1
|
Bats C, Coombs ID, Farrant M, Cull-Candy SG. α-Bungarotoxin labelling of AMPA receptor-associated TARPs in living neurons. Neuroscience 2024:S0306-4522(24)00440-8. [PMID: 39209103 DOI: 10.1016/j.neuroscience.2024.08.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 07/30/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
In mammalian central neurons AMPARs are clustered at glutamatergic synapses where they mediate fast excitatory transmission. In addition to four pore-forming subunits (GluA1-4), AMPARs contain auxiliary transmembrane AMPAR regulatory proteins (γ2, γ3, γ4, γ5, γ7 or γ8) whose incorporation can vary between neuron types, brain regions, and stages of development. As well as modulating the functional properties of AMPARs, these auxiliary subunits play a central role in AMPAR trafficking. Directly visualizing TARPs could therefore provide a valuable insight into mechanisms underlying these processes. Although antibodies are routinely used for the detection of surface proteins, our experience suggests anti-TARP antibodies are too bulky to access their target, possibly due to close interactions between the extracellular domains of TARP and AMPAR subunits. We therefore assessed the utility of a small monovalent probe - fluorescent α-bungarotoxin (α-Btx) - for TARP labelling in living neurons. We inserted the bungarotoxin binding site (BBS) within the extracellular domain of TARPs to enable their detection in cells exposed to fluorescent α-Btx. Focusing on the prototypical TARP γ2, we demonstrate that the small size of fluorescent α-Btx allows it to bind to the BBS-tagged TARP when associated with AMPARs. Importantly, labelled γ2 enhances AMPAR function in the same way as unmodified γ2. In living neurons, fluorescent α-Btx-labelled γ2 associates with AMPAR clusters at synapses. As a proof-of-principle, we employed our method to compare the surface trafficking of γ2 and γ7 in cerebellar stellate neurons. Our approach provides a simple way to visualize TARPs within AMPARs in living cells.
Collapse
Affiliation(s)
- Cecile Bats
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Ian D Coombs
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK
| | - Mark Farrant
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| | - Stuart G Cull-Candy
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, UK.
| |
Collapse
|
2
|
Khalek IS, Senji Laxme RR, Nguyen YTK, Khochare S, Patel RN, Woehl J, Smith JM, Saye-Francisco K, Kim Y, Misson Mindrebo L, Tran Q, Kędzior M, Boré E, Limbo O, Verma M, Stanfield RL, Menzies SK, Ainsworth S, Harrison RA, Burton DR, Sok D, Wilson IA, Casewell NR, Sunagar K, Jardine JG. Synthetic development of a broadly neutralizing antibody against snake venom long-chain α-neurotoxins. Sci Transl Med 2024; 16:eadk1867. [PMID: 38381847 DOI: 10.1126/scitranslmed.adk1867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/26/2024] [Indexed: 02/23/2024]
Abstract
Snakebite envenoming is a major global public health concern for which improved therapies are urgently needed. The antigenic diversity present in snake venom toxins from various species presents a considerable challenge to the development of a universal antivenom. Here, we used a synthetic human antibody library to find and develop an antibody that neutralizes long-chain three-finger α-neurotoxins produced by numerous medically relevant snakes. Our antibody bound diverse toxin variants with high affinity, blocked toxin binding to the nicotinic acetylcholine receptor in vitro, and protected mice from lethal venom challenge. Structural analysis of the antibody-toxin complex revealed a binding mode that mimics the receptor-toxin interaction. The overall workflow presented is generalizable for the development of antibodies that target conserved epitopes among antigenically diverse targets, and it offers a promising framework for the creation of a monoclonal antibody-based universal antivenom to treat snakebite envenoming.
Collapse
Affiliation(s)
- Irene S Khalek
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - R R Senji Laxme
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Yen Thi Kim Nguyen
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Suyog Khochare
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Rohit N Patel
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Jordan Woehl
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Jessica M Smith
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Karen Saye-Francisco
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Yoojin Kim
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Laetitia Misson Mindrebo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Quoc Tran
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Mateusz Kędzior
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Evy Boré
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Oliver Limbo
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Megan Verma
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| | - Robyn L Stanfield
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Stefanie K Menzies
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Stuart Ainsworth
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Robert A Harrison
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Dennis R Burton
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
- Ragon Institute of Massachusetts General Hospital, Massachusetts Institute of Technology, and Harvard University, Cambridge, MA 02139, USA
| | - Devin Sok
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
- Consortium for HIV/AIDS Vaccine Development (CHAVD), Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ian A Wilson
- Department of Integrative Structural and Computational Biology, Scripps Research Institute, La Jolla, CA 92037, USA
- Skaggs Institute for Chemical Biology, Scripps Research Institute, La Jolla, CA 92037, USA
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Department of Tropical Disease Biology, Liverpool School of Tropical Medicine, Liverpool L3 5QA, UK
| | - Kartik Sunagar
- Evolutionary Venomics Lab, Centre for Ecological Sciences, Indian Institute of Science, Bangalore 560012, Karnataka, India
| | - Joseph G Jardine
- Department of Immunology and Microbiology, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI Neutralizing Antibody Center, Scripps Research Institute, La Jolla, CA 92037, USA
- IAVI, New York, NY 10004, USA
| |
Collapse
|
3
|
Xu J, Lei X, Li A, Li J, Li S, Chen L. Scalable production of recombinant three-finger proteins: from inclusion bodies to high quality molecular probes. Microb Cell Fact 2024; 23:48. [PMID: 38347541 PMCID: PMC10860255 DOI: 10.1186/s12934-024-02316-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2022] [Accepted: 08/10/2022] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND The three-finger proteins are a collection of disulfide bond rich proteins of great biomedical interests. Scalable recombinant expression and purification of bioactive three-finger proteins is quite difficult. RESULTS We introduce a working pipeline for expression, purification and validation of disulfide-bond rich three-finger proteins using E. coli as the expression host. With this pipeline, we have successfully obtained highly purified and bioactive recombinant α-Βungarotoxin, k-Bungarotoxin, Hannalgesin, Mambalgin-1, α-Cobratoxin, MTα, Slurp1, Pate B etc. Milligrams to hundreds of milligrams of recombinant three finger proteins were obtained within weeks in the lab. The recombinant proteins showed specificity in binding assay and six of them were crystallized and structurally validated using X-ray diffraction protein crystallography. CONCLUSIONS Our pipeline allows refolding and purifying recombinant three finger proteins under optimized conditions and can be scaled up for massive production of three finger proteins. As many three finger proteins have attractive therapeutic or research interests and due to the extremely high quality of the recombinant three finger proteins we obtained, our method provides a competitive alternative to either their native counterparts or chemically synthetic ones and should facilitate related research and applications.
Collapse
Affiliation(s)
- Jiang Xu
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| | - Xiao Lei
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Ao Li
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Jun Li
- Institute of Clinical Medicine, The First Affiliated Hospital of University of South China, Hengyang, Hunan, 421001, People's Republic of China
| | - Shuxing Li
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA
| | - Lin Chen
- Molecular and Computational Biology, Department of Biological Sciences, University of Southern California, Los Angeles, CA, 90089, USA.
| |
Collapse
|
4
|
Singh K, Ngo A, Keerthisinghe OV, Patel KK, Liang C, Mukherjee J. Synthesis and Evaluation of Compound Targeting α7 and β2 Subunits in Nicotinic Acetylcholinergic Receptor. Molecules 2023; 28:8128. [PMID: 38138615 PMCID: PMC10745926 DOI: 10.3390/molecules28248128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 12/24/2023] Open
Abstract
Nicotinic acetylcholine receptors (nAChRs) are involved in various central nervous system functions and have also been implicated in several neurodegenerative disorders. The heteromeric α4β2* and homomeric α7 are two major nAChR subtypes which have been studied in the brain using positron emission tomography (PET). Our comparative autoradiographic studies of the two receptor types in the mouse and rat brains show major differences in the thalamus (α4β2* >> α7), hippocampus (α7 >> α4β2*), and subiculum (α4β2* >> α7). A relatively newer heteromeric α7β2 nAChR subtype has been identified in the brain which may have a greater role in neurodegeneration. We report the development of KS7 (3-(2-(S)-azetidinylmethoxy)-5-(1,4-diaza-bicyclo[3.2.2]nonane)pyridine) which incorporates structural features of Nifzetidine (high affinity for α4β2* nAChR) and ASEM (high affinity for α7 nAChR) in an effort to target α7 and β2 subunits in α7β2 nAChR. KS7 exhibited higher affinities (IC50 = 50 to 172 nM) for [3H]cytisine radiolabeled sites and weaker affinities (IC50 = 10 μM) for [125I]-α-bungarotoxin radiolabeled rat brain sites in several brain regions. The weaker affinity of KS7 to α7 nAChR may suggest lack of binding at the α7 subunit of α7β2 nAChR. A radiolabeled derivative of KS7 may be required to identify any specific binding to brain regions suggested to contain α7β2 nAChR.
Collapse
Affiliation(s)
| | | | | | | | | | - Jogeshwar Mukherjee
- Preclinical Imaging, Department of Radiological Sciences, University of California-Irvine, Irvine, CA 92697, USA; (K.S.); (A.N.); (O.V.K.); (K.K.P.); (C.L.)
| |
Collapse
|
5
|
Richards NJ, Alqallaf A, Mitchell RD, Parnell A, Haidar HB, Almeida JR, Williams J, Vijayakumar P, Balogun A, Matsakas A, Trim SA, Patel K, Vaiyapuri S. Indian Ornamental Tarantula ( Poecilotheria regalis) Venom Affects Myoblast Function and Causes Skeletal Muscle Damage. Cells 2023; 12:2074. [PMID: 37626884 PMCID: PMC10453882 DOI: 10.3390/cells12162074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/03/2023] [Accepted: 08/09/2023] [Indexed: 08/27/2023] Open
Abstract
Envenomation by the Indian ornamental tarantula (Poecilotheria regalis) is medically relevant to humans, both in its native India and worldwide, where they are kept as pets. Muscle-related symptoms such as cramps and pain are commonly reported in humans following envenomation by this species. There is no specific treatment, including antivenom, for its envenomation. Moreover, the scientific knowledge of the impact of this venom on skeletal muscle function is highly limited. Therefore, we carried out this study to better understand the myotoxic properties of Poecilotheria regalis venom by determining its effects in cultured myoblasts and in the tibialis anterior muscle in mice. While there was no effect found on undifferentiated myoblasts, the venom affected differentiated multinucleated myotubes resulting in the reduction of fusion and atrophy of myotubes. Similarly, intramuscular administration of this venom in the tibialis anterior muscle in mice resulted in extensive muscle damage on day 5. However, by day 10, the regeneration was evident, and the regeneration process continued until day 20. Nevertheless, some tissue abnormalities including reduced dystrophin expression and microthrombi presence were observed on day 20. Overall, this study demonstrates the ability of this venom to induce significant muscle damage and affect its regeneration in the early stages. These data provide novel mechanistic insights into this venom-induced muscle damage and guide future studies to isolate and characterise individual toxic component(s) that induce muscle damage and their significance in developing better therapeutics.
Collapse
Affiliation(s)
- Nicholas J. Richards
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - Ali Alqallaf
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
- Medical Services Authority, Ministry of Defence, Kuwait City 13012, Kuwait
| | | | - Andrew Parnell
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
- Micregen Ltd., Thames Valley Science Park, Reading RG2 9LH, UK;
| | - Husain Bin Haidar
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - José R. Almeida
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Jarred Williams
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Pradeep Vijayakumar
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| | - Adedoyin Balogun
- Molecular Physiology Laboratory, Centre for Biomedicine, Hull York Medical School, Hull HU6 7RX, UK
| | - Antonios Matsakas
- Molecular Physiology Laboratory, Centre for Biomedicine, Hull York Medical School, Hull HU6 7RX, UK
| | | | - Ketan Patel
- School of Biological Sciences, University of Reading, Reading RG6 6UB, UK; (N.J.R.); (A.A.); (A.P.); (H.B.H.)
| | - Sakthivel Vaiyapuri
- School of Pharmacy, University of Reading, Reading RG6 6UB, UK; (J.R.A.); (J.W.); (P.V.)
| |
Collapse
|
6
|
Pham MC, Masi G, Patzina R, Obaid AH, Oxendine SR, Oh S, Payne AS, Nowak RJ, O'Connor KC. Individual myasthenia gravis autoantibody clones can efficiently mediate multiple mechanisms of pathology. Acta Neuropathol 2023; 146:319-336. [PMID: 37344701 PMCID: PMC11380498 DOI: 10.1007/s00401-023-02603-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/23/2023]
Abstract
Serum autoantibodies targeting the nicotinic acetylcholine receptor (AChR) in patients with autoimmune myasthenia gravis (MG) can mediate pathology via three distinct molecular mechanisms: complement activation, receptor blockade, and antigenic modulation. However, it is unclear whether multi-pathogenicity is mediated by individual or multiple autoantibody clones. Using an unbiased B cell culture screening approach, we generated a library of 11 human-derived AChR-specific recombinant monoclonal autoantibodies (mAb) and assessed their binding properties and pathogenic profiles using specialized cell-based assays. Five mAbs activated complement, three blocked α-bungarotoxin binding to the receptor, and seven induced antigenic modulation. Furthermore, two clonally related mAbs derived from one patient were each highly efficient at more than one of these mechanisms, demonstrating that pathogenic mechanisms are not mutually exclusive at the monoclonal level. Using novel Jurkat cell lines that individually express each monomeric AChR subunit (α2βδε), these two mAbs with multi-pathogenic capacity were determined to exclusively bind the α-subunit of AChR, demonstrating an association between mAb specificity and pathogenic capacity. These findings provide new insight into the immunopathology of MG, demonstrating that single autoreactive clones can efficiently mediate multiple modes of pathology. Current therapeutic approaches targeting only one autoantibody-mediated pathogenic mechanism may be evaded by autoantibodies with multifaceted capacity.
Collapse
Affiliation(s)
- Minh C Pham
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
| | - Gianvito Masi
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Rosa Patzina
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Abeer H Obaid
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
- Institute of Biomedical Studies, Baylor University, Waco, TX, 76706, USA
| | - Seneca R Oxendine
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Sangwook Oh
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Aimee S Payne
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Richard J Nowak
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA
| | - Kevin C O'Connor
- Department of Immunobiology, Yale University School of Medicine, 300 George Street-Room 353J, New Haven, CT, 06511, USA.
- Department of Neurology, Yale University School of Medicine, New Haven, CT, 06511, USA.
| |
Collapse
|
7
|
Nys M, Zarkadas E, Brams M, Mehregan A, Kambara K, Kool J, Casewell NR, Bertrand D, Baenziger JE, Nury H, Ulens C. The molecular mechanism of snake short-chain α-neurotoxin binding to muscle-type nicotinic acetylcholine receptors. Nat Commun 2022; 13:4543. [PMID: 35927270 PMCID: PMC9352773 DOI: 10.1038/s41467-022-32174-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 07/20/2022] [Indexed: 11/11/2022] Open
Abstract
Bites by elapid snakes (e.g. cobras) can result in life-threatening paralysis caused by venom neurotoxins blocking neuromuscular nicotinic acetylcholine receptors. Here, we determine the cryo-EM structure of the muscle-type Torpedo receptor in complex with ScNtx, a recombinant short-chain α-neurotoxin. ScNtx is pinched between loop C on the principal subunit and a unique hairpin in loop F on the complementary subunit, thereby blocking access to the neurotransmitter binding site. ScNtx adopts a binding mode that is tilted toward the complementary subunit, forming a wider network of interactions than those seen in the long-chain α-Bungarotoxin complex. Certain mutations in ScNtx at the toxin-receptor interface eliminate inhibition of neuronal α7 nAChRs, but not of human muscle-type receptors. These observations explain why ScNtx binds more tightly to muscle-type receptors than neuronal receptors. Together, these data offer a framework for understanding subtype-specific actions of short-chain α-neurotoxins and inspire strategies for design of new snake antivenoms.
Collapse
Affiliation(s)
- Mieke Nys
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium.
| | - Eleftherios Zarkadas
- University Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
- University Grenoble Alpes, CNRS, CEA, EMBL, ISBG, F-38000, Grenoble, France
| | - Marijke Brams
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium
| | - Aujan Mehregan
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium
| | | | - Jeroen Kool
- AIMMS Division of BioMolecular Analysis, Vrije Universiteit Amsterdam, 1081, HV, Amsterdam, Netherlands
| | - Nicholas R Casewell
- Centre for Snakebite Research & Interventions, Liverpool School of Tropical Medicine, L3 5QA, Liverpool, UK
| | | | - John E Baenziger
- Department of Biochemistry, Microbiology, and Immunology, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Hugues Nury
- University Grenoble Alpes, CNRS, CEA, IBS, F-38000, Grenoble, France
| | - Chris Ulens
- Laboratory of Structural Neurobiology, Department of Cellular and Molecular Medicine, Faculty of Medicine, KU Leuven, 3000, Leuven, Belgium.
| |
Collapse
|
8
|
Chemical Synthesis of a Functional Fluorescent-Tagged α-Bungarotoxin. Toxins (Basel) 2022; 14:toxins14020079. [PMID: 35202107 PMCID: PMC8879871 DOI: 10.3390/toxins14020079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 01/16/2022] [Accepted: 01/17/2022] [Indexed: 11/30/2022] Open
Abstract
α-bungarotoxin is a large, 74 amino acid toxin containing five disulphide bridges, initially identified in the venom of Bungarus multicinctus snake. Like most large toxins, chemical synthesis of α-bungarotoxin is challenging, explaining why all previous reports use purified or recombinant α-bungarotoxin. However, only chemical synthesis allows easy insertion of non-natural amino acids or new chemical functionalities. Herein, we describe a procedure for the chemical synthesis of a fluorescent-tagged α-bungarotoxin. The full-length peptide was designed to include an alkyne function at the amino-terminus through the addition of a pentynoic acid linker. Chemical synthesis of α-bungarotoxin requires hydrazide-based coupling of three peptide fragments in successive steps. After completion of the oxidative folding, an azide-modified Cy5 fluorophore was coupled by click chemistry onto the toxin. Next, we determined the efficacy of the fluorescent-tagged α-bungarotoxin to block acetylcholine (ACh)-mediated currents in response to muscle nicotinic receptor activation in TE671 cells. Using automated patch-clamp recordings, we demonstrate that fluorescent synthetic α-bungarotoxin has the expected nanomolar affinity for the nicotinic receptor. The blocking effect of fluorescent α-bungarotoxin could be displaced by incubation with a 20-mer peptide mimicking the α-bungarotoxin binding site. In addition, TE671 cells could be labelled with fluorescent toxin, as witnessed by confocal microscopy, and this labelling was partially displaced by the 20-mer competitive peptide. We thus demonstrate that synthetic fluorescent-tagged α-bungarotoxin preserves excellent properties for binding onto muscle nicotinic receptors.
Collapse
|
9
|
Morgenstern TJ, Colecraft HM. Controlling ion channel trafficking by targeted ubiquitination and deubiquitination. Methods Enzymol 2021; 654:139-167. [PMID: 34120711 DOI: 10.1016/bs.mie.2021.03.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Plasma membrane-localized ion channels are essential for diverse physiological processes such as neurotransmission, muscle contraction, and osmotic homeostasis. The surface density of such ion channels is a major determinant of their function, and tuning this variable is a powerful way to regulate physiology. Dysregulation of ion channel surface density due to inherited or de novo mutations underlies many serious diseases, and molecules that can correct trafficking deficits are potential therapeutics and useful research tools. We have developed targeted ubiquitination and deubiquitination approaches that enable selective posttranslational down- or up-regulation, respectively, of desired ion channels. The method employs bivalent molecules comprised of an ion-channel-targeted nanobody fused to catalytic domains of either an E3 ubiquitin ligase or a deubiquitinase. Here, we use two examples to provide detailed protocols that illustrate the utility of the approach-rescued surface expression of a trafficking-deficient mutant KV7.1 (KCNQ1) channel that causes long QT syndrome, and selective elimination of the CaV2.2 voltage-gated calcium channel from the plasma membrane using targeted ubiquitination. Important aspects of the approach include having a robust assay to measure ion channel surface density and generating nanobody binders to cytosolic domains or subunits of targeted ion channels. Accordingly, we also review available methods for determining ion channel surface density and nanobody selection.
Collapse
Affiliation(s)
- Travis J Morgenstern
- Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States
| | - Henry M Colecraft
- Department of Molecular Pharmacology and Therapeutics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States; Department of Physiology and Cellular Biophysics, Columbia University, Vagelos College of Physicians and Surgeons, New York, NY, United States.
| |
Collapse
|
10
|
Beliu G, Altrichter S, Guixà-González R, Hemberger M, Brauer I, Dahse AK, Scholz N, Wieduwild R, Kuhlemann A, Batebi H, Seufert F, Pérez-Hernández G, Hildebrand PW, Sauer M, Langenhan T. Tethered agonist exposure in intact adhesion/class B2 GPCRs through intrinsic structural flexibility of the GAIN domain. Mol Cell 2021; 81:905-921.e5. [PMID: 33497605 DOI: 10.1016/j.molcel.2020.12.042] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 08/28/2020] [Accepted: 12/24/2020] [Indexed: 12/11/2022]
Abstract
Adhesion G protein-coupled receptors (aGPCRs)/family B2 GPCRs execute critical tasks during development and the operation of organs, and their genetic lesions are associated with human disorders, including cancers. Exceptional structural aGPCR features are the presence of a tethered agonist (TA) concealed within a GPCR autoproteolysis-inducing (GAIN) domain and their non-covalent heteromeric two-subunit layout. How the TA is poised for activation while maintaining this delicate receptor architecture is central to conflicting signaling paradigms that either involve or exclude aGPCR heterodimer separation. We investigated this matter in five mammalian aGPCR homologs (ADGRB3, ADGRE2, ADGRE5, ADGRG1, and ADGRL1) and demonstrate that intact aGPCR heterodimers exist at the cell surface, that the core TA region becomes unmasked in the cleaved GAIN domain, and that intra-GAIN domain movements regulate the level of tethered agonist exposure, thereby likely controlling aGPCR activity. Collectively, these findings delineate a unifying mechanism for TA-dependent signaling of intact aGPCRs.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Antigens, CD/chemistry
- Antigens, CD/genetics
- Antigens, CD/metabolism
- Binding Sites
- COS Cells
- Chlorocebus aethiops
- Crystallography, X-Ray
- Gene Expression
- HEK293 Cells
- Humans
- Molecular Dynamics Simulation
- Nerve Tissue Proteins/chemistry
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/metabolism
- Peptides/chemistry
- Peptides/genetics
- Peptides/metabolism
- Protein Binding
- Protein Conformation, alpha-Helical
- Protein Conformation, beta-Strand
- Protein Interaction Domains and Motifs
- Protein Multimerization
- Proteolysis
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Receptors, Peptide/chemistry
- Receptors, Peptide/genetics
- Receptors, Peptide/metabolism
- Recombinant Proteins/chemistry
- Recombinant Proteins/genetics
- Recombinant Proteins/metabolism
- Sequence Alignment
- Sequence Homology, Amino Acid
- Signal Transduction
Collapse
Affiliation(s)
- Gerti Beliu
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Steffen Altrichter
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Ramon Guixà-González
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Laboratory of Biomolecular Research, Paul Scherrer Institute (PSI), 5232 Villigen PSI, Switzerland; Condensed Matter Theory Group, PSI, 5232 Villigen PSI, Switzerland
| | - Mareike Hemberger
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Ina Brauer
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Anne-Kristin Dahse
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Nicole Scholz
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Robert Wieduwild
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany
| | - Alexander Kuhlemann
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Hossein Batebi
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Florian Seufert
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany
| | - Guillermo Pérez-Hernández
- Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Peter W Hildebrand
- Institute for Medical Physics and Biophysics, Medical Faculty, Leipzig University, Härtelstrasse 16-18, 04107 Leipzig, Germany; Institute of Medical Physics and Biophysics, Charité - Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany; Berlin Institute of Health, 10178 Berlin, Germany.
| | - Markus Sauer
- Department of Biotechnology and Biophysics, Biocenter, University of Würzburg, Am Hubland, 97074 Würzburg, Germany.
| | - Tobias Langenhan
- Rudolf Schönheimer Institute of Biochemistry, Division of General Biochemistry, Medical Faculty, Leipzig University, Johannisallee 30, 04103 Leipzig, Germany.
| |
Collapse
|
11
|
Mineev KS, Kryukova EV, Kasheverov IE, Egorova NS, Zhmak MN, Ivanov IA, Senko DA, Feofanov AV, Ignatova AA, Arseniev AS, Utkin YN, Tsetlin VI. Spatial Structure and Activity of Synthetic Fragments of Lynx1 and of Nicotinic Receptor Loop C Models. Biomolecules 2020; 11:biom11010001. [PMID: 33374963 PMCID: PMC7821949 DOI: 10.3390/biom11010001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/06/2020] [Accepted: 12/19/2020] [Indexed: 11/16/2022] Open
Abstract
Lynx1, membrane-bound protein co-localized with the nicotinic acetylcholine receptors (nAChRs) and regulates their function, is a three-finger protein (TFP) made of three β-structural loops, similarly to snake venom α-neurotoxin TFPs. Since the central loop II of α-neurotoxins is involved in binding to nAChRs, we have recently synthesized the fragments of Lynx1 central loop, including those with the disulfide between Cys residues introduced at N- and C-termini, some of them inhibiting muscle-type nAChR similarly to the whole-size water-soluble Lynx1 (ws-Lynx1). Literature shows that the main fragment interacting with TFPs is the C-loop of both nAChRs and acetylcholine binding proteins (AChBPs) while some ligand-binding capacity is preserved by analogs of this loop, for example, by high-affinity peptide HAP. Here we analyzed the structural organization of these peptide models of ligands and receptors and its role in binding. Thus, fragments of Lynx1 loop II, loop C from the Lymnaea stagnalis AChBP and HAP were synthesized in linear and Cys-cyclized forms and structurally (CD and NMR) and functionally (radioligand assay on Torpedo nAChR) characterized. Connecting the C- and N-termini by disulfide in the ws-Lynx1 fragment stabilized its conformation which became similar to the loop II within the 1H-NMR structure of ws-Lynx1, the activity being higher than for starting linear fragment but lower than for peptide with free cysteines. Introduced disulfides did not considerably change the structure of HAP and of loop C fragments, the former preserving high affinity for α-bungarotoxin, while, surprisingly, no binding was detected with loop C and its analogs.
Collapse
Affiliation(s)
- Konstantin S. Mineev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Department of Physico-Chemical Biology and Biotechnology, Moscow Institute of Physics and Technology, 141700 Dolgoprudnyi, Russia
- Correspondence: ; Tel.: +7-(495)-330-74-83
| | - Elena V. Kryukova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Igor E. Kasheverov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Laboratory of Molecular Biology and Biochemistry, Institute of Molecular Medicine, Biomedical Science and Technology Park, Sechenov First Moscow State Medical University, 119991 Moscow, Russia
| | - Natalia S. Egorova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Maxim N. Zhmak
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Igor A. Ivanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Dmitry A. Senko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Department of Chemistry, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Alexey V. Feofanov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Biological Faculty, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Anastasia A. Ignatova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Alexander S. Arseniev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Yuri N. Utkin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
| | - Victor I. Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, 117997 Moscow, Russia; (E.V.K.); (I.E.K.); (N.S.E.); (M.N.Z.); (I.A.I.); (D.A.S.); (A.V.F.); (A.A.I.); (A.S.A.); (Y.N.U.); (V.I.T.)
- Institute for Physics and Engineering in Biomedicine, National Research Nuclear University MEPhI, 115409 Moscow, Russia
| |
Collapse
|
12
|
Lynagh T, Kiontke S, Meyhoff-Madsen M, Gless BH, Johannesen J, Kattelmann S, Christiansen A, Dufva M, Laustsen AH, Devkota K, Olsen CA, Kümmel D, Pless SA, Lohse B. Peptide Inhibitors of the α-Cobratoxin-Nicotinic Acetylcholine Receptor Interaction. J Med Chem 2020; 63:13709-13718. [PMID: 33143415 PMCID: PMC7705965 DOI: 10.1021/acs.jmedchem.0c01202] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
![]()
Venomous snakebites cause >100
000 deaths every year, in many cases
via potent depression of human neuromuscular signaling by snake α-neurotoxins.
Emergency therapy still relies on antibody-based antivenom, hampered
by poor access, frequent adverse reactions, and cumbersome production/purification.
Combining high-throughput discovery and subsequent structure–function
characterization, we present simple peptides that bind α-cobratoxin
(α-Cbtx) and prevent its inhibition of nicotinic acetylcholine
receptors (nAChRs) as a lead for the development of alternative antivenoms.
Candidate peptides were identified by phage display and deep sequencing,
and hits were characterized by electrophysiological recordings, leading
to an 8-mer peptide that prevented α-Cbtx inhibition of nAChRs.
We also solved the peptide:α-Cbtx cocrystal structure, revealing
that the peptide, although of unique primary sequence, binds to α-Cbtx
by mimicking structural features of the nAChR binding pocket. This
demonstrates the potential of small peptides to neutralize lethal
snake toxins in vitro, establishing a potential route to simple, synthetic,
low-cost antivenoms.
Collapse
Affiliation(s)
- Timothy Lynagh
- Sars International Centre for Marine Molecular Biology, University of Bergen, Thormøhlensgate 55, 5008 Bergen, Norway.,Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Stephan Kiontke
- Division of Structural Biology, Department of Biology/Chemistry, University of Osnabrück, Barbarastraße 13, Osnabrück 49076, Germany.,Faculty of Biology, Department of Plant Physiology and Photobiology, Philipps-Universität Marburg, Karl-von-Frisch-Straße 8, 35032 Marburg, Germany
| | - Maria Meyhoff-Madsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Bengt H Gless
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Jónas Johannesen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Sabrina Kattelmann
- Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Anders Christiansen
- Fluid Array Systems and Technology, Nano and Bio-physical Systems, Department of Health Technology, Technical University of Denmark, Building 423 Produktionstorvet, DK-2800 Kongens Lyngby, Denmark
| | - Martin Dufva
- Fluid Array Systems and Technology, Nano and Bio-physical Systems, Department of Health Technology, Technical University of Denmark, Building 423 Produktionstorvet, DK-2800 Kongens Lyngby, Denmark
| | - Andreas H Laustsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Kanchan Devkota
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Christian A Olsen
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Daniel Kümmel
- Division of Structural Biology, Department of Biology/Chemistry, University of Osnabrück, Barbarastraße 13, Osnabrück 49076, Germany.,Institute of Biochemistry, University of Münster, Corrensstraße 36, 48149 Münster, Germany
| | - Stephan Alexander Pless
- Center for Biopharmaceuticals & Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| | - Brian Lohse
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, DK-2100 Copenhagen, Denmark
| |
Collapse
|
13
|
Nirthanan S. Snake three-finger α-neurotoxins and nicotinic acetylcholine receptors: molecules, mechanisms and medicine. Biochem Pharmacol 2020; 181:114168. [PMID: 32710970 DOI: 10.1016/j.bcp.2020.114168] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 07/20/2020] [Accepted: 07/20/2020] [Indexed: 12/13/2022]
Abstract
Snake venom three-finger α-neurotoxins (α-3FNTx) act on postsynaptic nicotinic acetylcholine receptors (nAChRs) at the neuromuscular junction (NMJ) to produce skeletal muscle paralysis. The discovery of the archetypal α-bungarotoxin (α-BgTx), almost six decades ago, exponentially expanded our knowledge of membrane receptors and ion channels. This included the localisation, isolation and characterization of the first receptor (nAChR); and by extension, the pathophysiology and pharmacology of neuromuscular transmission and associated pathologies such as myasthenia gravis, as well as our understanding of the role of α-3FNTxs in snakebite envenomation leading to novel concepts of targeted treatment. Subsequent studies on a variety of animal venoms have yielded a plethora of novel toxins that have revolutionized molecular biomedicine and advanced drug discovery from bench to bedside. This review provides an overview of nAChRs and their subtypes, classification of α-3FNTxs and the challenges of typifying an increasing arsenal of structurally and functionally unique toxins, and the three-finger protein (3FP) fold in the context of the uPAR/Ly6/CD59/snake toxin superfamily. The pharmacology of snake α-3FNTxs including their mechanisms of neuromuscular blockade, variations in reversibility of nAChR interactions, specificity for nAChR subtypes or for distinct ligand-binding interfaces within a subtype and the role of α-3FNTxs in neurotoxic envenomation are also detailed. Lastly, a reconciliation of structure-function relationships between α-3FNTx and nAChRs, derived from historical mutational and biochemical studies and emerging atomic level structures of nAChR models in complex with α-3FNTxs is discussed.
Collapse
Affiliation(s)
- Selvanayagam Nirthanan
- School of Medical Science, Griffith Health Group, Griffith University, Gold Coast, Queensland, Australia.
| |
Collapse
|
14
|
Tsetlin VI, Kasheverov IE, Utkin YN. Three-finger proteins from snakes and humans acting on nicotinic receptors: Old and new. J Neurochem 2020; 158:1223-1235. [PMID: 32648941 DOI: 10.1111/jnc.15123] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2020] [Revised: 06/25/2020] [Accepted: 07/06/2020] [Indexed: 12/12/2022]
Abstract
The first toxin to give rise to the three-finger protein (TFP) family was α-bungarotoxin (α-Bgt) from Bungarus multicinctus krait venom. α-Bgt was crucial for research on nicotinic acetylcholine receptors (nAChRs), and in this Review article we focus on present data for snake venom TFPs and those of the Ly6/uPAR family from mammalians (membrane-bound Lynx1 and secreted SLURP-1) interacting with nAChRs. Recently isolated from Bungarus candidus venom, αδ-bungarotoxins differ from α-Bgt: they bind more reversibly and distinguish two binding sites in Torpedo californica nAChR. Naja kaouthia α-cobratoxin, classical blocker of nAChRs, was shown to inhibit certain GABA-A receptor subtypes, whereas α-cobratoxin dimer with 2 intermolecular disulfides has a novel type of 3D structure. Non-conventional toxin WTX has additional 5th disulfide not in the central loop, as α-Bgt, but in the N-terminal loop, like all Ly6/uPAR proteins, and inhibits α7 and Torpedo nAChRs. A water-soluble form of Lynx1, ws-Lynx1, was expressed in E. coli, its 1 H-NMR structure and binding to several nAChRs determined. For SLURP-1, similar information was obtained with its recombinant analogue rSLURP-1. A common feature of ws-Lynx1, rSLURP-1, and WTX is their activity against nAChRs and muscarinic acetylcholine receptors. Synthetic SLURP-1, identical to the natural protein, demonstrated some differences from rSLURP-1 in distinguishing nAChR subtypes. The loop II fragment of the Lynx1 was synthesized having the same µM affinity for the Torpedo nAChR as ws-Lynx1. This review illustrates the productivity of parallel research of nAChR interactions with the two TFP groups.
Collapse
Affiliation(s)
- Victor I Tsetlin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,PhysBio of MePhi, Moscow, Russian Federation
| | - Igor E Kasheverov
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation.,Sechenov First Moscow State Medical University, Institute of Molecular Medicine, Moscow, Russian Federation
| | - Yuri N Utkin
- Department of Molecular Neuroimmune Signalling, Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow, Russian Federation
| |
Collapse
|
15
|
Rahman MM, Teng J, Worrell BT, Noviello CM, Lee M, Karlin A, Stowell MHB, Hibbs RE. Structure of the Native Muscle-type Nicotinic Receptor and Inhibition by Snake Venom Toxins. Neuron 2020; 106:952-962.e5. [PMID: 32275860 DOI: 10.1016/j.neuron.2020.03.012] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/13/2020] [Accepted: 03/15/2020] [Indexed: 12/28/2022]
Abstract
The nicotinic acetylcholine receptor, a pentameric ligand-gated ion channel, converts the free energy of binding of the neurotransmitter acetylcholine into opening of its central pore. Here we present the first high-resolution structure of the receptor type found in muscle-endplate membrane and in the muscle-derived electric tissues of fish. The native receptor was purified from Torpedo electric tissue and functionally reconstituted in lipids optimal for cryo-electron microscopy. The receptor was stabilized in a closed state by the binding of α-bungarotoxin. The structure reveals the binding of a toxin molecule at each of two subunit interfaces in a manner that would block the binding of acetylcholine. It also reveals a closed gate in the ion-conducting pore, formed by hydrophobic amino acid side chains, located ∼60 Å from the toxin binding sites. The structure provides a framework for understanding gating in ligand-gated channels and how mutations in the acetylcholine receptor cause congenital myasthenic syndromes.
Collapse
Affiliation(s)
- Md Mahfuzur Rahman
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jinfeng Teng
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brady T Worrell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Colleen M Noviello
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Myeongseon Lee
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA
| | - Arthur Karlin
- Center for Molecular Recognition & Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032, USA
| | - Michael H B Stowell
- Department of Molecular, Cellular & Developmental Biology, University of Colorado, Boulder, CO 80309, USA.
| | - Ryan E Hibbs
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
16
|
Complex approach for analysis of snake venom α-neurotoxins binding to HAP, the high-affinity peptide. Sci Rep 2020; 10:3861. [PMID: 32123252 PMCID: PMC7052197 DOI: 10.1038/s41598-020-60768-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 02/14/2020] [Indexed: 12/30/2022] Open
Abstract
Snake venom α-neurotoxins, invaluable pharmacological tools, bind with high affinity to distinct subtypes of nicotinic acetylcholine receptor. The combinatorial high-affinity peptide (HAP), homologous to the C-loop of α1 and α7 nAChR subunits, binds biotinylated α-bungarotoxin (αBgt) with nanomolar affinity and might be a protection against snake-bites. Since there are no data on HAP interaction with other toxins, we checked its binding of α-cobratoxin (αCtx), similar to αBgt in action on nAChRs. Using radioiodinated αBgt, we confirmed a high affinity of HAP for αBgt, the complex formation is supported by mass spectrometry and gel chromatography, but only weak binding was registered with αCtx. A combination of protein intrinsic fluorescence measurements with the principal component analysis of the spectra allowed us to measure the HAP-αBgt binding constant directly (29 nM). These methods also confirmed weak HAP interaction with αCtx (>10000 nM). We attempted to enhance it by modification of HAP structure relying on the known structures of α-neurotoxins with various targets and applying molecular dynamics. A series of HAP analogues have been synthesized, HAP[L9E] analogue being considerably more potent than HAP in αCtx binding (7000 nM). The proposed combination of experimental and computational approaches appears promising for analysis of various peptide-protein interactions.
Collapse
|
17
|
Tabor GT, Park JM, Murphy JG, Hu JH, Hoffman DA. A novel bungarotoxin binding site-tagged construct reveals MAPK-dependent Kv4.2 trafficking. Mol Cell Neurosci 2019; 98:121-130. [PMID: 31212013 DOI: 10.1016/j.mcn.2019.06.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2019] [Revised: 06/11/2019] [Accepted: 06/13/2019] [Indexed: 02/07/2023] Open
Abstract
Kv4.2 voltage-gated K+ channel subunits, the primary source of the somatodendritic A-type K+ current in CA1 pyramidal neurons of the hippocampus, play important roles in regulating dendritic excitability and plasticity. To better study the trafficking and subcellular distribution of Kv4.2, we created and characterized a novel Kv4.2 construct encoding a bungarotoxin binding site in the extracellular S3-S4 linker region of the α-subunit. When expressed, this construct can be visualized in living cells after staining with rhodamine-conjugated bungarotoxin. We validated the utility of this construct by visualizing the spontaneous internalization and insertion of Kv4.2 in HEK 293T cells. We further report that Kv4.2 colocalized with several endosome markers in HEK 293T cells. In addition, Kv4.2 internalization is significantly impaired by mitogen-activated protein kinase (MAPK) inhibitors in transfected primary hippocampal neurons. Therefore, this newly developed BBS-Kv4.2 construct provides a novel and powerful tool for studying surface Kv4.2 channel localization and trafficking.
Collapse
Affiliation(s)
- G Travis Tabor
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America
| | - Jung M Park
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America
| | - Jonathan G Murphy
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America; National Institute of General Medical Sciences, NIH, Bethesda, MD 20892, United States of America
| | - Jia-Hua Hu
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America.
| | - Dax A Hoffman
- Section on Molecular Neurophysiology & Biophysics, The Eunice Kennedy Shriver National Institute of Child Health and Human Development, NIH, Bethesda, MD 20892, United States of America.
| |
Collapse
|
18
|
Leth JM, Leth-Espensen KZ, Kristensen KK, Kumari A, Lund Winther AM, Young SG, Ploug M. Evolution and Medical Significance of LU Domain-Containing Proteins. Int J Mol Sci 2019; 20:ijms20112760. [PMID: 31195646 PMCID: PMC6600238 DOI: 10.3390/ijms20112760] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Revised: 05/31/2019] [Accepted: 06/04/2019] [Indexed: 12/13/2022] Open
Abstract
Proteins containing Ly6/uPAR (LU) domains exhibit very diverse biological functions and have broad taxonomic distributions in eukaryotes. In general, they adopt a characteristic three-fingered folding topology with three long loops projecting from a disulfide-rich globular core. The majority of the members of this protein domain family contain only a single LU domain, which can be secreted, glycolipid anchored, or constitute the extracellular ligand binding domain of type-I membrane proteins. Nonetheless, a few proteins contain multiple LU domains, for example, the urokinase receptor uPAR, C4.4A, and Haldisin. In the current review, we will discuss evolutionary aspects of this protein domain family with special emphasis on variations in their consensus disulfide bond patterns. Furthermore, we will present selected cases where missense mutations in LU domain-containing proteins leads to dysfunctional proteins that are causally linked to genesis of human disease.
Collapse
Affiliation(s)
- Julie Maja Leth
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Katrine Zinck Leth-Espensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Kristian Kølby Kristensen
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anni Kumari
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Anne-Marie Lund Winther
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| | - Stephen G Young
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA.
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| | - Michael Ploug
- Finsen Laboratory, Ole Maaloes Vej 5, Righospitalet, DK-2200 Copenhagen, Denmark.
- Biotechnology Research Innovation Centre (BRIC), Ole Maaloes Vej 5, University of Copenhagen, DK-2200 Copenhagen, Denmark.
| |
Collapse
|
19
|
Structural basis for α-bungarotoxin insensitivity of neuronal nicotinic acetylcholine receptors. Neuropharmacology 2019; 160:107660. [PMID: 31163179 DOI: 10.1016/j.neuropharm.2019.05.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 04/25/2019] [Accepted: 05/30/2019] [Indexed: 01/22/2023]
Abstract
The ten types of nicotinic acetylcholine receptor α-subunits show substantial sequence homology, yet some types confer high affinity for α-bungarotoxin, whereas others confer negligible affinity. Combining sequence alignments with structural data reveals three residues unique to α-toxin-refractory α-subunits that coalesce within the 3D structure of the α4β2 receptor and are predicted to fit between loops I and II of α-bungarotoxin. Mutating any one of these residues, Lys189, Ile196 or Lys153, to the α-toxin-permissive counterpart fails to confer α-bungarotoxin binding. However, mutating both Lys189 and Ile196 affords α-bungarotoxin binding with an apparent dissociation constant of 104 nM, while combining mutation of Lys153 reduces the dissociation constant to 22 nM. Analogous residue substitutions also confer high affinity α-bungarotoxin binding upon α-toxin-refractory α2 and α3 subunits. α4β2 receptors engineered to bind α-bungarotoxin exhibit slow rates of α-toxin association and dissociation, and competition by cholinergic ligands typical of muscle nicotinic receptors. Receptors engineered to bind α-bungarotoxin co-sediment with muscle nicotinic receptors on sucrose gradients, and mirror single channel signatures of their α-toxin-refractory counterparts. Thus the inability of α-bungarotoxin to bind to neuronal nicotinic receptors arises from three unique and interdependent residues that coalesce within the receptor's 3D structure.
Collapse
|
20
|
Wen J, Hung A. Effects of C-Terminal Carboxylation on α-Conotoxin LsIA Interactions with Human α7 Nicotinic Acetylcholine Receptor: Molecular Simulation Studies. Mar Drugs 2019; 17:md17040206. [PMID: 30987002 PMCID: PMC6521072 DOI: 10.3390/md17040206] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/27/2019] [Indexed: 01/25/2023] Open
Abstract
α-Conotoxins selectively bind to nicotinic acetylcholine receptors (nAChRs), which are therapeutic targets due to their important role in signaling transmission in excitable cells. A previous experimental study has demonstrated that carboxylation of the C-terminal of α-conotoxin LsIA reduces its potency to inhibit human α7 nAChR relative to naturally amidated LsIA. However, little is known about the contribution of conformational changes in the receptor and interactions, induced by C-terminal amidation/carboxylation of conotoxins, to selective binding to nAChRs, since most conotoxins and some disulfide-rich peptides from other conotoxin subfamilies possess a naturally amidated C-terminal. In this study, we employ homology modeling and molecular dynamics (MD) simulations to propose the determinants for differential interactions between amidated and carboxylated LsIAs with α7 nAChR. Our findings indicate an overall increased number of contacts favored by binding of amidated LsIA versus its carboxylated counterpart. Toxin-receptor pairwise interactions, which may play a role in enhancing the potency of the former, include ARG10-TRP77, LEU141 and CYS17-GLN79 via persistent hydrogen bonds and cation-π interactions, which are weakened in the carboxylated form due to a strong intramolecular salt-bridge formed by ARG10 and carboxylated C-terminus. The binding of amidated LsIA also induces enhanced movements in loop C and the juxtamembrane Cys-loop that are closely associated with receptor function. Additionally, the impacts of binding of LsIA on the overall structure and inter-subunit contacts were examined using inter-residue network analysis, suggesting a clockwise tilting of the α7 C and F loops upon binding to carboxylated LsIA, which is absent for amidated LsIA binding. The predicted molecular mechanism of LsIA binding to the α7 receptor may provide new insights into the important role of the C-terminal in the binding potency of conotoxins at neuronal nAChRs for pharmacological purposes.
Collapse
Affiliation(s)
- Jierong Wen
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC3001, Australia.
| | - Andrew Hung
- School of Science, College of Science, Engineering and Health, RMIT University, Melbourne, VIC3001, Australia.
| |
Collapse
|
21
|
Hannan S, Minere M, Harris J, Izquierdo P, Thomas P, Tench B, Smart TG. GABA AR isoform and subunit structural motifs determine synaptic and extrasynaptic receptor localisation. Neuropharmacology 2019; 169:107540. [PMID: 30794836 DOI: 10.1016/j.neuropharm.2019.02.022] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 02/06/2019] [Accepted: 02/14/2019] [Indexed: 12/27/2022]
Abstract
GABAA receptors (GABAARs) are the principal inhibitory neurotransmitter receptors in the central nervous system. They control neuronal excitability by synaptic and tonic forms of inhibition mostly mediated by different receptor subtypes located in specific cell membrane subdomains. A consensus suggests that α1-3βγ comprise synaptic GABAARs, whilst extrasynaptic α4βδ, α5βγ and αβ isoforms largely underlie tonic inhibition. Although some structural features that enable the spatial segregation of receptors are known, the mobility of key synaptic and extrasynaptic GABAARs are less understood, and yet this is a key determinant of the efficacy of GABA inhibition. To address this aspect, we have incorporated functionally silent α-bungarotoxin binding sites (BBS) into prominent hippocampal GABAAR subunits which mediate synaptic and tonic inhibition. Using single particle tracking with quantum dots we demonstrate that GABAARs that are traditionally considered to mediate synaptic or tonic inhibition are all able to access inhibitory synapses. These isoforms have variable diffusion rates and are differentially retained upon entering the synaptic membrane subdomain. Interestingly, α2 and α4 subunits reside longer at synapses compared to α5 and δ subunits. Furthermore, a high proportion of extrasynaptic δ-containing receptors exhibited slower diffusion compared to δ subunits at synapses. A chimera formed from δ-subunits, with the intracellular domain of γ2L, reversed this behaviour. In addition, we observed that receptor activation affected the diffusion of extrasynaptic, but not of synaptic GABAARs. Overall, we conclude that the differential mobility profiles of key synaptic and extrasynaptic GABAARs are determined by receptor subunit composition and intracellular structural motifs. This article is part of the special issue entitled 'Mobility and trafficking of neuronal membrane proteins'.
Collapse
Affiliation(s)
- Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| | - Marielle Minere
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Joseph Harris
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Pablo Izquierdo
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Philip Thomas
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Becky Tench
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
22
|
Dutertre S, Nicke A, Tsetlin VI. Nicotinic acetylcholine receptor inhibitors derived from snake and snail venoms. Neuropharmacology 2017. [PMID: 28623170 DOI: 10.1016/j.neuropharm.2017.06.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The nicotinic acetylcholine receptor (nAChR) represents the prototype of ligand-gated ion channels. It is vital for neuromuscular transmission and an important regulator of neurotransmission. A variety of toxic compounds derived from diverse species target this receptor and have been of elemental importance in basic and applied research. They enabled milestone discoveries in pharmacology and biochemistry ranging from the original formulation of the receptor concept, the first isolation and structural analysis of a receptor protein (the nAChR) to the identification, localization, and differentiation of its diverse subtypes and their validation as a target for therapeutic intervention. Among the venom-derived compounds, α-neurotoxins and α-conotoxins provide the largest families and still represent indispensable pharmacological tools. Application of modified α-neurotoxins provided substantial structural and functional details of the nAChR long before high resolution structures were available. α-bungarotoxin represents not only a standard pharmacological tool and label in nAChR research but also for unrelated proteins tagged with a minimal α-bungarotoxin binding motif. A major advantage of α-conotoxins is their smaller size, as well as superior selectivity for diverse nAChR subtypes that allows their development into ligands with optimized pharmacological and chemical properties and potentially novel drugs. In the following, these two groups of nAChR antagonists will be described focusing on their respective roles in the structural and functional characterization of nAChRs and their development into research tools. In addition, we provide a comparative overview of the diverse α-conotoxin selectivities that can serve as a practical guide for both structure activity studies and subtype classification. This article is part of the Special Issue entitled 'Venom-derived Peptides as Pharmacological Tools.'
Collapse
Affiliation(s)
- Sébastien Dutertre
- Institut des Biomolécules Max Mousseron, UMR 5247, Université Montpellier - CNRS, Place Eugène Bataillon, 34095 Montpellier Cedex 5, France
| | - Annette Nicke
- Walther Straub Institute for Pharmacology and Toxicology, Ludwig-Maximilians-Universität, Nußbaumstr. 26, 80336 Munich, Germany.
| | - Victor I Tsetlin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Miklukho-Maklaya str.16/10, Moscow 117999, Russian Federation
| |
Collapse
|
23
|
Liao JM, Wang YT, Lin CLS. A fragment-based docking simulation for investigating peptide–protein bindings. Phys Chem Chem Phys 2017; 19:10436-10442. [DOI: 10.1039/c6cp07136h] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
We developed a fragment-based docking strategy for long peptide docking simulations, which separates a long peptide into halves for docking, and then recombined to rebuild whole-peptide docking conformations. With further screening, optimizations and MM/GBSA scoring, our method was capable of efficiently predicting the near-native peptide binding conformations.
Collapse
Affiliation(s)
- Jun-min Liao
- Graduate School of Medicine
- Kaohsiung Medical University
- Taiwan
| | - Yeng-Tseng Wang
- Department of Biochemistry
- Kaohsiung Medical University
- Taiwan
| | | |
Collapse
|
24
|
Kasheverov IE, Kryukova EV, Kudryavtsev DS, Ivanov IA, Egorova NV, Zhmak MN, Spirova EN, Shelukhina IV, Odinokov AV, Alfimov MV, Tsetlin VI. Analysis of binding centers in nicotinic receptors with the aid of synthetic peptides. DOKL BIOCHEM BIOPHYS 2016; 470:338-341. [DOI: 10.1134/s1607672916050070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Indexed: 11/22/2022]
|
25
|
Barnwal B, Jobichen C, Girish VM, Foo CS, Sivaraman J, Kini RM. Ringhalexin from Hemachatus haemachatus: A novel inhibitor of extrinsic tenase complex. Sci Rep 2016; 6:25935. [PMID: 27173146 PMCID: PMC4865804 DOI: 10.1038/srep25935] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Accepted: 04/26/2016] [Indexed: 12/15/2022] Open
Abstract
Anticoagulant therapy is used for the prevention and treatment of thromboembolic disorders. Blood coagulation is initiated by the interaction of factor VIIa (FVIIa) with membrane-bound tissue factor (TF) to form the extrinsic tenase complex which activates FX to FXa. Thus, it is an important target for the development of novel anticoagulants. Here, we report the isolation and characterization of a novel anticoagulant ringhalexin from the venom of Hemachatus haemachatus (African Ringhals Cobra). Amino acid sequence of the protein indicates that it belongs to the three-finger toxin family and exhibits 94% identity to an uncharacterized Neurotoxin-like protein NTL2 from Naja atra. Ringhalexin inhibited FX activation by extrinsic tenase complex with an IC50 of 123.8 ± 9.54 nM. It is a mixed-type inhibitor with the kinetic constants, Ki and Ki' of 84.25 ± 3.53 nM and 152.5 ± 11.32 nM, respectively. Ringhalexin also exhibits a weak, irreversible neurotoxicity on chick biventer cervicis muscle preparations. Subsequently, the three-dimensional structure of ringhalexin was determined at 2.95 Å resolution. This study for the first time reports the structure of an anticoagulant three-finger toxin. Thus, ringhalexin is a potent inhibitor of the FX activation by extrinsic tenase complex and a weak, irreversible neurotoxin.
Collapse
Affiliation(s)
- Bhaskar Barnwal
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119260, Singapore
| | - Chacko Jobichen
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119260, Singapore
| | | | - Chun Shin Foo
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119260, Singapore
| | - J. Sivaraman
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119260, Singapore
| | - R. Manjunatha Kini
- Department of Biological Sciences, Faculty of Science, National University of Singapore, Singapore 119260, Singapore
| |
Collapse
|
26
|
Zakharova GV, Konstantinov RR, Odinokov AV, Chibisov AK, Alfimov MV, Kasheverov IE, Utkin YN, Zhmak MN, Tsetlin VI. Effect of a peptide modeling the nicotinic receptor binding site on the spectral and luminescent properties of dye complexes with cucurbit[8]uril. HIGH ENERGY CHEMISTRY 2016. [DOI: 10.1134/s0018143916020090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
27
|
Lotze J, Reinhardt U, Seitz O, Beck-Sickinger AG. Peptide-tags for site-specific protein labelling in vitro and in vivo. MOLECULAR BIOSYSTEMS 2016; 12:1731-45. [DOI: 10.1039/c6mb00023a] [Citation(s) in RCA: 129] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Peptide-tag based labelling can be achieved by (i) enzymes (ii) recognition of metal ions or small molecules and (iii) peptide–peptide interactions and enables site-specific protein visualization to investigate protein localization and trafficking.
Collapse
Affiliation(s)
- Jonathan Lotze
- Institut für Biochemie
- Universität Leipzig
- D-04103 Leipzig
- Germany
| | - Ulrike Reinhardt
- Institut für Chemie
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- Germany
| | - Oliver Seitz
- Institut für Chemie
- Humboldt-Universität zu Berlin
- D-12489 Berlin
- Germany
| | | |
Collapse
|
28
|
Hayashi A, Asanuma D, Kamiya M, Urano Y, Okabe S. High affinity receptor labeling based on basic leucine zipper domain peptides conjugated with pH-sensitive fluorescent dye: Visualization of AMPA-type glutamate receptor endocytosis in living neurons. Neuropharmacology 2015. [PMID: 26220312 DOI: 10.1016/j.neuropharm.2015.07.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Techniques to visualize receptor trafficking in living neurons are important, but currently available methods are limited in their labeling efficiency, specificity and reliability. Here we report a method for receptor labeling with a basic leucine zipper domain peptide (ZIP) and a binding cassette specific to ZIP. Receptors are tagged with a ZIP-binding cassette at their extracellular domain. Tagged receptors expressed in cultured cells were labeled with exogenously applied fluorescently labeled ZIP with low background and high affinity. To test if ZIP labeling is useful in monitoring endocytosis and intracellular trafficking, we next conjugated ZIP with a pH-sensitive dye RhP-M (ZIP-RhP-M). ZIP binding to its binding cassette was pH-resistant and RhP-M fluorescence dramatically increased in acidic environment. Thus AMPA-type glutamate receptors (AMPARs) labeled by ZIP-RhP-M can report receptor endocytosis and subsequent intracellular trafficking. Application of ZIP-RhP-M to cultured hippocampal neurons expressing AMPARs tagged with a ZIP-binding cassette resulted in appearance of fluorescent puncta in PSD-95-positive large spines, suggesting local endocytosis and acidification of AMPARs in individual mature spines. This spine pool of AMPARs in acidic environment was distinct from the early endosomes labeled by transferrin uptake. These results suggest that receptor labeling by ZIP-RhP-M is a useful technique for monitoring endocytosis and intracellular trafficking. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.
Collapse
Affiliation(s)
- Ayako Hayashi
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Japan; CREST, JST, Japan
| | - Daisuke Asanuma
- Department of Neurobiology, Graduate School of Medicine, The University of Tokyo, Japan
| | - Mako Kamiya
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Japan
| | - Yasuteru Urano
- Laboratory of Chemical Biology and Molecular Imaging, Graduate School of Medicine, The University of Tokyo, Japan
| | - Shigeo Okabe
- Department of Cellular Neurobiology, Graduate School of Medicine, The University of Tokyo, Japan; CREST, JST, Japan.
| |
Collapse
|
29
|
Ma G, Wei M, He L, Liu C, Wu B, Zhang SL, Jing J, Liang X, Senes A, Tan P, Li S, Sun A, Bi Y, Zhong L, Si H, Shen Y, Li M, Lee MS, Zhou W, Wang J, Wang Y, Zhou Y. Inside-out Ca(2+) signalling prompted by STIM1 conformational switch. Nat Commun 2015; 6:7826. [PMID: 26184105 PMCID: PMC4509486 DOI: 10.1038/ncomms8826] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2014] [Accepted: 06/16/2015] [Indexed: 12/11/2022] Open
Abstract
Store-operated Ca(2+) entry mediated by STIM1 and ORAI1 constitutes one of the major Ca(2+) entry routes in mammalian cells. The molecular choreography of STIM1-ORAI1 coupling is initiated by endoplasmic reticulum (ER) Ca(2+) store depletion with subsequent oligomerization of the STIM1 ER-luminal domain, followed by its redistribution towards the plasma membrane to gate ORAI1 channels. The mechanistic underpinnings of this inside-out Ca(2+) signalling were largely undefined. By taking advantage of a unique gain-of-function mutation within the STIM1 transmembrane domain (STIM1-TM), here we show that local rearrangement, rather than alteration in the oligomeric state of STIM1-TM, prompts conformational changes in the cytosolic juxtamembrane coiled-coil region. Importantly, we further identify critical residues within the cytoplasmic domain of STIM1 (STIM1-CT) that entail autoinhibition. On the basis of these findings, we propose a model in which STIM1-TM reorganization switches STIM1-CT into an extended conformation, thereby projecting the ORAI-activating domain to gate ORAI1 channels.
Collapse
Affiliation(s)
- Guolin Ma
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Ming Wei
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Lian He
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Chongxu Liu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Bo Wu
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Shenyuan L. Zhang
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas 76504, USA
| | - Ji Jing
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Xiaowen Liang
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Alessandro Senes
- Department of Biochemistry, University of Wisconsin Madison, Madison, Wisconsin 53706, USA
| | - Peng Tan
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Siwei Li
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Aomin Sun
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yunchen Bi
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Ling Zhong
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
| | - Hongjiang Si
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas 76504, USA
| | - Yuequan Shen
- College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Minyong Li
- Key Laboratory of Chemical Biology, School of Pharmacy, Shandong University, Jinan, Shandong 250012, China
| | - Mi-Sun Lee
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Weibin Zhou
- Department of Pediatrics and Communicable Diseases, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | - Junfeng Wang
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
- University of Science and Technology of China, Hefei, Anhui 230036, China
| | - Youjun Wang
- Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China
| | - Yubin Zhou
- Institute of Biosciences and Technology, Texas A&M University Health Science Center, Houston, Texas 77030, USA
- Department of Medical Physiology, College of Medicine, Texas A&M University Health Science Center, Temple, Texas 76504, USA
| |
Collapse
|
30
|
Odinokov AV, Bagaturyants AA. Specific Interactions of Neutral Side Chains of an Adsorbed Protein with the Surface of α-Quartz and Silica Gel. J Phys Chem B 2015; 119:8679-84. [PMID: 26086173 DOI: 10.1021/acs.jpcb.5b04064] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Many key features of the protein adsorption on the silica surfaces still remain unraveled. One of the open questions is the interaction of nonpolar side chains with siloxane cavities. Here, we use nonequilibrium molecular dynamics simulations for the detailed investigation of the binding of several hydrophobic and amphiphilic protein side chains with silica surface. These interactions were found to be a possible driving force for protein adsorption. The free energy gain was larger for the disordered surface of amorphous silica gel as compared to α-quartz, but the impact depended on the type of amino acid. The dependence was analyzed from the structural point of view. For every amino acid an enthalpy-entropy compensation behavior was observed. These results confirm a hypothesis of an essential role of hydrophobic interactions in protein unfolding and irreversible adsorption on the silica surface.
Collapse
Affiliation(s)
- Alexey V Odinokov
- †Photochemistry Center, Russian Academy of Sciences, Novatorov street 7a, building 1, Moscow 119421, Russia
| | - Alexander A Bagaturyants
- †Photochemistry Center, Russian Academy of Sciences, Novatorov street 7a, building 1, Moscow 119421, Russia.,‡Moscow Engineering Physics Institute, Kashirskoe hwy 31, Moscow 115409, Russia
| |
Collapse
|
31
|
Thomsen MS, Zwart R, Ursu D, Jensen MM, Pinborg LH, Gilmour G, Wu J, Sher E, Mikkelsen JD. α7 and β2 Nicotinic Acetylcholine Receptor Subunits Form Heteromeric Receptor Complexes that Are Expressed in the Human Cortex and Display Distinct Pharmacological Properties. PLoS One 2015; 10:e0130572. [PMID: 26086615 PMCID: PMC4472343 DOI: 10.1371/journal.pone.0130572] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 05/21/2015] [Indexed: 12/03/2022] Open
Abstract
The existence of α7β2 nicotinic acetylcholine receptors (nAChRs) has recently been demonstrated in both the rodent and human brain. Since α7-containing nAChRs are promising drug targets for schizophrenia and Alzheimer’s disease, it is critical to determine whether α7β2 nAChRs are present in the human brain, in which brain areas, and whether they differ functionally from α7 nAChR homomers. We used α-bungarotoxin to affinity purify α7-containing nAChRs from surgically excised human temporal cortex, and found that α7 subunits co-purify with β2 subunits, indicating the presence of α7β2 nAChRs in the human brain. We validated these results by demonstrating co-purification of β2 from wild-type, but not α7 or β2 knock-out mice. The pharmacology and kinetics of human α7β2 nAChRs differed significantly from that of α7 homomers in response to nAChR agonists when expressed in Xenopus oocytes and HEK293 cells. Notably, α7β2 heteromers expressed in HEK293 cells display markedly slower rise and decay phases. These results demonstrate that α7 subunits in the human brain form heteromeric complexes with β2 subunits, and that human α7β2 nAChR heteromers respond to nAChR agonists with a unique pharmacology and kinetic profile. α7β2 nAChRs thus represent an alternative mechanism for the reported clinical efficacy of α7 nAChR ligands.
Collapse
Affiliation(s)
- Morten Skøtt Thomsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Ruud Zwart
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Daniel Ursu
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Majbrit Myrup Jensen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Lars Hageman Pinborg
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- Epilepsy Clinic, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
| | - Gary Gilmour
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Jie Wu
- Divisions of Neurology, Barrow Neurological Institute, St. Joseph's Hospital and Medical Center, Phoenix, United States of America
| | - Emanuele Sher
- Lilly Research Centre, Eli Lilly and Company Limited, Erl Wood Manor, United Kingdom
| | - Jens Damsgaard Mikkelsen
- Neurobiology Research Unit, University Hospital Copenhagen, Rigshospitalet, Copenhagen, Denmark
- * E-mail:
| |
Collapse
|
32
|
Hannan S, Mortensen M, Smart TG. Snake neurotoxin α-bungarotoxin is an antagonist at native GABA(A) receptors. Neuropharmacology 2015; 93:28-40. [PMID: 25634239 PMCID: PMC4398322 DOI: 10.1016/j.neuropharm.2015.01.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2014] [Revised: 12/08/2014] [Accepted: 01/07/2015] [Indexed: 12/25/2022]
Abstract
The snake neurotoxin α-bungarotoxin (α-Bgtx) is a competitive antagonist at nicotinic acetylcholine receptors (nAChRs) and is widely used to study their function and cell-surface expression. Increasingly, α-Bgtx is also used as an imaging tool for fluorophore-labelling studies, and given the structural conservation within the pentameric ligand-gated ion channel family, we assessed whether α-Bgtx could bind to recombinant and native γ-aminobutyric type-A receptors (GABAARs). Applying fluorophore-linked α-Bgtx to recombinant αxβ1/2γ2 GABAARs expressed in HEK-293 cells enabled clear cell-surface labelling of α2β1/2γ2 contrasting with the weaker staining of α1/4β1/2γ2, and no labelling for α3/5/6β1/2γ2. The labelling of α2β2γ2 was abolished by bicuculline, a competitive antagonist at GABAARs, and by d-tubocurarine (d-Tc), which acts in a similar manner at nAChRs and GABAARs. Labelling by α-Bgtx was also reduced by GABA, suggesting that the GABA binding site at the receptor β–α subunit interface forms part of the α-Bgtx binding site. Using whole-cell recording, high concentrations of α-Bgtx (20 μM) inhibited GABA-activated currents at all αxβ2γ2 receptors examined, but at lower concentrations (5 μM), α-Bgtx was selective for α2β2γ2. Using α-Bgtx, at low concentrations, permitted the selective inhibition of α2 subunit-containing GABAARs in hippocampal dentate gyrus granule cells, reducing synaptic current amplitudes without affecting the GABA-mediated tonic current. In conclusion, α-Bgtx can act as an inhibitor at recombinant and native GABAARs and may be used as a selective tool to inhibit phasic but not tonic currents in the hippocampus. Recombinant GABAA receptors are inhibited by α-bungarotoxin The β–α subunit interface of GABAA receptors forms the α-bungarotoxin binding site. α-bungarotoxin can selectively inhibit α2 subunit-containing GABAA receptors (α2β2γ2). α-bungarotoxin inhibits GABA synaptic currents in the hippocampus. GABA-mediated tonic currents are unaffected by α-bungarotoxin
Collapse
Affiliation(s)
- Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Martin Mortensen
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom
| | - Trevor G Smart
- Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom.
| |
Collapse
|
33
|
Three-finger snake neurotoxins and Ly6 proteins targeting nicotinic acetylcholine receptors: pharmacological tools and endogenous modulators. Trends Pharmacol Sci 2014; 36:109-23. [PMID: 25528970 DOI: 10.1016/j.tips.2014.11.003] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 11/04/2014] [Accepted: 11/10/2014] [Indexed: 02/07/2023]
Abstract
Snake venom neurotoxins and lymphocyte antigen 6 (Ly6) proteins, most of the latter being membrane tethered by a glycosylphosphatidylinositol (GPI) anchor, have a variety of biological activities, but their three-finger (3F) folding combines them in one Ly6/neurotoxin family. Subsets of two groups, represented by α-neurotoxins and Lynx1, respectively, interact with nicotinic acetylcholine receptors (nAChR) and, hence, are of therapeutic interest for the treatment of neurodegenerative diseases, pain, and cancer. Information on the mechanisms of action and 3D structure of the binding sites, which is required for drug design, is available from the 3D structure of α-neurotoxin complexes with nAChR models. Here, I compare the structural and functional features of α-neurotoxins versus Lynx1 and its homologs to get a clearer picture of Lynx1-nAChR interactions that is necessary for fundamental science and practical applications.
Collapse
|
34
|
Yan C, Zou X. Predicting peptide binding sites on protein surfaces by clustering chemical interactions. J Comput Chem 2014; 36:49-61. [DOI: 10.1002/jcc.23771] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 09/07/2014] [Accepted: 10/12/2014] [Indexed: 01/02/2023]
Affiliation(s)
- Chengfei Yan
- Department of Physics and Astronomy and Dalton Cardiovascular Research Center; University of Missouri; Columbia Missouri 65211
| | - Xiaoqin Zou
- Department of Physics and Astronomy and Dalton Cardiovascular Research Center; University of Missouri; Columbia Missouri 65211
- Department of Biochemistry and Informatics Institute; University of Missouri; Columbia Missouri 65211
| |
Collapse
|
35
|
A single mutation in the acetylcholine receptor δ-subunit causes distinct effects in two types of neuromuscular synapses. J Neurosci 2014; 34:10211-8. [PMID: 25080583 DOI: 10.1523/jneurosci.0426-14.2014] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mutations in AChR subunits, expressed as pentamers in neuromuscular junctions (NMJs), cause various types of congenital myasthenic syndromes. In AChR pentamers, the adult ε subunit gradually replaces the embryonic γ subunit as the animal develops. Because of this switch in subunit composition, mutations in specific subunits result in synaptic phenotypes that change with developmental age. However, a mutation in any AChR subunit is considered to affect the NMJs of all muscle fibers equally. Here, we report a zebrafish mutant of the AChR δ subunit that exhibits two distinct NMJ phenotypes specific to two muscle fiber types: slow or fast. Homozygous fish harboring a point mutation in the δ subunit form functional AChRs in slow muscles, whereas receptors in fast muscles are nonfunctional. To test the hypothesis that different subunit compositions in slow and fast muscles underlie distinct phenotypes, we examined the presence of ε/γ subunits in NMJs using specific antibodies. Both wild-type and mutant larvae lacked ε/γ subunits in slow muscle synapses. These findings in zebrafish suggest that some mutations in human congenital myasthenic syndromes may affect slow and fast muscle fibers differently.
Collapse
|
36
|
Conotoxins targeting nicotinic acetylcholine receptors: an overview. Mar Drugs 2014; 12:2970-3004. [PMID: 24857959 PMCID: PMC4052327 DOI: 10.3390/md12052970] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2014] [Revised: 04/24/2014] [Accepted: 04/28/2014] [Indexed: 12/19/2022] Open
Abstract
Marine snails of the genus Conus are a large family of predatory gastropods with an unparalleled molecular diversity of pharmacologically active compounds in their venom. Cone snail venom comprises of a rich and diverse cocktail of peptide toxins which act on a wide variety of ion channels such as voltage-gated sodium- (NaV), potassium- (KV), and calcium- (CaV) channels as well as nicotinic acetylcholine receptors (nAChRs) which are classified as ligand-gated ion channels. The mode of action of several conotoxins has been the subject of investigation, while for many others this remains unknown. This review aims to give an overview of the knowledge we have today on the molecular pharmacology of conotoxins specifically interacting with nAChRs along with the structure–function relationship data.
Collapse
|
37
|
Han L, Campanucci VA, Cooke J, Salter MW. Identification of a single amino acid in GluN1 that is critical for glycine-primed internalization of NMDA receptors. Mol Brain 2013; 6:36. [PMID: 23941530 PMCID: PMC3846451 DOI: 10.1186/1756-6606-6-36] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 08/12/2013] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND NMDA receptors are ligand-gated ion channels with essential roles in glutamatergic synaptic transmission and plasticity in the CNS. As co-receptors for glutamate and glycine, gating of the NMDA receptor/channel pore requires agonist binding to the glycine sites, as well as to the glutamate sites, on the ligand-binding domains of the receptor. In addition to channel gating, glycine has been found to prime NMDA receptors for internalization upon subsequent stimulation of glutamate and glycine sites. RESULTS Here we address the key issue of identifying molecular determinants in the glycine-binding subunit, GluN1, that are essential for priming of NMDA receptors. We found that glycine treatment of wild-type NMDA receptors led to recruitment of the adaptor protein 2 (AP-2), and subsequent internalization after activating the receptors by NMDA plus glycine. However, with a glycine-binding mutant of GluN1 - N710R/Y711R/E712A/A714L - we found that treating with glycine did not promote recruitment of AP-2 nor were glycine-treated receptors internalized when subsequently activated with NMDA plus glycine. Likewise, GluN1 carrying a single point mutation - A714L - did not prime upon glycine treatment. Importantly, both of the mutant receptors were functional, as stimulating with NMDA plus glycine evoked inward currents. CONCLUSIONS Thus, we have identified a single amino acid in GluN1 that is critical for priming of NMDA receptors by glycine. Moreover, we have demonstrated the principle that while NMDA receptor gating and priming share a common requirement for glycine binding, the molecular constraints in GluN1 for gating are distinct from those for priming.
Collapse
Affiliation(s)
- Lu Han
- Program in Neurosciences & Mental Health, Hospital for Sick Children, 555 University Ave, Toronto, Ontario M5G 1X8, Canada.
| | | | | | | |
Collapse
|
38
|
Hannan S, Wilkins ME, Thomas P, Smart TG. Tracking cell surface mobility of GPCRs using α-bungarotoxin-linked fluorophores. Methods Enzymol 2013; 521:109-29. [PMID: 23351736 DOI: 10.1016/b978-0-12-391862-8.00006-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
GABA(B) receptors are G-protein-coupled receptors (GPCRs) that are activated by GABA, the principal inhibitory neurotransmitter in the central nervous system. Cell surface mobility of GABA(B) receptors is a key determinant of the efficacy of slow and prolonged synaptic inhibition initiated by GABA. Therefore, experimentally monitoring receptor mobility and how this can be regulated is of primary importance for understanding the roles of GABA(B) receptors in the brain, and how they may be therapeutically exploited. Unusually for a GPCR, heterodimerization between the R1 and R2 subunits is required for the cell surface expression and signaling by prototypical GABA(B) receptors. Here, we describe a minimal epitope-tagging method, based on the incorporation of an α-bungarotoxin binding site (BBS) into the GABA(B) receptor, to study receptor internalization in live cells using a range of imaging approaches. We demonstrate how this technique can be adapted by modifying the BBS to monitor the simultaneous movement of both R1 and R2 subunits, revealing that GABA(B) receptors are internalized as heteromers.
Collapse
Affiliation(s)
- Saad Hannan
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, United Kingdom
| | | | | | | |
Collapse
|
39
|
Abstract
The synapse is a localized neurohumoral contact between a neuron and an effector cell and may be considered the quantum of fast intercellular communication. Analogously, the postsynaptic neurotransmitter receptor may be considered the quantum of fast chemical to electrical transduction. Our understanding of postsynaptic receptors began to develop about a hundred years ago with the demonstration that electrical stimulation of the vagus nerve released acetylcholine and slowed the heart beat. During the past 50 years, advances in understanding postsynaptic receptors increased at a rapid pace, owing largely to studies of the acetylcholine receptor (AChR) at the motor endplate. The endplate AChR belongs to a large superfamily of neurotransmitter receptors, called Cys-loop receptors, and has served as an exemplar receptor for probing fundamental structures and mechanisms that underlie fast synaptic transmission in the central and peripheral nervous systems. Recent studies provide an increasingly detailed picture of the structure of the AChR and the symphony of molecular motions that underpin its remarkably fast and efficient chemoelectrical transduction.
Collapse
Affiliation(s)
- Steven M Sine
- Department of Physiology and Biomedical Engineering, Mayo Clinic College of Medicine, Rochester, Minnesota 55905, USA.
| |
Collapse
|
40
|
Osipov AV, Rucktooa P, Kasheverov IE, Filkin SY, Starkov VG, Andreeva TV, Sixma TK, Bertrand D, Utkin YN, Tsetlin VI. Dimeric α-cobratoxin X-ray structure: localization of intermolecular disulfides and possible mode of binding to nicotinic acetylcholine receptors. J Biol Chem 2012; 287:6725-34. [PMID: 22223648 DOI: 10.1074/jbc.m111.322313] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
In Naja kaouthia cobra venom, we have earlier discovered a covalent dimeric form of α-cobratoxin (αCT-αCT) with two intermolecular disulfides, but we could not determine their positions. Here, we report the αCT-αCT crystal structure at 1.94 Å where intermolecular disulfides are identified between Cys(3) in one protomer and Cys(20) of the second, and vice versa. All remaining intramolecular disulfides, including the additional bridge between Cys(26) and Cys(30) in the central loops II, have the same positions as in monomeric α-cobratoxin. The three-finger fold is essentially preserved in each protomer, but the arrangement of the αCT-αCT dimer differs from those of noncovalent crystallographic dimers of three-finger toxins (TFT) or from the κ-bungarotoxin solution structure. Selective reduction of Cys(26)-Cys(30) in one protomer does not affect the activity against the α7 nicotinic acetylcholine receptor (nAChR), whereas its reduction in both protomers almost prevents α7 nAChR recognition. On the contrary, reduction of one or both Cys(26)-Cys(30) disulfides in αCT-αCT considerably potentiates inhibition of the α3β2 nAChR by the toxin. The heteromeric dimer of α-cobratoxin and cytotoxin has an activity similar to that of αCT-αCT against the α7 nAChR and is more active against α3β2 nAChRs. Our results demonstrate that at least one Cys(26)-Cys(30) disulfide in covalent TFT dimers, similar to the monomeric TFTs, is essential for their recognition by α7 nAChR, although it is less important for interaction of covalent TFT dimers with the α3β2 nAChR.
Collapse
Affiliation(s)
- Alexey V Osipov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul Miklukho-Maklaya 16/10, Moscow 117997, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
41
|
Simmons DD, Morley BJ. Spatial and temporal expression patterns of nicotinic acetylcholine α9 and α10 subunits in the embryonic and early postnatal inner ear. Neuroscience 2011; 194:326-36. [PMID: 21843604 PMCID: PMC3204216 DOI: 10.1016/j.neuroscience.2011.08.005] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2011] [Revised: 07/23/2011] [Accepted: 08/01/2011] [Indexed: 11/24/2022]
Abstract
The expression and function of nicotinic receptor subunits (nAChRs) in the inner ear before the onset of hearing is not well understood. We investigated the mRNA expression of the α9 and α10 nAChR subunits in sensory hair cells of the embryonic and postnatal rat inner ear. We mapped their spatial and temporal expression in cochlear and vestibular hair cells using qPCR, [35S] labeled cRNA in situ hybridization, and α-bungarotoxin (α-Bgt) to label the presumptive membrane-bound receptor on cochlear hair cells. The results suggest that (1) the mRNA expression of the α9 subunit precedes expression of the α10 subunit in both cochlear and vestibular hair cells, (2) the mRNA expression of both the α9 and α10 subunits occurs earlier in the vestibular system than in the cochlea, (3) the mRNA expression of both subunits is required for the assembled receptor complexes, and (4) the presumptive assembled receptor, at least in the cochlea, is associated with synapse formation and the onset of function.
Collapse
MESH Headings
- Animals
- Animals, Newborn
- Ear, Inner/embryology
- Ear, Inner/growth & development
- Ear, Inner/physiology
- Female
- Gene Expression Regulation, Developmental/genetics
- Hair Cells, Auditory/metabolism
- Hair Cells, Vestibular/metabolism
- Pregnancy
- Protein Subunits/biosynthesis
- Protein Subunits/genetics
- RNA, Messenger/biosynthesis
- RNA, Messenger/genetics
- Rats
- Rats, Sprague-Dawley
- Reaction Time/genetics
- Receptors, Nicotinic/biosynthesis
- Receptors, Nicotinic/genetics
Collapse
Affiliation(s)
- D D Simmons
- Department of Integrative Biology and Physiology and the Brain Research Institute, University of California, Los Angeles, CA 90095-7239, USA.
| | | |
Collapse
|
42
|
Bar-Lev DD, Degani-Katzav N, Perelman A, Paas Y. Molecular dissection of Cl--selective Cys-loop receptor points to components that are dispensable or essential for channel activity. J Biol Chem 2011; 286:43830-43841. [PMID: 21987577 DOI: 10.1074/jbc.m111.282715] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cys-loop receptors are pentameric ligand-gated ion channels (pLGICs) that bind neurotransmitters to open an intrinsic transmembrane ion channel pore. The recent crystal structure of a prokaryotic pLGIC from the cyanobacterium Gloeobacter violaceus (GLIC) revealed that it naturally lacks an N-terminal extracellular α helix and an intracellular domain that are typical of eukaryotic pLGICs. GLIC does not respond to neurotransmitters acting at eukaryotic pLGICs but is activated by protons. To determine whether the structural differences account for functional differences, we used a eukaryotic chimeric acetylcholine-glutamate pLGIC that was modified to carry deletions corresponding to the sequences missing in the prokaryotic homolog GLIC. Deletions made in the N-terminal extracellular α helix did not prevent the expression of receptor subunits and the appearance of receptor assemblies on the cell surface but abolished the capability of the receptor to bind α-bungarotoxin (a competitive antagonist) and to respond to the neurotransmitter. Other truncated chimeric receptors that lacked the intracellular domain did bind ligands; displayed robust acetylcholine-elicited responses; and shared with the full-length chimeric receptor similar anionic selectivity, effective open pore diameter, and unitary conductance. We suggest that the integrity of the N-terminal α helix is crucial for ligand accommodation because it stabilizes the intersubunit interfaces adjacent to the neurotransmitter-binding pocket(s). We also conclude that the intracellular domain of the chimeric acetylcholine-glutamate receptor does not modulate the ion channel conductance and is not involved in positioning of the pore-lining helices in the conformation necessary for coordinating a Cl- ion within the intracellular vestibule of the ion channel pore.
Collapse
Affiliation(s)
- Dekel D Bar-Lev
- Laboratory of Ion Channels, Bar-Ilan University, Ramat Gan 52900, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Nurit Degani-Katzav
- Laboratory of Ion Channels, Bar-Ilan University, Ramat Gan 52900, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Alexander Perelman
- Scientific Equipment Unit, The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yoav Paas
- Laboratory of Ion Channels, Bar-Ilan University, Ramat Gan 52900, Israel; Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel.
| |
Collapse
|
43
|
Hannan S, Wilkins ME, Dehghani-Tafti E, Thomas P, Baddeley SM, Smart TG. Gamma-aminobutyric acid type B (GABA(B)) receptor internalization is regulated by the R2 subunit. J Biol Chem 2011; 286:24324-35. [PMID: 21724853 PMCID: PMC3129212 DOI: 10.1074/jbc.m110.220814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/20/2011] [Indexed: 01/04/2023] Open
Abstract
γ-Aminobutyric acid type B (GABA(B)) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABA(B) receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABA(B) receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABA(B) receptor.
Collapse
Affiliation(s)
- Saad Hannan
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
- GlaxoSmithKline R&D, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Megan E. Wilkins
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Ebrahim Dehghani-Tafti
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Philip Thomas
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Stuart M. Baddeley
- GlaxoSmithKline R&D, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Trevor G. Smart
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| |
Collapse
|
44
|
Bruederle CE, Gay J, Shyng SL. A role of the sulfonylurea receptor 1 in endocytic trafficking of ATP-sensitive potassium channels. Traffic 2011; 12:1242-56. [PMID: 21649805 DOI: 10.1111/j.1600-0854.2011.01227.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The ATP-sensitive potassium (K(ATP) ) channel consisting of sulfonylurea receptor 1 (SUR1) and inward-rectifier potassium channel 6.2 (Kir6.2) has a well-established role in insulin secretion. Mutations in either subunit can lead to disease due to aberrant channel gating, altered channel density at the cell surface or a combination of both. Endocytic trafficking of channels at the plasma membrane is one way to influence surface channel numbers. It has been previously reported that channel endocytosis is dependent on a tyrosine-based motif in Kir6.2, while SUR1 alone is unable to internalize. In this study, we followed endocytic trafficking of surface channels in real time by live-cell imaging of channel subunits tagged with an extracellular minimal α-bungarotoxin-binding peptide labeled with a fluorescent dye. We show that SUR1 undergoes endocytosis independent of Kir6.2. Moreover, mutations in the putative endocytosis motif of Kir6.2, Y330C, Y330A and F333I are unable to prevent channel endocytosis. These findings challenge the notion that Kir6.2 bears the sole endocytic signal for K(ATP) channels and support a role of SUR1 in this trafficking process.
Collapse
Affiliation(s)
- Cathrin E Bruederle
- Department of Biochemistry and Molecular Biology, Oregon Health & Science University, Portland, OR 97239, USA.
| | | | | |
Collapse
|
45
|
Hannan S, Wilkins ME, Dehghani-Tafti E, Thomas P, Baddeley SM, Smart TG. γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit. J Biol Chem 2011. [DOI: 10.1074/jbc.m111.220814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
46
|
Pittel I, Witt-Kehati D, Degani-Katzav N, Paas Y. Probing pore constriction in a ligand-gated ion channel by trapping a metal ion in the pore upon agonist dissociation. J Biol Chem 2010; 285:26519-31. [PMID: 20466725 PMCID: PMC2924088 DOI: 10.1074/jbc.m110.102327] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2010] [Revised: 04/24/2010] [Indexed: 12/16/2022] Open
Abstract
Eukaryotic pentameric ligand-gated ion channels (pLGICs) are receptors activated by neurotransmitters to rapidly transport ions across cell membranes, down their electrochemical gradients. Recent crystal structures of two prokaryotic pLGICs were interpreted to imply that the extracellular side of the transmembrane pore constricts to close the channel (Hilf, R. J., and Dutzler, R. (2009) Nature 457, 115-118; Bocquet, N., Nury, H., Baaden, M., Le Poupon, C., Changeux, J. P., Delarue, M., and Corringer, P. J. (2009) Nature 457, 111-114). Here, we utilized a eukaryotic acetylcholine (ACh)-serotonin chimeric pLGIC that was engineered with histidines to coordinate a metal ion within the channel pore, at its cytoplasmic side. In a previous study, the access of Zn(2+) ions to the engineered histidines had been explored when the channel was either at rest (closed) or active (open) (Paas, Y., Gibor, G., Grailhe, R., Savatier-Duclert, N., Dufresne, V., Sunesen, M., de Carvalho, L. P., Changeux, J. P., and Attali, B. (2005) Proc. Natl. Acad. Sci. U.S.A. 102, 15877-15882). In this study, the interactions of Zn(2+) with the pore were probed upon agonist (ACh) dissociation that triggers the transition of the receptor from the active conformation to the resting conformation (i.e. during deactivation). Application of Zn(2+) onto ACh-bound open receptors obstructed their pore and prevented ionic flow. Removing ACh from its extracellular binding sites to trigger deactivation while Zn(2+) is still bound led to tight trapping of Zn(2+) within the pore. Together with single-channel recordings, made to explore single pore-blocking events, we show that dissociation of ACh causes the gate to shut on a Zn(2+) ion that effectively acts as a "foot in the door." We infer that, upon deactivation, the cytoplasmic side of the pore of the ACh-serotonin receptor chimera constricts to close the channel.
Collapse
Affiliation(s)
- Ilya Pittel
- From the Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Dvora Witt-Kehati
- From the Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Nurit Degani-Katzav
- From the Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| | - Yoav Paas
- From the Laboratory of Ion Channels, The Mina and Everard Goodman Faculty of Life Sciences, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 52900, Israel
| |
Collapse
|
47
|
Moise L, Liu J, Pryazhnikov E, Khiroug L, Jeromin A, Hawrot E. K(V)4.2 channels tagged in the S1-S2 loop for alpha-bungarotoxin binding provide a new tool for studies of channel expression and localization. Channels (Austin) 2010; 4:115-23. [PMID: 20139708 DOI: 10.4161/chan.4.2.10878] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
We report the first successful insertion of an engineered, high-affinity alpha-bungarotoxin (Bgtx) binding site into a voltage-gated ion channel, K(V)4.2, using a short, intra-protein embedded sequence (GGWRYYESSLEPYPDGG), derived from a previously described mimotope peptide, HAP. A major benefit to this approach is the ability to live-image the distribution and fate of functional channels on the plasma membrane surface. The Bgtx binding sequence was introduced into the putative extracellular loop between the S1 and S2 transmembrane domains of K(V)4.2. Following co-expression with KChIP3 in tsA201 cells, S1-S2 HAP-tagged channels express at levels comparable to wild-type K(V)4.2, and their activation and inactivation kinetics are minimally altered under most conditions. Binding assays, as well as live staining of surface-expressed K(V)4.2 channels with fluorescent-Bgtx, readily demonstrate specific binding of Bgtx to HAP-tagged K(V)4.2 expressed on the surface of tsA201 cells. Similar live-imaging results were obtained with HAP-tagged K(V)4.2 transfected into hippocampal neurons in primary culture suggesting applicability for future in vivo studies. Furthermore, the activation kinetics of S1-S2-tagged K(V)4.2 channels are minimally affected by the binding of Bgtx, suggesting a limited role if any for the S1-S2 loop in voltage sensing or gating associated conformational changes. Successful functional insertion of the HAP sequence into the S1-S2 linker of K(V)4.2 suggests that other related channels may similarly be amenable to this tagging strategy.
Collapse
Affiliation(s)
- Leonard Moise
- Department of Molecular Pharmacology, Physiology and Biotechnology, Brown University, Providence, RI, USA
| | | | | | | | | | | |
Collapse
|
48
|
In silico point mutation and evolutionary trace analysis applied to nicotinic acetylcholine receptors in deciphering ligand-binding surfaces. J Mol Model 2010; 16:1651-70. [PMID: 20204665 DOI: 10.1007/s00894-010-0670-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2009] [Accepted: 12/13/2009] [Indexed: 10/19/2022]
Abstract
The nicotinic acetylcholine receptors (nAChRs) are members of the Cys-loop superfamily and contain ligand gated ion channels (LGIC). These receptors are located mostly in the central nervous system (CNS) and peripheral nervous system (PNS). nAChRs reside at pre-synaptic regions to mediate acetylcholine neurotransmission and in the post synaptic membrane to propagate nerve impulses through neurons via acetylcholine. Malfunction of this neurotransmitter receptor is believed to cause various neurodegenerative diseases, such as Alzheimer's disease, Parkinson's disease and schizophrenia, and nAChRs are thus important drug targets. In the present work, starting from an earlier model of pentameric alpha7nAChR, a considerable effort has been taken to investigate interaction with ligands by performing docking studies with a diverse array of agonists and antagonists. Analysis of these docking complexes reveals identification of possible ligand-interacting residues. Some of these residues, e.g. Ser34, Gln55, Ser146, and Tyr166, which are evolutionarily conserved, were specifically subjected to virtual mutations based on their amino acid properties and found to be highly sensitive in the presence of antagonists by docking. Further, the study was extended using evolutionary trace analysis, revealing conserved and class-specific residues close to the putative ligand-binding site, further supporting the results of docking experiments.
Collapse
|
49
|
Sanghvi M, Hamouda AK, Davis MI, Morton RA, Srivastava S, Pandhare A, Duddempudi PK, Machu TK, Lovinger DM, Cohen JB, Blanton MP. Hydrophobic photolabeling studies identify the lipid-protein interface of the 5-HT3A receptor. Biochemistry 2009; 48:9278-86. [PMID: 19715355 DOI: 10.1021/bi901208j] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
A HEK-293 cell line that stably expresses mouse 5-HT(3A)Rs containing a C-terminal extension that confers high-affinity binding of alpha-bungarotoxin (alphaBgTx) was established (alphaBgTx-5-HT(3A)Rs) and used to purify alphaBgTx-5-HT(3A)Rs in a lipid environment for use in structural studies using photoaffinity labeling. alphaBgTx-5-HT(3A)Rs were expressed robustly (60 pmol of [(3)H]BRL-43694 binding sites (approximately 3 microg of receptor) per milligram of protein) and displayed the same functional properties as wild-type receptors (serotonin EC(50) = 5.3 +/- 0.04 microM). While [(125)I]alphaBgTx bound to the alphaBgTx-5-HT(3A)Rs with high affinity (K(d) = 11 nM), application of nonradioactive alphaBgTx (up to 300 microM) had no effect on serotonin-induced current responses. alphaBgTx-5-HT(3A)Rs were purified on an alphaBgTx-derivatized affinity column from detergent extracts in milligram quantities and at approximately 25% purity. The hydrophobic photolabel 3-trifluoromethyl-3-(m-[(125)I]iodophenyl)diazirine ([(125)I]TID) was used to identify the amino acids at the lipid-protein interface of purified and lipid-reconstituted alphaBgTx-5-HT(3A)Rs. [(125)I]TID photoincorporation into the alphaBgTx-5-HT(3A)R subunit was initially mapped to subunit proteolytic fragments of 8 kDa, containing the M4 transmembrane segment and approximately 60% of incorporated (125)I, and 17 kDa, containing the M1-M3 transmembrane segments. Within the M4 segment, [(125)I]TID labeled Ser(451), equivalent to the [(125)I]TID-labeled residue Thr(422) at the lipid-exposed face of the Torpedo nicotinic acetylcholine receptor (nAChR) alpha1M4 alpha-helix. These results provide a first definition of the surface of the 5-HT(3A)R M4 helix that is exposed to lipid and establish that this surface is equivalent to the surface exposed to lipid in the Torpedo nAChR.
Collapse
Affiliation(s)
- Mitesh Sanghvi
- Department of Pharmacology and Neuroscience and Center for Membrane Protein Research, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, Texas 79430, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Tsetlin V, Utkin Y, Kasheverov I. Polypeptide and peptide toxins, magnifying lenses for binding sites in nicotinic acetylcholine receptors. Biochem Pharmacol 2009; 78:720-31. [DOI: 10.1016/j.bcp.2009.05.032] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Revised: 05/20/2009] [Accepted: 05/21/2009] [Indexed: 10/20/2022]
|