1
|
Özçete ÖD, Banerjee A, Kaeser PS. Mechanisms of neuromodulatory volume transmission. Mol Psychiatry 2024; 29:3680-3693. [PMID: 38789677 PMCID: PMC11540752 DOI: 10.1038/s41380-024-02608-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/07/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024]
Abstract
A wealth of neuromodulatory transmitters regulate synaptic circuits in the brain. Their mode of signaling, often called volume transmission, differs from classical synaptic transmission in important ways. In synaptic transmission, vesicles rapidly fuse in response to action potentials and release their transmitter content. The transmitters are then sensed by nearby receptors on select target cells with minimal delay. Signal transmission is restricted to synaptic contacts and typically occurs within ~1 ms. Volume transmission doesn't rely on synaptic contact sites and is the main mode of monoamines and neuropeptides, important neuromodulators in the brain. It is less precise than synaptic transmission, and the underlying molecular mechanisms and spatiotemporal scales are often not well understood. Here, we review literature on mechanisms of volume transmission and raise scientific questions that should be addressed in the years ahead. We define five domains by which volume transmission systems can differ from synaptic transmission and from one another. These domains are (1) innervation patterns and firing properties, (2) transmitter synthesis and loading into different types of vesicles, (3) architecture and distribution of release sites, (4) transmitter diffusion, degradation, and reuptake, and (5) receptor types and their positioning on target cells. We discuss these five domains for dopamine, a well-studied monoamine, and then compare the literature on dopamine with that on norepinephrine and serotonin. We include assessments of neuropeptide signaling and of central acetylcholine transmission. Through this review, we provide a molecular and cellular framework for volume transmission. This mechanistic knowledge is essential to define how neuromodulatory systems control behavior in health and disease and to understand how they are modulated by medical treatments and by drugs of abuse.
Collapse
Affiliation(s)
- Özge D Özçete
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
2
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Distinct active zone protein machineries mediate Ca 2+ channel clustering and vesicle priming at hippocampal synapses. Nat Neurosci 2024; 27:1680-1694. [PMID: 39160372 DOI: 10.1038/s41593-024-01720-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 06/28/2024] [Indexed: 08/21/2024]
Abstract
Action potentials trigger neurotransmitter release at the presynaptic active zone with spatiotemporal precision. This is supported by protein machinery that mediates synaptic vesicle priming and clustering of CaV2 Ca2+ channels nearby. One model posits that scaffolding proteins directly tether vesicles to CaV2s; however, here we find that at mouse hippocampal synapses, CaV2 clustering and vesicle priming are executed by separate machineries. CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins but distinct interaction motifs independently execute these functions. In transfected cells, Liprin-α and RIM form co-assemblies that are separate from CaV2-organizing complexes. At synapses, Liprin-α1-Liprin-α4 knockout impairs vesicle priming but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering CaV2s. We conclude that active zones consist of distinct machineries to organize CaV2s and prime vesicles, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Aaron D Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Poorna A Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA
| | - Thomas A Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
3
|
Xu J, Esser V, Gołębiowska-Mendroch K, Bolembach AA, Rizo J. Control of Munc13-1 Activity by Autoinhibitory Interactions Involving the Variable N-terminal Region. J Mol Biol 2024; 436:168502. [PMID: 38417672 PMCID: PMC11384659 DOI: 10.1016/j.jmb.2024.168502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 03/01/2024]
Abstract
Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved in SNARE complex assembly, and controls multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Katarzyna Gołębiowska-Mendroch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Xu J, Esser V, Gołębiowska-Mendroch K, Bolembach AA, Rizo J. Control of Munc13-1 Activity by Autoinhibitory Interactions Involving the Variable N-terminal Region. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.24.577102. [PMID: 38328168 PMCID: PMC10849727 DOI: 10.1101/2024.01.24.577102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
Regulation of neurotransmitter release during presynaptic plasticity underlies varied forms of information processing in the brain. Munc13s play essential roles in release via their conserved C-terminal region, which contains a MUN domain involved SNARE complex assembly, and control multiple presynaptic plasticity processes. Munc13s also have a variable N-terminal region, which in Munc13-1 includes a calmodulin binding (CaMb) domain involved in short-term plasticity and a C2A domain that forms an inhibitory homodimer. The C2A domain is activated by forming a heterodimer with the zinc-finger domain of αRIMs, providing a link to αRIM-dependent short- and long-term plasticity. However, it is unknown how the functions of the N- and C-terminal regions are integrated, in part because of the difficulty of purifying Munc13-1 fragments containing both regions. We describe for the first time the purification of a Munc13-1 fragment spanning its entire sequence except for a flexible region between the C2A and CaMb domains. We show that this fragment is much less active than the Munc13-1 C-terminal region in liposome fusion assays and that its activity is strongly enhanced by the RIM2α zinc-finger domain together with calmodulin. NMR experiments show that the C2A and CaMb domains bind to the MUN domain and that these interactions are relieved by the RIM2α ZF domain and calmodulin, respectively. These results suggest a model whereby Munc13-1 activity in promoting SNARE complex assembly and neurotransmitter release are inhibited by interactions of the C2A and CaMb domains with the MUN domain that are relieved by αRIMs and calmodulin.
Collapse
Affiliation(s)
- Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Victoria Esser
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Katarzyna Gołębiowska-Mendroch
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Current address: Jagiellonian University, Faculty of Chemistry, Department of Organic Chemistry, Gronostajowa 2, 30-387, Krakow, Poland
| | - Agnieszka A Bolembach
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Current address: Dioscuri Centre for RNA-Protein Interactions in Human Health and Disease, International Institute of Molecular and Cell Biology in Warsaw, 4 Ks. Trojdena Street, 02-109 Warsaw, Poland
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| |
Collapse
|
5
|
Emperador-Melero J, Andersen JW, Metzbower SR, Levy AD, Dharmasri PA, de Nola G, Blanpied TA, Kaeser PS. Molecular definition of distinct active zone protein machineries for Ca 2+ channel clustering and synaptic vesicle priming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.27.564439. [PMID: 37961089 PMCID: PMC10634917 DOI: 10.1101/2023.10.27.564439] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Action potentials trigger neurotransmitter release with minimal delay. Active zones mediate this temporal precision by co-organizing primed vesicles with CaV2 Ca2+ channels. The presumed model is that scaffolding proteins directly tether primed vesicles to CaV2s. We find that CaV2 clustering and vesicle priming are executed by separate machineries. At hippocampal synapses, CaV2 nanoclusters are positioned at variable distances from those of the priming protein Munc13. The active zone organizer RIM anchors both proteins, but distinct interaction motifs independently execute these functions. In heterologous cells, Liprin-α and RIM from co-assemblies that are separate from CaV2-organizing complexes upon co-transfection. At synapses, Liprin-α1-4 knockout impairs vesicle priming, but not CaV2 clustering. The cell adhesion protein PTPσ recruits Liprin-α, RIM and Munc13 into priming complexes without co-clustering of CaV2s. We conclude that active zones consist of distinct complexes to organize CaV2s and vesicle priming, and Liprin-α and PTPσ specifically support priming site assembly.
Collapse
Affiliation(s)
| | | | - Sarah R. Metzbower
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Aaron D. Levy
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | - Poorna A. Dharmasri
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | | - Thomas A. Blanpied
- Department of Physiology, University of Maryland School of Medicine, Baltimore, USA
| | | |
Collapse
|
6
|
Weichard I, Taschenberger H, Gsell F, Bornschein G, Ritzau-Jost A, Schmidt H, Kittel RJ, Eilers J, Neher E, Hallermann S, Nerlich J. Fully-primed slowly-recovering vesicles mediate presynaptic LTP at neocortical neurons. Proc Natl Acad Sci U S A 2023; 120:e2305460120. [PMID: 37856547 PMCID: PMC10614622 DOI: 10.1073/pnas.2305460120] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 08/26/2023] [Indexed: 10/21/2023] Open
Abstract
Pre- and postsynaptic forms of long-term potentiation (LTP) are candidate synaptic mechanisms underlying learning and memory. At layer 5 pyramidal neurons, LTP increases the initial synaptic strength but also short-term depression during high-frequency transmission. This classical form of presynaptic LTP has been referred to as redistribution of synaptic efficacy. However, the underlying mechanisms remain unclear. We therefore performed whole-cell recordings from layer 5 pyramidal neurons in acute cortical slices of rats and analyzed presynaptic function before and after LTP induction by paired pre- and postsynaptic neuronal activity. LTP was successfully induced in about half of the synaptic connections tested and resulted in increased synaptic short-term depression during high-frequency transmission and a decelerated recovery from short-term depression due to an increased fraction of a slow recovery component. Analysis with a recently established sequential two-step vesicle priming model indicates an increase in the abundance of fully-primed and slowly-recovering vesicles. A systematic analysis of short-term plasticity and synapse-to-synapse variability of synaptic strength at various types of synapses revealed that stronger synapses generally recover more slowly from synaptic short-term depression. Finally, pharmacological stimulation of the cyclic adenosine monophosphate and diacylglycerol signaling pathways, which are both known to promote synaptic vesicle priming, mimicked LTP and slowed the recovery from short-term depression. Our data thus demonstrate that LTP at layer 5 pyramidal neurons increases synaptic strength primarily by enlarging a subpool of fully-primed slowly-recovering vesicles.
Collapse
Affiliation(s)
- Iron Weichard
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Holger Taschenberger
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen37075, Germany
| | - Felix Gsell
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Grit Bornschein
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Andreas Ritzau-Jost
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Hartmut Schmidt
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Robert J. Kittel
- Department of Animal Physiology, Institute of Biology, Leipzig University, Leipzig04103, Germany
| | - Jens Eilers
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Erwin Neher
- Emeritus Laboratory of Membrane Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen37070, Germany
- Cluster of Excellence “Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells”, University of Göttingen, Göttingen37073, Germany
| | - Stefan Hallermann
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| | - Jana Nerlich
- Faculty of Medicine, Carl-Ludwig-Institute for Physiology, Leipzig University, Leipzig04103, Germany
| |
Collapse
|
7
|
Das J, You Y, Mathukumalli K, Ann J, Lee J, Marquez VE. Activation of Munc13-1 by Diacylglycerol (DAG)-Lactones. Biochemistry 2023; 62:2717-2726. [PMID: 37651159 DOI: 10.1021/acs.biochem.3c00375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Munc13-1 is a key protein necessary for vesicle fusion and neurotransmitter release in the brain. Diacylglycerol (DAG)/phorbol ester binds to its C1 domain in the plasma membrane and activates it. The C1 domain of Munc13-1 and protein kinase C (PKC) are homologous in terms of sequence and structure. In order to identify small-molecule modulators of Munc13-1 targeting the C1 domain, we studied the effect of three DAG-lactones, (R,Z)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (JH-131e-153), (E)-(2-(hydroxymethyl)-4-(3-isobutyl-5-methylhexylidene)-5-oxotetrahydrofuran-2-yl)methyl pivalate (AJH-836), and (E)-(2-(hydroxymethyl)-4-(4-nitrobenzylidene)-5-oxotetrahydrofuran-2-yl)methyl 4-(dimethylamino)benzoate (130C037), on Munc13-1 activation using the ligand-induced membrane translocation assay. JH-131e-153 showed higher activation than AJH-836, and 130C037 was not able to activate Munc13-1. To understand the role of the ligand-binding site residues in the activation process, three alanine mutants were generated. For AJH-836, the order of activation was wild-type (WT) Munc13-1 > R592A > W588A > I590A. For JH-131e-153, the order of activation was WT > I590 ≈ R592A ≈ W588A. Overall, the Z isomer of DAG-lactones showed higher potency than the E isomer and Trp-588, Ile-590, and Arg-592 were important for its binding. When comparing the activation of Munc13-1 and PKC, the order of activation for JH-131e-153 was PKCα > Munc13-1 > PKCε and for AJH-836, the order of activation was PKCε > PKCα > Munc13-1. Molecular docking supported higher binding of JH-131e-153 than AJH-836 with the Munc13-1 C1 domain. Our results suggest that DAG-lactones have the potential to modulate neuronal processes via Munc13-1 and can be further developed for therapeutic intervention for neurodegenerative diseases.
Collapse
Affiliation(s)
- Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Kavya Mathukumalli
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, University of Houston, Houston, Texas 77204, United States
| | - Jihyae Ann
- College of Pharmacy, Seoul National University, Building 143, Room 507, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Jeewoo Lee
- College of Pharmacy, Seoul National University, Building 143, Room 507, 1 Gwanak-Ro, Gwanak-Gu, Seoul 08826, Korea
| | - Victor E Marquez
- Center for Cancer Research, Chemical Biology Laboratory, NCI-Frederick, 376 Boyles Street, Frederick, Maryland 21702, United States
| |
Collapse
|
8
|
Willemse SW, Harley P, van Eijk RPA, Demaegd KC, Zelina P, Pasterkamp RJ, van Damme P, Ingre C, van Rheenen W, Veldink JH, Kiernan MC, Al-Chalabi A, van den Berg LH, Fratta P, van Es MA. UNC13A in amyotrophic lateral sclerosis: from genetic association to therapeutic target. J Neurol Neurosurg Psychiatry 2023; 94:649-656. [PMID: 36737245 PMCID: PMC10359588 DOI: 10.1136/jnnp-2022-330504] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023]
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease with limited treatment options and an incompletely understood pathophysiology. Although genomewide association studies (GWAS) have advanced our understanding of the disease, the precise manner in which risk polymorphisms contribute to disease pathogenesis remains unclear. Of relevance, GWAS have shown that a polymorphism (rs12608932) in the UNC13A gene is associated with risk for both ALS and frontotemporal dementia (FTD). Homozygosity for the C-allele at rs12608932 modifies the ALS phenotype, as these patients are more likely to have bulbar-onset disease, cognitive impairment and FTD at baseline as well as shorter survival. UNC13A is expressed in neuronal tissue and is involved in maintaining synaptic active zones, by enabling the priming and docking of synaptic vesicles. In the absence of functional TDP-43, risk variants in UNC13A lead to the inclusion of a cryptic exon in UNC13A messenger RNA, subsequently leading to nonsense mediated decay, with loss of functional protein. Depletion of UNC13A leads to impaired neurotransmission. Recent discoveries have identified UNC13A as a potential target for therapy development in ALS, with a confirmatory trial with lithium carbonate in UNC13A cases now underway and future approaches with antisense oligonucleotides currently under consideration. Considering UNC13A is a potent phenotypic modifier, it may also impact clinical trial outcomes. This present review describes the path from the initial discovery of UNC13A as a risk gene in ALS to the current therapeutic options being explored and how knowledge of its distinct phenotype needs to be taken into account in future trials.
Collapse
Affiliation(s)
- Sean W Willemse
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Peter Harley
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Ruben P A van Eijk
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
- Biostatistics & Research Support, Julius Center for Health Sciences and Primary Care, UMC Utrecht, Utrecht, The Netherlands
| | - Koen C Demaegd
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pavol Zelina
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - R Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Philip van Damme
- Department of Neurology, KU Leuven Hospital, Leuven, Belgium
- Laboratory of Neurobiology, VIB KU Leuven Center for Brain and Disease Research, Leuven, Belgium
| | - Caroline Ingre
- Department of Clinical Neuroscience, Karolinska Institute, Stockholm, Sweden
| | - Wouter van Rheenen
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Jan H Veldink
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Matthew C Kiernan
- Bushell Chair of Neurology, Brain and Mind Centre, University of Sydney, Sydney, New South Wales, Australia
- Neurology, Royal Prince Alfred Hospital, Camperdown, New South Wales, Australia
| | | | - Leonard H van den Berg
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| | - Pietro Fratta
- UCL Queen Square Motor Neuron Disease Centre, Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Michael A van Es
- Department of Neurology, UMC Utrecht Brain Center Rudolf Magnus, Utrecht, The Netherlands
| |
Collapse
|
9
|
Fukaya R, Miyano R, Hirai H, Sakaba T. Mechanistic insights into cAMP-mediated presynaptic potentiation at hippocampal mossy fiber synapses. Front Cell Neurosci 2023; 17:1237589. [PMID: 37519634 PMCID: PMC10372368 DOI: 10.3389/fncel.2023.1237589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 06/30/2023] [Indexed: 08/01/2023] Open
Abstract
Presynaptic plasticity is an activity-dependent change in the neurotransmitter release and plays a key role in dynamic modulation of synaptic strength. Particularly, presynaptic potentiation mediated by cyclic adenosine monophosphate (cAMP) is widely seen across the animals and thought to contribute to learning and memory. Hippocampal mossy fiber-CA3 pyramidal cell synapses have been used as a model because of robust presynaptic potentiation in short- and long-term forms. Moreover, direct presynaptic recordings from large mossy fiber terminals allow one to dissect the potentiation mechanisms. Recently, super-resolution microscopy and flash-and-freeze electron microscopy have revealed the localizations of release site molecules and synaptic vesicles during the potentiation at a nanoscale, identifying the molecular mechanisms of the potentiation. Incorporating these growing knowledges, we try to present plausible mechanisms underlying the cAMP-mediated presynaptic potentiation.
Collapse
Affiliation(s)
- Ryota Fukaya
- Institute for Biology/Genetics, Freie Universität Berlin, Berlin, Germany
| | - Rinako Miyano
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyoto, Japan
| |
Collapse
|
10
|
Chang HF, Schirra C, Pattu V, Krause E, Becherer U. Lytic granule exocytosis at immune synapses: lessons from neuronal synapses. Front Immunol 2023; 14:1177670. [PMID: 37275872 PMCID: PMC10233144 DOI: 10.3389/fimmu.2023.1177670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Regulated exocytosis is a central mechanism of cellular communication. It is not only the basis for neurotransmission and hormone release, but also plays an important role in the immune system for the release of cytokines and cytotoxic molecules. In cytotoxic T lymphocytes (CTLs), the formation of the immunological synapse is required for the delivery of the cytotoxic substances such as granzymes and perforin, which are stored in lytic granules and released via exocytosis. The molecular mechanisms of their fusion with the plasma membrane are only partially understood. In this review, we discuss the molecular players involved in the regulated exocytosis of CTL, highlighting the parallels and differences to neuronal synaptic transmission. Additionally, we examine the strengths and weaknesses of both systems to study exocytosis.
Collapse
|
11
|
Wang XT, Zhou L, Dong BB, Xu FX, Wang DJ, Shen EW, Cai XY, Wang Y, Wang N, Ji SJ, Chen W, Schonewille M, Zhu JJ, De Zeeuw CI, Shen Y. cAMP-EPAC-PKCε-RIM1α signaling regulates presynaptic long-term potentiation and motor learning. eLife 2023; 12:e80875. [PMID: 37159499 PMCID: PMC10171863 DOI: 10.7554/elife.80875] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 04/25/2023] [Indexed: 05/11/2023] Open
Abstract
The cerebellum is involved in learning of fine motor skills, yet whether presynaptic plasticity contributes to such learning remains elusive. Here, we report that the EPAC-PKCε module has a critical role in a presynaptic form of long-term potentiation in the cerebellum and motor behavior in mice. Presynaptic cAMP-EPAC-PKCε signaling cascade induces a previously unidentified threonine phosphorylation of RIM1α, and thereby initiates the assembly of the Rab3A-RIM1α-Munc13-1 tripartite complex that facilitates docking and release of synaptic vesicles. Granule cell-specific blocking of EPAC-PKCε signaling abolishes presynaptic long-term potentiation at the parallel fiber to Purkinje cell synapses and impairs basic performance and learning of cerebellar motor behavior. These results unveil a functional relevance of presynaptic plasticity that is regulated through a novel signaling cascade, thereby enriching the spectrum of cerebellar learning mechanisms.
Collapse
Affiliation(s)
- Xin-Tai Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
- Institute of Life Sciences, College of Life and Environmental Sciences, Hangzhou Normal UniversityHangzhouChina
| | - Lin Zhou
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Bin-Bin Dong
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Fang-Xiao Xu
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - De-Juan Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - En-Wei Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Xin-Yu Cai
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Yin Wang
- Key Laboratory of Cranial Cerebral Diseases, Department of Neurobiology of Basic Medical College, Ningxia Medical UniversityYinchuanChina
| | - Na Wang
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | - Sheng-Jian Ji
- Department of Biology, Southern University of Science and TechnologyShenzhenChina
| | - Wei Chen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
| | | | - J Julius Zhu
- Department of Pharmacology, University of VirginiaCharlottesvilleUnited States
| | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MCRotterdamNetherlands
- Netherlands Institute for Neuroscience, Royal Academy of SciencesAmsterdamNetherlands
| | - Ying Shen
- Department of Physiology and Department of Psychiatry, Sir Run Run Shaw Hospital, Zhejiang University School of MedicineHangzhouChina
- International Institutes of Medicine, the Fourth Affiliated Hospital, Zhejiang University School of MedicineYiwuChina
- Key Laboratory of Medical Neurobiology of Zhejiang Province, Zhejiang University School of MedicineHangzhouChina
| |
Collapse
|
12
|
Wu S, Fan J, Tang F, Chen L, Zhang X, Xiao D, Li X. The role of RIM in neurotransmitter release: promotion of synaptic vesicle docking, priming, and fusion. Front Neurosci 2023; 17:1123561. [PMID: 37179554 PMCID: PMC10169678 DOI: 10.3389/fnins.2023.1123561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/06/2023] [Indexed: 05/15/2023] Open
Abstract
There are many special sites at the end of a synapse called active zones (AZs). Synaptic vesicles (SVs) fuse with presynaptic membranes at these sites, and this fusion is an important step in neurotransmitter release. The cytomatrix in the active zone (CAZ) is made up of proteins such as the regulating synaptic membrane exocytosis protein (RIM), RIM-binding proteins (RIM-BPs), ELKS/CAST, Bassoon/Piccolo, Liprin-α, and Munc13-1. RIM is a scaffold protein that interacts with CAZ proteins and presynaptic functional components to affect the docking, priming, and fusion of SVs. RIM is believed to play an important role in regulating the release of neurotransmitters (NTs). In addition, abnormal expression of RIM has been detected in many diseases, such as retinal diseases, Asperger's syndrome (AS), and degenerative scoliosis. Therefore, we believe that studying the molecular structure of RIM and its role in neurotransmitter release will help to clarify the molecular mechanism of neurotransmitter release and identify targets for the diagnosis and treatment of the aforementioned diseases.
Collapse
Affiliation(s)
- Shanshan Wu
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Jiali Fan
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Fajuan Tang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Lin Chen
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xiaoyan Zhang
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Dongqiong Xiao
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| |
Collapse
|
13
|
Martín R, Suárez-Pinilla AS, García-Font N, Laguna-Luque ML, López-Ramos JC, Oset-Gasque MJ, Gruart A, Delgado-García JM, Torres M, Sánchez-Prieto J. The activation of mGluR4 rescues parallel fiber synaptic transmission and LTP, motor learning and social behavior in a mouse model of Fragile X Syndrome. Mol Autism 2023; 14:14. [PMID: 37029391 PMCID: PMC10082511 DOI: 10.1186/s13229-023-00547-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 04/03/2023] [Indexed: 04/09/2023] Open
Abstract
BACKGROUND Fragile X syndrome (FXS), the most common inherited intellectual disability, is caused by the loss of expression of the Fragile X Messenger Ribonucleoprotein (FMRP). FMRP is an RNA-binding protein that negatively regulates the expression of many postsynaptic as well as presynaptic proteins involved in action potential properties, calcium homeostasis and neurotransmitter release. FXS patients and mice lacking FMRP suffer from multiple behavioral alterations, including deficits in motor learning for which there is currently no specific treatment. METHODS We performed electron microscopy, whole-cell patch-clamp electrophysiology and behavioral experiments to characterise the synaptic mechanisms underlying the motor learning deficits observed in Fmr1KO mice and the therapeutic potential of positive allosteric modulator of mGluR4. RESULTS We found that enhanced synaptic vesicle docking of cerebellar parallel fiber to Purkinje cell Fmr1KO synapses was associated with enhanced asynchronous release, which not only prevents further potentiation, but it also compromises presynaptic parallel fiber long-term potentiation (PF-LTP) mediated by β adrenergic receptors. A reduction in extracellular Ca2+ concentration restored the readily releasable pool (RRP) size, basal synaptic transmission, β adrenergic receptor-mediated potentiation, and PF-LTP. Interestingly, VU 0155041, a selective positive allosteric modulator of mGluR4, also restored both the RRP size and PF-LTP in mice of either sex. Moreover, when injected into Fmr1KO male mice, VU 0155041 improved motor learning in skilled reaching, classical eyeblink conditioning and vestibuloocular reflex (VOR) tests, as well as the social behavior alterations of these mice. LIMITATIONS We cannot rule out that the activation of mGluR4s via systemic administration of VU0155041 can also affect other brain regions. Further studies are needed to stablish the effect of a specific activation of mGluR4 in cerebellar granule cells. CONCLUSIONS Our study shows that an increase in synaptic vesicles, SV, docking may cause the loss of PF-LTP and motor learning and social deficits of Fmr1KO mice and that the reversal of these changes by pharmacological activation of mGluR4 may offer therapeutic relief for motor learning and social deficits in FXS.
Collapse
Affiliation(s)
- Ricardo Martín
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense, 28040, Madrid, Spain.
| | - Alberto Samuel Suárez-Pinilla
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - Nuria García-Font
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Centre for Discovery Brain Sciences and Simon Initiative for Developing Brain, University of Edinburgh, Edinburgh, EH89JZ, UK
| | | | - Juan C López-Ramos
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | - María Jesús Oset-Gasque
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
- Departamento de Bioquímica, Facultad de Farmacia, Universidad Complutense, Instituto Universitario Investigación en Neuroquímica, 28040, Madrid, Spain
| | - Agnes Gruart
- Division de Neurociencias, Universidad Pablo de Olavide, 41013, Sevilla, Spain
| | | | - Magdalena Torres
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain
| | - José Sánchez-Prieto
- Departamento de Bioquímica y Biología Molecular, Facultad de Veterinaria, Universidad Complutense, Instituto Universitario de Investigación en Neuroquímica, 28040, Madrid, Spain.
- Instituto de Investigación Sanitaria del Hospital Clínico San Carlos, 28040, Madrid, Spain.
| |
Collapse
|
14
|
Uzay B, Kavalali ET. Genetic disorders of neurotransmitter release machinery. Front Synaptic Neurosci 2023; 15:1148957. [PMID: 37066095 PMCID: PMC10102358 DOI: 10.3389/fnsyn.2023.1148957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/10/2023] [Indexed: 04/03/2023] Open
Abstract
Synaptic neurotransmitter release is an evolutionarily conserved process that mediates rapid information transfer between neurons as well as several peripheral tissues. Release of neurotransmitters are ensured by successive events such as synaptic vesicle docking and priming that prepare synaptic vesicles for rapid fusion. These events are orchestrated by interaction of different presynaptic proteins and are regulated by presynaptic calcium. Recent studies have identified various mutations in different components of neurotransmitter release machinery resulting in aberrant neurotransmitter release, which underlie a wide spectrum of psychiatric and neurological symptoms. Here, we review how these genetic alterations in different components of the core neurotransmitter release machinery affect the information transfer between neurons and how aberrant synaptic release affects nervous system function.
Collapse
Affiliation(s)
- Burak Uzay
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| | - Ege T. Kavalali
- Vanderbilt Brain Institute, Nashville, TN, United States
- Department of Pharmacology, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
15
|
Mueller BD, Merrill SA, Watanabe S, Liu P, Niu L, Singh A, Maldonado-Catala P, Cherry A, Rich MS, Silva M, Maricq AV, Wang ZW, Jorgensen EM. CaV1 and CaV2 calcium channels mediate the release of distinct pools of synaptic vesicles. eLife 2023; 12:e81407. [PMID: 36820519 PMCID: PMC10023163 DOI: 10.7554/elife.81407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Accepted: 02/22/2023] [Indexed: 02/24/2023] Open
Abstract
Activation of voltage-gated calcium channels at presynaptic terminals leads to local increases in calcium and the fusion of synaptic vesicles containing neurotransmitter. Presynaptic output is a function of the density of calcium channels, the dynamic properties of the channel, the distance to docked vesicles, and the release probability at the docking site. We demonstrate that at Caenorhabditis elegans neuromuscular junctions two different classes of voltage-gated calcium channels, CaV2 and CaV1, mediate the release of distinct pools of synaptic vesicles. CaV2 channels are concentrated in densely packed clusters ~250 nm in diameter with the active zone proteins Neurexin, α-Liprin, SYDE, ELKS/CAST, RIM-BP, α-Catulin, and MAGI1. CaV2 channels are colocalized with the priming protein UNC-13L and mediate the fusion of vesicles docked within 33 nm of the dense projection. CaV2 activity is amplified by ryanodine receptor release of calcium from internal stores, triggering fusion up to 165 nm from the dense projection. By contrast, CaV1 channels are dispersed in the synaptic varicosity, and are colocalized with UNC-13S. CaV1 and ryanodine receptors are separated by just 40 nm, and vesicle fusion mediated by CaV1 is completely dependent on the ryanodine receptor. Distinct synaptic vesicle pools, released by different calcium channels, could be used to tune the speed, voltage-dependence, and quantal content of neurotransmitter release.
Collapse
Affiliation(s)
- Brian D Mueller
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Sean A Merrill
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Shigeki Watanabe
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Ping Liu
- Department of Neuroscience, University of Connecticut Medical SchoolFarmingtonUnited States
| | - Longgang Niu
- Department of Neuroscience, University of Connecticut Medical SchoolFarmingtonUnited States
| | - Anish Singh
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | | | - Alex Cherry
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Matthew S Rich
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | - Malan Silva
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| | | | - Zhao-Wen Wang
- Department of Neuroscience, University of Connecticut Medical SchoolFarmingtonUnited States
| | - Erik M Jorgensen
- Howard Hughes Medical Institute, School of Biological Sciences, University of UtahSalt Lake CityUnited States
| |
Collapse
|
16
|
Fukaya R, Hirai H, Sakamoto H, Hashimotodani Y, Hirose K, Sakaba T. Increased vesicle fusion competence underlies long-term potentiation at hippocampal mossy fiber synapses. SCIENCE ADVANCES 2023; 9:eadd3616. [PMID: 36812326 PMCID: PMC9946361 DOI: 10.1126/sciadv.add3616] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Presynaptic long-term potentiation (LTP) is thought to play an important role in learning and memory. However, the underlying mechanism remains elusive because of the difficulty of direct recording during LTP. Hippocampal mossy fiber synapses exhibit pronounced LTP of transmitter release after tetanic stimulation and have been used as a model of presynaptic LTP. Here, we induced LTP by optogenetic tools and applied direct presynaptic patch-clamp recordings. The action potential waveform and evoked presynaptic Ca2+ currents remained unchanged after LTP induction. Membrane capacitance measurements suggested higher release probability of synaptic vesicles without changing the number of release-ready vesicles after LTP induction. Synaptic vesicle replenishment was also enhanced. Furthermore, stimulated emission depletion microscopy suggested an increase in the numbers of Munc13-1 and RIM1 molecules within active zones. We propose that dynamic changes in the active zone components may be relevant for the increased fusion competence and synaptic vesicle replenishment during LTP.
Collapse
Affiliation(s)
- Ryota Fukaya
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
- Institute of Biology/Genetics, Freie Universität Berlin, 14195 Berlin, Germany
| | - Himawari Hirai
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Hirokazu Sakamoto
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Yuki Hashimotodani
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| | - Kenzo Hirose
- Department of Pharmacology, Graduate School of Medicine, The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
- International Research Center for Neurointelligence (WPI-IRCN), The University of Tokyo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takeshi Sakaba
- Graduate School of Brain Science, Doshisha University, Kyotanabe, Kyoto 610-0394, Japan
| |
Collapse
|
17
|
Cunningham KL, Littleton JT. Mechanisms controlling the trafficking, localization, and abundance of presynaptic Ca 2+ channels. Front Mol Neurosci 2023; 15:1116729. [PMID: 36710932 PMCID: PMC9880069 DOI: 10.3389/fnmol.2022.1116729] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 12/26/2022] [Indexed: 01/14/2023] Open
Abstract
Voltage-gated Ca2+ channels (VGCCs) mediate Ca2+ influx to trigger neurotransmitter release at specialized presynaptic sites termed active zones (AZs). The abundance of VGCCs at AZs regulates neurotransmitter release probability (Pr ), a key presynaptic determinant of synaptic strength. Given this functional significance, defining the processes that cooperate to establish AZ VGCC abundance is critical for understanding how these mechanisms set synaptic strength and how they might be regulated to control presynaptic plasticity. VGCC abundance at AZs involves multiple steps, including channel biosynthesis (transcription, translation, and trafficking through the endomembrane system), forward axonal trafficking and delivery to synaptic terminals, incorporation and retention at presynaptic sites, and protein recycling. Here we discuss mechanisms that control VGCC abundance at synapses, highlighting findings from invertebrate and vertebrate models.
Collapse
Affiliation(s)
- Karen L. Cunningham
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | | |
Collapse
|
18
|
Meunier FA, Hu Z. Functional Roles of UNC-13/Munc13 and UNC-18/Munc18 in Neurotransmission. ADVANCES IN NEUROBIOLOGY 2023; 33:203-231. [PMID: 37615868 DOI: 10.1007/978-3-031-34229-5_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
Neurotransmitters are released from synaptic and secretory vesicles following calcium-triggered fusion with the plasma membrane. These exocytotic events are driven by assembly of a ternary SNARE complex between the vesicle SNARE synaptobrevin and the plasma membrane-associated SNAREs syntaxin and SNAP-25. Proteins that affect SNARE complex assembly are therefore important regulators of synaptic strength. In this chapter, we review our current understanding of the roles played by two SNARE interacting proteins: UNC-13/Munc13 and UNC-18/Munc18. We discuss results from both invertebrate and vertebrate model systems, highlighting recent advances, focusing on the current consensus on molecular mechanisms of action and nanoscale organization, and pointing out some unresolved aspects of their functions.
Collapse
Affiliation(s)
- Frédéric A Meunier
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
- School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, Australia.
| | - Zhitao Hu
- Clem Jones Centre for Ageing Dementia Research (CJCADR), Queensland Brain Institute, The University of Queensland, Brisbane, QLD, Australia.
| |
Collapse
|
19
|
Tan C, de Nola G, Qiao C, Imig C, Born RT, Brose N, Kaeser PS. Munc13 supports fusogenicity of non-docked vesicles at synapses with disrupted active zones. eLife 2022; 11:79077. [PMID: 36398873 PMCID: PMC9822248 DOI: 10.7554/elife.79077] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 11/17/2022] [Indexed: 11/19/2022] Open
Abstract
Active zones consist of protein scaffolds that are tightly attached to the presynaptic plasma membrane. They dock and prime synaptic vesicles, couple them to voltage-gated Ca2+ channels, and direct neurotransmitter release toward postsynaptic receptor domains. Simultaneous RIM + ELKS ablation disrupts these scaffolds, abolishes vesicle docking, and removes active zone-targeted Munc13, but some vesicles remain releasable. To assess whether this enduring vesicular fusogenicity is mediated by non-active zone-anchored Munc13 or is Munc13-independent, we ablated Munc13-1 and Munc13-2 in addition to RIM + ELKS in mouse hippocampal neurons. The hextuple knockout synapses lacked docked vesicles, but other ultrastructural features were near-normal despite the strong genetic manipulation. Removing Munc13 in addition to RIM + ELKS impaired action potential-evoked vesicle fusion more strongly than RIM + ELKS knockout by further decreasing the releasable vesicle pool. Hence, Munc13 can support some fusogenicity without RIM and ELKS, and presynaptic recruitment of Munc13, even without active zone anchoring, suffices to generate some fusion-competent vesicles.
Collapse
Affiliation(s)
- Chao Tan
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Claire Qiao
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Cordelia Imig
- Department of Neuroscience, University of Copenhagen, Copenhagen, Denmark.,Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Richard T Born
- Department of Neurobiology, Harvard Medical School, Boston, United States
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Goettingen, Germany
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, United States
| |
Collapse
|
20
|
Yeo XY, Lim YT, Chae WR, Park C, Park H, Jung S. Alterations of presynaptic proteins in autism spectrum disorder. Front Mol Neurosci 2022; 15:1062878. [DOI: 10.3389/fnmol.2022.1062878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 10/31/2022] [Indexed: 11/19/2022] Open
Abstract
The expanded use of hypothesis-free gene analysis methods in autism research has significantly increased the number of genetic risk factors associated with the pathogenesis of autism. A further examination of the implicated genes directly revealed the involvement in processes pertinent to neuronal differentiation, development, and function, with a predominant contribution from the regulators of synaptic function. Despite the importance of presynaptic function in synaptic transmission, the regulation of neuronal network activity, and the final behavioral output, there is a relative lack of understanding of the presynaptic contribution to the pathology of autism. Here, we will review the close association among autism-related mutations, autism spectrum disorders (ASD) phenotypes, and the altered presynaptic protein functions through a systematic examination of the presynaptic risk genes relating to the critical stages of synaptogenesis and neurotransmission.
Collapse
|
21
|
Rizo J, David G, Fealey ME, Jaczynska K. On the difficulties of characterizing weak protein interactions that are critical for neurotransmitter release. FEBS Open Bio 2022; 12:1912-1938. [PMID: 35986639 PMCID: PMC9623538 DOI: 10.1002/2211-5463.13473] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 08/09/2022] [Accepted: 08/18/2022] [Indexed: 01/25/2023] Open
Abstract
The mechanism of neurotransmitter release has been extensively characterized, showing that vesicle fusion is mediated by the SNARE complex formed by syntaxin-1, SNAP-25 and synaptobrevin. This complex is disassembled by N-ethylmaleimide sensitive factor (NSF) and SNAPs to recycle the SNAREs, whereas Munc18-1 and Munc13s organize SNARE complex assembly in an NSF-SNAP-resistant manner. Synaptotagmin-1 acts as the Ca2+ sensor that triggers exocytosis in a tight interplay with the SNAREs and complexins. Here, we review technical aspects associated with investigation of protein interactions underlying these steps, which is hindered because the release machinery is assembled between two membranes and is highly dynamic. Moreover, weak interactions, which are difficult to characterize, play key roles in neurotransmitter release, for instance by lowering energy barriers that need to be overcome in this highly regulated process. We illustrate the crucial role that structural biology has played in uncovering mechanisms underlying neurotransmitter release, but also discuss the importance of considering the limitations of the techniques used, including lessons learned from research in our lab and others. In particular, we emphasize: (a) the promiscuity of some protein sequences, including membrane-binding regions that can mediate irrelevant interactions with proteins in the absence of their native targets; (b) the need to ensure that weak interactions observed in crystal structures are biologically relevant; and (c) the limitations of isothermal titration calorimetry to analyze weak interactions. Finally, we stress that even studies that required re-interpretation often helped to move the field forward by improving our understanding of the system and providing testable hypotheses.
Collapse
Affiliation(s)
- Josep Rizo
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Guillaume David
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Michael E. Fealey
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| | - Klaudia Jaczynska
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTXUSA,Department of PharmacologyUniversity of Texas Southwestern Medical CenterDallasTXUSA
| |
Collapse
|
22
|
Wu Y, Berisha A, Borniger JC. Neuropeptides in Cancer: Friend and Foe? Adv Biol (Weinh) 2022; 6:e2200111. [PMID: 35775608 DOI: 10.1002/adbi.202200111] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Indexed: 01/28/2023]
Abstract
Neuropeptides are small regulatory molecules found throughout the body, most notably in the nervous, cardiovascular, and gastrointestinal systems. They serve as neurotransmitters or hormones in the regulation of diverse physiological processes. Cancer cells escape normal growth control mechanisms by altering their expression of growth factors, receptors, or intracellular signals, and neuropeptides have recently been recognized as mitogens in cancer growth and development. Many neuropeptides and their receptors exist in multiple subtypes, coupling with different downstream signaling pathways and playing distinct roles in cancer progression. The consideration of neuropeptide/receptor systems as anticancer targets is already leading to new biological and diagnostic knowledge that has the potential to enhance the understanding and treatment of cancer. In this review, recent discoveries regarding neuropeptides in a wide range of cancers, emphasizing their mechanisms of action, signaling cascades, regulation, and therapeutic potential, are discussed. Current technologies used to manipulate and analyze neuropeptides/receptors are described. Applications of neuropeptide analogs and their receptor inhibitors in translational studies and radio-oncology are rapidly increasing, and the possibility for their integration into therapeutic trials and clinical treatment appears promising.
Collapse
Affiliation(s)
- Yue Wu
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Adrian Berisha
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| | - Jeremy C Borniger
- Cold Spring Harbor Laboratory, One Bungtown Rd, Cold Spring Harbor, NY, 11724, USA
| |
Collapse
|
23
|
Suo Z, Yang J, Zhou B, Qu Y, Xu W, Li M, Xiao T, Zheng H, Ni C. Whole-transcriptome sequencing identifies neuroinflammation, metabolism and blood-brain barrier related processes in the hippocampus of aged mice during perioperative period. CNS Neurosci Ther 2022; 28:1576-1595. [PMID: 35899365 PMCID: PMC9437242 DOI: 10.1111/cns.13901] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 06/07/2022] [Accepted: 06/11/2022] [Indexed: 11/28/2022] Open
Abstract
AIM Perioperative neurocognitive disorders (PND) occur frequently after surgery and anesthesia, especially in aged patients. Previous studies have shown multiple PND related mechanisms in the hippocampus; however, their relationships remain unclear. Meanwhile, the perioperative neuropathological processes are sophisticated and changeable, single period study could not reveal the accurate mechanisms. Thus, multiperiod whole-transcriptome study is necessary to elucidate the gene expression patterns during perioperative period. METHODS Aged C57BL/6 mice were subjected to exploratory laparotomy under sevoflurane anesthesia. Whole-transcriptome sequencing (RNA-seq analysis) was performed on the hippocampi from control condition (Con), 30 min (Day0), 2 days (Day2), and 7 days (Day7) after surgery. Gene Ontology/Kyoto Encyclopedia of Genes and Genomes analyses, quantitative real-time PCR, immunofluorescence, and fear conditioning test were also performed to elucidate the pathological processes and modulation networks during the period. RESULTS Through RNA-seq analysis, 328, 3597, and 4179 differentially expressed genes (DEGs) were screened out in intraoperative period (Day0 vs. Con), early postoperative period (Day2 vs. Day0), and late postoperative period (Day7 vs. Day2). The involved GO biological processes were divided into 9 categories, and positive-regulated processes were more than negative-regulated ones. Seventy-four transcription factors were highlighted. The potential synaptic and neuroinflammatory pathways were constructed for Neurotransmitter, Synapse and Neuronal alteration categories with 9 genes (Htr1a, Rims1, and Ezh2, etc.). The metabolic and mitochondrial pathways were constructed for metabolism, oxidative stress, and biological rhythm categories with 9 genes (Gpld1, Sirt1, and Cry2, etc.). The blood-brain barrier and neurotoxicity related pathways were constructed for blood-brain barrier, neurotoxicity, and cognitive function categories with 10 genes (Mmp2, Itpr1, and Nrf1, etc.). CONCLUSION The results revealed gene expression patterns and modulation networks in the aged hippocampus during perioperative period, which provide insights into overall mechanisms and potential therapeutic targets for prevention and treatment of perioperative central nervous system diseases, such as PND, from the genetic level.
Collapse
Affiliation(s)
- Zizheng Suo
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jing Yang
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Bowen Zhou
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yinyin Qu
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Wenjie Xu
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Li
- Department of Anesthesiology, Peking University Third Hospital, Beijing, China
| | - Ting Xiao
- State Key Laboratory of Molecular Oncology, Department of Etiology and Carcinogenesis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Cheng Ni
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
24
|
Mochida S. Mechanisms of Synaptic Vesicle Exo- and Endocytosis. Biomedicines 2022; 10:1593. [PMID: 35884898 PMCID: PMC9313035 DOI: 10.3390/biomedicines10071593] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 06/21/2022] [Accepted: 06/22/2022] [Indexed: 01/05/2023] Open
Abstract
Within 1 millisecond of action potential arrival at presynaptic terminals voltage-gated Ca2+ channels open. The Ca2+ channels are linked to synaptic vesicles which are tethered by active zone proteins. Ca2+ entrance into the active zone triggers: (1) the fusion of the vesicle and exocytosis, (2) the replenishment of the active zone with vesicles for incoming exocytosis, and (3) various types of endocytosis for vesicle reuse, dependent on the pattern of firing. These time-dependent vesicle dynamics are controlled by presynaptic Ca2+ sensor proteins, regulating active zone scaffold proteins, fusion machinery proteins, motor proteins, endocytic proteins, several enzymes, and even Ca2+ channels, following the decay of Ca2+ concentration after the action potential. Here, I summarize the Ca2+-dependent protein controls of synchronous and asynchronous vesicle release, rapid replenishment of the active zone, endocytosis, and short-term plasticity within 100 msec after the action potential. Furthermore, I discuss the contribution of active zone proteins to presynaptic plasticity and to homeostatic readjustment during and after intense activity, in addition to activity-dependent endocytosis.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
25
|
Mion D, Bunel L, Heo P, Pincet F. The beginning and the end of SNARE-induced membrane fusion. FEBS Open Bio 2022; 12:1958-1979. [PMID: 35622519 PMCID: PMC9623537 DOI: 10.1002/2211-5463.13447] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 05/11/2022] [Accepted: 05/25/2022] [Indexed: 01/25/2023] Open
Abstract
Membrane fusion is not a spontaneous process. Physiologically, the formation of coiled-coil protein complexes, the SNAREpins, bridges the membrane of a vesicle and a target membrane, brings them in close contact, and provides the energy necessary for their fusion. In this review, we utilize results from in vitro experiments and simple physics and chemistry models to dissect the kinetics and energetics of the fusion process from the encounter of the two membranes to the full expansion of a fusion pore. We find three main energy barriers that oppose the fusion process: SNAREpin initiation, fusion pore opening, and expansion. SNAREpin initiation is inherent to the proteins and makes in vitro fusion kinetic experiments rather slow. The kinetics are physiologically accelerated by effectors. The energy barriers that precede pore opening and pore expansion can be overcome by several SNAREpins acting in concert.
Collapse
Affiliation(s)
- Delphine Mion
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Louis Bunel
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| | - Paul Heo
- Institute of Psychiatry and Neuroscience of Paris (IPNP)INSERM U1266ParisFrance
| | - Frédéric Pincet
- Laboratoire de Physique de l'École Normale Supérieure, ENS, Université PSLCNRS, Sorbonne Université, Université Paris CitéFrance
| |
Collapse
|
26
|
Téllez-Arreola JL, Martínez-Torres A, Flores-Moran AE, Lazaro-Guevara JM, Estrada-Mondragón A. Analysis of the MCTP Amino Acid Sequence Reveals the Conservation of Putative Calcium- and Lipid-Binding Pockets Within the C2 Domains In Silico. J Mol Evol 2022; 90:271-282. [PMID: 35604448 DOI: 10.1007/s00239-022-10057-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 05/10/2022] [Indexed: 11/24/2022]
Abstract
MCTPs (Multiple C2 Domains and Transmembrane region Proteins) are evolutionarily and structurally related to other C2 proteins, which are central to exocytosis and membrane trafficking; however, their specific function has been little studied. MCTPs are associated with endosomes and the endoplasmic reticulum and possess three C2 domains (C2A-C2C) and two transmembrane regions (TMRs) well conserved in different species. Here, we generated structural models of the MCTP C2 domains of C. elegans and analyzed their putative function by docking, which revealed that these domains possess Ca2+- and lipid-binding pockets, suggesting that MCTPs play a significant, calcium-dependent role in membrane physiology.
Collapse
Affiliation(s)
- José Luis Téllez-Arreola
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, 76215, Juriquilla, Querétaro, México.
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular Y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Campus Juriquilla, Boulevard Juriquilla 3001, 76215, Juriquilla, Querétaro, México
| | - Adriana E Flores-Moran
- Unit for Basic and Applied Microbiology, School of Natural Sciences, Autonomous University of Queretaro, Queretaro, Mexico
| | - José M Lazaro-Guevara
- Department of Human Genetics, University of Utah, Salt Lake City, UT, USA.,Department of Botany, University of British Columbia, Vancouver, BC, Canada.,Biodiversity Research Centre, University of British Columbia, Vancouver, BC, Canada
| | - Argel Estrada-Mondragón
- Department of Biomedical and Clinical Sciences (BKV), Linköping University, 581 83, Linköping, Sweden.
| |
Collapse
|
27
|
Zych SM, Ford CP. Divergent properties and independent regulation of striatal dopamine and GABA co-transmission. Cell Rep 2022; 39:110823. [PMID: 35584679 PMCID: PMC9134867 DOI: 10.1016/j.celrep.2022.110823] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 03/03/2022] [Accepted: 04/24/2022] [Indexed: 01/11/2023] Open
Abstract
Substantia nigra pars compacta (SNc) dopamine neurons play a key role in regulating the activity of striatal circuits within the basal ganglia. In addition to dopamine, these neurons release several other transmitters, including the major inhibitory neurotransmitter γ-aminobutyric acid (GABA). Both dopamine and GABA are loaded into SNc synaptic vesicles by the vesicular monoamine transporter 2 (VMAT2), and co-release of GABA provides strong inhibition to the striatum by directly inhibiting striatal medium spiny projection neurons (MSNs) through activation of GABAA receptors. Here, we found that despite both dopamine and GABA being co-packaged by VMAT2, the properties of transmission, including Ca2+ sensitivity, release probability, and requirement of active zone scaffolding proteins, differ between the two transmitters. Moreover, the extent by which presynaptic neuromodulators inhibit co-transmission also varied. Differences in modulation and the mechanisms controlling release allow for independent regulation of dopamine and GABA signals despite both being loaded via similar mechanisms.
Collapse
Affiliation(s)
- Sarah M Zych
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, USA
| | - Christopher P Ford
- Department of Pharmacology, University of Colorado School of Medicine, Anschutz Medical Campus, 12800 E 19th Ave, Aurora, CO 80045, USA.
| |
Collapse
|
28
|
Abstract
Major recent advances and previous data have led to a plausible model of how key proteins mediate neurotransmitter release. In this model, the soluble N-ethylmaleimide-sensitive factor (NSF) attachment protein (SNAP) receptor (SNARE) proteins syntaxin-1, SNAP-25, and synaptobrevin form tight complexes that bring the membranes together and are crucial for membrane fusion. NSF and SNAPs disassemble SNARE complexes and ensure that fusion occurs through an exquisitely regulated pathway that starts with Munc18-1 bound to a closed conformation of syntaxin-1. Munc18-1 also binds to synaptobrevin, forming a template to assemble the SNARE complex when Munc13-1 opens syntaxin-1 while bridging the vesicle and plasma membranes. Synaptotagmin-1 and complexin bind to partially assembled SNARE complexes, likely stabilizing them and preventing fusion until Ca2+ binding to synaptotagmin-1 causes dissociation from the SNARE complex and induces interactions with phospholipids that help trigger release. Although fundamental questions remain about the mechanism of membrane fusion, these advances provide a framework to investigate the mechanisms underlying presynaptic plasticity.
Collapse
Affiliation(s)
- Josep Rizo
- Departments of Biophysics, Biochemistry, and Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA;
| |
Collapse
|
29
|
Tan C, Wang SSH, de Nola G, Kaeser PS. Rebuilding essential active zone functions within a synapse. Neuron 2022; 110:1498-1515.e8. [PMID: 35176221 PMCID: PMC9081183 DOI: 10.1016/j.neuron.2022.01.026] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 01/15/2023]
Abstract
Presynaptic active zones are molecular machines that control neurotransmitter secretion. They form sites for vesicle docking and priming and couple vesicles to Ca2+ entry for release triggering. The complexity of active zone machinery has made it challenging to determine its mechanisms in release. Simultaneous knockout of the active zone proteins RIM and ELKS disrupts active zone assembly, abolishes vesicle docking, and impairs release. We here rebuild docking, priming, and Ca2+ secretion coupling in these mutants without reinstating active zone networks. Re-expression of RIM zinc fingers recruited Munc13 to undocked vesicles and rendered the vesicles release competent. Action potential triggering of release was reconstituted by docking these primed vesicles to Ca2+ channels through attaching RIM zinc fingers to CaVβ4-subunits. Our work identifies an 80-kDa β4-Zn protein that bypasses the need for megadalton-sized secretory machines, establishes that fusion competence and docking are mechanistically separable, and defines RIM zinc finger-Munc13 complexes as hubs for active zone function.
Collapse
Affiliation(s)
- Chao Tan
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Shan Shan H Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Giovanni de Nola
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Staudt A, Ratai O, Bouzouina A, Fecher-Trost C, Shaaban A, Bzeih H, Horn A, Shaib AH, Klose M, Flockerzi V, Lauterbach MA, Rettig J, Becherer U. Localization of the Priming Factors CAPS1 and CAPS2 in Mouse Sensory Neurons Is Determined by Their N-Termini. Front Mol Neurosci 2022; 15:674243. [PMID: 35493323 PMCID: PMC9049930 DOI: 10.3389/fnmol.2022.674243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 02/09/2022] [Indexed: 11/13/2022] Open
Abstract
Both paralogs of the calcium-dependent activator protein for secretion (CAPS) are required for exocytosis of synaptic vesicles (SVs) and large dense core vesicles (LDCVs). Despite approximately 80% sequence identity, CAPS1 and CAPS2 have distinct functions in promoting exocytosis of SVs and LDCVs in dorsal root ganglion (DRG) neurons. However, the molecular mechanisms underlying these differences remain enigmatic. In this study, we applied high- and super-resolution imaging techniques to systematically assess the subcellular localization of CAPS paralogs in DRG neurons deficient in both CAPS1 and CAPS2. CAPS1 was found to be more enriched at the synapses. Using – in-depth sequence analysis, we identified a unique CAPS1 N-terminal sequence, which we introduced into CAPS2. This CAPS1/2 chimera reproduced the pre-synaptic localization of CAPS1 and partially rescued synaptic transmission in neurons devoid of CAPS1 and CAPS2. Using immunoprecipitation combined with mass spectrometry, we identified CAPS1-specific interaction partners that could be responsible for its pre-synaptic enrichment. Taken together, these data suggest an important role of the CAPS1-N terminus in the localization of the protein at pre-synapses.
Collapse
Affiliation(s)
- Angelina Staudt
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Olga Ratai
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Aicha Bouzouina
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Claudia Fecher-Trost
- Department of Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Ahmed Shaaban
- Department of Neuroscience, University of Copenhagen, København, Denmark
| | - Hawraa Bzeih
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Alexander Horn
- Department of Organic Chemistry, Saarland University, Saarbrücken, Germany
| | - Ali H. Shaib
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- Institute for Neuro- and Sensory Physiology, University Medical Center Göttingen, Göttingen, Germany
| | - Margarete Klose
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Veit Flockerzi
- Department of Experimental and Clinical Pharmacology and Toxicology, Preclinical Center for Molecular Signaling (PZMS), Saarland University, Homburg, Germany
| | - Marcel A. Lauterbach
- Department of Molecular Imaging, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Jens Rettig
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
| | - Ute Becherer
- Department of Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany
- *Correspondence: Ute Becherer,
| |
Collapse
|
31
|
Shahoha M, Cohen R, Ben-Simon Y, Ashery U. cAMP-Dependent Synaptic Plasticity at the Hippocampal Mossy Fiber Terminal. Front Synaptic Neurosci 2022; 14:861215. [PMID: 35444523 PMCID: PMC9013808 DOI: 10.3389/fnsyn.2022.861215] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 02/23/2022] [Indexed: 11/24/2022] Open
Abstract
Cyclic adenosine monophosphate (cAMP) is a crucial second messenger involved in both pre- and postsynaptic plasticity in many neuronal types across species. In the hippocampal mossy fiber (MF) synapse, cAMP mediates presynaptic long-term potentiation and depression. The main cAMP-dependent signaling pathway linked to MF synaptic plasticity acts via the activation of the protein kinase A (PKA) molecular cascade. Accordingly, various downstream putative synaptic PKA target proteins have been linked to cAMP-dependent MF synaptic plasticity, such as synapsin, rabphilin, synaptotagmin-12, RIM1a, tomosyn, and P/Q-type calcium channels. Regulating the expression of some of these proteins alters synaptic release probability and calcium channel clustering, resulting in short- and long-term changes to synaptic efficacy. However, despite decades of research, the exact molecular mechanisms by which cAMP and PKA exert their influences in MF terminals remain largely unknown. Here, we review current knowledge of different cAMP catalysts and potential downstream PKA-dependent molecular cascades, in addition to non-canonical cAMP-dependent but PKA-independent cascades, which might serve as alternative, compensatory or competing pathways to the canonical PKA cascade. Since several other central synapses share a similar form of presynaptic plasticity with the MF, a better description of the molecular mechanisms governing MF plasticity could be key to understanding the relationship between the transcriptional and computational levels across brain regions.
Collapse
Affiliation(s)
- Meishar Shahoha
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Ronni Cohen
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yoav Ben-Simon
- Department of Neurophysiology, Vienna Medical University, Vienna, Austria
- *Correspondence: Yoav Ben-Simon,
| | - Uri Ashery
- Faculty of Life Sciences, School of Neurobiology, Biochemistry and Biophysics, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
- Uri Ashery,
| |
Collapse
|
32
|
Ghosh A, Muthuraju S, Badal S, Wooden J, Leasure JL, Roman G, Das J. Differential Expression of Presynaptic Munc13-1 and Munc13-2 in Mouse Hippocampus Following Ethanol Drinking. Neuroscience 2022; 487:166-183. [PMID: 35167938 PMCID: PMC8930510 DOI: 10.1016/j.neuroscience.2022.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 01/22/2022] [Accepted: 02/08/2022] [Indexed: 10/19/2022]
Abstract
The Munc13 family of proteins is critically involved in synaptic vesicle priming and release in glutamatergic neurons in the brain. Munc13-1 binds to alcohol and, in Drosophila, modulates sedation sensitivity and self-administration. We examined the effect of alcohol consumption on the expression of Munc13-1 and Munc13-2, NMDA receptor subunits GluN1, GluN2A and GluN2B in the hippocampus-derived HT22 cells, hippocampal primary neuron culture, and wild-type and Munc13-1+/- male mouse hippocampus after ethanol consumption (Drinking in the Dark (DID) paradigm). In HT22 cells, Munc13-1 was upregulated following 25 mM ethanol treatment for 24 h. In the primary neuronal culture, however, the expression of both Munc13-1 and Munc13-2 increased after ethanol exposure. While Munc13-1 was upregulated in the hippocampus, Munc13-2 was downregulated following DID. This differential effect was found in the CA1 subfield of the hippocampus. Although Munc13-1+/- mice had approximately 50% Munc13-1 expression compared to wild-type, it was nonetheless significantly increased following DID. Munc13-1 and Munc13-2 were expressed in vesicular glutamate transporter1 (VGLUT1) immunoreactive neurons in the hippocampus, but ethanol did not alter the expression of VGLUT1. The NMDA receptor subunits, GluN1, GluN2A and GluN2B were upregulated in the hippocampal primary culture and in the CA1. Ethanol exerts a differential effect on the expression of Munc13-1 and Munc13-2 in the CA1 in male mice. Our study also found that ethanol's effect on Munc13 expression is dependent on the experimental paradigm, and both Munc13-1 and Munc13-2 could contribute to the ethanol-induced augmentation of glutamatergic neurotransmission.
Collapse
Affiliation(s)
- Anamitra Ghosh
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, United States
| | - Sangu Muthuraju
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, United States
| | - Sean Badal
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, United States
| | - Jessica Wooden
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - J Leigh Leasure
- Department of Psychology, University of Houston, Houston, TX 77204, United States
| | - Gregg Roman
- Department of BioMolecular Sciences, University of Mississippi, Oxford, MS 38677, United States
| | - Joydip Das
- Department of Pharmacological and Pharmaceutical Sciences, University of Houston, Houston, TX 77204, United States.
| |
Collapse
|
33
|
Lee K, Jung Y, Vyas Y, Skelton I, Abraham WC, Hsueh YP, Montgomery JM. Dietary zinc supplementation rescues fear-based learning and synaptic function in the Tbr1 +/- mouse model of autism spectrum disorders. Mol Autism 2022; 13:13. [PMID: 35303947 PMCID: PMC8932001 DOI: 10.1186/s13229-022-00494-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 03/07/2022] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a neurodevelopmental disorder characterised by a dyad of behavioural symptoms-social and communication deficits and repetitive behaviours. Multiple aetiological genetic and environmental factors have been identified as causing or increasing the likelihood of ASD, including serum zinc deficiency. Our previous studies revealed that dietary zinc supplementation can normalise impaired social behaviours, excessive grooming, and heightened anxiety in a Shank3 mouse model of ASD, as well as the amelioration of synapse dysfunction. Here, we have examined the efficacy and breadth of dietary zinc supplementation as an effective therapeutic strategy utilising a non-Shank-related mouse model of ASD-mice with Tbr1 haploinsufficiency. METHODS We performed behavioural assays, amygdalar slice whole-cell patch-clamp electrophysiology, and immunohistochemistry to characterise the synaptic mechanisms underlying the ASD-associated behavioural deficits observed in Tbr1+/- mice and the therapeutic potential of dietary zinc supplementation. Two-way analysis of variance (ANOVA) with Šídák's post hoc test and one-way ANOVA with Tukey's post hoc multiple comparisons were performed for statistical analysis. RESULTS Our data show that dietary zinc supplementation prevents impairments in auditory fear memory and social interaction, but not social novelty, in the Tbr1+/- mice. Tbr1 haploinsufficiency did not induce excessive grooming nor elevate anxiety in mice. At the synaptic level, dietary zinc supplementation reversed α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) and N-methyl-D-aspartate receptor (NMDAR) hypofunction and normalised presynaptic function at thalamic-lateral amygdala (LA) synapses that are crucial for auditory fear memory. In addition, the zinc supplemented diet significantly restored the synaptic puncta density of the GluN1 subunit essential for functional NMDARs as well as SHANK3 expression in both the basal and lateral amygdala (BLA) of Tbr1+/- mice. LIMITATIONS The therapeutic effect of dietary zinc supplementation observed in rodent models may not reproduce the same effects in human patients. The effect of dietary zinc supplementation on synaptic function in other brain structures affected by Tbr1 haploinsufficiency including olfactory bulb and anterior commissure will also need to be examined. CONCLUSIONS Our data further the understanding of the molecular mechanisms underlying the effect of dietary zinc supplementation and verify the efficacy and breadth of its application as a potential treatment strategy for ASD.
Collapse
Affiliation(s)
- Kevin Lee
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Yewon Jung
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Yukti Vyas
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
- INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Imogen Skelton
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand
| | - Wickliffe C Abraham
- Department of Psychology and Brain Health Research Centre, University of Otago, Dunedin, New Zealand
| | - Yi-Ping Hsueh
- Institute of Molecular Biology, Academia Sinica, 128, Section 2, Academia Rd., Taipei, 11529, Taiwan
| | - Johanna M Montgomery
- Department of Physiology and Centre for Brain Research, Faculty of Medical and Health Sciences, University of Auckland, 85 Park Road, Grafton, Auckland, 1023, New Zealand.
| |
Collapse
|
34
|
Deng K, Thorn P. Presynaptic-like mechanisms and the control of insulin secretion in pancreatic β-cells. Cell Calcium 2022; 104:102585. [DOI: 10.1016/j.ceca.2022.102585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/24/2022] [Accepted: 03/26/2022] [Indexed: 12/18/2022]
|
35
|
Holderith N, Aldahabi M, Nusser Z. Selective Enrichment of Munc13-2 in Presynaptic Active Zones of Hippocampal Pyramidal Cells That Innervate mGluR1α Expressing Interneurons. Front Synaptic Neurosci 2022; 13:773209. [PMID: 35221979 PMCID: PMC8866005 DOI: 10.3389/fnsyn.2021.773209] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
Selective distribution of proteins in presynaptic active zones (AZs) is a prerequisite for generating postsynaptic target cell type-specific differences in presynaptic vesicle release probability (Pv) and short-term plasticity, a characteristic feature of cortical pyramidal cells (PCs). In the hippocampus of rodents, somatostatin and mGluR1α expressing interneurons (mGluR1α+ INs) receive small, facilitating excitatory postsynaptic currents (EPSCs) from PCs and express Elfn1 that trans-synaptically recruits mGluR7 into the presynaptic AZ of PC axons. Here we show that Elfn1 also has a role in the selective recruitment of Munc13-2, a synaptic vesicle priming and docking protein, to PC AZs that innervate mGluR1α+ INs. In Elfn1 knock-out mice, unitary EPSCs (uEPSCs) in mGluR1α+ INs have threefold larger amplitudes with less pronounced short-term facilitation, which might be the consequence of the loss of either mGluR7 or Munc13-2 or both. Conditional genetic deletion of Munc13-2 from CA1 PCs results in the loss of Munc13-2, but not mGluR7 from the AZs, and has no effect on the amplitude of uEPSCs and leaves the characteristic short-term facilitation intact at PC to mGluR1α+ IN connection. Our results demonstrate that Munc13-1 alone is capable of imposing low Pv at PC to mGluR1α+ IN synapses and Munc13-2 has yet an unknown role in this synapse.
Collapse
Affiliation(s)
- Noemi Holderith
- Institute of Experimental Medicine, Eotvos Lorand Research Network, Budapest, Hungary
| | - Mohammad Aldahabi
- Institute of Experimental Medicine, Eotvos Lorand Research Network, Budapest, Hungary
- János Szentágothai School of Neurosciences, Semmelweis University, Budapest, Hungary
| | - Zoltan Nusser
- Institute of Experimental Medicine, Eotvos Lorand Research Network, Budapest, Hungary
- *Correspondence: Zoltan Nusser,
| |
Collapse
|
36
|
Takikawa K, Nishimune H. Similarity and Diversity of Presynaptic Molecules at Neuromuscular Junctions and Central Synapses. Biomolecules 2022; 12:biom12020179. [PMID: 35204679 PMCID: PMC8961632 DOI: 10.3390/biom12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 01/17/2022] [Accepted: 01/19/2022] [Indexed: 12/04/2022] Open
Abstract
Synaptic transmission is essential for controlling motor functions and maintaining brain functions such as walking, breathing, cognition, learning, and memory. Neurotransmitter release is regulated by presynaptic molecules assembled in active zones of presynaptic terminals. The size of presynaptic terminals varies, but the size of a single active zone and the types of presynaptic molecules are highly conserved among neuromuscular junctions (NMJs) and central synapses. Three parameters play an important role in the determination of neurotransmitter release properties at NMJs and central excitatory/inhibitory synapses: the number of presynaptic molecular clusters, the protein families of the presynaptic molecules, and the distance between presynaptic molecules and voltage-gated calcium channels. In addition, dysfunction of presynaptic molecules causes clinical symptoms such as motor and cognitive decline in patients with various neurological disorders and during aging. This review focuses on the molecular mechanisms responsible for the functional similarities and differences between excitatory and inhibitory synapses in the peripheral and central nervous systems, and summarizes recent findings regarding presynaptic molecules assembled in the active zone. Furthermore, we discuss the relationship between functional alterations of presynaptic molecules and dysfunction of NMJs or central synapses in diseases and during aging.
Collapse
Affiliation(s)
- Kenji Takikawa
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
| | - Hiroshi Nishimune
- Laboratory of Neurobiology of Aging, Tokyo Metropolitan Institute of Gerontology, 35-2 Sakaecho, Itabashi-ku, Tokyo 173-0015, Japan;
- Department of Applied Biological Science, Tokyo University of Agriculture and Technology, 3-8-1 Harumi-cho, Fuchu-shi, Tokyo 183-8538, Japan
- Correspondence: ; Tel.: +81-3-3964-3241
| |
Collapse
|
37
|
Banerjee A, Imig C, Balakrishnan K, Kershberg L, Lipstein N, Uronen RL, Wang J, Cai X, Benseler F, Rhee JS, Cooper BH, Liu C, Wojcik SM, Brose N, Kaeser PS. Molecular and functional architecture of striatal dopamine release sites. Neuron 2022; 110:248-265.e9. [PMID: 34767769 PMCID: PMC8859508 DOI: 10.1016/j.neuron.2021.10.028] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 09/22/2021] [Accepted: 10/19/2021] [Indexed: 01/21/2023]
Abstract
Despite the importance of dopamine for striatal circuit function, mechanistic understanding of dopamine transmission remains incomplete. We recently showed that dopamine secretion relies on the presynaptic scaffolding protein RIM, indicating that it occurs at active zone-like sites similar to classical synaptic vesicle exocytosis. Here, we establish using a systematic gene knockout approach that Munc13 and Liprin-α, active zone proteins for vesicle priming and release site organization, are important for dopamine secretion. Furthermore, RIM zinc finger and C2B domains, which bind to Munc13 and Liprin-α, respectively, are needed to restore dopamine release after RIM ablation. In contrast, and different from typical synapses, the active zone scaffolds RIM-BP and ELKS, and RIM domains that bind to them, are expendable. Hence, dopamine release necessitates priming and release site scaffolding by RIM, Munc13, and Liprin-α, but other active zone proteins are dispensable. Our work establishes that efficient release site architecture mediates fast dopamine exocytosis.
Collapse
Affiliation(s)
- Aditi Banerjee
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | | | - Lauren Kershberg
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Noa Lipstein
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Riikka-Liisa Uronen
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jiexin Wang
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Xintong Cai
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Fritz Benseler
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Jeong Seop Rhee
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Benjamin H Cooper
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Changliang Liu
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA
| | - Sonja M Wojcik
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Pascal S Kaeser
- Department of Neurobiology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
38
|
Hilton BJ, Husch A, Schaffran B, Lin TC, Burnside ER, Dupraz S, Schelski M, Kim J, Müller JA, Schoch S, Imig C, Brose N, Bradke F. An active vesicle priming machinery suppresses axon regeneration upon adult CNS injury. Neuron 2022; 110:51-69.e7. [PMID: 34706221 PMCID: PMC8730507 DOI: 10.1016/j.neuron.2021.10.007] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 09/03/2021] [Accepted: 10/01/2021] [Indexed: 12/16/2022]
Abstract
Axons in the adult mammalian central nervous system fail to regenerate after spinal cord injury. Neurons lose their capacity to regenerate during development, but the intracellular processes underlying this loss are unclear. We found that critical components of the presynaptic active zone prevent axon regeneration in adult mice. Transcriptomic analysis combined with live-cell imaging revealed that adult primary sensory neurons downregulate molecular constituents of the synapse as they acquire the ability to rapidly grow their axons. Pharmacogenetic reduction of neuronal excitability stimulated axon regeneration after adult spinal cord injury. Genetic gain- and loss-of-function experiments uncovered that essential synaptic vesicle priming proteins of the presynaptic active zone, but not clostridial-toxin-sensitive VAMP-family SNARE proteins, inhibit axon regeneration. Systemic administration of Baclofen reduced voltage-dependent Ca2+ influx in primary sensory neurons and promoted their regeneration after spinal cord injury. These findings indicate that functional presynaptic active zones constitute a major barrier to axon regeneration.
Collapse
Affiliation(s)
- Brett J Hilton
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Andreas Husch
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Barbara Schaffran
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Tien-Chen Lin
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Emily R Burnside
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Sebastian Dupraz
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Max Schelski
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany
| | - Jisoo Kim
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany; Department of Stem Cell and Regenerative Biology, Center for Brain Science, and Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| | | | - Susanne Schoch
- Institute of Neuropathology, Medical Faculty, University of Bonn, 53105 Bonn, Germany
| | - Cordelia Imig
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Frank Bradke
- Laboratory of Axonal Growth and Regeneration, German Center for Neurodegenerative Diseases (DZNE), Venusberg Campus 1/99, 53127 Bonn, Germany.
| |
Collapse
|
39
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
40
|
Camacho M, Quade B, Trimbuch T, Xu J, Sari L, Rizo J, Rosenmund C. Control of neurotransmitter release by two distinct membrane-binding faces of the Munc13-1 C 1C 2B region. eLife 2021; 10:e72030. [PMID: 34779770 PMCID: PMC8648301 DOI: 10.7554/elife.72030] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/14/2021] [Indexed: 11/23/2022] Open
Abstract
Munc13-1 plays a central role in neurotransmitter release through its conserved C-terminal region, which includes a diacyglycerol (DAG)-binding C1 domain, a Ca2+/PIP2-binding C2B domain, a MUN domain and a C2C domain. Munc13-1 was proposed to bridge synaptic vesicles to the plasma membrane through distinct interactions of the C1C2B region with the plasma membrane: (i) one involving a polybasic face that is expected to yield a perpendicular orientation of Munc13-1 and hinder release; and (ii) another involving the DAG-Ca2+-PIP2-binding face that is predicted to result in a slanted orientation and facilitate release. Here, we have tested this model and investigated the role of the C1C2B region in neurotransmitter release. We find that K603E or R769E point mutations in the polybasic face severely impair Ca2+-independent liposome bridging and fusion in in vitro reconstitution assays, and synaptic vesicle priming in primary murine hippocampal cultures. A K720E mutation in the polybasic face and a K706E mutation in the C2B domain Ca2+-binding loops have milder effects in reconstitution assays and do not affect vesicle priming, but enhance or impair Ca2+-evoked release, respectively. The phenotypes caused by combining these mutations are dominated by the K603E and R769E mutations. Our results show that the C1-C2B region of Munc13-1 plays a central role in vesicle priming and support the notion that two distinct faces of this region control neurotransmitter release and short-term presynaptic plasticity.
Collapse
Affiliation(s)
- Marcial Camacho
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of NeurophysiologyBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| | - Bradley Quade
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Thorsten Trimbuch
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of NeurophysiologyBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| | - Junjie Xu
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Levent Sari
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Cecil H. and Ida Green Comprehensive Center for Molecular, Computational and Systems Biology, University of Texas Southwestern Medical CenterDallasUnited States
- Center for Alzheimer’s and Neurodegenerative Diseases, University of Texas Southwestern Medical CenterDallasUnited States
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Biochemistry, University of Texas Southwestern Medical CenterDallasUnited States
- Department of Pharmacology, University of Texas Southwestern Medical CenterDallasUnited States
| | - Christian Rosenmund
- Charité – Universitätsmedizin Berlin, corporate member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Institute of NeurophysiologyBerlinGermany
- NeuroCure Cluster of ExcellenceBerlinGermany
| |
Collapse
|
41
|
Li F, Kalyana Sundaram RV, Gatta AT, Coleman J, Ramakrishnan S, Krishnakumar SS, Pincet F, Rothman JE. Vesicle capture by membrane-bound Munc13-1 requires self-assembly into discrete clusters. FEBS Lett 2021; 595:2185-2196. [PMID: 34227103 DOI: 10.1002/1873-3468.14157] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/15/2021] [Accepted: 06/29/2021] [Indexed: 12/11/2022]
Abstract
Munc13-1 is a large banana-shaped soluble protein that is involved in the regulation of synaptic vesicle docking and fusion. Recent studies suggest that multiple copies of Munc13-1 form nano-assemblies in active zones of neurons. However, it is not known whether such clustering of Munc13-1 is correlated with multivalent binding to synaptic vesicles or specific plasma membrane domains at docking sites in the active zone. The functional significance of putative Munc13-1 clustering is also unknown. Here, we report that nano-clustering is an inherent property of Munc13-1 and is indeed required for vesicle binding to bilayers containing Munc13-1. Purified Munc13-1 protein reconstituted onto supported lipid bilayers assembled into clusters containing from 2 to ˜ 20 copies as revealed by a combination of quantitative TIRF microscopy and step-wise photobleaching. Surprisingly, only clusters containing a minimum of 6 copies of Munc13-1 were capable of efficiently capturing and retaining small unilamellar vesicles. The C-terminal C2 C domain of Munc13-1 is not required for Munc13-1 clustering, but is required for efficient vesicle capture. This capture is largely due to a combination of electrostatic and hydrophobic interactions between the C2 C domain and the vesicle membrane.
Collapse
Affiliation(s)
- Feng Li
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Ramalingam Venkat Kalyana Sundaram
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Alberto T Gatta
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Jeff Coleman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Sathish Ramakrishnan
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Shyam S Krishnakumar
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| | - Frederic Pincet
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
- Laboratoire de Physique de l'Ecole normale supérieure, ENS, Université PSL, CNRS, Sorbonne Université, Université de Paris, Paris, France
| | - James E Rothman
- Department of Cell Biology, School of Medicine, Yale University, New Haven, CT, USA
- Nanobiology Institute, Yale School of Medicine, West Haven, CT, USA
| |
Collapse
|
42
|
Sauvola CW, Littleton JT. SNARE Regulatory Proteins in Synaptic Vesicle Fusion and Recycling. Front Mol Neurosci 2021; 14:733138. [PMID: 34421538 PMCID: PMC8377282 DOI: 10.3389/fnmol.2021.733138] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 07/20/2021] [Indexed: 01/01/2023] Open
Abstract
Membrane fusion is a universal feature of eukaryotic protein trafficking and is mediated by the soluble N-ethylmaleimide sensitive factor attachment protein receptor (SNARE) family. SNARE proteins embedded in opposing membranes spontaneously assemble to drive membrane fusion and cargo exchange in vitro. Evolution has generated a diverse complement of SNARE regulatory proteins (SRPs) that ensure membrane fusion occurs at the right time and place in vivo. While a core set of SNAREs and SRPs are common to all eukaryotic cells, a specialized set of SRPs within neurons confer additional regulation to synaptic vesicle (SV) fusion. Neuronal communication is characterized by precise spatial and temporal control of SNARE dynamics within presynaptic subdomains specialized for neurotransmitter release. Action potential-elicited Ca2+ influx at these release sites triggers zippering of SNAREs embedded in the SV and plasma membrane to drive bilayer fusion and release of neurotransmitters that activate downstream targets. Here we discuss current models for how SRPs regulate SNARE dynamics and presynaptic output, emphasizing invertebrate genetic findings that advanced our understanding of SRP regulation of SV cycling.
Collapse
Affiliation(s)
- Chad W Sauvola
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States.,Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, United States
| |
Collapse
|
43
|
Piekut T, Wong YY, Walker SE, Smith CL, Gauberg J, Harracksingh AN, Lowden C, Novogradac BB, Cheng HYM, Spencer GE, Senatore A. Early Metazoan Origin and Multiple Losses of a Novel Clade of RIM Presynaptic Calcium Channel Scaffolding Protein Homologs. Genome Biol Evol 2021; 12:1217-1239. [PMID: 32413100 PMCID: PMC7456537 DOI: 10.1093/gbe/evaa097] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2020] [Indexed: 12/18/2022] Open
Abstract
The precise localization of CaV2 voltage-gated calcium channels at the synapse active zone requires various interacting proteins, of which, Rab3-interacting molecule or RIM is considered particularly important. In vertebrates, RIM interacts with CaV2 channels in vitro via a PDZ domain that binds to the extreme C-termini of the channels at acidic ligand motifs of D/E-D/E/H-WC-COOH, and knockout of RIM in vertebrates and invertebrates disrupts CaV2 channel synaptic localization and synapse function. Here, we describe a previously uncharacterized clade of RIM proteins bearing domain architectures homologous to those of known RIM homologs, but with some notable differences including key amino acids associated with PDZ domain ligand specificity. This novel RIM emerged near the stem lineage of metazoans and underwent extensive losses, but is retained in select animals including the early-diverging placozoan Trichoplax adhaerens, and molluscs. RNA expression and localization studies in Trichoplax and the mollusc snail Lymnaea stagnalis indicate differential regional/tissue type expression, but overlapping expression in single isolated neurons from Lymnaea. Ctenophores, the most early-diverging animals with synapses, are unique among animals with nervous systems in that they lack the canonical RIM, bearing only the newly identified homolog. Through phylogenetic analysis, we find that CaV2 channel D/E-D/E/H-WC-COOH like PDZ ligand motifs were present in the common ancestor of cnidarians and bilaterians, and delineate some deeply conserved C-terminal structures that distinguish CaV1 from CaV2 channels, and CaV1/CaV2 from CaV3 channels.
Collapse
Affiliation(s)
| | | | - Sarah E Walker
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | - Carolyn L Smith
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland
| | | | | | | | | | | | - Gaynor E Spencer
- Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| | | |
Collapse
|
44
|
A Trio of Active Zone Proteins Comprised of RIM-BPs, RIMs, and Munc13s Governs Neurotransmitter Release. Cell Rep 2021; 32:107960. [PMID: 32755572 DOI: 10.1016/j.celrep.2020.107960] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 05/01/2020] [Accepted: 07/02/2020] [Indexed: 11/21/2022] Open
Abstract
At the presynaptic active zone, action-potential-triggered neurotransmitter release requires that fusion-competent synaptic vesicles are placed next to Ca2+ channels. The active zone resident proteins RIM, RBP, and Munc13 are essential contributors for vesicle priming and Ca2+-channel recruitment. Although the individual contributions of these scaffolds have been extensively studied, their respective functions in neurotransmission are still incompletely understood. Here, we analyze the functional interactions of RIMs, RBPs, and Munc13s at the genetic, molecular, functional, and ultrastructural levels in a mammalian synapse. We find that RBP, together with Munc13, promotes vesicle priming at the expense of RBP's role in recruiting presynaptic Ca2+ channels, suggesting that the support of RBP for vesicle priming and Ca2+-secretion coupling is mutually exclusive. Our results demonstrate that the functional interaction of RIM, RBP, and Munc13 is more profound than previously envisioned, acting as a functional trio that govern basic and short-term plasticity properties of neurotransmission.
Collapse
|
45
|
Karlocai MR, Heredi J, Benedek T, Holderith N, Lorincz A, Nusser Z. Variability in the Munc13-1 content of excitatory release sites. eLife 2021; 10:67468. [PMID: 33904397 PMCID: PMC8116053 DOI: 10.7554/elife.67468] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/26/2021] [Indexed: 01/15/2023] Open
Abstract
The molecular mechanisms underlying the diversity of cortical glutamatergic synapses are still incompletely understood. Here, we tested the hypothesis that presynaptic active zones (AZs) are constructed from molecularly uniform, independent release sites (RSs), the number of which scales linearly with the AZ size. Paired recordings between hippocampal CA1 pyramidal cells and fast-spiking interneurons in acute slices from adult mice followed by quantal analysis demonstrate large variability in the number of RSs (N) at these connections. High-resolution molecular analysis of functionally characterized synapses reveals variability in the content of one of the key vesicle priming factors – Munc13-1 – in AZs that possess the same N. Replica immunolabeling also shows a threefold variability in the total Munc13-1 content of AZs of identical size and a fourfold variability in the size and density of Munc13-1 clusters within the AZs. Our results provide evidence for quantitative molecular heterogeneity of RSs and support a model in which the AZ is built up from variable numbers of molecularly heterogeneous, but independent RSs.
Collapse
Affiliation(s)
- Maria Rita Karlocai
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Judit Heredi
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Tünde Benedek
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Noemi Holderith
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Andrea Lorincz
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| | - Zoltan Nusser
- Laboratory of Cellular Neurophysiology, Institute of Experimental Medicine, Budapest, Hungary
| |
Collapse
|
46
|
You Y, Katti S, Yu B, Igumenova TI, Das J. Probing the Diacylglycerol Binding Site of Presynaptic Munc13-1. Biochemistry 2021; 60:1286-1298. [PMID: 33818064 PMCID: PMC8906797 DOI: 10.1021/acs.biochem.1c00165] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Munc13-1 is a presynaptic active zone protein that acts as a master regulator of synaptic vesicle priming and neurotransmitter release in the brain. It has been implicated in the pathophysiology of several neurodegenerative diseases. Diacylglycerol and phorbol ester activate Munc13-1 by binding to its C1 domain. The objective of this study is to identify the structural determinants of ligand binding activity of the Munc13-1 C1 domain. Molecular docking suggested that residues Trp-588, Ile-590, and Arg-592 of Munc13-1 are involved in ligand interactions. To elucidate the role of these three residues in ligand binding, we generated W588A, I590A, and R592A mutants in full-length Munc13-1, expressed them as GFP-tagged proteins in HT22 cells, and measured their ligand-induced membrane translocation by confocal microscopy and immunoblotting. The extent of 1,2-dioctanoyl-sn-glycerol (DOG)- and phorbol ester-induced membrane translocation decreased in the following order: wild type > I590A > W588A > R592A and wild type > W588A > I590A > R592A, respectively. To understand the effect of the mutations on ligand binding, we also measured the DOG binding affinity of the isolated wild-type C1 domain and its mutants in membrane-mimicking micelles using nuclear magnetic resonance methods. The DOG binding affinity decreased in the following order: wild type > I590A > R592A. No binding was detected for W588A with DOG in micelles. This study shows that Trp-588, Ile-590, and Arg-592 are essential determinants for the activity of Munc13-1 and the effects of the three residues on the activity are ligand-dependent. This study bears significance for the development of selective modulators of Munc13-1.
Collapse
Affiliation(s)
- Youngki You
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, Health 2, University of Houston, Houston, Texas 77204, United States
| | - Sachin Katti
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Binhan Yu
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Tatyana I Igumenova
- Department of Biochemistry and Biophysics, Texas A&M University, 300 Olsen Boulevard, College Station, Texas 77843, United States
| | - Joydip Das
- Department of Pharmacological & Pharmaceutical Sciences, College of Pharmacy, Health 2, University of Houston, Houston, Texas 77204, United States
| |
Collapse
|
47
|
Petzoldt AG, Götz TWB, Driller JH, Lützkendorf J, Reddy-Alla S, Matkovic-Rachid T, Liu S, Knoche E, Mertel S, Ugorets V, Lehmann M, Ramesh N, Beuschel CB, Kuropka B, Freund C, Stelzl U, Loll B, Liu F, Wahl MC, Sigrist SJ. RIM-binding protein couples synaptic vesicle recruitment to release sites. J Cell Biol 2021; 219:151735. [PMID: 32369542 PMCID: PMC7337501 DOI: 10.1083/jcb.201902059] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 02/03/2020] [Accepted: 04/07/2020] [Indexed: 11/24/2022] Open
Abstract
At presynaptic active zones, arrays of large conserved scaffold proteins mediate fast and temporally precise release of synaptic vesicles (SVs). SV release sites could be identified by clusters of Munc13, which allow SVs to dock in defined nanoscale relation to Ca2+ channels. We here show in Drosophila that RIM-binding protein (RIM-BP) connects release sites physically and functionally to the ELKS family Bruchpilot (BRP)-based scaffold engaged in SV recruitment. The RIM-BP N-terminal domain, while dispensable for SV release site organization, was crucial for proper nanoscale patterning of the BRP scaffold and needed for SV recruitment of SVs under strong stimulation. Structural analysis further showed that the RIM-BP fibronectin domains form a “hinge” in the protein center, while the C-terminal SH3 domain tandem binds RIM, Munc13, and Ca2+ channels release machinery collectively. RIM-BPs’ conserved domain architecture seemingly provides a relay to guide SVs from membrane far scaffolds into membrane close release sites.
Collapse
Affiliation(s)
- Astrid G Petzoldt
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Torsten W B Götz
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Jan Heiner Driller
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Janine Lützkendorf
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Suneel Reddy-Alla
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Sunbin Liu
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Elena Knoche
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Sara Mertel
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Vladimir Ugorets
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | - Martin Lehmann
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Niraja Ramesh
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany
| | | | - Benno Kuropka
- Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Christian Freund
- Universität Berlin, Institute for Chemistry and Biochemistry, Berlin, Germany
| | - Ulrich Stelzl
- Institut für Pharmazeutische Wissenschaften, Graz, Austria
| | - Bernhard Loll
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany
| | - Fan Liu
- Leibniz-Forschungsinstitut für Molekulare Pharmakologie im Forschungsverbund Berlin e.V., Campus Berlin-Buch, Berlin, Germany
| | - Markus C Wahl
- Freie Universität Berlin, Institute of Chemistry and Biochemistry/Structural Biochemistry Berlin, Berlin, Germany.,Helmholtz-Zentrum Berlin für Materialien und Energie, Macromolecular Crystallography, Berlin, Germany
| | - Stephan J Sigrist
- Freie Universität Berlin, Institute for Biology and Genetics, Berlin, Germany.,NeuroCure, Charité, Berlin, Germany
| |
Collapse
|
48
|
Liu H, Li L, Sheoran S, Yu Y, Richmond JE, Xia J, Tang J, Liu J, Hu Z. The M domain in UNC-13 regulates the probability of neurotransmitter release. Cell Rep 2021; 34:108828. [PMID: 33691106 PMCID: PMC8066380 DOI: 10.1016/j.celrep.2021.108828] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 12/25/2020] [Accepted: 02/16/2021] [Indexed: 12/30/2022] Open
Abstract
Synapses exhibit multiple forms of short-term plasticities, which have been attributed to the heterogeneity of neurotransmitter release probability. However, the molecular mechanisms that underlie the differential release states remain to be fully elucidated. The Unc-13 proteins appear to have key roles in synaptic function through multiple regulatory domains. Here, we report that deleting the M domain in Caenorhabditis elegans UNC-13MR leads to a significant increase in release probability, revealing an inhibitory function of this domain. The inhibitory effect of this domain is eliminated when the C1 and C2B domains are absent or activated, suggesting that the M domain inhibits release probability by suppressing the activity of C1 and C2B domains. When fused directly to the MUNC2C fragment of UNC-13, the M domain greatly enhances release probability. Thus, our findings reveal a mechanism by which the UNC-13 M domain regulates synaptic transmission and provides molecular insights into the regulation of release probability.
Collapse
Affiliation(s)
- Haowen Liu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Lei Li
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Seema Sheoran
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Yi Yu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Janet E Richmond
- Department of Biological Sciences, University of Illinois at Chicago, Chicago, IL 60607, USA
| | - Jingyao Xia
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jing Tang
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jie Liu
- Neuroscience Program, Monash Biomedicine Discovery Institute and Department of Anatomy and Developmental Biology, Monash University, Melbourne, VIC 3800, Australia
| | - Zhitao Hu
- Queensland Brain Institute, Clem Jones Centre for Ageing Dementia Research (CJCADR), The University of Queensland, Brisbane, QLD 4072, Australia.
| |
Collapse
|
49
|
Mochida S. Neurotransmitter Release Site Replenishment and Presynaptic Plasticity. Int J Mol Sci 2020; 22:ijms22010327. [PMID: 33396919 PMCID: PMC7794938 DOI: 10.3390/ijms22010327] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 12/23/2020] [Accepted: 12/27/2020] [Indexed: 12/19/2022] Open
Abstract
An action potential (AP) triggers neurotransmitter release from synaptic vesicles (SVs) docking to a specialized release site of presynaptic plasma membrane, the active zone (AZ). The AP simultaneously controls the release site replenishment with SV for sustainable synaptic transmission in response to incoming neuronal signals. Although many studies have suggested that the replenishment time is relatively slow, recent studies exploring high speed resolution have revealed SV dynamics with milliseconds timescale after an AP. Accurate regulation is conferred by proteins sensing Ca2+ entering through voltage-gated Ca2+ channels opened by an AP. This review summarizes how millisecond Ca2+ dynamics activate multiple protein cascades for control of the release site replenishment with release-ready SVs that underlie presynaptic short-term plasticity.
Collapse
Affiliation(s)
- Sumiko Mochida
- Department of Physiology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
50
|
Disentangling the Roles of RIM and Munc13 in Synaptic Vesicle Localization and Neurotransmission. J Neurosci 2020; 40:9372-9385. [PMID: 33139401 PMCID: PMC7724145 DOI: 10.1523/jneurosci.1922-20.2020] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 09/22/2020] [Accepted: 10/15/2020] [Indexed: 11/21/2022] Open
Abstract
Efficient neurotransmitter release at the presynaptic terminal requires docking of synaptic vesicles to the active zone membrane and formation of fusion-competent synaptic vesicles near voltage-gated Ca2+ channels. Rab3-interacting molecule (RIM) is a critical active zone organizer, as it recruits Ca2+ channels and activates synaptic vesicle docking and priming via Munc13-1. However, our knowledge about Munc13-independent contributions of RIM to active zone functions is limited. To identify the functions that are solely mediated by RIM, we used genetic manipulations to control RIM and Munc13-1 activity in cultured hippocampal neurons from mice of either sex and compared synaptic ultrastructure and neurotransmission. We found that RIM modulates synaptic vesicle localization in the proximity of the active zone membrane independent of Munc13-1. In another step, both RIM and Munc13 mediate synaptic vesicle docking and priming. In addition, while the activity of both RIM and Munc13-1 is required for Ca2+-evoked release, RIM uniquely controls neurotransmitter release efficiency. However, activity-dependent augmentation of synaptic vesicle pool size relies exclusively on the action of Munc13s. Based on our results, we extend previous findings and propose a refined model in which RIM and Munc13-1 act in overlapping and independent stages of synaptic vesicle localization and release. SIGNIFICANCE STATEMENT The presynaptic active zone is composed of scaffolding proteins that functionally interact to localize synaptic vesicles to release sites, ensuring neurotransmission. Our current knowledge of the presynaptic active zone function relies on structure-function analysis, which has provided detailed information on the network of interactions and the impact of active zone proteins. Yet, the hierarchical, redundant, or independent cooperation of each active zone protein to synapse functions is not fully understood. Rab3-interacting molecule and Munc13 are the two key functionally interacting active zone proteins. Here, we dissected the distinct actions of Rab3-interacting molecule and Munc13-1 from both ultrastructural and physiological aspects. Our findings provide a more detailed view of how these two presynaptic proteins orchestrate their functions to achieve synaptic transmission.
Collapse
|