, Lu B, Mätlik K, Olfat S, Montaño-Rodríguez AR, Huh SH, Costantini F, Andressoo JO, Kuure S. Postnatal prolongation of mammalian nephrogenesis by excess fetal GDNF. Development 2021; 148:268366. [PMID: 34032268 PMCID: PMC8180252 DOI: 10.1242/dev.197475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 04/26/2021] [Indexed: 01/21/2023]
Abstract
Nephron endowment, defined during the fetal period, dictates renal and related cardiovascular health throughout life. We show here that, despite its negative effects on kidney growth, genetic increase of GDNF prolongs the nephrogenic program beyond its normal cessation. Multi-stage mechanistic analysis revealed that excess GDNF maintains nephron progenitors and nephrogenesis through increased expression of its secreted targets and augmented WNT signaling, leading to a two-part effect on nephron progenitor maintenance. Abnormally high GDNF in embryonic kidneys upregulates its known targets but also Wnt9b and Axin2, with concomitant deceleration of nephron progenitor proliferation. Decline of GDNF levels in postnatal kidneys normalizes the ureteric bud and creates a permissive environment for continuation of the nephrogenic program, as demonstrated by morphologically and molecularly normal postnatal nephron progenitor self-renewal and differentiation. These results establish that excess GDNF has a bi-phasic effect on nephron progenitors in mice, which can faithfully respond to GDNF dosage manipulation during the fetal and postnatal period. Our results suggest that sensing the signaling activity level is an important mechanism through which GDNF and other molecules contribute to nephron progenitor lifespan specification. Summary: Dosage of neurotropic factor GDNF regulates nephron progenitors and in utero growth factor augmentation can extend postnatal lifespan and differentiation of nephron progenitors.
Collapse
Affiliation(s)
- Hao Li
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Kristen Kurtzeborn
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Jussi Kupari
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Yujuan Gui
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Edward Siefker
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Benson Lu
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Kärt Mätlik
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Soophie Olfat
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Ana R Montaño-Rodríguez
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland
| | - Sung-Ho Huh
- Department of Developmental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68105, USA
| | - Franklin Costantini
- Department of Genetics and Development, Columbia University Medical Center, New York, NY 10032, USA
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland.,Department of Pharmacology, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Satu Kuure
- Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, 00014 Helsinki, Finland.,GM-unit, Laboratory Animal Centre, Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
8
|
Suzuki A, Ogata K, Iwata J. Cell signaling regulation in salivary gland development. Cell Mol Life Sci 2021; 78:3299-3315. [PMID: 33449148 PMCID: PMC11071883 DOI: 10.1007/s00018-020-03741-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/07/2020] [Accepted: 12/11/2020] [Indexed: 12/11/2022]
Abstract
The mammalian salivary gland develops as a highly branched structure designed to produce and secrete saliva. This review focuses on research conducted on mammalian salivary gland development, particularly on the differentiation of acinar, ductal, and myoepithelial cells. We discuss recent studies that provide conceptual advances in the understanding of the molecular mechanisms of salivary gland development. In addition, we describe the organogenesis of submandibular glands (SMGs), model systems used for the study of SMG development, and the key signaling pathways as well as cellular processes involved in salivary gland development. The findings from the recent studies elucidating the identity of stem/progenitor cells in the SMGs, and the process by which they are directed along a series of cell fate decisions to form functional glands, are also discussed. Advances in genetic tools and tissue engineering strategies will significantly increase our knowledge about the mechanisms by which signaling pathways and cells establish tissue architecture and function during salivary gland development, which may also be conserved in the growth and development of other organ systems. An increased knowledge of organ development mechanisms will have profound implications in the design of therapies for the regrowth or repair of injured tissues. In addition, understanding how the processes of cell survival, expansion, specification, movement, and communication with neighboring cells are regulated under physiological and pathological conditions is critical to the development of future treatments.
Collapse
Affiliation(s)
- Akiko Suzuki
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBS 4208, Houston, TX, 77054, USA
- Center for Craniofacial Research, UTHealth, Houston, TX, 77054, USA
| | - Kenichi Ogata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBS 4208, Houston, TX, 77054, USA
- Center for Craniofacial Research, UTHealth, Houston, TX, 77054, USA
- Section of Oral and Maxillofacial Oncology, Division of Maxillofacial Diagnostic and Surgical Sciences, Faculty of Dental Science, Kyushu University, 3-1-1 Maidashi, Higashi-Ku, Fukuoka, 812-8582, Japan
| | - Junichi Iwata
- Department of Diagnostic and Biomedical Sciences, School of Dentistry, The University of Texas Health Science Center at Houston (UTHealth), 1941 East Road, BBS 4208, Houston, TX, 77054, USA.
- Center for Craniofacial Research, UTHealth, Houston, TX, 77054, USA.
| |
Collapse
|
9
|
Kang YN, Fung C, Vanden Berghe P. Gut innervation and enteric nervous system development: a spatial, temporal and molecular tour de force. Development 2021; 148:148/3/dev182543. [PMID: 33558316 DOI: 10.1242/dev.182543] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
During embryonic development, the gut is innervated by intrinsic (enteric) and extrinsic nerves. Focusing on mammalian ENS development, in this Review we highlight how important the different compartments of this innervation are to assure proper gut function. We specifically address the three-dimensional architecture of the innervation, paying special attention to the differences in development along the longitudinal and circumferential axes of the gut. We review recent information about the formation of both intrinsic innervation, which is fairly well-known, as well as the establishment of the extrinsic innervation, which, despite its importance in gut-brain signaling, has received much less attention. We further discuss how external microbial and nutritional cues or neuroimmune interactions may influence development of gut innervation. Finally, we provide summary tables, describing the location and function of several well-known molecules, along with some newer factors that have more recently been implicated in the development of gut innervation.
Collapse
Affiliation(s)
- Yi-Ning Kang
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Candice Fung
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| | - Pieter Vanden Berghe
- Laboratory for Enteric NeuroScience (LENS), Translational Research Center for Gastrointestinal Disorders (TARGID), University of Leuven, Leuven 3000, Belgium
| |
Collapse
|
10
|
Radiation-Induced Salivary Gland Dysfunction: Mechanisms, Therapeutics and Future Directions. J Clin Med 2020; 9:jcm9124095. [PMID: 33353023 PMCID: PMC7767137 DOI: 10.3390/jcm9124095] [Citation(s) in RCA: 95] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/17/2020] [Accepted: 12/17/2020] [Indexed: 12/14/2022] Open
Abstract
Salivary glands sustain collateral damage following radiotherapy (RT) to treat cancers of the head and neck, leading to complications, including mucositis, xerostomia and hyposalivation. Despite salivary gland-sparing techniques and modified dosing strategies, long-term hypofunction remains a significant problem. Current therapeutic interventions provide temporary symptom relief, but do not address irreversible glandular damage. In this review, we summarize the current understanding of mechanisms involved in RT-induced hyposalivation and provide a framework for future mechanistic studies. One glaring gap in published studies investigating RT-induced mechanisms of salivary gland dysfunction concerns the effect of irradiation on adjacent non-irradiated tissue via paracrine, autocrine and direct cell-cell interactions, coined the bystander effect in other models of RT-induced damage. We hypothesize that purinergic receptor signaling involving P2 nucleotide receptors may play a key role in mediating the bystander effect. We also discuss promising new therapeutic approaches to prevent salivary gland damage due to RT.
Collapse
|
11
|
Fedele L, Brand T. The Intrinsic Cardiac Nervous System and Its Role in Cardiac Pacemaking and Conduction. J Cardiovasc Dev Dis 2020; 7:jcdd7040054. [PMID: 33255284 PMCID: PMC7712215 DOI: 10.3390/jcdd7040054] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/19/2020] [Accepted: 11/20/2020] [Indexed: 12/11/2022] Open
Abstract
The cardiac autonomic nervous system (CANS) plays a key role for the regulation of cardiac activity with its dysregulation being involved in various heart diseases, such as cardiac arrhythmias. The CANS comprises the extrinsic and intrinsic innervation of the heart. The intrinsic cardiac nervous system (ICNS) includes the network of the intracardiac ganglia and interconnecting neurons. The cardiac ganglia contribute to the tight modulation of cardiac electrophysiology, working as a local hub integrating the inputs of the extrinsic innervation and the ICNS. A better understanding of the role of the ICNS for the modulation of the cardiac conduction system will be crucial for targeted therapies of various arrhythmias. We describe the embryonic development, anatomy, and physiology of the ICNS. By correlating the topography of the intracardiac neurons with what is known regarding their biophysical and neurochemical properties, we outline their physiological role in the control of pacemaker activity of the sinoatrial and atrioventricular nodes. We conclude by highlighting cardiac disorders with a putative involvement of the ICNS and outline open questions that need to be addressed in order to better understand the physiology and pathophysiology of the ICNS.
Collapse
Affiliation(s)
- Laura Fedele
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| | - Thomas Brand
- Correspondence: (L.F.); (T.B.); Tel.: +44-(0)-207-594-6531 (L.F.); +44-(0)-207-594-8744 (T.B.)
| |
Collapse
|
12
|
Drokhlyansky E, Smillie CS, Van Wittenberghe N, Ericsson M, Griffin GK, Eraslan G, Dionne D, Cuoco MS, Goder-Reiser MN, Sharova T, Kuksenko O, Aguirre AJ, Boland GM, Graham D, Rozenblatt-Rosen O, Xavier RJ, Regev A. The Human and Mouse Enteric Nervous System at Single-Cell Resolution. Cell 2020; 182:1606-1622.e23. [PMID: 32888429 PMCID: PMC8358727 DOI: 10.1016/j.cell.2020.08.003] [Citation(s) in RCA: 364] [Impact Index Per Article: 72.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/15/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
The enteric nervous system (ENS) coordinates diverse functions in the intestine but has eluded comprehensive molecular characterization because of the rarity and diversity of cells. Here we develop two methods to profile the ENS of adult mice and humans at single-cell resolution: RAISIN RNA-seq for profiling intact nuclei with ribosome-bound mRNA and MIRACL-seq for label-free enrichment of rare cell types by droplet-based profiling. The 1,187,535 nuclei in our mouse atlas include 5,068 neurons from the ileum and colon, revealing extraordinary neuron diversity. We highlight circadian expression changes in enteric neurons, show that disease-related genes are dysregulated with aging, and identify differences between the ileum and proximal/distal colon. In humans, we profile 436,202 nuclei, recovering 1,445 neurons, and identify conserved and species-specific transcriptional programs and putative neuro-epithelial, neuro-stromal, and neuro-immune interactions. The human ENS expresses risk genes for neuropathic, inflammatory, and extra-intestinal diseases, suggesting neuronal contributions to disease.
Collapse
MESH Headings
- Aging/genetics
- Aging/metabolism
- Animals
- Circadian Clocks/genetics
- Colon/cytology
- Colon/metabolism
- Endoplasmic Reticulum, Rough/genetics
- Endoplasmic Reticulum, Rough/metabolism
- Endoplasmic Reticulum, Rough/ultrastructure
- Enteric Nervous System/cytology
- Enteric Nervous System/metabolism
- Epithelial Cells/metabolism
- Female
- Gene Expression Regulation, Developmental/genetics
- Genetic Predisposition to Disease/genetics
- Humans
- Ileum/cytology
- Ileum/metabolism
- Inflammation/genetics
- Inflammation/metabolism
- Intestinal Diseases/genetics
- Intestinal Diseases/metabolism
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Transgenic
- Microscopy, Electron, Transmission
- Nervous System Diseases/genetics
- Nervous System Diseases/metabolism
- Neuroglia/cytology
- Neuroglia/metabolism
- Neurons/cytology
- Neurons/metabolism
- Nissl Bodies/genetics
- Nissl Bodies/metabolism
- Nissl Bodies/ultrastructure
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- RNA-Seq
- Ribosomes/metabolism
- Ribosomes/ultrastructure
- Single-Cell Analysis/methods
- Stromal Cells/metabolism
Collapse
Affiliation(s)
- Eugene Drokhlyansky
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Maria Ericsson
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Gabriel K Griffin
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Pathology, Brigham and Women's Hospital, Boston, MA, USA
| | - Gokcen Eraslan
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michael S Cuoco
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Olena Kuksenko
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Andrew J Aguirre
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA, USA
| | - Genevieve M Boland
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel Graham
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA
| | | | - Ramnik J Xavier
- Broad Institute of MIT and Harvard, Cambridge, MA, USA; Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA; Gastrointestinal Unit and Center for the Study of Inflammatory Bowel Disease, Massachusetts General Hospital, Boston, MA, USA; Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA; Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| |
Collapse
|
13
|
Parekh PA, Garcia TX, Hofmann MC. Regulation of GDNF expression in Sertoli cells. Reproduction 2020; 157:R95-R107. [PMID: 30620720 DOI: 10.1530/rep-18-0239] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 01/08/2019] [Indexed: 12/15/2022]
Abstract
Sertoli cells regulate male germ cell proliferation and differentiation and are a critical component of the spermatogonial stem cell (SSC) niche, where homeostasis is maintained by the interplay of several signaling pathways and growth factors. These factors are secreted by Sertoli cells located within the seminiferous epithelium, and by interstitial cells residing between the seminiferous tubules. Sertoli cells and peritubular myoid cells produce glial cell line-derived neurotrophic factor (GDNF), which binds to the RET/GFRA1 receptor complex at the surface of undifferentiated spermatogonia. GDNF is known for its ability to drive SSC self-renewal and proliferation of their direct cell progeny. Even though the effects of GDNF are well studied, our understanding of the regulation its expression is still limited. The purpose of this review is to discuss how GDNF expression in Sertoli cells is modulated within the niche, and how these mechanisms impact germ cell homeostasis.
Collapse
Affiliation(s)
- Parag A Parekh
- Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA
| | - Thomas X Garcia
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, Texas, USA.,Department of Biological and Environmental Sciences, University of Houston-Clear Lake, Houston, Texas, USA
| | - Marie-Claude Hofmann
- Department of Endocrine Neoplasia, UT MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
14
|
Lombaert IMA, Patel VN, Jones CE, Villier DC, Canada AE, Moore MR, Berenstein E, Zheng C, Goldsmith CM, Chorini JA, Martin D, Zourelias L, Trombetta MG, Edwards PC, Meyer K, Ando D, Passineau MJ, Hoffman MP. CERE-120 Prevents Irradiation-Induced Hypofunction and Restores Immune Homeostasis in Porcine Salivary Glands. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2020; 18:839-855. [PMID: 32953934 PMCID: PMC7479444 DOI: 10.1016/j.omtm.2020.07.016] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023]
Abstract
Salivary gland hypofunction causes significant morbidity and loss of quality of life for head and neck cancer patients treated with radiotherapy. Preventing hypofunction is an unmet therapeutic need. We used an adeno-associated virus serotype 2 (AAV2) vector expressing the human neurotrophic factor neurturin (CERE-120) to treat murine submandibular glands either pre- or post-irradiation (IR). Treatment with CERE-120 pre-IR, not post-IR, prevented hypofunction. RNA sequencing (RNA-seq) analysis showed reduced gene expression associated with fibrosis and the innate and humoral immune responses. We then used a minipig model with CERE-120 treatment pre-IR and also compared outcomes of the contralateral non-IR gland. Analysis of gene expression, morphology, and immunostaining showed reduced IR-related immune responses and improved secretory mechanisms. CERE-120 prevented IR-induced hypofunction and restored immune homeostasis, and there was a coordinated contralateral gland response to either damage or treatment. CERE-120 gene therapy is a potential treatment for head and neck cancer patients to influence communication among neuronal, immune, and epithelial cells to prevent IR-induced salivary hypofunction and restore immune homeostasis.
Collapse
Affiliation(s)
- Isabelle M A Lombaert
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA.,Department of Biologic and Materials Sciences, School of Dentistry, University of Michigan, Ann Arbor, MI 48109, USA.,Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Vaishali N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Christina E Jones
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Derrick C Villier
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Ashley E Canada
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Matthew R Moore
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Elsa Berenstein
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| | - Changyu Zheng
- Translational Research Core, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | | | - John A Chorini
- Adeno-Associated Virus Section, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - Daniel Martin
- Genomics and Computational Biology Core, NIDCR, NIH, DHHS, Bethesda, MD 20892, USA
| | - Lee Zourelias
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Pittsburg, PA 15212, USA
| | - Mark G Trombetta
- Department of Oncology, Division of Radiation Oncology, Allegheny Health Network, Pittsburg, PA 15212, USA
| | - Paul C Edwards
- Department of Oral Pathology, Medicine, and Radiology, Indiana University School of Dentistry, Indianapolis, IN 46202, USA
| | - Kathleen Meyer
- Sangamo BioSciences, Inc., 501 Canal Blvd., Richmond, CA 94804
| | - Dale Ando
- Sangamo BioSciences, Inc., 501 Canal Blvd., Richmond, CA 94804
| | - Michael J Passineau
- Gene Therapy Program, Department of Medicine, Division of Cardiovascular Medicine, Allegheny Health Network, Pittsburg, PA 15212, USA
| | - Matthew P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, DHHS, Bethesda, MD 20892, USA
| |
Collapse
|
15
|
Takahashi M, Kawai K, Asai N. Roles of the RET Proto-oncogene in Cancer and Development. JMA J 2020; 3:175-181. [PMID: 33150251 PMCID: PMC7590400 DOI: 10.31662/jmaj.2020-0021] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 04/23/2020] [Indexed: 01/15/2023] Open
Abstract
RET (REarranged during Transfection)is activated by DNA rearrangement of the 3' fragment of the receptor tyrosine kinase gene, namely, RET proto-oncogene, with the 5' fragment of various genes with putative dimerization domains, such as a coiled coil domain, that are necessary for constitutive activation. RET rearrangements have been detected in a variety of human cancers, including thyroid, lung, colorectal, breast, and salivary gland cancers. Moreover, point mutations in RET are responsible for multiple endocrine neoplasia types 2A and 2B, which can develop into medullary thyroid cancer and pheochromocytoma. Substantial effort is currently being exerted in developing RET kinase inhibitors. RET is also responsible for Hirschsprung's disease, a developmental abnormality in the enteric nervous system. Gene knockout studies have demonstrated that RET plays essential roles in the development of the enteric nervous system and kidney as well as in spermatogenesis. Studies regarding RET continue to provide fascinating challenges in the fields of cancer research, neuroscience, and developmental biology.
Collapse
Affiliation(s)
- Masahide Takahashi
- Department of Pathology, Nagoya University Graduate School of Medicine, Nagoya, Japan.,International Center for Cell and Gene Therapy, Fujita Health University, Toyoake, Japan
| | - Kumi Kawai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| | - Naoya Asai
- Department of Pathology, Fujita Health University, Toyoake, Japan
| |
Collapse
|
16
|
Morel L, Domingues O, Zimmer J, Michel T. Revisiting the Role of Neurotrophic Factors in Inflammation. Cells 2020; 9:cells9040865. [PMID: 32252363 PMCID: PMC7226825 DOI: 10.3390/cells9040865] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Revised: 03/31/2020] [Accepted: 03/31/2020] [Indexed: 12/13/2022] Open
Abstract
The neurotrophic factors are well known for their implication in the growth and the survival of the central, sensory, enteric and parasympathetic nervous systems. Due to these properties, neurturin (NRTN) and Glial cell-derived neurotrophic factor (GDNF), which belong to the GDNF family ligands (GFLs), have been assessed in clinical trials as a treatment for neurodegenerative diseases like Parkinson’s disease. In addition, studies in favor of a functional role for GFLs outside the nervous system are accumulating. Thus, GFLs are present in several peripheral tissues, including digestive, respiratory, hematopoietic and urogenital systems, heart, blood, muscles and skin. More precisely, recent data have highlighted that different types of immune and epithelial cells (macrophages, T cells, such as, for example, mucosal-associated invariant T (MAIT) cells, innate lymphoid cells (ILC) 3, dendritic cells, mast cells, monocytes, bronchial epithelial cells, keratinocytes) have the capacity to release GFLs and express their receptors, leading to the participation in the repair of epithelial barrier damage after inflammation. Some of these mechanisms pass on to ILCs to produce cytokines (such as IL-22) that can impact gut microbiota. In addition, there are indications that NRTN could be used in the treatment of inflammatory airway diseases and it prevents the development of hyperglycemia in the diabetic rat model. On the other hand, it is suspected that the dysregulation of GFLs produces oncogenic effects. This review proposes the discussion of the biological understanding and the potential new opportunities of the GFLs, in the perspective of developing new treatments within a broad range of human diseases.
Collapse
|
17
|
Physiology, Pathology and Regeneration of Salivary Glands. Cells 2019; 8:cells8090976. [PMID: 31455013 PMCID: PMC6769486 DOI: 10.3390/cells8090976] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 08/16/2019] [Accepted: 08/17/2019] [Indexed: 01/03/2023] Open
Abstract
Salivary glands are essential structures in the oral cavity. A variety of diseases, such as cancer, autoimmune diseases, infections and physical traumas, can alter the functionality of these glands, greatly impacting the quality of life of patients. To date, no definitive therapeutic approach can compensate the impairment of salivary glands, and treatment are purely symptomatic. Understanding the cellular and molecular control of salivary glands function is, therefore, highly relevant for therapeutic purposes. In this review, we provide a starting platform for future studies in basic biology and clinical research, reporting classical ideas on salivary gland physiology and recently developed technology to guide regeneration, reconstruction and substitution of the functional organs.
Collapse
|
18
|
Lukacs M, Roberts T, Chatuverdi P, Stottmann RW. Glycosylphosphatidylinositol biosynthesis and remodeling are required for neural tube closure, heart development, and cranial neural crest cell survival. eLife 2019; 8:45248. [PMID: 31232685 PMCID: PMC6611694 DOI: 10.7554/elife.45248] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Accepted: 06/05/2019] [Indexed: 01/10/2023] Open
Abstract
Glycosylphosphatidylinositol (GPI) anchors attach nearly 150 proteins to the cell membrane. Patients with pathogenic variants in GPI biosynthesis genes develop diverse phenotypes including seizures, dysmorphic facial features and cleft palate through an unknown mechanism. We identified a novel mouse mutant (cleft lip/palate, edema and exencephaly; Clpex) with a hypo-morphic mutation in Post-Glycophosphatidylinositol Attachment to Proteins-2 (Pgap2), a component of the GPI biosynthesis pathway. The Clpex mutation decreases surface GPI expression. Surprisingly, Pgap2 showed tissue-specific expression with enrichment in the brain and face. We found the Clpex phenotype is due to apoptosis of neural crest cells (NCCs) and the cranial neuroepithelium. We showed folinic acid supplementation in utero can partially rescue the cleft lip phenotype. Finally, we generated a novel mouse model of NCC-specific total GPI deficiency. These mutants developed median cleft lip and palate demonstrating a previously undocumented cell autonomous role for GPI biosynthesis in NCC development.
Collapse
Affiliation(s)
- Marshall Lukacs
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Tia Roberts
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Praneet Chatuverdi
- Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States
| | - Rolf W Stottmann
- Division of Human Genetics, Cincinnati Children's Medical Center, Cincinnati, United States.,Medical Scientist Training Program, Cincinnati Children's Medical Center, Cincinnati, United States.,Division of Developmental Biology, Cincinnati Children's Medical Center, Cincinnati, United States.,Department of Pediatrics, University of Cincinnati, Cincinnati, United States
| |
Collapse
|
19
|
Vining KH, Lombaert IMA, Patel VN, Kibbey SE, Pradhan-Bhatt S, Witt RL, Hoffman MP. Neurturin-containing laminin matrices support innervated branching epithelium from adult epithelial salispheres. Biomaterials 2019; 216:119245. [PMID: 31200143 DOI: 10.1016/j.biomaterials.2019.119245] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/30/2019] [Accepted: 06/01/2019] [Indexed: 01/05/2023]
Abstract
Cell transplantation of autologous adult biopsies, grown ex vivo as epithelial organoids or expanded as spheroids, are proposed treatments to regenerate damaged branching organs. However, it is not clear whether transplantation of adult organoids or spheroids alone is sufficient to initiate a fetal-like program of branching morphogenesis in which coordinated branching of multiple cell types including nerves, mesenchyme and blood vessels occurs. Yet this is an essential concept for the regeneration of branching organs such as lung, pancreas, and lacrimal and salivary glands. Here, we used factors identified from fetal organogenesis to maintain and expand adult murine and human epithelial salivary gland progenitors in non-adherent spheroid cultures, called salispheres. These factors stimulated critical developmental pathways, and increased expression of epithelial progenitor markers such as Keratin5, Keratin14, FGFR2b and KIT. Moreover, physical recombination of adult salispheres in a laminin-111 extracellular matrix with fetal salivary mesenchyme, containing endothelial and neuronal cells, only induced branching morphogenesis when neurturin, a neurotrophic factor, was added to the matrix. Neurturin was essential to improve neuronal survival, axon outgrowth, innervation of the salispheres, and resulted in the formation of branching structures with a proximal-distal axis that mimicked fetal branching morphogenesis, thus recapitulating organogenesis. Epithelial progenitors were also maintained, and developmental differentiation programs were initiated, showing that the fetal microenvironment provides a template for adult epithelial progenitors to initiate branching and differentiation. Further delineation of secreted and physical cues from the fetal niche will be useful to develop novel regenerative therapies that instruct adult salispheres to resume a developmental-like program in vitro and to regenerate branching organs in vivo.
Collapse
Affiliation(s)
- K H Vining
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20842, USA; Medical Research Scholars Program, Office of Clinical Research Training and Medical Education, Clinical Center, NIH, Bethesda, MD, 20842, USA; University of Minnesota School of Dentistry, Minneapolis, MN 55455, USA; Current Address: John A. Paulson School of Engineering and Applied Sciences and Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, 02138. USA
| | - I M A Lombaert
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20842, USA; Current Address: Biointerfaces Institute, University of Michigan, School of Dentistry, North Campus Research Center, 2800 Plymouth Rd, Ann Arbor, MI 48104, USA
| | - V N Patel
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20842, USA
| | - S E Kibbey
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20842, USA
| | - S Pradhan-Bhatt
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA; Center for Translational Cancer Research, University of Delaware, Newark, DE, 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health System, Newark, DE, 19713, USA
| | - R L Witt
- Department of Biological Sciences, University of Delaware, Newark, DE, 19716, USA; Center for Translational Cancer Research, University of Delaware, Newark, DE, 19716, USA; Helen F. Graham Cancer Center, Christiana Care Health System, Newark, DE, 19713, USA; Otolaryngology - Head & Neck Surgery, Thomas Jefferson University, Philadelphia, PA, 19107, USA
| | - M P Hoffman
- Matrix and Morphogenesis Section, National Institute of Dental and Craniofacial Research, NIH, Bethesda, MD, 20842, USA.
| |
Collapse
|
20
|
García-García A, Korn C, García-Fernández M, Domingues O, Villadiego J, Martín-Pérez D, Isern J, Bejarano-García JA, Zimmer J, Pérez-Simón JA, Toledo-Aral JJ, Michel T, Airaksinen MS, Méndez-Ferrer S. Dual cholinergic signals regulate daily migration of hematopoietic stem cells and leukocytes. Blood 2019; 133:224-236. [PMID: 30361261 PMCID: PMC6449569 DOI: 10.1182/blood-2018-08-867648] [Citation(s) in RCA: 73] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2018] [Accepted: 10/02/2018] [Indexed: 12/12/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) and leukocytes circulate between the bone marrow (BM) and peripheral blood following circadian oscillations. Autonomic sympathetic noradrenergic signals have been shown to regulate HSPC and leukocyte trafficking, but the role of the cholinergic branch has remained unexplored. We have investigated the role of the cholinergic nervous system in the regulation of day/night traffic of HSPCs and leukocytes in mice. We show here that the autonomic cholinergic nervous system (including parasympathetic and sympathetic) dually regulates daily migration of HSPCs and leukocytes. At night, central parasympathetic cholinergic signals dampen sympathetic noradrenergic tone and decrease BM egress of HSPCs and leukocytes. However, during the daytime, derepressed sympathetic noradrenergic activity causes predominant BM egress of HSPCs and leukocytes via β3-adrenergic receptor. This egress is locally supported by light-triggered sympathetic cholinergic activity, which inhibits BM vascular cell adhesion and homing. In summary, central (parasympathetic) and local (sympathetic) cholinergic signals regulate day/night oscillations of circulating HSPCs and leukocytes. This study shows how both branches of the autonomic nervous system cooperate to orchestrate daily traffic of HSPCs and leukocytes.
Collapse
MESH Headings
- Animals
- Bone Marrow Cells/cytology
- Bone Marrow Cells/drug effects
- Bone Marrow Cells/physiology
- Cell Adhesion
- Cell Movement
- Cells, Cultured
- Chemotaxis
- Cholinergic Agents/pharmacology
- Circadian Rhythm
- Endothelium, Vascular/cytology
- Endothelium, Vascular/drug effects
- Endothelium, Vascular/physiology
- Female
- Glial Cell Line-Derived Neurotrophic Factor Receptors/physiology
- Hematopoietic Stem Cells/cytology
- Hematopoietic Stem Cells/drug effects
- Hematopoietic Stem Cells/physiology
- Leukocytes/cytology
- Leukocytes/drug effects
- Leukocytes/physiology
- Male
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Parasympathetic Nervous System/physiology
- Receptors, Adrenergic, beta-2
- Receptors, Adrenergic, beta-3/physiology
- Receptors, G-Protein-Coupled/physiology
- Sympathetic Nervous System/physiology
Collapse
Affiliation(s)
- Andrés García-García
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - Claudia Korn
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - María García-Fernández
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Olivia Domingues
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur Alzette, Luxembourg
| | - Javier Villadiego
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC) and
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and
| | | | - Joan Isern
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| | - José A Bejarano-García
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC) and
| | - Jacques Zimmer
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur Alzette, Luxembourg
| | - José A Pérez-Simón
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC) and
| | - Juan J Toledo-Aral
- Instituto de Biomedicina de Sevilla (IBiS), Hospital Universitario Virgen del Rocío/Consejo Superior de Investigaciones Científicas (CSIC) and
- Departamento de Fisiología Médica y Biofísica, Universidad de Sevilla, Seville, Spain; and
| | - Tatiana Michel
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur Alzette, Luxembourg
| | - Matti S Airaksinen
- Neuroscience Center and Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Simón Méndez-Ferrer
- Wellcome Trust-Medical Research Council Cambridge Stem Cell Institute and Department of Hematology, University of Cambridge, Cambridge, United Kingdom
- National Health Service Blood and Transplant, Cambridge Biomedical Campus, Cambridge, United Kingdom
- Centro Nacional de Investigaciones Cardiovasculares, Madrid, Spain
| |
Collapse
|
21
|
Hu L, Zhu Z, Hai B, Chang S, Ma L, Xu Y, Li X, Feng X, Wu X, Zhao Q, Qin L, Wang J, Zhang C, Liu F, Wang S. Intragland Shh gene delivery mitigated irradiation-induced hyposalivation in a miniature pig model. Am J Cancer Res 2018; 8:4321-4331. [PMID: 30214623 PMCID: PMC6134926 DOI: 10.7150/thno.26509] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Accepted: 06/08/2018] [Indexed: 12/17/2022] Open
Abstract
Irreversible hypofunction of salivary glands is common in head and neck cancer survivors treated with radiotherapy and can only be temporarily relieved with current treatments. We found recently in mouse models that transient activation of Hedgehog pathway following irradiation rescued salivary gland function by preserving salivary stem/progenitor cells, parasympathetic innervation and microvessels. Due to huge differences between salivary glands of rodents and humans, to examine the translational potential of this approach, we evaluated effects of Shh gene transfer in a miniature pig model of irradiation-induced hyposalivation. Methods: The right parotid of each pig was irradiated with a single dose of 20 Gray. Shh and control GFP genes were delivered into irradiated parotid glands by noninvasive retrograde ductal instillation of corresponding adenoviral vectors 4 or 16 weeks after irradiation. Parotid saliva was collected every two weeks. Parotid glands were collected 5 or 20 weeks after irradiation for histology, Western blot and qRT-PCR assays. Results: Shh gene delivery 4 weeks after irradiation significantly improved stimulated saliva secretion and local blood supply up to 20 weeks, preserved saliva-producing acinar cells, parasympathetic innervation and microvessels as found in mouse models, and also activated autophagy and inhibited fibrogenesis in irradiated glands. Conclusion: These data indicate the translational potential of transient activation of Hedgehog pathway to preserve salivary function following irradiation.
Collapse
|
22
|
Jensen CT, Åhsberg J, Sommarin MNE, Strid T, Somasundaram R, Okuyama K, Ungerbäck J, Kupari J, Airaksinen MS, Lang S, Bryder D, Soneji S, Karlsson G, Sigvardsson M. Dissection of progenitor compartments resolves developmental trajectories in B-lymphopoiesis. J Exp Med 2018; 215:1947-1963. [PMID: 29899037 PMCID: PMC6028518 DOI: 10.1084/jem.20171384] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 03/12/2018] [Accepted: 05/18/2018] [Indexed: 01/22/2023] Open
Abstract
Jensen et al. report the identification and characterization of novel lymphoid progenitor populations in the mouse bone marrow. The work resolves the complexity of the BLP/pre-pro–B/Fraction A compartments and provides a developmental trajectory for early B cell development. To understand the developmental trajectories in early lymphocyte differentiation, we identified differentially expressed surface markers on lineage-negative lymphoid progenitors (LPs). Single-cell polymerase chain reaction experiments allowed us to link surface marker expression to that of lineage-associated transcription factors (TFs) and identify GFRA2 and BST1 as markers of early B cells. Functional analyses in vitro and in vivo as well as single-cell gene expression analyses supported that surface expression of these proteins defined distinct subpopulations that include cells from both the classical common LPs (CLPs) and Fraction A compartments. The formation of the GFRA2-expressing stages of development depended on the TF EBF1, critical both for the activation of stage-specific target genes and modulation of the epigenetic landscape. Our data show that consecutive expression of Ly6D, GFRA2, and BST1 defines a developmental trajectory linking the CLP to the CD19+ progenitor compartment.
Collapse
Affiliation(s)
| | | | | | - Tobias Strid
- Division of Molecular Hematology, Lund University, Lund, Sweden.,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Rajesh Somasundaram
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Kazuki Okuyama
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jonas Ungerbäck
- Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| | - Jussi Kupari
- Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | | | - Stefan Lang
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - David Bryder
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Shamit Soneji
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Göran Karlsson
- Division of Molecular Hematology, Lund University, Lund, Sweden
| | - Mikael Sigvardsson
- Division of Molecular Hematology, Lund University, Lund, Sweden .,Department of Clinical and Experimental Medicine, Linköping University, Linköping, Sweden
| |
Collapse
|
23
|
Agopiantz M, Xandre-Rodriguez L, Jin B, Urbistondoy G, Ialy-Radio C, Chalbi M, Wolf JP, Ziyyat A, Lefèvre B. Growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1), two mouse oocyte glycosylphosphatidylinositol-anchored proteins, are involved in fertilisation. Reprod Fertil Dev 2018; 29:824-837. [PMID: 28442042 DOI: 10.1071/rd15367] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2015] [Accepted: 12/10/2015] [Indexed: 12/25/2022] Open
Abstract
Recently, Juno, the oocyte receptor for Izumo1, a male immunoglobulin, was discovered. Juno is an essential glycosylphosphatidylinositol (GIP)-anchored protein. This result did not exclude the participation of other GIP-anchored proteins in this process. After bibliographic and database searches we selected five GIP-anchored proteins (Cpm, Ephrin-A4, Gas1, Gfra1 and Rgmb) as potential oocyte candidates participating in fertilisation. Western blot and immunofluorescence analyses showed that only three were present on the mouse ovulated oocyte membrane and, of these, only two were clearly involved in the fertilisation process, namely growth arrest specific 1 (Gas1) and glial cell line-derived neurotrophic factor receptor α1 (Gfrα1). This was demonstrated by evaluating oocyte fertilisability after treatment of oocytes with antibodies against the selected proteins, with their respective short interference RNA or both. Gfrα1 and Gas1 seem to be neither redundant nor synergistic. In conclusion, oocyte Gas1 and Gfrα1 are both clearly involved in fertilisation.
Collapse
Affiliation(s)
- M Agopiantz
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - L Xandre-Rodriguez
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Jin
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - G Urbistondoy
- Université Paris Descartes, Sorbonne Paris Cité, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - C Ialy-Radio
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - M Chalbi
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - J-P Wolf
- Service d'Histologie Embryologie Biologie de la Reproduction - CECOS, Hôpital Cochin, AP-HP, F75014 Paris, France
| | - A Ziyyat
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| | - B Lefèvre
- Inserm, U1016, Institut Cochin, 24 rue du Faubourg Saint-Jacques, 75014, Paris, France
| |
Collapse
|
24
|
Fielder GC, Yang TWS, Razdan M, Li Y, Lu J, Perry JK, Lobie PE, Liu DX. The GDNF Family: A Role in Cancer? Neoplasia 2018; 20:99-117. [PMID: 29245123 PMCID: PMC5730419 DOI: 10.1016/j.neo.2017.10.010] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 10/31/2017] [Accepted: 10/31/2017] [Indexed: 02/07/2023]
Abstract
The glial cell line-derived neurotrophic factor (GDNF) family of ligands (GFLs) comprising of GDNF, neurturin, artemin, and persephin plays an important role in the development and maintenance of the central and peripheral nervous system, renal morphogenesis, and spermatogenesis. Here we review our current understanding of GFL biology, and supported by recent progress in the area, we examine their emerging role in endocrine-related and other non-hormone-dependent solid neoplasms. The ability of GFLs to elicit actions that resemble those perturbed in an oncogenic phenotype, alongside mounting evidence of GFL involvement in tumor progression, presents novel opportunities for therapeutic intervention.
Collapse
Affiliation(s)
| | | | - Mahalakshmi Razdan
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Yan Li
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jun Lu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand
| | - Jo K Perry
- Liggins Institute, University of Auckland, Auckland, New Zealand
| | - Peter E Lobie
- Cancer Science Institute of Singapore and Department of Pharmacology, National University of Singapore, Singapore; Tsinghua Berkeley Shenzhen Institute, Tsinghua University, Shenzhen, Guangdong, P. R. China
| | - Dong-Xu Liu
- The Centre for Biomedical and Chemical Sciences, School of Science, Faculty of Health and Environmental Sciences, Auckland University of Technology, Auckland, New Zealand.
| |
Collapse
|
25
|
Reyes-Corona D, Vázquez-Hernández N, Escobedo L, Orozco-Barrios CE, Ayala-Davila J, Moreno MG, Amaro-Lara ME, Flores-Martinez YM, Espadas-Alvarez AJ, Fernandez-Parrilla MA, Gonzalez-Barrios JA, Gutierrez-Castillo ME, González-Burgos I, Martinez-Fong D. Neurturin overexpression in dopaminergic neurons induces presynaptic and postsynaptic structural changes in rats with chronic 6-hydroxydopamine lesion. PLoS One 2017; 12:e0188239. [PMID: 29176874 PMCID: PMC5703459 DOI: 10.1371/journal.pone.0188239] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2017] [Accepted: 11/05/2017] [Indexed: 01/01/2023] Open
Abstract
The structural effect of neurturin (NRTN) on the nigrostriatal dopaminergic system in animals remains unknown, although NRTN has been shown to be effective in Parkinson's disease animal models. Herein, we aimed to demonstrate that NRTN overexpression in dopaminergic neurons stimulates both neurite outgrowths in the nigrostriatal pathway and striatal dendritic spines in aging rats with chronic 6-hydroxydopamine (6-OHDA) lesion. At week 12 after lesion, pTracer-mNRTN-His or pGreenLantern-1 plasmids were intranigrally transfected using the NTS-polyplex nanoparticles system. We showed that the transgenic expression in dopaminergic neurons remained until the end of the study (12 weeks). Only animals expressing NRTN-His showed recovery of tyrosine hydroxylase (TH)+ cells (28 ± 2%), their neurites (32 ± 2%) and the neuron-specific cytoskeletal marker β-III-tubulin in the substantia nigra; striatal TH(+) fibers were also recovered (52 ± 3%), when compared to the healthy condition. Neurotensin receptor type 1 levels were also significantly recovered in the substantia nigra and striatum. Dopamine recovery was 70 ± 4% in the striatum and complete in the substantia nigra. The number of dendritic spines of striatal medium spiny neurons was also significantly increased, but the recovery was not complete. Drug-activated circling behavior decreased by 73 ± 2% (methamphetamine) and 89 ± 1% (apomorphine). Similar decrease was observed in the spontaneous motor behavior. Our results demonstrate that NRTN causes presynaptic and postsynaptic restoration of the nigrostriatal dopaminergic system after a 6-OHDA-induced chronic lesion. However, those improvements did not reach the healthy condition, suggesting that NRTN exerts lesser neurotrophic effects than other neurotrophic approaches.
Collapse
Affiliation(s)
- David Reyes-Corona
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Nallely Vázquez-Hernández
- Laboratorio de Psicobiología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, México
| | - Lourdes Escobedo
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Carlos E. Orozco-Barrios
- CONACYT—Medical Research Unit in Neurological Diseases, National Medical Center "Siglo XXI", IMSS, Mexico City, Mexico
| | - Jose Ayala-Davila
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Mario Gil Moreno
- Laboratorio de Neurobiología del Apetito, Departamento de Farmacología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Miriam E. Amaro-Lara
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Yazmin M. Flores-Martinez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Armando J. Espadas-Alvarez
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Manuel A. Fernandez-Parrilla
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
| | - Juan A. Gonzalez-Barrios
- Laboratorio de Medicina Genómica, Hospital Regional 1º de Octubre, ISSSTE, Ciudad de México, México
| | - ME Gutierrez-Castillo
- Departamento de Biociencias e Ingeniería, Centro Interdisciplinario de Investigaciones y Estudios sobre Medio Ambiente y Desarrollo, Instituto Politécnico Nacional, Ciudad de México, México
| | - Ignacio González-Burgos
- Laboratorio de Psicobiología, División de Neurociencias, Centro de Investigación Biomédica de Occidente, IMSS, Guadalajara, Jalisco, México
| | - Daniel Martinez-Fong
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
- Programa de Doctorado en Nanociencias y Nanotecnología, Centro de Investigación y de Estudios Avanzados, Ciudad de México, México
- * E-mail:
| |
Collapse
|
26
|
Towards a neurobiological understanding of pain in chronic pancreatitis: mechanisms and implications for treatment. Pain Rep 2017; 2:e625. [PMID: 29392239 PMCID: PMC5741325 DOI: 10.1097/pr9.0000000000000625] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Revised: 08/30/2017] [Accepted: 09/08/2017] [Indexed: 12/19/2022] Open
Abstract
We summarize the evidence for a neurobiological understanding of pain in patients with chronic pancreatitis and discuss its potential impact on prevention and treatment. Introduction: Chronic pancreatitis (CP) is a disease characterized by inflammation of the pancreas resulting in replacement of the normal functioning parenchyma by fibrotic connective tissue. This process leads to progressively impairment of exocrine and endocrine function and many patients develop a chronic pain syndrome. Objectives: We aimed to characterize the neurobiological signature of pain associated with CP and to discuss its implications for treatment strategies. Methods: Relevant basic and clinical articles were selected for review following an extensive search of the literature. Results: Pathophysiological changes in the peripheral (pancreatic gland) and central nervous system characterize the pain syndrome associated with CP; involved mechanisms can be broken down to 3 main branches: (1) peripheral sensitization, (2) pancreatic neuropathy, and (3) neuroplastic changes in the central pain pathways. Disease flares (recurrent pancreatitis) may accelerate the pathophysiological process and further sensitize the pain system, which ultimately results in an autonomous and self-perpetuating pain state that may become independent of the peripheral nociceptive drive. These findings share many similarities with those observed in neuropathic pain disorders and have important implications for treatment; adjuvant analgesics are effective in a subset of patients, and neuromodulation and neuropsychological interventions may prove useful in the future. Conclusion: Chronic pancreatitis is associated with abnormal processing of pain at the peripheral and central level of the pain system. This neurobiological understanding of pain has important clinical implications for treatment and prevention of pain chronification.
Collapse
|
27
|
Venkatesh H, Monje M. Neuronal Activity in Ontogeny and Oncology. Trends Cancer 2017; 3:89-112. [PMID: 28718448 DOI: 10.1016/j.trecan.2016.12.008] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2016] [Revised: 12/29/2016] [Accepted: 12/30/2016] [Indexed: 01/06/2023]
Abstract
The nervous system plays a central role in regulating the stem cell niche in many organs, and thereby pivotally modulates development, homeostasis, and plasticity. A similarly powerful role for neural regulation of the cancer microenvironment is emerging. Neurons promote the growth of cancers of the brain, skin, prostate, pancreas, and stomach. Parallel mechanisms shared in development and cancer suggest that neural modulation of the tumor microenvironment may prove a universal theme, although the mechanistic details of such modulation remain to be discovered for many malignancies. We review here what is known about the influences of active neurons on stem cell and cancer microenvironments across a broad range of tissues, and we discuss emerging principles of neural regulation of development and cancer.
Collapse
Affiliation(s)
- Humsa Venkatesh
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Cancer Biology Graduate Program, Stanford University School of Medicine, Stanford, CA, USA
| | - Michelle Monje
- Department of Neurology, Stanford University School of Medicine, Stanford, CA, USA; Department of Pediatrics, Stanford University School of Medicine, Stanford, CA, USA; Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA; Institute for Stem Cell Biology and Regenerative Medicine, Stanford University, Stanford, CA, USA.
| |
Collapse
|
28
|
Ibáñez CF, Andressoo JO. Biology of GDNF and its receptors — Relevance for disorders of the central nervous system. Neurobiol Dis 2017; 97:80-89. [DOI: 10.1016/j.nbd.2016.01.021] [Citation(s) in RCA: 165] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 01/14/2016] [Accepted: 01/25/2016] [Indexed: 01/15/2023] Open
|
29
|
Hai B, Zhao Q, Qin L, Rangaraj D, Gutti VR, Liu F. Rescue Effects and Underlying Mechanisms of Intragland Shh Gene Delivery on Irradiation-Induced Hyposalivation. Hum Gene Ther 2016; 27:390-9. [PMID: 27021743 DOI: 10.1089/hum.2016.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Irreversible hypofunction of salivary glands is common in head and neck cancer survivors treated with radiotherapy and can only be temporarily relieved with current treatments. We found in an inducible sonic hedgehog (Shh) transgenic mouse model that transient activation of the Hedgehog pathway after irradiation rescued salivary gland function in males by preserving salivary stem/progenitor cells and parasympathetic innervation. To translate these findings into feasible clinical application, we evaluated the effects of Shh gene transfer to salivary glands of wild-type mice on irradiation-induced hyposalivation. Shh or control GFP gene was delivered by noninvasive retrograde ductal instillation of corresponding adenoviral vectors. In both male and female mice, Shh gene delivery efficiently activated Hedgehog/Gli signaling, and significantly improved stimulated saliva secretion and preserved saliva-producing acinar cells after irradiation. In addition to preserving parasympathetic innervation through induction of neurotrophic factors, Shh gene delivery also alleviated the irradiation damage of the microvasculature, likely via inducing angiogenic factors, but did not expand the progeny of cells responsive to Hedgehog/Gli signaling. These data indicate that transient activation of the Hedgehog pathway by gene delivery is promising to rescue salivary function after irradiation in both sexes, and the Hedgehog/Gli pathway may function mainly in cell nonautonomous manners to achieve the rescue effect.
Collapse
Affiliation(s)
- Bo Hai
- 1 Institute for Regenerative Medicine, College of Medicine, Texas A&M Health Science Center , Temple, Texas
| | - Qingguo Zhao
- 1 Institute for Regenerative Medicine, College of Medicine, Texas A&M Health Science Center , Temple, Texas
| | - Lizheng Qin
- 1 Institute for Regenerative Medicine, College of Medicine, Texas A&M Health Science Center , Temple, Texas.,2 Beijing Stomatological Hospital, Capital Medical University , Beijing, China
| | | | - Veera R Gutti
- 3 Department of Radiation Oncology, Baylor Scott & White Hospital , Temple, Texas
| | - Fei Liu
- 1 Institute for Regenerative Medicine, College of Medicine, Texas A&M Health Science Center , Temple, Texas
| |
Collapse
|
30
|
Moyle LA, Blanc E, Jaka O, Prueller J, Banerji CR, Tedesco FS, Harridge SD, Knight RD, Zammit PS. Ret function in muscle stem cells points to tyrosine kinase inhibitor therapy for facioscapulohumeral muscular dystrophy. eLife 2016; 5. [PMID: 27841748 PMCID: PMC5108591 DOI: 10.7554/elife.11405] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 09/01/2016] [Indexed: 12/16/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) involves sporadic expression of DUX4, which inhibits myogenesis and is pro-apoptotic. To identify target genes, we over-expressed DUX4 in myoblasts and found that the receptor tyrosine kinase Ret was significantly up-regulated, suggesting a role in FSHD. RET is dynamically expressed during myogenic progression in mouse and human myoblasts. Constitutive expression of either RET9 or RET51 increased myoblast proliferation, whereas siRNA-mediated knockdown of Ret induced myogenic differentiation. Suppressing RET activity using Sunitinib, a clinically-approved tyrosine kinase inhibitor, rescued differentiation in both DUX4-expressing murine myoblasts and in FSHD patient-derived myoblasts. Importantly, Sunitinib also increased engraftment and differentiation of FSHD myoblasts in regenerating mouse muscle. Thus, DUX4-mediated activation of Ret prevents myogenic differentiation and could contribute to FSHD pathology by preventing satellite cell-mediated repair. Rescue of DUX4-induced pathology by Sunitinib highlights the therapeutic potential of tyrosine kinase inhibitors for treatment of FSHD. DOI:http://dx.doi.org/10.7554/eLife.11405.001
Collapse
Affiliation(s)
- Louise A Moyle
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Eric Blanc
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom.,Core Unit Bioinformatics, Berlin Institute of Health, Berlin, Germany.,Institute of Pathology, Charite Universitatsmedizin Berlin, Berlin, Germany
| | - Oihane Jaka
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| | - Johanna Prueller
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | - Christopher Rs Banerji
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| | | | - Stephen Dr Harridge
- Centre of Human and Aerospace Physiological Sciences, King's College London, London, United Kingdom
| | - Robert D Knight
- Craniofacial Development and Stem Cell Biology, King's College London, London, United Kingdom
| | - Peter S Zammit
- Randall Division of Cell and Molecular Biophysics, King's College London, London, United Kingdom
| |
Collapse
|
31
|
Végh AMD, Duim SN, Smits AM, Poelmann RE, Ten Harkel ADJ, DeRuiter MC, Goumans MJ, Jongbloed MRM. Part and Parcel of the Cardiac Autonomic Nerve System: Unravelling Its Cellular Building Blocks during Development. J Cardiovasc Dev Dis 2016; 3:jcdd3030028. [PMID: 29367572 PMCID: PMC5715672 DOI: 10.3390/jcdd3030028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 02/06/2023] Open
Abstract
The autonomic nervous system (cANS) is essential for proper heart function, and complications such as heart failure, arrhythmias and even sudden cardiac death are associated with an altered cANS function. A changed innervation state may underlie (part of) the atrial and ventricular arrhythmias observed after myocardial infarction. In other cardiac diseases, such as congenital heart disease, autonomic dysfunction may be related to disease outcome. This is also the case after heart transplantation, when the heart is denervated. Interest in the origin of the autonomic nerve system has renewed since the role of autonomic function in disease progression was recognized, and some plasticity in autonomic regeneration is evident. As with many pathological processes, autonomic dysfunction based on pathological innervation may be a partial recapitulation of the early development of innervation. As such, insight into the development of cardiac innervation and an understanding of the cellular background contributing to cardiac innervation during different phases of development is required. This review describes the development of the cANS and focuses on the cellular contributions, either directly by delivering cells or indirectly by secretion of necessary factors or cell-derivatives.
Collapse
Affiliation(s)
- Anna M D Végh
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Sjoerd N Duim
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Anke M Smits
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Robert E Poelmann
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
- Institute of Biology Leiden, Leiden University, Sylviusweg 20, 2311 EZ Leiden, The Netherlands.
| | - Arend D J Ten Harkel
- Department of Pediatric Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
| | - Marco C DeRuiter
- Department of Anatomy & Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Marie José Goumans
- Department of Molecular Cell Biology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | - Monique R M Jongbloed
- Department of Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
- Department of Pediatric Cardiology, Leiden University Medical Center, Albinusdreef 2, 2333 ZC Leiden, The Netherlands.
| |
Collapse
|
32
|
Furlan A, La Manno G, Lübke M, Häring M, Abdo H, Hochgerner H, Kupari J, Usoskin D, Airaksinen MS, Oliver G, Linnarsson S, Ernfors P. Visceral motor neuron diversity delineates a cellular basis for nipple- and pilo-erection muscle control. Nat Neurosci 2016; 19:1331-40. [PMID: 27571008 DOI: 10.1038/nn.4376] [Citation(s) in RCA: 85] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 08/04/2016] [Indexed: 01/19/2023]
Abstract
Despite the variety of physiological and target-related functions, little is known regarding the cellular complexity in the sympathetic ganglion. We explored the heterogeneity of mouse stellate and thoracic ganglia and found an unexpected variety of cell types. We identified specialized populations of nipple- and pilo-erector muscle neurons. These neurons extended axonal projections and were born among other neurons during embryogenesis, but remained unspecialized until target organogenesis occurred postnatally. Target innervation and cell-type specification was coordinated by an intricate acquisition of unique combinations of growth factor receptors and the initiation of expression of concomitant ligands by the nascent erector muscles. Overall, our results provide compelling evidence for a highly sophisticated organization of the sympathetic nervous system into discrete outflow channels that project to well-defined target tissues and offer mechanistic insight into how diversity and connectivity are established during development.
Collapse
Affiliation(s)
- Alessandro Furlan
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Gioele La Manno
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Moritz Lübke
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Martin Häring
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hind Abdo
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Hannah Hochgerner
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jussi Kupari
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Dmitry Usoskin
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Matti S Airaksinen
- Department of Anatomy, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Guillermo Oliver
- Center for Vascular and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Sten Linnarsson
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
33
|
Ishida H, Saba R, Kokkinopoulos I, Hashimoto M, Yamaguchi O, Nowotschin S, Shiraishi M, Ruchaya P, Miller D, Harmer S, Poliandri A, Kogaki S, Sakata Y, Dunkel L, Tinker A, Hadjantonakis AK, Sawa Y, Sasaki H, Ozono K, Suzuki K, Yashiro K. GFRA2 Identifies Cardiac Progenitors and Mediates Cardiomyocyte Differentiation in a RET-Independent Signaling Pathway. Cell Rep 2016; 16:1026-1038. [PMID: 27396331 PMCID: PMC4967477 DOI: 10.1016/j.celrep.2016.06.050] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2016] [Revised: 05/22/2016] [Accepted: 06/10/2016] [Indexed: 12/14/2022] Open
Abstract
A surface marker that distinctly identifies cardiac progenitors (CPs) is essential for the robust isolation of these cells, circumventing the necessity of genetic modification. Here, we demonstrate that a Glycosylphosphatidylinositol-anchor containing neurotrophic factor receptor, Glial cell line-derived neurotrophic factor receptor alpha 2 (Gfra2), specifically marks CPs. GFRA2 expression facilitates the isolation of CPs by fluorescence activated cell sorting from differentiating mouse and human pluripotent stem cells. Gfra2 mutants reveal an important role for GFRA2 in cardiomyocyte differentiation and development both in vitro and in vivo. Mechanistically, the cardiac GFRA2 signaling pathway is distinct from the canonical pathway dependent on the RET tyrosine kinase and its established ligands. Collectively, our findings establish a platform for investigating the biology of CPs as a foundation for future development of CP transplantation for treating heart failure.
Collapse
Affiliation(s)
- Hidekazu Ishida
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Rie Saba
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ioannis Kokkinopoulos
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Masakazu Hashimoto
- Laboratory for Embryogenesis, Osaka University Graduate School of Frontier Biosciences, Osaka 565-0871, Japan
| | - Osamu Yamaguchi
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Sonja Nowotschin
- Developmental Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Manabu Shiraishi
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Prashant Ruchaya
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Centre of Human and Aerospace Physiological Sciences, School of Biomedical Sciences, King's College, London, SE1 1UL, UK
| | - Duncan Miller
- Cardiac Electrophysiology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Stephen Harmer
- Cardiac Electrophysiology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Ariel Poliandri
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Shigetoyo Kogaki
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Yasushi Sakata
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Leo Dunkel
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Andrew Tinker
- Cardiac Electrophysiology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | | | - Yoshiki Sawa
- Department of Cardiovascular Surgery, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Hiroshi Sasaki
- Laboratory for Embryogenesis, Osaka University Graduate School of Frontier Biosciences, Osaka 565-0871, Japan
| | - Keiichi Ozono
- Department of Paediatrics, Osaka University Graduate School of Medicine, Osaka 565-0871, Japan
| | - Ken Suzuki
- Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK
| | - Kenta Yashiro
- Centre for Endocrinology, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK; Translational Medicine and Therapeutics, William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, UK.
| |
Collapse
|
34
|
Brosens E, Burns AJ, Brooks AS, Matera I, Borrego S, Ceccherini I, Tam PK, García-Barceló MM, Thapar N, Benninga MA, Hofstra RMW, Alves MM. Genetics of enteric neuropathies. Dev Biol 2016; 417:198-208. [PMID: 27426273 DOI: 10.1016/j.ydbio.2016.07.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/13/2016] [Accepted: 07/13/2016] [Indexed: 12/23/2022]
Abstract
Abnormal development or disturbed functioning of the enteric nervous system (ENS), the intrinsic innervation of the gastrointestinal tract, is associated with the development of neuropathic gastrointestinal motility disorders. Here, we review the underlying molecular basis of these disorders and hypothesize that many of them have a common defective biological mechanism. Genetic burden and environmental components affecting this common mechanism are ultimately responsible for disease severity and symptom heterogeneity. We believe that they act together as the fulcrum in a seesaw balanced with harmful and protective factors, and are responsible for a continuum of symptoms ranging from neuronal hyperplasia to absence of neurons.
Collapse
Affiliation(s)
- Erwin Brosens
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands.
| | - Alan J Burns
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Alice S Brooks
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Ivana Matera
- UOC Medical Genetics, Istituto Giannina Gaslini, Genova, Italy
| | - Salud Borrego
- Department of Genetics, Reproduction and Fetal Medicine, Institute of Biomedicine of Seville (IBIS), Seville, Spain; Centre for Biomedical Network Research on Rare Diseases (CIBERER), Seville, Spain
| | | | - Paul K Tam
- Division of Paediatric Surgery, Department of Surgery, Li Ka Shing Faculty of Medicine of the University of Hong Kong, Hong Kong, China
| | - Maria-Mercè García-Barceló
- State Key Laboratory of Brain and Cognitive Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China; Centre for Reproduction, Development, and Growth, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Nikhil Thapar
- Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Marc A Benninga
- Pediatric Gastroenterology, Emma Children's Hospital/Academic Medical Center, Amsterdam, The Netherlands
| | - Robert M W Hofstra
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands; Stem Cells and Regenerative Medicine, Birth Defects Research Centre, UCL Institute of Child Health, London, UK
| | - Maria M Alves
- Department of Clinical Genetics, Erasmus University Medical Centre - Sophia Children's Hospital, Rotterdam, The Netherlands
| |
Collapse
|
35
|
Bolon B, Jing S, Asuncion F, Scully S, Pisegna M, Van GY, Hu Z, Yu YB, Min H, Wild K, Rosenfeld RD, Tarpley J, Carnahan J, Duryea D, Hill D, Kaufman S, Yan XQ, Juan T, Christensen K, McCabe J, Simonet WS. The Candidate Neuroprotective Agent Artemin Induces Autonomic Neural Dysplasia without Preventing Peripheral Nerve Dysfunction. Toxicol Pathol 2016; 32:275-94. [PMID: 15204970 DOI: 10.1080/01926230490431475] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Artemin (ART) signals through the GFR α—3/RET receptor complex to support sympathetic neuron development. Here we show that ART also influences autonomic elements in adrenal medulla and enteric and pelvic ganglia. Transgenic mice over-expressing Art throughout development exhibited systemic autonomic neural lesions including fusion of adrenal medullae with adjacent paraganglia, adrenal medullary dysplasia, and marked enlargement of sympathetic (superior cervical and sympathetic chain ganglia) and parasympathetic (enteric, pelvic) ganglia. Changes began by gestational day 12.5 and formed progressively larger masses during adulthood. Art supplementation in wild type adult mice by administering recombinant protein or an Art-bearing retroviral vector resulted in hyperplasia or neuronal metaplasia at the adrenal corticomedullary junction. Expression data revealed that Gfr α—3 is expressed during development in the adrenal medulla, sensory and autonomic ganglia and their projections, while Art is found in contiguous mesenchymal domains (especially skeleton) and in certain nerves. Intrathecal Art therapy did not reduce hypalgesia in rats following nerve ligation. These data (1) confirm that ART acts as a differentiation factor for autonomic (chiefly sympathoadrenal but also parasympathetic) neurons, (2) suggest a role for ART overexpression in the genesis of pheochromocytomas and paragangliomas, and (3) indicate that ART is not a suitable therapy for peripheral neuropathy.
Collapse
Affiliation(s)
- Brad Bolon
- Department of Pathology, Amgen Inc., Thousand Oaks, California 91320-1799, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Bondurand N, Southard-Smith EM. Mouse models of Hirschsprung disease and other developmental disorders of the enteric nervous system: Old and new players. Dev Biol 2016; 417:139-57. [PMID: 27370713 DOI: 10.1016/j.ydbio.2016.06.042] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Revised: 06/27/2016] [Accepted: 06/27/2016] [Indexed: 12/18/2022]
Abstract
Hirschsprung disease (HSCR, intestinal aganglionosis) is a multigenic disorder with variable penetrance and severity that has a general population incidence of 1/5000 live births. Studies using animal models have contributed to our understanding of the developmental origins of HSCR and the genetic complexity of this disease. This review summarizes recent progress in understanding control of enteric nervous system (ENS) development through analyses in mouse models. An overview of signaling pathways that have long been known to control the migration, proliferation and differentiation of enteric neural progenitors into and along the developing gut is provided as a framework for the latest information on factors that influence enteric ganglia formation and maintenance. Newly identified genes and additional factors beyond discrete genes that contribute to ENS pathology including regulatory sequences, miRNAs and environmental factors are also introduced. Finally, because HSCR has become a paradigm for complex oligogenic diseases with non-Mendelian inheritance, the importance of gene interactions, modifier genes, and initial studies on genetic background effects are outlined.
Collapse
Affiliation(s)
- Nadege Bondurand
- INSERM, U955, Equipe 6, F-94000 Creteil, France; Universite Paris-Est, UPEC, F-94000 Creteil, France.
| | - E Michelle Southard-Smith
- Vanderbilt University Medical Center, Department of Medicine, 2215 Garland Ave, Nashville, TN 37232, USA.
| |
Collapse
|
37
|
Enteric nervous system assembly: Functional integration within the developing gut. Dev Biol 2016; 417:168-81. [PMID: 27235816 DOI: 10.1016/j.ydbio.2016.05.030] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2016] [Revised: 04/26/2016] [Accepted: 05/24/2016] [Indexed: 02/08/2023]
Abstract
Co-ordinated gastrointestinal function is the result of integrated communication between the enteric nervous system (ENS) and "effector" cells in the gastrointestinal tract. Unlike smooth muscle cells, interstitial cells, and the vast majority of cell types residing in the mucosa, enteric neurons and glia are not generated within the gut. Instead, they arise from neural crest cells that migrate into and colonise the developing gastrointestinal tract. Although they are "later" arrivals into the developing gut, enteric neural crest-derived cells (ENCCs) respond to many of the same secreted signalling molecules as the "resident" epithelial and mesenchymal cells, and several factors that control the development of smooth muscle cells, interstitial cells and epithelial cells also regulate ENCCs. Much progress has been made towards understanding the migration of ENCCs along the gastrointestinal tract and their differentiation into neurons and glia. However, our understanding of how enteric neurons begin to communicate with each other and extend their neurites out of the developing plexus layers to innervate the various cell types lining the concentric layers of the gastrointestinal tract is only beginning. It is critical for postpartum survival that the gastrointestinal tract and its enteric circuitry are sufficiently mature to cope with the influx of nutrients and their absorption that occurs shortly after birth. Subsequently, colonisation of the gut by immune cells and microbiota during postnatal development has an important impact that determines the ultimate outline of the intrinsic neural networks of the gut. In this review, we describe the integrated development of the ENS and its target cells.
Collapse
|
38
|
Uesaka T, Young HM, Pachnis V, Enomoto H. Development of the intrinsic and extrinsic innervation of the gut. Dev Biol 2016; 417:158-67. [PMID: 27112528 DOI: 10.1016/j.ydbio.2016.04.016] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Revised: 04/09/2016] [Accepted: 04/21/2016] [Indexed: 12/16/2022]
Abstract
The gastrointestinal (GI) tract is innervated by intrinsic enteric neurons and by extrinsic efferent and afferent nerves. The enteric (intrinsic) nervous system (ENS) in most regions of the gut consists of two main ganglionated layers; myenteric and submucosal ganglia, containing numerous types of enteric neurons and glial cells. Axons arising from the ENS and from extrinsic neurons innervate most layers of the gut wall and regulate many gut functions. The majority of ENS cells are derived from vagal neural crest cells (NCCs), which proliferate, colonize the entire gut, and first populate the myenteric region. After gut colonization by vagal NCCs, the extrinsic nerve fibers reach the GI tract, and Schwann cell precursors (SCPs) enter the gut along the extrinsic nerves. Furthermore, a subpopulation of cells in myenteric ganglia undergoes a radial (inward) migration to form the submucosal plexus, and the intrinsic and extrinsic innervation to the mucosal region develops. Here, we focus on recent progress in understanding the developmental processes that occur after the gut is colonized by vagal ENS precursors, and provide an up-to-date overview of molecular mechanisms regulating the development of the intrinsic and extrinsic innervation of the GI tract.
Collapse
Affiliation(s)
- Toshihiro Uesaka
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan.
| | - Heather M Young
- Department of Anatomy and Neuroscience, University of Melbourne, 3010 VIC, Australia
| | - Vassilis Pachnis
- Division of Molecular Neurobiology, MRC National Institute for Medical Research, The Ridgeway, Mill Hill, London NW7 1AA, United Kingdom
| | - Hideki Enomoto
- Division of Neural Differentiation and Regeneration, Department of Physiology and Cell Biology, Graduate School of Medicine, Kobe University, Kobe 650-0017, Japan; Laboratory for Neuronal Differentiation and Regeneration, RIKEN Center for Developmental Biology, Kobe 650-0047, Japan; Core Research for Evolutional Science and Technology, Japan Science and Technology Agency, Saitama 332-0012, Japan
| |
Collapse
|
39
|
Xerostomia: current streams of investigation. Oral Surg Oral Med Oral Pathol Oral Radiol 2016; 122:53-60. [PMID: 27189896 DOI: 10.1016/j.oooo.2016.03.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Revised: 01/13/2016] [Accepted: 03/04/2016] [Indexed: 12/12/2022]
Abstract
Xerostomia is the subjective feeling of dry mouth, and it is often related to salivary hypofunction. Besides medication-related salivary hypofunction, Sjögren syndrome and head-and-neck radiation are two common etiologies that have garnered considerable attention. Approaches to treating and/or preventing salivary hypofunction in patients with these conditions will likely incorporate gene therapy, stem cell therapy, and tissue engineering. Advances in these disciplines are central to current research in the cure for xerostomia and will be key to eventual treatment.
Collapse
|
40
|
Voutilainen MH, Arumäe U, Airavaara M, Saarma M. Therapeutic potential of the endoplasmic reticulum located and secreted CDNF/MANF family of neurotrophic factors in Parkinson's disease. FEBS Lett 2015; 589:3739-48. [PMID: 26450777 DOI: 10.1016/j.febslet.2015.09.031] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 12/16/2022]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disorder where dopamine (DA) neurons in the substantia nigra degenerate and die. Since no cure for PD exists, there is a need for disease-modifying drugs. Glial cell line-derived neurotrophic factor (GDNF) and related neurturin (NRTN) can protect and repair DA neurons in neurotoxin animal models of PD. However, GDNF was unable to rescue DA neurons in an α-synuclein model of PD, and both factors have shown modest effects in phase two clinical trials. Neurotrophic factors (NTFs), cerebral DA NTF (CDNF) and mesencephalic astrocyte-derived NTF (MANF) form a novel family of evolutionarily conserved, endoplasmic reticulum (ER) located and secreted NTFs. CDNF and MANF have a unique structure and an unparalleled dual mode of action that differs from other known NTFs. Both protect cells from ER stress, and regulate the unfolded protein response via interacting with chaperons, and CDNF dissolves intracellular α-synuclein aggregates. By binding to putative plasma membrane receptors, they promote the survival of DA neurons similarly to conventional NTFs. In animal models of PD, CDNF protects and repairs DA neurons, regulates ER stress, and improves motor function more efficiently than other NTFs.
Collapse
Affiliation(s)
| | - Urmas Arumäe
- Institute of Biotechnology, University of Helsinki, Finland; Department of Gene Technology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Mart Saarma
- Institute of Biotechnology, University of Helsinki, Finland.
| |
Collapse
|
41
|
Abstract
PURPOSE Hirschsprung's disease (HSCR) is a developmental disorder of the enteric nervous system, which occurs due to the failure of neural crest cell migration. Rodent animal models of aganglionosis have contributed greatly to our understanding of the genetic basis of HSCR. Several natural or target mutations in specific genes have been reported to produce developmental defects in neural crest migration, differentiation or survival. The aim of this study was to review the currently available knockout models of HSCR to better understand the molecular basis of HSCR. METHODS A review of the literature using the keywords "Hirschsprung's disease", "aganglionosis", "megacolon" and "knockout mice model" was performed. Resulting publications were reviewed for relevant mouse models of human aganglionosis. Reference lists were screened for additional relevant studies. RESULTS 16 gene knockout mouse models were identified as relevant rodent models of human HSCR. Due to the deletion of a specific gene, the phenotypes of these knockout models are diverse and range from small bowel dilatation and muscular hypertrophy to total intestinal aganglionosis. CONCLUSIONS Mouse models of aganglionosis have been instrumental in the discovery of the causative genes of HSCR. Although important advances have been made in understanding the genetic basis of HSCR, animal models of aganglionosis in future should further help to identify the unknown susceptibility genes in HSCR.
Collapse
Affiliation(s)
- J Zimmer
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | | |
Collapse
|
42
|
Fleming MS, Vysochan A, Paixão S, Niu J, Klein R, Savitt JM, Luo W. Cis and trans RET signaling control the survival and central projection growth of rapidly adapting mechanoreceptors. eLife 2015; 4:e06828. [PMID: 25838128 PMCID: PMC4408446 DOI: 10.7554/elife.06828] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 04/01/2015] [Indexed: 01/26/2023] Open
Abstract
RET can be activated in cis or trans by its co-receptors and ligands in vitro, but the physiological roles of trans signaling are unclear. Rapidly adapting (RA) mechanoreceptors in dorsal root ganglia (DRGs) express Ret and the co-receptor Gfrα2 and depend on Ret for survival and central projection growth. Here, we show that Ret and Gfrα2 null mice display comparable early central projection deficits, but Gfrα2 null RA mechanoreceptors recover later. Loss of Gfrα1, the co-receptor implicated in activating RET in trans, causes no significant central projection or cell survival deficit, but Gfrα1;Gfrα2 double nulls phenocopy Ret nulls. Finally, we demonstrate that GFRα1 produced by neighboring DRG neurons activates RET in RA mechanoreceptors. Taken together, our results suggest that trans and cis RET signaling could function in the same developmental process and that the availability of both forms of activation likely enhances but not diversifies outcomes of RET signaling.
Collapse
Affiliation(s)
- Michael S Fleming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Anna Vysochan
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Sόnia Paixão
- Molecules - Signals - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Jingwen Niu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| | - Rüdiger Klein
- Molecules - Signals - Development, Max Planck Institute of Neurobiology, Martinsried, Germany
| | - Joseph M Savitt
- Parkinson's Disease and Movement Disorder Center of Maryland, Elkridge, United States
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, United States
| |
Collapse
|
43
|
Brun P, Gobbo S, Caputi V, Spagnol L, Schirato G, Pasqualin M, Levorato E, Palù G, Giron MC, Castagliuolo I. Toll like receptor-2 regulates production of glial-derived neurotrophic factors in murine intestinal smooth muscle cells. Mol Cell Neurosci 2015; 68:24-35. [PMID: 25823690 DOI: 10.1016/j.mcn.2015.03.018] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 03/16/2015] [Accepted: 03/24/2015] [Indexed: 12/31/2022] Open
Abstract
Gut microbiota-innate immunity axis is emerging as a key player to guarantee the structural and functional integrity of the enteric nervous system (ENS). Alterations in the composition of the gut microbiota, derangement in signaling of innate immune receptors such as Toll-like receptors (TLRs), and modifications in the neurochemical coding of the ENS have been associated with a variety of gastrointestinal disorders. Indeed, TLR2 activation by microbial products controls the ENS structure and regulates intestinal neuromuscular function. However, the cellular populations and the molecular mechanisms shaping the plasticity of enteric neurons in response to gut microbes are largely unexplored. In this study, smooth muscle cells (SMCs), enteric glial cells (EGCs) and macrophages/dendritic cells (MΦ/DCs) were isolated and cultured from the ileal longitudinal muscle layer of wild-type (WT) and Toll-like receptor-2 deficient (TLR2(-/-)) mice. Quantification of mRNA levels of neurotrophins at baseline and following stimulation with TLR ligands was performed by RT-PCR. To determine the role of neurotrophins in supporting the neuronal phenotype, we performed co-culture experiments of enteric neurons with the conditioned media of cells isolated from the longitudinal muscle layer of WT or TLR2(-/-) mice. The neuronal phenotype was investigated evaluating the expression of βIII-tubulin, HuC/D, and nNOS by immunocytochemistry. As detected by semi-quantitative RT-PCR, SMCs expressed mRNA coding TLR1-9. Among the tested cell populations, un-stimulated SMCs were the most prominent sources of neurotrophins. Stimulation with TLR2, TLR4, TLR5 and TLR9 ligands further increased Gdnf, Ngf, Bdnf and Lif mRNA levels in SMCs. Enteric neurons isolated from TLR2(-/-) mice exhibited smaller ganglia, fewer HuC/D(+ve) and nNOS(+ve) neurons and shorter βIII-tubulin axonal networks as compared to neurons cultured from WT mice. The co-culture with the conditioned media from WT-SMCs but not with those from WT-EGCs or WT-MΦ/DCs corrected the altered neuronal phenotype of TLR2(-/-) mice. Supplementation of TLR2(-/-) neuronal cultures with GDNF recapitulated the WT-SMC co-culture effect whereas the knockdown of GDNF expression in WT-SMCs using shRNA interference abolished the effect on TLR2(-/-) neurons. These data revealed that by exploiting the repertoire of TLRs to decode gut-microbial signals, intestinal SMCs elaborate a cocktail of neurotrophic factors that in turn supports neuronal phenotype. In this view, the SMCs represent an attractive target for novel therapeutic strategies.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy.
| | - Serena Gobbo
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Valentina Caputi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131 Padova, Italy
| | - Lisa Spagnol
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Giulia Schirato
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Matteo Pasqualin
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Elia Levorato
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Giorgio Palù
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| | - Maria Cecilia Giron
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Largo E. Meneghetti 2, 35131 Padova, Italy
| | - Ignazio Castagliuolo
- Department of Molecular Medicine, University of Padova, via A. Gabelli 63, 35121 Padova, Italy
| |
Collapse
|
44
|
Avetisyan M, Schill EM, Heuckeroth RO. Building a second brain in the bowel. J Clin Invest 2015; 125:899-907. [PMID: 25664848 DOI: 10.1172/jci76307] [Citation(s) in RCA: 96] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
The enteric nervous system (ENS) is sometimes called the "second brain" because of the diversity of neuronal cell types and complex, integrated circuits that permit the ENS to autonomously regulate many processes in the bowel. Mechanisms supporting ENS development are intricate, with numerous proteins, small molecules, and nutrients that affect ENS morphogenesis and mature function. Damage to the ENS or developmental defects cause vomiting, abdominal pain, constipation, growth failure, and early death. Here, we review molecular mechanisms and cellular processes that govern ENS development, identify areas in which more investigation is needed, and discuss the clinical implications of new basic research.
Collapse
|
45
|
Kupari J, Airaksinen MS. Different requirements for GFRα2-signaling in three populations of cutaneous sensory neurons. PLoS One 2014; 9:e104764. [PMID: 25111710 PMCID: PMC4128720 DOI: 10.1371/journal.pone.0104764] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 07/15/2014] [Indexed: 01/09/2023] Open
Abstract
Many primary sensory neurons in mouse dorsal root ganglia (DRG) express one or several GFRα’s, the ligand-binding receptors of the GDNF family, and their common signaling receptor Ret. GFRα2, the principal receptor for neurturin, is expressed in most of the small nonpeptidergic DRG neurons, but also in some large DRG neurons that start to express Ret earlier. Previously, GFRα2 has been shown to be crucial for the soma size of small nonpeptidergic nociceptors and for their target innervation of glabrous epidermis. However, little is known about this receptor in other Ret-expressing DRG neuron populations. Here we have investigated two populations of Ret-positive low-threshold mechanoreceptors that innervate different types of hair follicles on mouse back skin: the small C-LTMRs and the large Aβ-LTMRs. Using GFRα2-KO mice and immunohistochemistry we found that, similar to the nonpeptidergic nociceptors, GFRα2 controls the cell size but not the survival of both C-LTMRs and Aβ-LTMRs. In contrast to the nonpeptidergic neurons, GFRα2 is not required for the target innervation of C-LTMRs and Aβ-LTMRs in the back skin. These results suggest that different factors drive target innervation in these three populations of neurons. In addition, the observation that the large Ret-positive DRG neurons lack GFRα2 immunoreactivity in mature animals suggests that these neurons switch their GFRα signaling pathways during postnatal development.
Collapse
Affiliation(s)
- Jussi Kupari
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
| | - Matti S. Airaksinen
- Institute of Biomedicine, Anatomy, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
46
|
The neurotrophic factor receptor RET drives haematopoietic stem cell survival and function. Nature 2014; 514:98-101. [DOI: 10.1038/nature13498] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2012] [Accepted: 05/21/2014] [Indexed: 12/13/2022]
|
47
|
Davis TK, Hoshi M, Jain S. To bud or not to bud: the RET perspective in CAKUT. Pediatr Nephrol 2014; 29:597-608. [PMID: 24022366 PMCID: PMC3952039 DOI: 10.1007/s00467-013-2606-5] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 08/11/2013] [Accepted: 08/12/2013] [Indexed: 01/05/2023]
Abstract
Congenital anomalies of the kidneys or lower urinary tract (CAKUT) encompass a spectrum of anomalies that result from aberrations in spatio-temporal regulation of genetic, epigenetic, environmental, and molecular signals at key stages of urinary tract development. The Rearranged in Transfection (RET) tyrosine kinase signaling system is a major pathway required for normal development of the kidneys, ureters, peripheral and enteric nervous systems. In the kidneys, RET is activated by interaction with the ligand glial cell line-derived neurotrophic factor (GDNF) and coreceptor GFRα1. This activated complex regulates a number of downstream signaling cascades (PLCγ, MAPK, and PI3K) that control proliferation, migration, renewal, and apoptosis. Disruption of these events is thought to underlie diseases arising from aberrant RET signaling. RET mutations are found in 5-30 % of CAKUT patients and a number of Ret mouse mutants show a spectrum of kidney and lower urinary tract defects reminiscent of CAKUT in humans. The remarkable similarities between mouse and human kidney development and in defects due to RET mutations has led to using RET signaling as a paradigm for determining the fundamental principles in patterning of the upper and lower urinary tract and for understanding CAKUT pathogenesis. In this review, we provide an overview of studies in vivo that delineate expression and the functional importance of RET signaling complex during different stages of development of the upper and lower urinary tracts. We discuss how RET signaling balances activating and inhibitory signals emanating from its docking tyrosines and its interaction with upstream and downstream regulators to precisely modulate different aspects of Wolffian duct patterning and branching morphogenesis. We outline the diversity of cellular mechanisms regulated by RET, disruption of which causes malformations ranging from renal agenesis to multicystic dysplastic kidneys in the upper tract and vesicoureteral reflux or ureteropelvic junction obstruction in the lower tract.
Collapse
Affiliation(s)
- T. Keefe Davis
- Department of Pediatrics, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Masato Hoshi
- Department of Internal Medicine (Renal division), Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Sanjay Jain
- Department of Internal Medicine (Renal division), Washington University School of Medicine, St. Louis, MO 63110, USA,Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA,Correspondance:Sanjay Jain, MD, PhD, Address: Renal Division, Department of Medicine, Washington University School of Medicine, 660 S. Euclid Ave., Box 8126, St. Louis, MO 63110, USA, Tel.: +1-314-454-8728, Fax: +1-314-454-7735,
| |
Collapse
|
48
|
Hoover JL, Bond CE, Hoover DB, Defoe DM. Effect of neurturin deficiency on cholinergic and catecholaminergic innervation of the murine eye. Exp Eye Res 2014; 122:32-9. [PMID: 24657391 DOI: 10.1016/j.exer.2014.03.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 02/22/2014] [Accepted: 03/06/2014] [Indexed: 10/25/2022]
Abstract
Neurturin (NRTN) is a neurotrophic factor required for the development of many parasympathetic neurons and normal cholinergic innervation of the heart, lacrimal glands and numerous other tissues. Previous studies with transgenic mouse models showed that NRTN is also essential for normal development and function of the retina (J. Neurosci. 28:4123-4135, 2008). NRTN knockout (KO) mice exhibit a marked thinning of the outer plexiform layer (OPL) of the retina, with reduced abundance of horizontal cell dendrites and axons, and aberrant projections of horizontal cells and bipolar cells into the outer nuclear layer. The effects of NRTN deletion on specific neurotransmitter systems in the retina and on cholinergic innervation of the iris are unknown. To begin addressing this deficiency, we used immunohistochemical methods to study cholinergic and noradrenergic innervation of the iris and the presence and localization of cholinergic and dopaminergic neurons and nerve fibers in eyes from adult male wild-type (WT) and NRTN KO mice (age 4-6 months). Mice were euthanized, and eyes were removed and fixed in cold neutral buffered formalin or 4% paraformaldehyde. Formalin-fixed eyes were embedded in paraffin, and 5 μm cross-sections were collected. Representative sections were stained with hematoxylin and eosin or processed for fluorescence immunohistochemistry after treatment for antigen retrieval. Whole mount preparations were dissected from paraformaldehyde fixed eyes and used for immunohistochemistry. Cholinergic and catecholaminergic nerve fibers were labeled with primary antibodies to the vesicular acetylcholine transporter (VAChT) and tyrosine hydroxylase (TH), respectively. Cholinergic and dopaminergic cell bodies were labeled with antibodies to choline acetyltransferase (ChAT) and TH, respectively. Cholinergic innervation of the mouse iris was restricted to the sphincter region, and noradrenergic fibers occurred throughout the iris and in the ciliary processes. This pattern was unaffected by deletion of NRTN. Furthermore, functional experiments demonstrated that cholinergic regulation of the pupil diameter was retained in NRTN KO mice. Hematoxylin and eosin stains of the retina confirmed a marked thinning of the OPL in KO mice. VAChT and ChAT staining of the retina revealed two bands of cholinergic processes in the inner plexiform layer, and these were unaffected by NRTN deletion. Likewise, NRTN deletion did not affect the abundance of ChAT-positive ganglion and amacrine cells. In marked contrast, staining for TH showed an increased abundance of dopaminergic processes in the OPL of retina from KO mice. Staining of retinal whole mounts for TH showed no difference in the abundance of dopaminergic amacrine cells between WT and KO mice. These findings demonstrate that the neurotrophic factor NRTN is not required for the development or maintenance of cholinergic innervation of the iris, cholinergic control of pupil diameter, or for development of cholinergic and dopaminergic amacrine cells of the retina. However, NRTN deficiency causes a marked reduction in the size of the OPL and aberrant growth of dopaminergic processes into this region.
Collapse
Affiliation(s)
- Jeffrey L Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | - Cherie E Bond
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | - Donald B Hoover
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA
| | - Dennis M Defoe
- Department of Biomedical Sciences, James H. Quillen College of Medicine, East Tennessee State University, Johnson City, TN 37614-1708, USA.
| |
Collapse
|
49
|
Abstract
Autonomic neuropathy complicates diabetes by increasing patient morbidity and mortality. Surprisingly, considering its importance, development and exploitation of animal models has lagged behind the wealth of information collected for somatic symmetrical sensory neuropathy. Nonetheless, animal studies have resulted in a variety of insights into the pathogenesis, neuropathology, and pathophysiology of diabetic autonomic neuropathy (DAN) with significant and, in some cases, remarkable correspondence between rodent models and human disease. Particularly in the study of alimentary dysfunction, findings in intrinsic intramural ganglia, interstitial cells of Cajal and the extrinsic parasympathetic and sympathetic ganglia serving the bowel vie for recognition as the chief mechanism. A body of work focused on neuropathologic findings in experimental animals and human subjects has demonstrated that axonal and dendritic pathology in sympathetic ganglia with relative neuron preservation represents one of the neuropathologic hallmarks of DAN but it is unlikely to represent the entire story. There is a surprising selectivity of the diabetic process for subpopulations of neurons and nerve terminals within intramural, parasympathetic, and sympathetic ganglia and innervation of end organs, afflicting some while sparing others, and differing between vascular and other targets within individual end organs. Rather than resulting from a simple deficit in one limb of an effector pathway, autonomic dysfunction may proceed from the inability to integrate portions of several complex pathways. The selectivity of the diabetic process appears to confound a simple global explanation (e.g., ischemia) of DAN. Although the search for a single unifying pathogenetic hypothesis continues, it is possible that autonomic neuropathy will have multiple pathogenetic mechanisms whose interplay may require therapies consisting of a cocktail of drugs. The role of multiple neurotrophic substances, antioxidants (general or pathway specific), inhibitors of formation of advanced glycosylation end products and drugs affecting the polyol pathway may be complex and therapeutic elements may have both salutary and untoward effects. This review has attempted to present the background and current findings and hypotheses, focusing on autonomic elements including and beyond the typical parasympathetic and sympathetic nervous systems to include visceral sensory and enteric nervous systems.
Collapse
Affiliation(s)
- Robert E Schmidt
- Department of Pathology and Immunology, Washington University School of Medicine, Saint Louis, MO, USA.
| |
Collapse
|
50
|
Brun P, Giron MC, Qesari M, Porzionato A, Caputi V, Zoppellaro C, Banzato S, Grillo AR, Spagnol L, De Caro R, Pizzuti D, Barbieri V, Rosato A, Sturniolo GC, Martines D, Zaninotto G, Palù G, Castagliuolo I. Toll-like receptor 2 regulates intestinal inflammation by controlling integrity of the enteric nervous system. Gastroenterology 2013; 145:1323-33. [PMID: 23994200 DOI: 10.1053/j.gastro.2013.08.047] [Citation(s) in RCA: 233] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Revised: 08/03/2013] [Accepted: 08/15/2013] [Indexed: 12/19/2022]
Abstract
BACKGROUND & AIMS In the intestines, Toll-like receptor 2 (TLR2) mediates immune responses to pathogens and regulates epithelial barrier function; polymorphisms in TLR2 have been associated with inflammatory bowel disease phenotype. We assessed the effects of TLR2 signaling on the enteric nervous system (ENS) in mice. METHODS TLR2 distribution and function in the ileal neuromuscular layer of mice were determined by immunofluorescence, cytofluorimetric analysis, immunoprecipitation, and immunoblot analyses. We assessed morphology and function of the ENS in Tlr2(-/-) mice and in mice with wild-type Tlr2 (wild-type mice) depleted of intestinal microbiota, using immunofluorescence, immunoblot, and gastrointestinal motility assays. Levels and signaling of glial cell line-derived neurotrophic factor (GDNF) were determined using quantitative reverse transcriptase polymerase chain reaction, immunohistochemistry, and immunoprecipitation analyses. Colitis was induced by administration of dextran sulfate sodium or 2,4 dinitrobenzensulfonic acid to Tlr2(-/-) mice after termination of GDNF administration. RESULTS TLR2 was expressed in enteric neurons, glia, and smooth muscle cells of the intestinal wall. Tlr2(-/-) mice had alterations in ENS architecture and neurochemical profile, intestinal dysmotility, abnormal mucosal secretion, reduced levels of GDNF in smooth muscle cells, and impaired signaling via Ret-GFRα1. ENS structural and functional anomalies were completely corrected by administration of GDNF to Tlr2(-/-) mice. Wild-type mice depleted of intestinal microbiota had ENS defects and GDNF deficiency, similar to Tlr2(-/-) mice; these defects were partially restored by administration of a TLR2 agonist. Tlr2(-/-) mice developed more severe colitis than wild-type mice after administration of dextran sulfate sodium or 2,4 dinitrobenzensulfonic acid; colitis was not more severe if Tlr2(-/-) mice were given GDNF before dextran sulfate sodium or 2,4 dinitrobenzensulfonic acid. CONCLUSIONS In mice, TLR2 signaling regulates intestinal inflammation by controlling ENS structure and neurochemical coding, along with intestinal neuromuscular function. These findings provide information as to how defective TLR2 signaling in the ENS affects inflammatory bowel disease phenotype in humans.
Collapse
Affiliation(s)
- Paola Brun
- Department of Molecular Medicine, University of Padova, Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|