1
|
Gooding SW, Whistler JL. A Balancing Act: Learning from the Past to Build a Future-Focused Opioid Strategy. Annu Rev Physiol 2024; 86:1-25. [PMID: 38029388 PMCID: PMC10987332 DOI: 10.1146/annurev-physiol-042022-015914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
The harmful side effects of opioid drugs such as respiratory depression, tolerance, dependence, and abuse potential have limited the therapeutic utility of opioids for their entire clinical history. However, no previous attempt to develop effective pain drugs that substantially ameliorate these effects has succeeded, and the current opioid epidemic affirms that they are a greater hindrance to the field of pain management than ever. Recent attempts at new opioid development have sought to reduce these side effects by minimizing engagement of the regulatory protein arrestin-3 at the mu-opioid receptor, but there is significant controversy around this approach. Here, we discuss the ongoing effort to develop safer opioids and its relevant historical context. We propose a new model that reconciles results previously assumed to be in direct conflict to explain how different signaling profiles at the mu-opioid receptor contribute to opioid tolerance and dependence. Our goal is for this framework to inform the search for a new generation of lower liability opioid analgesics.
Collapse
Affiliation(s)
| | - Jennifer L Whistler
- Center for Neuroscience, University of California, Davis, California, USA;
- Department of Physiology and Membrane Biology, UC Davis School of Medicine, Davis, California, USA
| |
Collapse
|
2
|
Ötvös F, Szűcs E, Urai Á, Köteles I, Szabó PT, Varga ZK, Gombos D, Hosztafi S, Benyhe S. Synthesis and biochemical evaluation of 17-N-beta-aminoalkyl-4,5α-epoxynormorphinans. Sci Rep 2023; 13:20305. [PMID: 37985681 PMCID: PMC10660610 DOI: 10.1038/s41598-023-46317-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 10/30/2023] [Indexed: 11/22/2023] Open
Abstract
Opiate alkaloids and their synthetic derivatives are still widely used in pain management, drug addiction, and abuse. To avoid serious side effects, compounds with properly designed pharmacological profiles at the opioid receptor subtypes are long needed. Here a series of 17-N-substituted derivatives of normorphine and noroxymorphone analogues with five- and six-membered ring substituents have been synthesized for structure-activity study. Some compounds showed nanomolar affinity to MOR, DOR and KOR in in vitro competition binding experiments with selective agonists [3H]DAMGO, [3H]Ile5,6-deltorphin II and [3H]HS665, respectively. Pharmacological characterization of the compounds in G-protein signaling was determined by [35S]GTPγS binding assays. The normorphine analogues showed higher affinity to KOR compared to MOR and DOR, while most of the noroxymorphone derivatives did not bind to KOR. The presence of 14-OH substituent resulted in a shift in the pharmacological profiles in the agonist > partial agonist > antagonist direction compared to the parent compounds. A molecular docking-based in silico method was also applied to estimate the pharmacological profile of the compounds. Docking energies and the patterns of the interacting receptor atoms, obtained with experimentally determined active and inactive states of MOR, were used to explain the observed pharmacological features of the compounds.
Collapse
Affiliation(s)
- Ferenc Ötvös
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| | - Edina Szűcs
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
| | - Ákos Urai
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre Utca 9, 1092, Budapest, Hungary
| | - István Köteles
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre Utca 9, 1092, Budapest, Hungary
- Department of Chemistry and Molecular Biology, University of Gothenburg, Medicinaregatan 19, 41390, Göteborg, Sweden
| | - Pál T Szabó
- Research Centre for Natural Sciences, MS Metabolomics Research Laboratory, Magyar Tudósok Krt. 2, 1117, Budapest, Hungary
| | - Zsuzsanna Katalin Varga
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medical Doctoral School, Faculty of Medicine, University of Szeged, 6726, Szeged, Hungary
| | - Dávid Gombos
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary
- Theoretical Medical Doctoral School, Faculty of Medicine, University of Szeged, 6726, Szeged, Hungary
| | - Sándor Hosztafi
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre Utca 9, 1092, Budapest, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, HUN-REN Biological Research Centre, Temesvári Krt. 62, 6726, Szeged, Hungary.
| |
Collapse
|
3
|
Ramos‐Gonzalez N, Groom S, Sutcliffe KJ, Bancroft S, Bailey CP, Sessions RB, Henderson G, Kelly E. Carfentanil is a β-arrestin-biased agonist at the μ opioid receptor. Br J Pharmacol 2023; 180:2341-2360. [PMID: 37005796 PMCID: PMC10952505 DOI: 10.1111/bph.16084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 03/10/2023] [Accepted: 03/28/2023] [Indexed: 04/04/2023] Open
Abstract
BACKGROUND AND PURPOSE The illicit use of fentanyl-like drugs (fentanyls), which are μ opioid receptor agonists, and the many overdose deaths that result, has become a major problem. Fentanyls are very potent in vivo, leading to respiratory depression and death. However, the efficacy and possible signalling bias of different fentanyls is not clearly known. Here, we compared the relative efficacy and bias of a series of fentanyls. EXPERIMENTAL APPROACH For agonist signalling bias and efficacy measurements, Bioluminescence Resonance Energy Transfer experiments were undertaken in HEK293T cells transiently transfected with μ opioid receptors, to assess Gi protein activation and β-arrestin 2 recruitment. Agonist-induced cell surface receptor loss was assessed using an enzyme-linked immunosorbent assay, whilst agonist-induced G protein-coupled inwardly rectifying potassium channel current activation was measured electrophysiologically from rat locus coeruleus slices. Ligand poses in the μ opioid receptor were determined in silico using molecular dynamics simulations. KEY RESULTS Relative to the reference ligand DAMGO, carfentanil was β-arrestin-biased, whereas fentanyl, sufentanil and alfentanil did not display bias. Carfentanil induced potent and extensive cell surface receptor loss, whilst the marked desensitisation of G protein-coupled inwardly rectifying potassium channel currents in the continued presence of carfentanil in neurones was prevented by a GRK2/3 inhibitor. Molecular dynamics simulations suggested unique interactions of carfentanil with the orthosteric site of the receptor that could underlie the bias. CONCLUSIONS AND IMPLICATIONS Carfentanil is a β-arrestin-biased opioid drug at the μ receptor. It is uncertain how such bias influences in vivo effects of carfentanil relative to other fentanyls.
Collapse
Affiliation(s)
| | - Sam Groom
- Department of Pharmacy and PharmacologyUniversity of BathBathUK
| | - Katy J. Sutcliffe
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Sukhvinder Bancroft
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Chris P. Bailey
- Department of Pharmacy and PharmacologyUniversity of BathBathUK
| | | | - Graeme Henderson
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| | - Eamonn Kelly
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUK
| |
Collapse
|
4
|
Lepore G, Morley-McLaughlin T, Davidson N, Han C, Masese C, Reynolds G, Saltz V, Robinson SA. Buprenorphine reduces somatic withdrawal in a mouse model of early-life morphine exposure. Drug Alcohol Depend 2023; 248:109938. [PMID: 37267743 DOI: 10.1016/j.drugalcdep.2023.109938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 06/04/2023]
Abstract
The rising prevalence of early-life opioid exposure has become a pressing public health issue in the U.S. Neonates exposed to opioids in utero are at risk of experiencing a constellation of postpartum withdrawal symptoms commonly referred to as neonatal opioid withdrawal syndrome (NOWS). Buprenorphine (BPN), a partial agonist at the mu-opioid receptor (MOR) and antagonist at the kappa-opioid receptor (KOR), is currently approved to treat opioid use disorder in adult populations. Recent research suggests that BPN may also be effective in reducing withdrawal symptoms in neonates who were exposed to opioids in utero. We sought to determine whether BPN attenuates somatic withdrawal in a mouse model of NOWS. Our findings indicate that the administration of morphine (10mg/kg, s.c.) from postnatal day (PND) 1-14 results in increased somatic symptoms upon naloxone-precipitated (1mg/kg, s.c.) withdrawal. Co-administration of BPN (0.3mg/kg, s.c.) from PND 12-14 attenuated symptoms in morphine-treated mice. On PND 15, 24h following naloxone-precipitated withdrawal, a subset of mice was examined for thermal sensitivity in the hot plate test. BPN treatment significantly increased response latency in morphine-exposed mice. Lastly, neonatal morphine exposure elevated mRNA expression of KOR, and reduced mRNA expression of corticotropin-releasing hormone (CRH) in the periaqueductal gray when measured on PND 14. Altogether, this data provides support for the therapeutic effects of acute low-dose buprenorphine treatment in a mouse model of neonatal opioid exposure and withdrawal.
Collapse
Affiliation(s)
- Gina Lepore
- Department of Systems Pharmacology and Translational Therapeutics. Perelman School of Medicine, University of PennsylvaniaPhiladelphiaPA19104, United States
| | | | - Natalie Davidson
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Caitlin Han
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Cynthia Masese
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Grace Reynolds
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Victoria Saltz
- Department of Psychology, Williams CollegeWilliamsMA01267, United States
| | - Shivon A Robinson
- Department of Psychology, Williams CollegeWilliamsMA01267, United States.
| |
Collapse
|
5
|
Ma R, Kutchy NA, Wang Z, Hu G. Extracellular vesicle-mediated delivery of anti-miR-106b inhibits morphine-induced primary ciliogenesis in the brain. Mol Ther 2023; 31:1332-1345. [PMID: 37012704 PMCID: PMC10188913 DOI: 10.1016/j.ymthe.2023.03.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/27/2023] [Accepted: 03/29/2023] [Indexed: 04/05/2023] Open
Abstract
Repeated use of opioids such as morphine causes changes in the shape and signal transduction pathways of various brain cells, including astrocytes and neurons, resulting in alterations in brain functioning and ultimately leading to opioid use disorder. We previously demonstrated that extracellular vesicle (EV)-induced primary ciliogenesis contributes to the development of morphine tolerance. Herein, we aimed to investigate the underlying mechanisms and potential EV-mediated therapeutic approach to inhibit morphine-mediated primary ciliogenesis. We demonstrated that miRNA cargo in morphine-stimulated-astrocyte-derived EVs (morphine-ADEVs) mediated morphine-induced primary ciliogenesis in astrocytes. CEP97 is a target of miR-106b and is a negative regulator of primary ciliogenesis. Intranasal delivery of ADEVs loaded with anti-miR-106b decreased the expression of miR-106b in astrocytes, inhibited primary ciliogenesis, and prevented the development of tolerance in morphine-administered mice. Furthermore, we confirmed primary ciliogenesis in the astrocytes of opioid abusers. miR-106b-5p in morphine-ADEVs induces primary ciliogenesis via targeting CEP97. Intranasal delivery of ADEVs loaded with anti-miR-106b ameliorates morphine-mediated primary ciliogenesis and prevents morphine tolerance. Our findings bring new insights into the mechanisms underlying primary cilium-mediated morphine tolerance and pave the way for developing ADEV-mediated small RNA delivery strategies for preventing substance use disorders.
Collapse
Affiliation(s)
- Rong Ma
- Department of Pharmacology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| | - Naseer A Kutchy
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA; Department of Animal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ 08901- 8525, USA
| | - Zhongbin Wang
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA
| | - Guoku Hu
- Department of Pharmacology and Experimental Neuroscience, University of Nebraska Medical Center, Omaha, NE 68198-5880, USA.
| |
Collapse
|
6
|
Coutens B, Ingram SL. Key differences in regulation of opioid receptors localized to presynaptic terminals compared to somas: Relevance for novel therapeutics. Neuropharmacology 2023; 226:109408. [PMID: 36584882 PMCID: PMC9898207 DOI: 10.1016/j.neuropharm.2022.109408] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 12/05/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022]
Abstract
Opioid receptors are G protein-coupled receptors (GPCRs) that regulate activity within peripheral, subcortical and cortical circuits involved in pain, reward, and aversion processing. Opioid receptors are expressed in both presynaptic terminals where they inhibit neurotransmitter release and postsynaptic locations where they act to hyperpolarize neurons and reduce activity. Agonist activation of postsynaptic receptors at the plasma membrane signal via ion channels or cytoplasmic second messengers. Agonist binding initiates regulatory processes that include phosphorylation by G protein receptor kinases (GRKs) and recruitment of beta-arrestins that desensitize and internalize the receptors. Opioid receptors also couple to effectors from endosomes activating intracellular enzymes and kinases. In contrast to postsynaptic opioid receptors, receptors localized to presynaptic terminals are resistant to desensitization such that there is no loss of signaling in the continuous presence of opioids over the same time scale. Thus, the balance of opioid signaling in circuits expressing pre- and postsynaptic opioid receptors is shifted toward inhibition of presynaptic neurotransmitter release during continuous opioid exposure. The functional implication of this shift is not often acknowledged in behavioral studies. This review covers what is currently understood about regulation of opioid/nociceptin receptors, with an emphasis on opioid receptor signaling in pain and reward circuits. Importantly, the review covers regulation of presynaptic receptors and the critical gaps in understanding this area, as well as the opportunities to further understand opioid signaling in brain circuits. This article is part of the Special Issue on "Opioid-induced changes in addiction and pain circuits".
Collapse
Affiliation(s)
- Basile Coutens
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA
| | - Susan L Ingram
- Department of Anesthesiology, University of Colorado Anschutz Medical Campus, Aurora, CO, 80045, USA.
| |
Collapse
|
7
|
Gamble MC, Williams BR, Singh N, Posa L, Freyberg Z, Logan RW, Puig S. Mu-opioid receptor and receptor tyrosine kinase crosstalk: Implications in mechanisms of opioid tolerance, reduced analgesia to neuropathic pain, dependence, and reward. Front Syst Neurosci 2022; 16:1059089. [PMID: 36532632 PMCID: PMC9751598 DOI: 10.3389/fnsys.2022.1059089] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Accepted: 10/31/2022] [Indexed: 07/30/2023] Open
Abstract
Despite the prevalence of opioid misuse, opioids remain the frontline treatment regimen for severe pain. However, opioid safety is hampered by side-effects such as analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, or reward. These side effects promote development of opioid use disorders and ultimately cause overdose deaths due to opioid-induced respiratory depression. The intertwined nature of signaling via μ-opioid receptors (MOR), the primary target of prescription opioids, with signaling pathways responsible for opioid side-effects presents important challenges. Therefore, a critical objective is to uncouple cellular and molecular mechanisms that selectively modulate analgesia from those that mediate side-effects. One such mechanism could be the transactivation of receptor tyrosine kinases (RTKs) via MOR. Notably, MOR-mediated side-effects can be uncoupled from analgesia signaling via targeting RTK family receptors, highlighting physiological relevance of MOR-RTKs crosstalk. This review focuses on the current state of knowledge surrounding the basic pharmacology of RTKs and bidirectional regulation of MOR signaling, as well as how MOR-RTK signaling may modulate undesirable effects of chronic opioid use, including opioid analgesic tolerance, reduced analgesia to neuropathic pain, physical dependence, and reward. Further research is needed to better understand RTK-MOR transactivation signaling pathways, and to determine if RTKs are a plausible therapeutic target for mitigating opioid side effects.
Collapse
Affiliation(s)
- Mackenzie C. Gamble
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Molecular and Translational Medicine, Department of Medicine, Boston University School of Medicine, Boston, MA, United States
| | - Benjamin R. Williams
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Navsharan Singh
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Luca Posa
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| | - Zachary Freyberg
- Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Ryan W. Logan
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
- Center for Systems Neuroscience, Boston University, Boston, MA, United States
| | - Stephanie Puig
- Department of Pharmacology and Experimental Therapeutics, Boston University School of Medicine, Boston, MA, United States
| |
Collapse
|
8
|
Zhang J, Song C, Dai J, Li L, Yang X, Chen Z. Mechanism of opioid addiction and its intervention therapy: Focusing on the reward circuitry and mu-opioid receptor. MedComm (Beijing) 2022; 3:e148. [PMID: 35774845 PMCID: PMC9218544 DOI: 10.1002/mco2.148] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2021] [Revised: 05/03/2022] [Accepted: 05/07/2022] [Indexed: 11/09/2022] Open
Abstract
Opioid abuse and addiction have become a global pandemic, posing tremendous health and social burdens. The rewarding effects and the occurrence of withdrawal symptoms are the two mainstays of opioid addiction. Mu-opioid receptors (MORs), a member of opioid receptors, play important roles in opioid addiction, mediating both the rewarding effects of opioids and opioid withdrawal syndrome (OWS). The underlying mechanism of MOR-mediated opioid rewarding effects and withdrawal syndrome is of vital importance to understand the nature of opioid addiction and also provides theoretical basis for targeting MORs to treat drug addiction. In this review, we first briefly introduce the basic concepts of MORs, including their structure, distribution in the nervous system, endogenous ligands, and functional characteristics. We focused on the brain circuitry and molecular mechanism of MORs-mediated opioid reward and withdrawal. The neuroanatomical and functional elements of the neural circuitry of the reward system underlying opioid addiction were thoroughly discussed, and the roles of MOR within the reward circuitry were also elaborated. Furthermore, we interrogated the roles of MORs in OWS, along with the structural basis and molecular adaptions of MORs-mediated withdrawal syndrome. Finally, current treatment strategies for opioid addiction targeting MORs were also presented.
Collapse
Affiliation(s)
- Jia‐Jia Zhang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Chang‐Geng Song
- Department of NeurologyXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ji‐Min Dai
- Department of Hepatobiliary SurgeryXijing HospitalThe Fourth Military Medical UniversityXi'anChina
| | - Ling Li
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Xiang‐Min Yang
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| | - Zhi‐Nan Chen
- National Translational Science Center for Molecular Medicine & Department of Cell BiologyThe Fourth Military Medical UniversityXi'anChina
| |
Collapse
|
9
|
Ptchd1 mediates opioid tolerance via cholesterol-dependent effects on μ-opioid receptor trafficking. Nat Neurosci 2022; 25:1179-1190. [PMID: 35982154 DOI: 10.1038/s41593-022-01135-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Repeated exposure to opioids causes tolerance, which limits their analgesic utility and contributes to overdose and abuse liability. However, the molecular mechanisms underpinning tolerance are not well understood. Here, we used a forward genetic screen in Caenorhabditis elegans for unbiased identification of genes regulating opioid tolerance which revealed a role for PTR-25/Ptchd1. We found that PTR-25/Ptchd1 controls μ-opioid receptor trafficking and that these effects were mediated by the ability of PTR-25/Ptchd1 to control membrane cholesterol content. Electrophysiological studies showed that loss of Ptchd1 in mice reduced opioid-induced desensitization of neurons in several brain regions and the peripheral nervous system. Mice and C. elegans lacking Ptchd1/PTR-25 display similarly augmented responses to opioids. Ptchd1 knockout mice fail to develop analgesic tolerance and have greatly diminished somatic withdrawal. Thus, we propose that Ptchd1 plays an evolutionarily conserved role in protecting the μ-opioid receptor against overstimulation.
Collapse
|
10
|
Adhikary S, Williams JT. Cellular Tolerance Induced by Chronic Opioids in the Central Nervous System. Front Syst Neurosci 2022; 16:937126. [PMID: 35837149 PMCID: PMC9273719 DOI: 10.3389/fnsys.2022.937126] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 06/08/2022] [Indexed: 01/21/2023] Open
Abstract
Opioids are powerful analgesics that elicit acute antinociceptive effects through their action the mu opioid receptor (MOR). However opioids are ineffective for chronic pain management, in part because continuous activation of MORs induces adaptive changes at the receptor level and downstream signaling molecules. These adaptations include a decrease in receptor-effector coupling and changes to second messenger systems that can counteract the persistent activation of MORs by opioid agonists. Homeostatic regulation of MORs and downstream signaling cascades are viewed as precursors to developing tolerance. However, despite numerous studies identifying crucial mechanisms that contribute to opioid tolerance, no single regulatory mechanism that governs tolerance in at the cellular and systems level has been identified. Opioid tolerance is a multifaceted process that involves both individual neurons that contain MORs and neuronal circuits that undergo adaptations following continuous MOR activation. The most proximal event is the agonist/receptor interaction leading to acute cellular actions. This review discusses our understanding of mechanisms that mediate cellular tolerance after chronic opioid treatment that, in part, is mediated by agonist/receptor interaction acutely.
Collapse
|
11
|
Baker Rogers J, Higa GM. Spoken and Unspoken Matters Regarding the Use of Opioids in Cancer. J Pain Res 2022; 15:909-924. [PMID: 35411188 PMCID: PMC8994621 DOI: 10.2147/jpr.s349107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 03/24/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Janna Baker Rogers
- Sections of Geriatrics, Palliative Medicine and Hospice, Department of Medicine, School of Medicine, West Virginia University, Morgantown, WV, USA
| | - Gerald M Higa
- Departments of Clinical Pharmacy and Medicine, Schools of Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA
- Correspondence: Gerald M Higa, Departments of Clinical Pharmacy and Medicine, Schools of Pharmacy and Medicine, West Virginia University, Morgantown, WV, USA, 26506, Email
| |
Collapse
|
12
|
Navarrete F, Gasparyan A, Manzanares J. CBD-mediated regulation of heroin withdrawal-induced behavioural and molecular changes in mice. Addict Biol 2022; 27:e13150. [PMID: 35229949 DOI: 10.1111/adb.13150] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/12/2021] [Accepted: 01/11/2022] [Indexed: 11/25/2022]
Abstract
Cannabidiol (CBD) may represent a promising therapeutic tool for treating opioid use disorder (OUD). This study was aimed to evaluate the effects of CBD on the behavioural and gene expression alterations induced by spontaneous heroin withdrawal. Thirty hours after cessation of 8-day heroin treatment (5, 10, 20 and 40 mg·kg-1 /12 h; s.c.), spontaneous heroin withdrawal was evaluated in CD1 male mice. The effects of CBD (5, 10 and 20 mg·kg-1 ; i.p.) on withdrawal-related behaviour were evaluated by measuring anxiety-like behaviour, motor activity and somatic signs. Furthermore, gene expression changes of mu-opioid receptor (Oprm1), proopiomelanocortin (Pomc), cannabinoid CB1 (Cnr1) and CB2 (Cnr2) receptors in the nucleus accumbens (NAcc) and tyrosine hydroxylase (TH) and Pomc in the ventral tegmental area (VTA) were also evaluated by real-time PCR. Anxiety-like behaviour, motor activity and withdrawal-related somatic signs were significantly increased in heroin-treated mice compared to the control group. Interestingly, CBD treatment significantly reduced these behavioural impairments and normalized gene expression of Cnr1 and Pomc in the NAcc and TH in the VTA of mice exposed to spontaneous heroin withdrawal. Also, CBD induced an up-regulation of Cnr2, whereas it did not change the increased gene expression of Oprm1 in the NAcc of abstinent animals. The results suggest that CBD alleviates spontaneous heroin withdrawal and normalizes the associated gene expression changes. Future studies are needed to determine the relevance of CBD as a potential therapeutic tool for the treatment of heroin withdrawal.
Collapse
Affiliation(s)
- Francisco Navarrete
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC Avda. de Ramón y Cajal s/n, San Juan de Alicante Alicante Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER Madrid Spain
- Departamento de Medicina Clínica Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) Alicante España
| | - Ani Gasparyan
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC Avda. de Ramón y Cajal s/n, San Juan de Alicante Alicante Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER Madrid Spain
- Departamento de Medicina Clínica Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) Alicante España
| | - Jorge Manzanares
- Instituto de Neurociencias Universidad Miguel Hernández‐CSIC Avda. de Ramón y Cajal s/n, San Juan de Alicante Alicante Spain
- Redes de Investigación Cooperativa Orientada a Resultados en Salud (RICORS), Red de Investigación en Atención Primaria de Adicciones (RIAPAd), Instituto de Salud Carlos III, MICINN and FEDER Madrid Spain
- Departamento de Medicina Clínica Universidad Miguel Hernández, Instituto de Investigación Sanitaria y Biomédica de Alicante (ISABIAL) Alicante España
| |
Collapse
|
13
|
Pharmacological and genetic manipulations at the µ-opioid receptor reveal arrestin-3 engagement limits analgesic tolerance and does not exacerbate respiratory depression in mice. Neuropsychopharmacology 2021; 46:2241-2249. [PMID: 34257415 PMCID: PMC8581001 DOI: 10.1038/s41386-021-01054-x] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 05/01/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023]
Abstract
Opioid drugs are widely used analgesics that activate the G protein-coupled µ-opioid receptor, whose endogenous neuropeptide agonists, endorphins and enkephalins, are potent pain relievers. The therapeutic utility of opioid drugs is hindered by development of tolerance to the analgesic effects, requiring dose escalation for persistent pain control and leading to overdose and fatal respiratory distress. The prevailing hypothesis is that the intended analgesic effects of opioid drugs are mediated by µ-opioid receptor signaling to G protein, while the side-effects of respiratory depression and analgesic tolerance are caused by engagement of the receptor with the arrestin-3 protein. Consequently, opioid drug development has focused exclusively on identifying agonists devoid of arrestin-3 engagement. Here, we challenge the prevailing hypothesis with a panel of six clinically relevant opioid drugs and mice of three distinct genotypes with varying abilities to promote morphine-mediated arrestin-3 engagement. With this genetic and pharmacological approach, we demonstrate that arrestin-3 recruitment does not impact respiratory depression, and effective arrestin-3 engagement reduces, rather than exacerbates, the development of analgesic tolerance. These studies suggest that future development of safer opioids should focus on identifying opioid ligands that recruit both G protein and arrestin-3, thereby mimicking the signaling profile of most endogenous µ-opioid receptor agonists.
Collapse
|
14
|
Kiguchi N, Ko MC. Potential therapeutic targets for the treatment of opioid abuse and pain. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2021; 93:335-371. [PMID: 35341570 PMCID: PMC10948018 DOI: 10.1016/bs.apha.2021.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Although μ-opioid peptide (MOP) receptor agonists are effective analgesics available in clinical settings, their serious adverse effects put limits on their use. The marked increase in abuse and misuse of prescription opioids for pain relief and opioid overdose mortality in the past decade has seriously impacted society. Therefore, safe analgesics that produce potent analgesic effects without causing MOP receptor-related adverse effects are needed. This review highlights the potential therapeutic targets for the treatment of opioid abuse and pain based on available evidence generated through preclinical studies and clinical trials. To ameliorate the abuse-related effects of opioids, orexin-1 receptor antagonists and mixed nociceptin/MOP partial agonists have shown promising results in translational aspects of animal models. There are several promising non-opioid targets for selectively inhibiting pain-related responses, including nerve growth factor inhibitors, voltage-gated sodium channel inhibitors, and cannabinoid- and nociceptin-related ligands. We have also discussed several emerging and novel targets. The current medications for opioid abuse are opioid receptor-based ligands. Although neurobiological studies in rodents have discovered several non-opioid targets, there is a translational gap between rodents and primates. Given that the neuroanatomical aspects underlying opioid abuse and pain are different between rodents and primates, it is pivotal to investigate the functional profiles of these non-opioid compounds compared to those of clinically used drugs in non-human primate models before initiating clinical trials. More pharmacological studies of the functional efficacy, selectivity, and tolerability of these newly discovered compounds in non-human primates will accelerate the development of effective medications for opioid abuse and pain.
Collapse
Affiliation(s)
- Norikazu Kiguchi
- Department of Physiological Sciences, School of Pharmaceutical Sciences, Wakayama Medical University, Wakayama, Japan.
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest University School of Medicine, Winston-Salem, NC, United States
| |
Collapse
|
15
|
Yang Y. Functional Selectivity of Dopamine D 1 Receptor Signaling: Retrospect and Prospect. Int J Mol Sci 2021; 22:ijms222111914. [PMID: 34769344 PMCID: PMC8584964 DOI: 10.3390/ijms222111914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Revised: 10/18/2021] [Accepted: 11/01/2021] [Indexed: 11/16/2022] Open
Abstract
Research progress on dopamine D1 receptors indicates that signaling no longer is limited to G protein-dependent cyclic adenosine monophosphate phosphorylation but also includes G protein-independent β-arrestin-related mitogen-activated protein kinase activation, regulation of ion channels, phospholipase C activation, and possibly more. This review summarizes recent studies revealing the complexity of D1 signaling and its clinical implications, and suggests functional selectivity as a promising strategy for drug discovery to magnify the merit of D1 signaling. Functional selectivity/biased receptor signaling has become a major research front because of its potential to improve therapeutics through precise targeting. Retrospective pharmacological review indicated that many D1 ligands have some degree of mild functional selectivity, and novel compounds with extreme bias at D1 signaling were reported recently. Behavioral and neurophysiological studies inspired new methods to investigate functional selectivity and gave insight into the biased signaling of several drugs. Results from recent clinical trials also supported D1 functional selectivity signaling as a promising strategy for discovery and development of better therapeutics.
Collapse
Affiliation(s)
- Yang Yang
- Department of Pharmacology, Penn State University College of Medicine, Hershey, PA 17033, USA
| |
Collapse
|
16
|
Giakomidi D, Bird MF, Guerrini R, Calo G, Lambert DG. Fluorescent opioid receptor ligands as tools to study opioid receptor function. J Pharmacol Toxicol Methods 2021; 113:107132. [PMID: 34728348 DOI: 10.1016/j.vascn.2021.107132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 10/12/2021] [Accepted: 10/25/2021] [Indexed: 11/30/2022]
Abstract
Opioid receptors are divided into the three classical types: MOP(μ:mu), DOP(δ:delta) and KOP(κ:kappa) that are naloxone-sensitive and an additional naloxone-insensitive nociceptin/orphanin FQ(N/OFQ) peptide receptor(NOP). Studies to determine opioid receptor location and turnover variably rely on; (i) measuring receptor mRNA, (ii) genetically tagging receptors, (iii) labelling receptors with radioligands, (iv) use of antibodies in immunohistochemistry/Western Blotting or (v) measuring receptor function coupled with the use of selective antagonists. All have their drawbacks with significant issues relating to mRNA not necessarily predicting protein, poor antibody selectivity and utility of radiolabels in low expression systems. In this minireview we discuss use of fluorescently labelled opioid receptor ligands. To maintain the pharmacological properties of the corresponding parent ligand fluorescently labelled ligands must take into account fluorophore (brightness and propensity to bleach), linker length and chemistry, and site to which the linker (and hence probe) will be attached. Use of donor and acceptor fluorophores with spectral overlap facilitates use in FRET type assays to determine proximity of ligand or tagged receptor pairs. There is a wide range of probes of agonist and antagonist nature for all four opioid receptor types; caution is needed with agonist probes due to the possibility for internalization. We have produced two novel ATTO based probes; DermorphinATTO488 (MOP) and N/OFQATTO594 (NOP). These probes label MOP and NOP in a range of preparations and using N/OFQATTO594 we demonstrate internalization and ligand-receptor interaction by FRET. Fluorescent opioid probes offer potential methodological advantages over more traditional use of antibodies and radiolabels.
Collapse
Affiliation(s)
- Despina Giakomidi
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester LE1 9HN. UK
| | - Mark F Bird
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester LE1 9HN. UK
| | - Remo Guerrini
- Department of Chemical, Pharmaceutical and Agricultural Sciences and LTTA, University of Ferrara, Italy
| | - Girolamo Calo
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, 35131 Padova, Italy
| | - David G Lambert
- Department of Cardiovascular Sciences (Anaesthesia, Critical Care and Pain Management), University of Leicester, Hodgkin Building, Leicester LE1 9HN. UK.
| |
Collapse
|
17
|
Astrocyte-Derived Extracellular Vesicle-Mediated Activation of Primary Ciliary Signaling Contributes to the Development of Morphine Tolerance. Biol Psychiatry 2021; 90:575-585. [PMID: 34417054 DOI: 10.1016/j.biopsych.2021.06.009] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Revised: 05/17/2021] [Accepted: 06/07/2021] [Indexed: 12/16/2022]
Abstract
BACKGROUND Morphine is used extensively in the clinical setting owing to its beneficial effects, such as pain relief; its therapeutic utility is limited because the prolonged use of morphine often results in tolerance and addiction. Astrocytes in the brain are a direct target of morphine action and play an essential role in the development of morphine tolerance. Primary cilia and the cilia-mediated sonic hedgehog (SHH) signaling pathways have been shown to play a role in drug resistance and morphine tolerance, respectively. Extracellular vesicles (EVs) play important roles as cargo-carrying vesicles mediating communication among cells and tissues. METHODS C57BL/6N mice were administered morphine for 8 days to develop tolerance, which was determined using the tail-flick and hot plate assays. EVs were separated from astrocyte-conditioned media using either size exclusion chromatography or ultracentrifugation approaches, followed by characterization of EVs using nanoparticle tracking analysis for EV size distribution and number, Western blotting for EV markers, and electron microscopy for EV morphology. Astrocytes were treated with EVs for 24 hours, followed by assessing primary cilia by fluorescent immunostaining for primary cilia markers (ARL13B and acetylated tubulin). RESULTS Morphine-tolerant mice exhibited an increase in primary cilia length and percentage of ciliated astrocytes. The levels of SHH protein were upregulated in morphine-stimulated astrocyte-derived EVs. SHH on morphine-stimulated astrocyte-derived EVs activated SHH signaling in astrocytes through primary cilia. Our in vivo study demonstrated that inhibition of either EV release or primary cilia prevents morphine tolerance in mice. CONCLUSIONS EV-mediated primary ciliogenesis contributes to the development of morphine tolerance.
Collapse
|
18
|
Chakraborty G, Bardhan S, Saha SK. Unfolding of Tryptophanoctyl Ester and Elastic Deformation of Host Micelles via RR' 3 N + ⋅⋅⋅π Interaction: Conceivable Relevance to Wrapping Process of Receptor Mediated Endocytosis. Chemphyschem 2021; 22:2535-2549. [PMID: 34561950 DOI: 10.1002/cphc.202100582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Indexed: 11/11/2022]
Abstract
The interfacial properties of the mixed amphiphiles are modified by a stronger cation-π interaction between the quaternary ammonium head group of CTAB and the π-face of TROE, compared to the tyrosine analogue (TYOE). This eventually triggers a morphology transition through elastic deformation of the spherical micelles of CTAB to cylindrical/wormlike micelles. The unfolding of TROE and the molecular interactions in the nanoenvironment have been recognized by NMR spectroscopy and the physical characteristics of the entangled wormlike micelles are investigated by high resolution transmission electron microscopy (HRTEM), whereas the complex fluidic feature is examined by dynamic rheological measurements. Morphology tuning of the soft nanoaggregates of zwitterionic dodecylphosphocholine by the tryptophan analogue via choline-π interaction has unique biological consequences and we consider the significance of such interactions in facilitating endocytosis of a virion/nano particle(NP) in terms of a quantitative model. The implication in future research on drug development strategies is discussed.
Collapse
Affiliation(s)
- Gulmi Chakraborty
- Department of Chemistry, Jadavpur University, Kolkata, 700032, India
| | - Soumik Bardhan
- BJM School of Biosciences and Department of Biotechnology, Indian Institute of Technology Madras, Chennai, 600036, India
| | - Swapan K Saha
- Department of Chemistry, University of North Bengal, Darjeeling, 734 013, India
| |
Collapse
|
19
|
Copits BA, Gowrishankar R, O'Neill PR, Li JN, Girven KS, Yoo JJ, Meshik X, Parker KE, Spangler SM, Elerding AJ, Brown BJ, Shirley SE, Ma KKL, Vasquez AM, Stander MC, Kalyanaraman V, Vogt SK, Samineni VK, Patriarchi T, Tian L, Gautam N, Sunahara RK, Gereau RW, Bruchas MR. A photoswitchable GPCR-based opsin for presynaptic inhibition. Neuron 2021; 109:1791-1809.e11. [PMID: 33979635 PMCID: PMC8194251 DOI: 10.1016/j.neuron.2021.04.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/21/2021] [Accepted: 04/26/2021] [Indexed: 12/12/2022]
Abstract
Optical manipulations of genetically defined cell types have generated significant insights into the dynamics of neural circuits. While optogenetic activation has been relatively straightforward, rapid and reversible synaptic inhibition has proven more elusive. Here, we leveraged the natural ability of inhibitory presynaptic GPCRs to suppress synaptic transmission and characterize parapinopsin (PPO) as a GPCR-based opsin for terminal inhibition. PPO is a photoswitchable opsin that couples to Gi/o signaling cascades and is rapidly activated by pulsed blue light, switched off with amber light, and effective for repeated, prolonged, and reversible inhibition. PPO rapidly and reversibly inhibits glutamate, GABA, and dopamine release at presynaptic terminals. Furthermore, PPO alters reward behaviors in a time-locked and reversible manner in vivo. These results demonstrate that PPO fills a significant gap in the neuroscience toolkit for rapid and reversible synaptic inhibition and has broad utility for spatiotemporal control of inhibitory GPCR signaling cascades.
Collapse
Affiliation(s)
- Bryan A Copits
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA.
| | - Raaj Gowrishankar
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Patrick R O'Neill
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Shirley and Stefan Hatos Center for Neuropharmacology, Semel Institute, Department of Psychiatry and Biobehavioral Sciences, University of California Los Angeles, Los Angeles, CA
| | - Jun-Nan Li
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kasey S Girven
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Judy J Yoo
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Xenia Meshik
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Kyle E Parker
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Skylar M Spangler
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Abigail J Elerding
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Bobbie J Brown
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sofia E Shirley
- Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA
| | - Kelly K L Ma
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Alexis M Vasquez
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - M Christine Stander
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vani Kalyanaraman
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Sherri K Vogt
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Vijay K Samineni
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Tommaso Patriarchi
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Lin Tian
- Department of Biochemistry and Molecular Medicine, University of California Davis, Davis, CA, USA
| | - N Gautam
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA
| | - Roger K Sunahara
- Department of Pharmacology, University of California San Diego, San Diego, CA, USA
| | - Robert W Gereau
- Washington University Pain Center, Washington University School of Medicine, St. Louis, MO, USA; Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA
| | - Michael R Bruchas
- Department of Anesthesiology, Washington University School of Medicine, St. Louis, MO, USA; Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Center of Excellence in the Neurobiology of Addiction, Pain, and Emotion, Departments of Anesthesiology and Pain Medicine, and Pharmacology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
20
|
De Aquino JP, Parida S, Sofuoglu M. The Pharmacology of Buprenorphine Microinduction for Opioid Use Disorder. Clin Drug Investig 2021; 41:425-436. [PMID: 33818748 PMCID: PMC8020374 DOI: 10.1007/s40261-021-01032-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 12/25/2022]
Abstract
Although expanding the availability of buprenorphine—a first-line pharmacotherapy for opioid-use disorder (OUD)—has increased the capacity of healthcare systems to offer treatment, starting this medication is fraught with significant barriers. Standard induction regimens require persons with OUD to taper and discontinue full opioid agonists and experience opioid withdrawal prior to the first dose of buprenorphine. Further, emerging evidence indicates that precipitated withdrawal during induction may impact long-term treatment outcomes. Microinduction is a novel approach that, by harnessing buprenorphine’s unique pharmacological profile, may allow circumventing the needed for prolonged opioid tapers, and reduce the risk of precipitated withdrawal—holding promise to enhance treatment access. In this review, we examine the pharmacological basis for microinduction and appraise the evidence of this approach to improve clinical outcomes among persons with OUD. First, we highlight the potential dose-dependent effects of buprenorphine on two key neuroadaptations at the mu-opioid receptor (MOR)—resensitization and upregulation. We then focus on how microinduction may reverse these chronic MOR neuroadaptations, allowing the maintenance of an adequate opioid tone, and thereby potentially circumventing opioid withdrawal. Second, we describe the clinical evidence available, derived from observational reports and open-label studies, examining the potential efficacy of microinduction. Despite significant heterogeneity—exemplified by variable buprenorphine formulations, daily doses, and schedules of administration—these data provide preliminary support for the feasibility of microinduction. Finally, we provide new mechanistic, methodological, and clinical insights to guide future translational research, as well as randomized, placebo-controlled clinical trials in this compelling agenda of pharmacotherapy development.
Collapse
Affiliation(s)
- Joao P De Aquino
- VA Connecticut Healthcare System, 950 Campbell Avenue, 151D, West Haven, CT, 06516, USA. .,Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA.
| | - Suprit Parida
- VA Connecticut Healthcare System, 950 Campbell Avenue, 151D, West Haven, CT, 06516, USA.,Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| | - Mehmet Sofuoglu
- VA Connecticut Healthcare System, 950 Campbell Avenue, 151D, West Haven, CT, 06516, USA.,Department of Psychiatry, Yale University School of Medicine, 300 George Street, New Haven, CT, 06511, USA
| |
Collapse
|
21
|
Huang Q, Ford NC, Gao X, Chen Z, Guo R, Raja SN, Guan Y, He S. Ubiquitin-mediated receptor degradation contributes to development of tolerance to MrgC agonist-induced pain inhibition in neuropathic rats. Pain 2021; 162:1082-1094. [PMID: 33110031 PMCID: PMC7969388 DOI: 10.1097/j.pain.0000000000002119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 10/15/2020] [Indexed: 11/25/2022]
Abstract
ABSTRACT Agonists to subtype C of the Mas-related G-protein-coupled receptors (MrgC) induce pain inhibition after intrathecal (i.t.) administration in rodent models of nerve injury. Here, we investigated whether tolerance develops after repeated MrgC agonist treatments and examined the underlying mechanisms. In animal behavior studies conducted in male rats at 4 to 5 weeks after an L5 spinal nerve ligation (SNL), the ability of dipeptide MrgC agonist JHU58 (0.1 mM, 10 μL, i.t.) to inhibit mechanical and heat hypersensitivity decreased after 3 days of treatment with a tolerance-inducing dose (0.5 mM, 10 μL, i.t., twice/day). In HEK293T cells, acute treatment with JHU58 or BAM8-22 (a large peptide MrgC agonist) led to MrgC endocytosis from the cell membrane and later sorting to the membrane for reinsertion. However, chronic exposure to JHU58 increased the coupling of MrgC to β-arrestin-2 and led to the ubiquitination and degradation of MrgC. Importantly, pretreatment with TAK-243 (0.2 mM, 5 μL, i.t.), a small-molecule inhibitor of the ubiquitin-activating enzyme, during tolerance induction attenuated the development of tolerance to JHU58-induced inhibition of mechanical and heat hypersensitivity in SNL rats. Interestingly, morphine analgesia was also decreased in SNL rats that had become tolerant to JHU58, suggesting a cross-tolerance. Furthermore, i.t. pretreatment with TAK-243, which reduced JHU58 tolerance, also attenuated the cross-tolerance to morphine analgesia. These findings suggest that tolerance can develop to MrgC agonist-induced pain inhibition after repeated i.t. administrations. This tolerance development to JHU58 may involve increased coupling of MrgC to β-arrestin-2 and ubiquitin-mediated receptor degradation.
Collapse
Affiliation(s)
- Qian Huang
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Neil C. Ford
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Xinyan Gao
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Zhiyong Chen
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Ruijuan Guo
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Srinivasa N. Raja
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Yun Guan
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
- Department of Neurological Surgery, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| | - Shaoqiu He
- Department of Anesthesiology and Critical Care Medicine, the Johns Hopkins University, School of Medicine, Baltimore, Maryland, 21205, USA
| |
Collapse
|
22
|
Lee J, Rosales JL, Byun HG, Lee KY. D,L-Methadone causes leukemic cell apoptosis via an OPRM1-triggered increase in IP3R-mediated ER Ca 2+ release and decrease in Ca 2+ efflux, elevating [Ca 2+] i. Sci Rep 2021; 11:1009. [PMID: 33441856 PMCID: PMC7806773 DOI: 10.1038/s41598-020-80520-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/22/2020] [Indexed: 11/09/2022] Open
Abstract
The search continues for improved therapy for acute lymphoblastic leukemia (aLL), the most common malignancy in children. Recently, d,l-methadone was put forth as sensitizer for aLL chemotherapy. However, the specific target of d,l-methadone in leukemic cells and the mechanism by which it induces leukemic cell apoptosis remain to be defined. Here, we demonstrate that d,l-methadone induces leukemic cell apoptosis through activation of the mu1 subtype of opioid receptors (OPRM1). d,l-Methadone evokes IP3R-mediated ER Ca2+ release that is inhibited by OPRM1 loss. In addition, the rate of Ca2+ extrusion following d,l-methadone treatment is reduced, but is accelerated by loss of OPRM1. These d,l-methadone effects cause a lethal rise in [Ca2+]i that is again inhibited by OPRM1 loss, which then prevents d,l-methadone-induced apoptosis that is associated with activation of calpain-1, truncation of Bid, cytochrome C release, and proteolysis of caspase-3/12. Chelating intracellular Ca2+ with BAPTA-AM reverses d,l-methadone-induced apoptosis, establishing a link between the rise in [Ca2+]i and d,l-methadone-induced apoptosis. Altogether, our findings point to OPRM1 as a specific target of d,l-methadone in leukemic cells, and that OPRM1 activation by d,l-methadone disrupts IP3R-mediated ER Ca2+ release and rate of Ca2+ efflux, causing a rise in [Ca2+]i that upregulates the calpain-1-Bid-cytochrome C-caspase-3/12 apoptotic pathway.
Collapse
Affiliation(s)
- JungKwon Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer, Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.,Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Jesusa L Rosales
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer, Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada
| | - Hee-Guk Byun
- Department of Marine Biotechnology, Gangneung-Wonju National University, Gangneung, South Korea
| | - Ki-Young Lee
- Department of Cell Biology and Anatomy, Arnie Charbonneau Cancer, Alberta Children's Hospital Research Institutes, Cumming School of Medicine, University of Calgary, Calgary, AB, T2N 4N1, Canada.
| |
Collapse
|
23
|
Starnowska-Sokół J, Piotrowska A, Bogacka J, Makuch W, Mika J, Witkowska E, Godlewska M, Osiejuk J, Gątarz S, Misicka A, Przewłocka B. Novel hybrid compounds, opioid agonist+melanocortin 4 receptor antagonist, as efficient analgesics in mouse chronic constriction injury model of neuropathic pain. Neuropharmacology 2020; 178:108232. [PMID: 32750445 DOI: 10.1016/j.neuropharm.2020.108232] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 06/24/2020] [Accepted: 07/06/2020] [Indexed: 12/30/2022]
Abstract
When the nerve tissue is injured, endogenous agonist of melanocortin type 4 (MC4) receptor, α-MSH, exerts tonic pronociceptive action in the central nervous system, contributing to sustaining the neuropathic pain state and counteracting the analgesic effects of exogenous opioids. With the intent of enhancing opioid analgesia in neuropathy by blocking the MC4 activation, so-called parent compounds (opioid agonist, MC4 antagonist) were joined together using various linkers to create novel bifunctional hybrid compounds. Analgesic action of four hybrids was tested after intrathecal (i.t.) administration in mouse models of acute and neuropathic pain (chronic constriction injury model, CCI). Under nerve injury conditions, one of the hybrids, UW3, induced analgesia in 1500 times lower i.t. dose than the opioid parent (ED50: 0.0002 nmol for the hybrid, 0.3 nmol for the opioid parent) and in an over 16000 times lower dose than the MC4 parent (ED50: 3.33 nmol) as measured by the von Frey test. Two selected hybrids were tested for analgesic properties in CCI mice after intravenous (i.v.) and intraperitoneal (i.p.) administration. Opioid receptor antagonists and MC4 receptor agonists diminished the analgesic action of these two hybrids studied, though the extent of this effect differed between the hybrids; this suggests that linker is of key importance here. Further results indicate a significant advantage of hybrid compounds over the physical mixture of individual pharmacophores in their analgesic effect. All this evidence justifies the idea of synthesizing a bifunctional opioid agonist-linker-MC4 antagonist compound, as such structure may bring important benefits in neuropathic pain treatment.
Collapse
Affiliation(s)
- Joanna Starnowska-Sokół
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Anna Piotrowska
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Bogacka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Wioletta Makuch
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Joanna Mika
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland
| | - Ewa Witkowska
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Magda Godlewska
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Jowita Osiejuk
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Sandra Gątarz
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Aleksandra Misicka
- University of Warsaw, Faculty of Chemistry, Biological and Chemistry Research Centre, Warsaw, Poland
| | - Barbara Przewłocka
- Maj Institute of Pharmacology, Polish Academy of Sciences, Department of Pain Pharmacology, Krakow, Poland.
| |
Collapse
|
24
|
Pharmacological properties and biochemical mechanisms of μ-opioid receptor ligands might be due to different binding poses: MD studies. Future Med Chem 2020; 12:2001-2018. [PMID: 32972243 DOI: 10.4155/fmc-2020-0249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Background: Central and peripheral analgesia without adverse effects relies on the identification of μ-opioid agonists that are able to activate 'basal' antinociceptive pathways. Recently developed μ-selective benzomorphan agonists that are not antagonized by naloxone do not activate G-proteins and β-arrestins. Which pathways do μ receptors activate? How can each of them be selectively activated? What role is played by allosteric binding sites? Methodology & results: Molecular modeling studies characterize the amino acid residues involved in the interaction with various classes of endogenous and exogenous ligands and with agonists and antagonists. Conclusions: Critical binding differences between various classes of agonists with different pharmacological profiles have been identified. MML series binding poses may be relevant in the search for an antinociception agent without side effects.
Collapse
|
25
|
Ding H, Kiguchi N, Perrey DA, Nguyen T, Czoty PW, Hsu FC, Zhang Y, Ko MC. Antinociceptive, reinforcing, and pruritic effects of the G-protein signalling-biased mu opioid receptor agonist PZM21 in non-human primates. Br J Anaesth 2020; 125:596-604. [PMID: 32819621 DOI: 10.1016/j.bja.2020.06.057] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND A novel G-protein signalling-biased mu opioid peptide (MOP) receptor agonist, PZM21, was recently developed with a distinct chemical structure. It is a potent Gi/o activator with minimal β-arrestin-2 recruitment. Despite intriguing activity in rodent models, PZM21 function in non-human primates is unknown. The aim of this study was to investigate PZM21 actions after systemic or intrathecal administration in primates. METHODS Antinociceptive, reinforcing, and pruritic effects of PZM21 were compared with those of the clinically used MOP receptor agonists oxycodone and morphine in assays of acute thermal nociception, capsaicin-induced thermal allodynia, itch scratching responses, and drug self-administration in gonadally intact, adult rhesus macaques (10 males, six females). RESULTS After subcutaneous administration, PZM21 (1.0-6.0 mg kg-1) and oxycodone (0.1-0.6 mg kg-1) induced dose-dependent thermal antinociceptive effects (P<0.05); PZM21 was 10 times less potent than oxycodone. PZM21 exerted oxycodone-like reinforcing effects and strength as determined by two operant schedules of reinforcement in the intravenous drug self-administration assay. After intrathecal administration, PZM21 (0.03-0.3 mg) dose-dependently attenuated capsaicin-induced thermal allodynia (P<0.05). Although intrathecal PZM21 and morphine induced MOP receptor-mediated antiallodynic effects, both compounds induced robust, long-lasting itch scratching. CONCLUSIONS PZM21 induced antinociceptive, reinforcing, and pruritic effects similar to clinically used MOP receptor agonists in primates. Although structure-based discovery of PZM21 identified a novel avenue for studying G-protein signalling-biased ligands, biasing an agonist towards G-protein signalling pathways did not determine or alter reinforcing (i.e. abuse potential) or pruritic effects of MOP receptor agonists in a translationally relevant non-human primate model.
Collapse
Affiliation(s)
- Huiping Ding
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Norikazu Kiguchi
- Department of Pharmacology, Wakayama Medical University, Wakayama, Japan
| | - David A Perrey
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Thuy Nguyen
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA
| | - Paul W Czoty
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Fang-Chi Hsu
- Department of Biostatistics and Data Science, Wake Forest School of Medicine, Winston-Salem, NC, USA
| | - Yanan Zhang
- Center for Drug Discovery, Research Triangle Institute, Research Triangle Park, NC, USA.
| | - Mei-Chuan Ko
- Department of Physiology and Pharmacology, Wake Forest School of Medicine, Winston-Salem, NC, USA; W.G. Hefner Veterans Affairs Medical Center, Salisbury, NC, USA.
| |
Collapse
|
26
|
Gudin J, Fudin J. A Narrative Pharmacological Review of Buprenorphine: A Unique Opioid for the Treatment of Chronic Pain. Pain Ther 2020; 9:41-54. [PMID: 31994020 PMCID: PMC7203271 DOI: 10.1007/s40122-019-00143-6] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Indexed: 12/18/2022] Open
Abstract
Buprenorphine is a Schedule III opioid analgesic with unique pharmacodynamic and pharmacokinetic properties that may be preferable to those of Schedule II full μ-opioid receptor agonists. The structure of buprenorphine allows for multimechanistic interactions with opioid receptors μ, δ, κ, and opioid receptor-like 1. Buprenorphine is considered a partial agonist with very high binding affinity for the μ-opioid receptor, an antagonist with high binding affinity for the δ- and κ-opioid receptors, and an agonist with low binding affinity for the opioid receptor-like 1 receptor. Partial agonism at the μ-opioid receptor does not provide partial analgesia, but rather analgesia equivalent to that of full μ-opioid receptor agonists. In addition, unlike full μ-opioid receptor agonists, buprenorphine may have a unique role in mediating analgesic signaling at spinal opioid receptors while having less of an effect on brain receptors, potentially limiting classic opioid-related adverse events such as euphoria, addiction, or respiratory depression. The pharmacokinetic properties of buprenorphine are also advantageous in a clinical setting, where metabolic and excretory pathways allow for use in patients requiring concomitant medications, the elderly, and those with renal or hepatic impairment. The unique pharmacodynamic and pharmacokinetic properties of buprenorphine translate to an effective analgesic with a potentially favorable safety profile compared with that of full μ-opioid receptor agonists for the treatment of chronic pain.
Collapse
Affiliation(s)
- Jeffrey Gudin
- Department of Anesthesiology, Englewood Hospital and Medical Center, 350 Engle St, Englewood, NJ, 07631, USA.
- Department of Anesthesia and Perioperative Care, Rutgers New Jersey Medical School, 185 S Orange Ave, Newark, NJ, 07103, USA.
| | - Jeffrey Fudin
- Western New England University College of Pharmacy and Health Sciences, 1215 Wilbraham Road, Springfield, MA, 01119, USA
- Albany College of Pharmacy & Health Sciences, 106 New Scotland Avenue, Albany, NY, 12208, USA
- Remitigate, LLC, 357 Delaware Avenue #214, Delmar, NY, 12054, USA
| |
Collapse
|
27
|
Chen J, Loukola A, Gillespie NA, Peterson R, Jia P, Riley B, Maes H, Dick DM, Kendler KS, Damaj MI, Miles MF, Zhao Z, Li MD, Vink JM, Minica CC, Willemsen G, Boomsma DI, Qaiser B, Madden PAF, Korhonen T, Jousilahti P, Hällfors J, Gelernter J, Kranzler HR, Sherva R, Farrer L, Maher B, Vanyukov M, Taylor M, Ware JJ, Munafò MR, Lutz SM, Hokanson JE, Gu F, Landi MT, Caporaso NE, Hancock DB, Gaddis NC, Baker TB, Bierut LJ, Johnson EO, Chenoweth M, Lerman C, Tyndale R, Kaprio J, Chen X. Genome-Wide Meta-Analyses of FTND and TTFC Phenotypes. Nicotine Tob Res 2020; 22:900-909. [PMID: 31294817 PMCID: PMC7249921 DOI: 10.1093/ntr/ntz099] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 09/14/2018] [Indexed: 12/19/2022]
Abstract
INTRODUCTION FTND (Fagerstrӧm test for nicotine dependence) and TTFC (time to smoke first cigarette in the morning) are common measures of nicotine dependence (ND). However, genome-wide meta-analysis for these phenotypes has not been reported. METHODS Genome-wide meta-analyses for FTND (N = 19,431) and TTFC (N = 18,567) phenotypes were conducted for adult smokers of European ancestry from 14 independent cohorts. RESULTS We found that SORBS2 on 4q35 (p = 4.05 × 10-8), BG182718 on 11q22 (p = 1.02 × 10-8), and AA333164 on 14q21 (p = 4.11 × 10-9) were associated with TTFC phenotype. We attempted replication of leading candidates with independent samples (FTND, N = 7010 and TTFC, N = 10 061), however, due to limited power of the replication samples, the replication of these new loci did not reach significance. In gene-based analyses, COPB2 was found associated with FTND phenotype, and TFCP2L1, RELN, and INO80C were associated with TTFC phenotype. In pathway and network analyses, we found that the interconnected interactions among the endocytosis, regulation of actin cytoskeleton, axon guidance, MAPK signaling, and chemokine signaling pathways were involved in ND. CONCLUSIONS Our analyses identified several promising candidates for both FTND and TTFC phenotypes, and further verification of these candidates was necessary. Candidates supported by both FTND and TTFC (CHRNA4, THSD7B, RBFOX1, and ZNF804A) were associated with addiction to alcohol, cocaine, and heroin, and were associated with autism and schizophrenia. We also identified novel pathways involved in cigarette smoking. The pathway interactions highlighted the importance of receptor recycling and internalization in ND. IMPLICATIONS Understanding the genetic architecture of cigarette smoking and ND is critical to develop effective prevention and treatment. Our study identified novel candidates and biological pathways involved in FTND and TTFC phenotypes, and this will facilitate further investigation of these candidates and pathways.
Collapse
Affiliation(s)
- Jingchun Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
| | - Anu Loukola
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Nathan A Gillespie
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Roseann Peterson
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Peilin Jia
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
| | - Brien Riley
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Hermine Maes
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - Daniella M Dick
- Department of Psychology, Virginia Commonwealth University, Richmond, VA
| | - Kenneth S Kendler
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
| | - M Imad Damaj
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Michael F Miles
- Department of Pharmacology and Toxicology, Virginia Commonwealth University, Richmond, VA
| | - Zhongming Zhao
- School of Biomedical Informatics, University of Texas Health Science Center at Houston, Houston, TX
| | - Ming D Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jacqueline M Vink
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Camelia C Minica
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Neuroscience Campus Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands
| | - Gonneke Willemsen
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Neuroscience Campus Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands
| | - Dorret I Boomsma
- Netherlands Twin Register, Department of Biological Psychology, VU University, the Netherlands
- Neuroscience Campus Amsterdam, the Netherlands
- EMGO+ Institute for Health and Care Research, VU Medical Center, Amsterdam, the Netherlands
| | - Beenish Qaiser
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Tellervo Korhonen
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute of Public Health and Clinical Nutrition, University of Eastern Finland, Finland
| | | | - Jenni Hällfors
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Joel Gelernter
- Department of Psychiatry, Yale University, New Haven, CT
| | - Henry R Kranzler
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Richard Sherva
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Lindsay Farrer
- Section of Biomedical Genetics, Department of Medicine, Boston University School of Medicine, Boston, MA
| | - Brion Maher
- Department of Mental Health, Johns Hopkins University, Baltimore, MD
| | - Michael Vanyukov
- Department of Pharmaceutical Sciences, University of Pittsburgh, Pittsburgh, PA
| | - Michelle Taylor
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, BS, UK
| | - Jenifer J Ware
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, BS, UK
| | - Marcus R Munafò
- MRC Integrative Epidemiology Unit (IEU) at the University of Bristol, Bristol, BS, UK
| | - Sharon M Lutz
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - John E Hokanson
- Department of Biostatistics and Informatics, University of Colorado Anschutz Medical Campus, Aurora, CO
| | - Fangyi Gu
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD
| | - Maria T Landi
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD
| | - Neil E Caporaso
- Genetic Epidemiology Branch, Division of Cancer Epidemiology and Genetics, National Cancer Institute, National Institutes of Health, United States Department of Health and Human Services, Bethesda, MD
| | - Dana B Hancock
- Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC
| | - Nathan C Gaddis
- Research Computing Division, RTI International, Research Triangle Park, NC
| | - Timothy B Baker
- Center for Tobacco Research and Intervention, University of Wisconsin, Madison, WI
| | - Laura J Bierut
- Department of Psychiatry, Washington University, St. Louis, MO
| | - Eric O Johnson
- Behavioral Health and Criminal Justice Division, RTI International, Research Triangle Park, NC
- Fellow Program, RTI International, Research Triangle Park, NC
| | - Meghan Chenoweth
- Centre for Addiction and Mental Health, and Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Caryn Lerman
- Center for Interdisciplinary Research on Nicotine Addiction, Department of Psychiatry, University of Pennsylvania, Philadelphia, PA
| | - Rachel Tyndale
- Centre for Addiction and Mental Health, and Departments of Pharmacology and Toxicology, and Psychiatry, University of Toronto, Toronto, Canada
| | - Jaakko Kaprio
- Department of Public Health, University of Helsinki, Helsinki, FI, Finland
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | - Xiangning Chen
- Nevada Institute of Personalized Medicine, University of Nevada Las Vegas, Las Vegas, NV
- Virginia Institute of Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA
- Department of Psychology, University of Nevada Las Vegas, Las Vegas, NV
| |
Collapse
|
28
|
Ruland JG, Kirchhofer SB, Klindert S, Bailey CP, Bünemann M. Voltage modulates the effect of μ-receptor activation in a ligand-dependent manner. Br J Pharmacol 2020; 177:3489-3504. [PMID: 32297669 PMCID: PMC7348086 DOI: 10.1111/bph.15070] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/16/2020] [Accepted: 03/30/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND AND PURPOSE Various GPCRs have been described as being modulated in a voltage-dependent manner. Opioid analgesics act via activation of μ receptors in various neurons. As neurons are exposed to large changes in membrane potential, we were interested in studying the effects of depolarization on μ receptor signalling. EXPERIMENTAL APPROACH We investigated potential voltage sensitivity of μ receptors in heterologous expression systems (HEK293T cells) using electrophysiology in combination with Förster resonance energy transfer-based assays. Depolarization-induced changes in signalling were also tested in physiological rat tissue containing locus coeruleus neurons. We applied depolarization steps across the physiological range of membrane potentials. KEY RESULTS Studying μ receptor function and signalling in cells, we discovered that morphine-induced signalling was strongly dependent on the membrane potential (VM ). This became apparent at the level of G-protein activation, G-protein coupled inwardly rectifying potassium channel (Kir 3.X) currents and binding of GPCR kinases and arrestin3 to μ receptors by a robust increase in signalling upon membrane depolarization. The pronounced voltage sensitivity of morphine-induced μ receptor activation was also observed at the level of Kir 3.X currents in rat locus coeruleus neurons. The efficacy of peptide ligands to activate μ receptors was not (Met-enkephalin) or only moderately ([D-Ala2 , N-Me-Phe4 , Gly5 -ol]-enkephalin) enhanced upon depolarization. In contrast, depolarization reduced the ability of the analgesic fentanyl to activate μ receptors. CONCLUSION AND IMPLICATIONS Our results indicate a strong ligand-dependent modulation of μ receptor activity by the membrane potential, suggesting preferential activity of morphine in neurons with high neuronal activity.
Collapse
Affiliation(s)
- Julia G Ruland
- Department of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany
| | - Sina B Kirchhofer
- Department of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany
| | - Sebastian Klindert
- Department of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany.,Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Chris P Bailey
- Department of Pharmacy and Pharmacology, University of Bath, Bath, UK
| | - Moritz Bünemann
- Department of Pharmacology and Clinical Pharmacy, Philipps-University, Marburg, Germany
| |
Collapse
|
29
|
Szűcs E, Marton J, Szabó Z, Hosztafi S, Kékesi G, Tuboly G, Bánki L, Horváth G, Szabó PT, Tömböly C, Varga ZK, Benyhe S, Ötvös F. Synthesis, biochemical, pharmacological characterization and in silico profile modelling of highly potent opioid orvinol and thevinol derivatives. Eur J Med Chem 2020; 191:112145. [PMID: 32092588 DOI: 10.1016/j.ejmech.2020.112145] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Revised: 01/22/2020] [Accepted: 02/12/2020] [Indexed: 02/02/2023]
Abstract
Morphine and its derivatives play inevitably important role in the μ-opioid receptor (MOR) targeted antinociception. A structure-activity relationship study is presented for novel and known orvinol and thevinol derivatives with varying 3-O, 6-O, 17-N and 20-alkyl substitutions starting from agonists, antagonists and partial agonists. In vitro competition binding experiments with [3H]DAMGO showed low subnanomolar affinity to MOR. Generally, 6-O-demethylation increased the affinity toward MOR and decreased the efficacy changing the pharmacological profile in some cases. In vivo tests in osteoarthritis inflammation model showed significant antiallodynic effects of thevinol derivatives while orvinol derivatives did not. The pharmacological character was modelled by computational docking to both active and inactive state models of MOR. Docking energy difference for the two states separates agonists and antagonists well while partial agonists overlapped with them. An interaction pattern of the ligands, involving the interacting receptor atoms, showed more efficient separation of the pharmacological profiles. In rats, thevinol derivatives showed antiallodynic effect in vivo. The orvinol derivatives, except for 6-O-desmethyl-dihydroetorfin (2c), did not show antiallodynic effect.
Collapse
Affiliation(s)
- Edina Szűcs
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary; Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - János Marton
- ABX Advanced Biochemical Compounds, Biomedizinische Forschungsreagenzien GmbH, Heinrich-Glaeser-Strasse 10-14, D-01454, Radeberg, Germany
| | - Zoltán Szabó
- Royal Institute of Technology (KTH), School of Engineering Sciences in Chemistry, Biotechnology and Health, Department of Chemistry, Organic Chemistry, S-100 44, Stockholm, Sweden
| | - Sándor Hosztafi
- Institute of Pharmaceutical Chemistry, Semmelweis Medical University, Hőgyes Endre utca 9, H-1092, Budapest, Hungary
| | - Gabriella Kékesi
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Gábor Tuboly
- Department of Neurology, Faculty of Medicine, University of Szeged, Semmelweis u 6, H-6725, Szeged, Hungary
| | - László Bánki
- Department of Traumatology, Faculty of Medicine, University of Szeged, Semmelweis u 6, H-6725, Szeged, Hungary
| | - Gyöngyi Horváth
- Department of Physiology, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Pál T Szabó
- Research Centre for Natural Sciences, MS Metabolomics Research Laboratory, H-1117, Budapest, Magyar tudósok krt. 2, Hungary
| | - Csaba Tömböly
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Zsuzsanna Katalin Varga
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary; Doctoral School of Theoretical Medicine, Faculty of Medicine, University of Szeged, Dóm tér 10, H-6720, Szeged, Hungary
| | - Sándor Benyhe
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary
| | - Ferenc Ötvös
- Institute of Biochemistry, Biological Research Center, Temesvári krt. 62, H-6726, Szeged, Hungary.
| |
Collapse
|
30
|
Stoeber M, Jullié D, Li J, Chakraborty S, Majumdar S, Lambert NA, Manglik A, von Zastrow M. Agonist-selective recruitment of engineered protein probes and of GRK2 by opioid receptors in living cells. eLife 2020; 9:54208. [PMID: 32096468 PMCID: PMC7041944 DOI: 10.7554/elife.54208] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Accepted: 01/29/2020] [Indexed: 12/21/2022] Open
Abstract
G protein-coupled receptors (GPCRs) signal through allostery, and it is increasingly clear that chemically distinct agonists can produce different receptor-based effects. It has been proposed that agonists selectively promote receptors to recruit one cellular interacting partner over another, introducing allosteric ‘bias’ into the signaling system. However, the underlying hypothesis - that different agonists drive GPCRs to engage different cytoplasmic proteins in living cells - remains untested due to the complexity of readouts through which receptor-proximal interactions are typically inferred. We describe a cell-based assay to overcome this challenge, based on GPCR-interacting biosensors that are disconnected from endogenous transduction mechanisms. Focusing on opioid receptors, we directly demonstrate differences between biosensor recruitment produced by chemically distinct opioid ligands in living cells. We then show that selective recruitment applies to GRK2, a biologically relevant GPCR regulator, through discrete interactions of GRK2 with receptors or with G protein beta-gamma subunits which are differentially promoted by agonists. About a third of all drugs work by targeting a group of proteins known as G-protein coupled receptors, or GPCRs for short. These receptors are found on the surface of cells and transmit messages across the cell’s outer barrier. When a signaling molecule, like a hormone, is released in the body, it binds to a GPCR and changes the receptor’s shape. The change in structure affects how the GPCR interacts and binds to other proteins on the inside of the cell, triggering a series of reactions that alter the cell’s activity. Scientists have previously seen that a GPCR can trigger different responses depending on which signaling molecule is binding on the surface of the cell. However, the mechanism for this is unknown. One hypothesis is that different signaling molecules change the GPCR’s preference for binding to different proteins on the inside of the cell. The challenge has been to observe this happening without interfering with the process. Stoeber et al. have now tested this idea by attaching fluorescent tags to proteins that bind to activated GPCRs directly and without binding other signaling proteins. This meant these proteins could be tracked under a microscope as they made their way to bind to the GPCRs. Stoeber et al. focused on one particular GPCR, known as the opioid receptor, and tested the binding of two different opioid signaling molecules, etorphine and Dynorphin A. The experiments revealed that the different opioids did affect which of the engineered proteins would preferentially bind to the opioid receptor. This was followed by a similar experiment, where the engineered proteins were replaced with another protein called GRK2, which binds to the opioid receptor under normal conditions in the cell. This showed that GRK2 binds much more strongly to the opioid receptor when Dynorphin A is added compared to adding etorphine. These findings show that GPCRs can not only communicate that a signaling molecule is binding but can respond differently to convey what molecule it is more specifically. This could be important in developing drugs, particularly to specifically trigger the desired response and reduce side effects. Stoeber et al. suggest that an important next step for research is to understand how the GPCRs preferentially bind to different proteins.
Collapse
Affiliation(s)
- Miriam Stoeber
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cell Physiology and Metabolism, University of Geneva, Geneva, Switzerland
| | - Damien Jullié
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Joy Li
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| | - Soumen Chakraborty
- Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, United States.,St Louis College of Pharmacy, St. Louis, United States
| | - Susruta Majumdar
- Center for Clinical Pharmacology, Washington University School of Medicine, St. Louis, United States.,St Louis College of Pharmacy, St. Louis, United States
| | - Nevin A Lambert
- Department of Pharmacology and Toxicology, Medical College of Georgia, Augusta University, Augusta, United States
| | - Aashish Manglik
- Department of Pharmaceutical Chemistry, University of California, San Francisco, San Francisco, United States.,Department of Anesthesia, University of California, San Francisco, San Francisco, United States
| | - Mark von Zastrow
- Department of Psychiatry, University of California, San Francisco, San Francisco, United States.,Department of Cellular and Molecular Pharmacology, University of California, San Francisco, San Francisco, United States
| |
Collapse
|
31
|
Cassell RJ, Sharma KK, Su H, Cummins BR, Cui H, Mores KL, Blaine AT, Altman RA, van Rijn RM. The Meta-Position of Phe 4 in Leu-Enkephalin Regulates Potency, Selectivity, Functional Activity, and Signaling Bias at the Delta and Mu Opioid Receptors. Molecules 2019; 24:molecules24244542. [PMID: 31842282 PMCID: PMC6943441 DOI: 10.3390/molecules24244542] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/08/2019] [Accepted: 12/10/2019] [Indexed: 01/10/2023] Open
Abstract
As tool compounds to study cardiac ischemia, the endogenous δ-opioid receptors (δOR) agonist Leu5-enkephalin and the more metabolically stable synthetic peptide (d-Ala2, d-Leu5)-enkephalin are frequently employed. However, both peptides have similar pharmacological profiles that restrict detailed investigation of the cellular mechanism of the δOR’s protective role during ischemic events. Thus, a need remains for δOR peptides with improved selectivity and unique signaling properties for investigating the specific roles for δOR signaling in cardiac ischemia. To this end, we explored substitution at the Phe4 position of Leu5-enkephalin for its ability to modulate receptor function and selectivity. Peptides were assessed for their affinity to bind to δORs and µ-opioid receptors (µORs) and potency to inhibit cAMP signaling and to recruit β-arrestin 2. Additionally, peptide stability was measured in rat plasma. Substitution of the meta-position of Phe4 of Leu5-enkephalin provided high-affinity ligands with varying levels of selectivity and bias at both the δOR and µOR and improved peptide stability, while substitution with picoline derivatives produced lower-affinity ligands with G protein biases at both receptors. Overall, these favorable substitutions at the meta-position of Phe4 may be combined with other modifications to Leu5-enkephalin to deliver improved agonists with finely tuned potency, selectivity, bias and drug-like properties.
Collapse
MESH Headings
- Animals
- CHO Cells
- Cricetulus
- Enkephalin, Leucine/genetics
- Enkephalin, Leucine/pharmacology
- Humans
- Phenylalanine
- Receptors, Opioid, delta/agonists
- Receptors, Opioid, delta/genetics
- Receptors, Opioid, delta/metabolism
- Receptors, Opioid, mu/agonists
- Receptors, Opioid, mu/genetics
- Receptors, Opioid, mu/metabolism
- Signal Transduction/drug effects
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Robert J. Cassell
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Krishna K. Sharma
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
| | - Hongyu Su
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | | | - Haoyue Cui
- College of Wuya, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Kendall L. Mores
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Arryn T. Blaine
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
| | - Ryan A. Altman
- Department of Medicinal Chemistry, The University of Kansas, Lawrence, KS 66045, USA;
- Correspondence: (R.A.A.); (R.M.v.R.)
| | - Richard M. van Rijn
- Department of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, IN 47907, USA; (R.J.C.); (H.S.); (K.L.M.); (A.T.B.)
- Purdue Institute for Drug Discovery, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, West Lafayette, IN 47907, USA
- Correspondence: (R.A.A.); (R.M.v.R.)
| |
Collapse
|
32
|
Hsu T, Mallareddy JR, Yoshida K, Bustamante V, Lee T, Krstenansky JL, Zambon AC. Synthesis and pharmacological characterization of ethylenediamine synthetic opioids in human μ-opiate receptor 1 (OPRM1) expressing cells. Pharmacol Res Perspect 2019; 7:e00511. [PMID: 31463067 PMCID: PMC6704399 DOI: 10.1002/prp2.511] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 07/12/2019] [Accepted: 07/13/2019] [Indexed: 11/07/2022] Open
Abstract
Opioids are powerful analgesics acting via the human μ-opiate receptor (hMOR). Opioid use is associated with adverse effects such as tolerance, addiction, respiratory depression, and constipation. Two synthetic opioids, AH-7921 and U-47700 that were developed in the 1970s but never marketed, have recently appeared on the illegal drug market and in forensic toxicology reports. These agents were initially characterized for their analgesic activity in rodents; however, their pharmacology at hMOR has not been delineated. Thus, we synthesized over 50 chemical analogs based on core AH-7921 and U-47700 structures to assess for their ability to couple to Gαi signaling and induce hMOR internalization. For both the AH-7921 and U-47700 analogs, the 3,4-dichlorobenzoyl substituents were the most potent with comparable EC50 values for inhibition of cAMP accumulation; 26.49 ± 11.2 nmol L-1 and 8.8 ± 4.9 nmol L-1, respectively. Despite similar potencies for Gαi coupling, these two compounds had strikingly different hMOR internalization efficacies: U-47700 (10 μmol L-1) induced ~25% hMOR internalization similar to DAMGO while AH-7921 (10 μmol L-1) induced ~5% hMOR internalization similar to morphine. In addition, the R, R enantiomer of U-47700 is significantly more potent than the S, S enantiomer at hMOR. In conclusion, these data suggest that U-47700 and AH-7921 analogs have high analgesic potential in humans, but with divergent receptor internalization profiles, suggesting that they may exhibit differences in clinical utility or abuse potential.
Collapse
Affiliation(s)
- Tom Hsu
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health SciencesKeck Graduate InstituteClaremontCalifornia
| | - Jayapal R. Mallareddy
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health SciencesKeck Graduate InstituteClaremontCalifornia
| | - Kayla Yoshida
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health SciencesKeck Graduate InstituteClaremontCalifornia
| | - Vincent Bustamante
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health SciencesKeck Graduate InstituteClaremontCalifornia
| | - Tim Lee
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health SciencesKeck Graduate InstituteClaremontCalifornia
| | - John L. Krstenansky
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health SciencesKeck Graduate InstituteClaremontCalifornia
| | - Alexander C. Zambon
- Department of Biopharmaceutical Sciences, School of Pharmacy and Health SciencesKeck Graduate InstituteClaremontCalifornia
| |
Collapse
|
33
|
Emery MA, Eitan S. Members of the same pharmacological family are not alike: Different opioids, different consequences, hope for the opioid crisis? Prog Neuropsychopharmacol Biol Psychiatry 2019; 92:428-449. [PMID: 30790677 DOI: 10.1016/j.pnpbp.2019.02.010] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 02/15/2019] [Accepted: 02/15/2019] [Indexed: 01/14/2023]
Abstract
Pain management is the specialized medical practice of modulating pain perception and thus easing the suffering and improving the life quality of individuals suffering from painful conditions. Since this requires the modulation of the activity of endogenous systems involved in pain perception, and given the large role that the opioidergic system plays in pain perception, opioids are currently the most effective pain treatment available and are likely to remain relevant for the foreseeable future. This contributes to the rise in opioid use, misuse, and overdose death, which is currently characterized by public health officials in the United States as an epidemic. Historically, the majority of preclinical rodent studies were focused on morphine. This has resulted in our understanding of opioids in general being highly biased by our knowledge of morphine specifically. However, recent in vitro studies suggest that direct extrapolation of research findings from morphine to other opioids is likely to be flawed. Notably, these studies suggest that different opioid analgesics (opioid agonists) engage different downstream signaling effects within the cell, despite binding to and activating the same receptors. This recognition implies that, in contrast to the historical status quo, different opioids cannot be made equivalent by merely dose adjustment. Notably, even at equianalgesic doses, different opioids could result in different beneficial and risk outcomes. In order to foster further translational research regarding drug-specific differences among opioids, here we review basic research elucidating differences among opioids in pharmacokinetics, pharmacodynamics, their capacity for second messenger pathway activation, and their interactions with the immune system and the dopamine D2 receptors.
Collapse
Affiliation(s)
- Michael A Emery
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA
| | - Shoshana Eitan
- Behavioral and Cellular Neuroscience, Department of Psychological and Brain Sciences, Texas A&M University, 4235 TAMU, College Station, TX 77843, USA; Interdisciplinary Program in Neuroscience, Texas A&M Institute for Neuroscience (TAMIN), College Station, TX, USA.
| |
Collapse
|
34
|
Hällfors J, Palviainen T, Surakka I, Gupta R, Buchwald J, Raevuori A, Ripatti S, Korhonen T, Jousilahti P, Madden PA, Kaprio J, Loukola A. Genome-wide association study in Finnish twins highlights the connection between nicotine addiction and neurotrophin signaling pathway. Addict Biol 2019. [PMID: 29532581 PMCID: PMC6519128 DOI: 10.1111/adb.12618] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The heritability of nicotine dependence based on family studies is substantial. Nevertheless, knowledge of the underlying genetic architecture remains meager. Our aim was to identify novel genetic variants responsible for interindividual differences in smoking behavior. We performed a genome-wide association study on 1715 ever smokers ascertained from the population-based Finnish Twin Cohort enriched for heavy smoking. Data imputation used the 1000 Genomes Phase I reference panel together with a whole genome sequence-based Finnish reference panel. We analyzed three measures of nicotine addiction-smoking quantity, nicotine dependence and nicotine withdrawal. We annotated all genome-wide significant SNPs for their functional potential. First, we detected genome-wide significant association on 16p12 with smoking quantity (P = 8.5 × 10-9 ), near CLEC19A. The lead-SNP stands 22 kb from a binding site for NF-κB transcription factors, which play a role in the neurotrophin signaling pathway. However, the signal was not replicated in an independent Finnish population-based sample, FINRISK (n = 6763). Second, nicotine withdrawal showed association on 2q21 in an intron of TMEM163 (P = 2.1 × 10-9 ), and on 11p15 (P = 6.6 × 10-8 ) in an intron of AP2A2, and P = 4.2 × 10-7 for a missense variant in MUC6, both involved in the neurotrophin signaling pathway). Third, association was detected on 3p22.3 for maximum number of cigarettes smoked per day (P = 3.1 × 10-8 ) near STAC. Associating CLEC19A and TMEM163 SNPs were annotated to influence gene expression or methylation. The neurotrophin signaling pathway has previously been associated with smoking behavior. Our findings further support the role in nicotine addiction.
Collapse
Affiliation(s)
- Jenni Hällfors
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Teemu Palviainen
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Ida Surakka
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Richa Gupta
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Jadwiga Buchwald
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| | - Anu Raevuori
- Department of Public HealthUniversity of Helsinki Finland
- Department of Adolescent PsychiatryHelsinki University Central Hospital Finland
| | - Samuli Ripatti
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
- Department of Public HealthUniversity of Helsinki Finland
- Wellcome Trust Sanger Institute UK
| | - Tellervo Korhonen
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
- Institute of Public Health and Clinical NutritionUniversity of Eastern Finland Finland
| | | | - Pamela A.F. Madden
- Department of PsychiatryWashington University School of Medicine Saint Louis MO USA
| | - Jaakko Kaprio
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
- Department of Public HealthUniversity of Helsinki Finland
| | - Anu Loukola
- Institute for Molecular Medicine Finland (FIMM)University of Helsinki Finland
| |
Collapse
|
35
|
Bobeck EN, Schoo SM, Ingram SL, Morgan MM. Lack of Antinociceptive Cross-Tolerance With Co-Administration of Morphine and Fentanyl Into the Periaqueductal Gray of Male Sprague-Dawley Rats. THE JOURNAL OF PAIN 2019; 20:1040-1047. [PMID: 30853505 DOI: 10.1016/j.jpain.2019.03.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 02/07/2019] [Accepted: 03/02/2019] [Indexed: 11/27/2022]
Abstract
Tolerance to the antinociceptive effect of mu-opioid receptor agonists, such as morphine and fentanyl, greatly limits their effectiveness for long-term use to treat pain. Clinical studies have shown that combination therapy and opioid rotation can be used to enhance opioid-induced antinociception once tolerance has developed. The mechanism and brain regions involved in these processes are unknown. The purpose of this study was to evaluate the contribution of the ventrolateral periaqueductal gray (vlPAG) to antinociceptive tolerance and cross-tolerance between administration and co-administration of morphine and fentanyl. Tolerance was induced by pretreating rats with morphine or fentanyl or low-dose combination of morphine and fentanyl into the vlPAG followed by an assessment of the cross-tolerance to the other opioid. In addition, tolerance to the combined treatment was assessed. Cross-tolerance did not develop between repeated vlPAG microinjections of morphine and fentanyl. Likewise, there was no evidence of cross-tolerance from morphine or fentanyl to the co-administration of morphine and fentanyl. Co-administration did not cause cross-tolerance to fentanyl. Cross-tolerance was only evident to morphine or morphine and fentanyl combined in rats pretreated with co-administration of low doses of morphine and fentanyl. This finding is consistent with the functionally selective signaling that has been reported for antinociception and tolerance after morphine and fentanyl binding to the mu-opioid receptor. This research supports the notion that combination therapy and opioid rotation may be useful clinical practices to decrease opioid tolerance and other side effects. PERSPECTIVE: This preclinical study shows that there is a decrease in cross-tolerance between morphine and fentanyl within the periaqueductal gray, which is a key brain region in opioid antinociception and tolerance.
Collapse
Affiliation(s)
- Erin N Bobeck
- Department of Biology, Utah State University, Logan, Utah.
| | - Shauna M Schoo
- Department of Psychology, Washington State University, Pullman, Washington
| | - Susan L Ingram
- Department of Neurological Surgery, Oregon Health & Science University, Portland, Oregon
| | - Michael M Morgan
- Department of Psychology, Washington State University, Pullman, Washington
| |
Collapse
|
36
|
Burns JA, Kroll DS, Feldman DE, Kure Liu C, Manza P, Wiers CE, Volkow ND, Wang GJ. Molecular Imaging of Opioid and Dopamine Systems: Insights Into the Pharmacogenetics of Opioid Use Disorders. Front Psychiatry 2019; 10:626. [PMID: 31620026 PMCID: PMC6759955 DOI: 10.3389/fpsyt.2019.00626] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Accepted: 08/05/2019] [Indexed: 12/21/2022] Open
Abstract
Opioid use in the United States has steadily risen since the 1990s, along with staggering increases in addiction and overdose fatalities. With this surge in prescription and illicit opioid abuse, it is paramount to understand the genetic risk factors and neuropsychological effects of opioid use disorder (OUD). Polymorphisms disrupting the opioid and dopamine systems have been associated with increased risk for developing substance use disorders. Molecular imaging studies have revealed how these polymorphisms impact the brain and contribute to cognitive and behavioral differences across individuals. Here, we review the current molecular imaging literature to assess how genetic variations in the opioid and dopamine systems affect function in the brain's reward, cognition, and stress pathways, potentially resulting in vulnerabilities to OUD. Continued research of the functional consequences of genetic variants and corresponding alterations in neural mechanisms will inform prevention and treatment of OUD.
Collapse
Affiliation(s)
- Jamie A Burns
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Danielle S Kroll
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Dana E Feldman
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | | | - Peter Manza
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Corinde E Wiers
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States.,National Institute on Drug Abuse, Bethesda, MD, United States
| | - Gene-Jack Wang
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| |
Collapse
|
37
|
Llorca-Torralba M, Pilar-Cuéllar F, Bravo L, Bruzos-Cidon C, Torrecilla M, Mico JA, Ugedo L, Garro-Martínez E, Berrocoso E. Opioid Activity in the Locus Coeruleus Is Modulated by Chronic Neuropathic Pain. Mol Neurobiol 2018; 56:4135-4150. [PMID: 30284123 DOI: 10.1007/s12035-018-1361-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 09/20/2018] [Indexed: 12/16/2022]
Abstract
Pain affects both sensory and emotional aversive responses, often provoking depression and anxiety-related conditions when it becomes chronic. As the opioid receptors in the locus coeruleus (LC) have been implicated in pain, stress responses, and opioid drug effects, we explored the modifications to LC opioid neurotransmission in a chronic constriction injury (CCI) model of short- and long-term neuropathic pain (7 and 30 days after nerve injury). No significant changes were found after short-term CCI, yet after 30 days, CCI provoked an up-regulation of cAMP (cyclic 5'-adenosine monophosphate), pCREB (phosphorylated cAMP response element binding protein), protein kinase A, tyrosine hydroxylase, and electrical activity in the LC, as well as enhanced c-Fos expression. Acute mu opioid receptor desensitization was more intense in these animals, measured as the decline of the peak current caused by [Met5]-enkephalin and the reduction of forskolin-stimulated cAMP produced in response to DAMGO. Sustained morphine treatment did not markedly modify certain LC parameters in CCI-30d animals, such as [Met5]-enkephalin-induced potassium outward currents or burst activity and c-Fos rebound after naloxone precipitation, which may limit the development of some typical opioid drug-related adaptations. However, other phenomena were impaired by long-term CCI, including the reduction in forskolin-stimulated cAMP accumulation by DAMGO after naloxone precipitation in morphine dependent animals. Overall, this study suggests that long-term CCI leads to changes at the LC level that may contribute to the anxiodepressive phenotype that develops in these animals. Furthermore, opioid drugs produce complex adaptations in the LC in this model of chronic neuropathic pain.
Collapse
Affiliation(s)
- Meritxell Llorca-Torralba
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Fuencisla Pilar-Cuéllar
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011, Santander, Spain
| | - Lidia Bravo
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Cristina Bruzos-Cidon
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - María Torrecilla
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Juan A Mico
- Neuropsychopharmacology and Psychobiology Research Group, Department of Neuroscience, University of Cádiz, 11003, Cádiz, Spain
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
| | - Luisa Ugedo
- Department of Pharmacology, Faculty of Medicine and Nursing, University of the Basque Country UPV/EHU, 48940, Leioa, Spain
| | - Emilio Garro-Martínez
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Biomedicina y Biotecnología de Cantabria, IBBTEC (Universidad de Cantabria, CSIC, SODERCAN), Departamento de Fisiología y Farmacología, Universidad de Cantabria, 39011, Santander, Spain
| | - Esther Berrocoso
- Instituto de Investigación e Innovación en Ciencias Biomédicas de Cádiz, INiBICA, Hospital Universitario Puerta del Mar, Avda. Ana de Viya, 21, 11009, Cádiz, Spain.
- Centro de Investigación Biomédica en Red de Salud Mental (CIBERSAM), Instituto de Salud Carlos III, Madrid, Spain.
- Neuropsychopharmacology and Psychobiology Research Group, Psychobiology Area, Department of Psychology, University of Cádiz, 11510, Cádiz, Spain.
| |
Collapse
|
38
|
Kosten TR, Graham DP, Nielsen DA. Neurobiology of Opioid Use Disorder and Comorbid Traumatic Brain Injury. JAMA Psychiatry 2018; 75:642-648. [PMID: 29710079 DOI: 10.1001/jamapsychiatry.2018.0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
IMPORTANCE Treating patients with opioid use disorder (OUD) and traumatic brain injury illustrates 6 neurobiological principles about the actions of 2 contrasting opioid analgesics, morphine and fentanyl, as well as pharmacotherapies for OUD, methadone, naltrexone, and buprenorphine. OBSERVATIONS This literature review focused on a patient with traumatic brain injury who developed OUD from chronic morphine analgesia. His treatment is described in a neurobiological framework of 6 opioid action principles. CONCLUSIONS AND RELEVANCE The 6 principles are (1) coactivation of neuronal and inflammatory immune receptors (Toll-like receptor 4), (2) 1 receptor activating cyclic adenosine monophosphate and β-arrestin second messenger systems, (3) convergence of opioid and adrenergic receptor types on 1 second messenger, (4) antagonist (eg, naltrexone)-induced receptor trafficking, (5) genetic μ-opioid receptor variants influencing analgesia and tolerance, and (6) cross-tolerance vs receptor antagonism as the basis of OUD pharmacotherapy with methadone or buprenorphine vs naltrexone.
Collapse
Affiliation(s)
- Thomas R Kosten
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - David P Graham
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| | - David A Nielsen
- Menninger Department of Psychiatry and Behavioral Sciences, Baylor College of Medicine, Houston, Texas.,Michael E. DeBakey Veterans Affairs Medical Center, Houston, Texas
| |
Collapse
|
39
|
Koshimizu TA, Honda K, Nagaoka-Uozumi S, Ichimura A, Kimura I, Nakaya M, Sakai N, Shibata K, Ushijima K, Fujimura A, Hirasawa A, Kurose H, Tsujimoto G, Tanoue A, Takano Y. Complex formation between the vasopressin 1b receptor, β-arrestin-2, and the μ-opioid receptor underlies morphine tolerance. Nat Neurosci 2018; 21:820-833. [DOI: 10.1038/s41593-018-0144-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 02/16/2018] [Indexed: 01/06/2023]
|
40
|
Analysis of natural product regulation of opioid receptors in the treatment of human disease. Pharmacol Ther 2018; 184:51-80. [DOI: 10.1016/j.pharmthera.2017.10.021] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
41
|
Kenakin T. Is the Quest for Signaling Bias Worth the Effort? Mol Pharmacol 2018; 93:266-269. [PMID: 29348268 DOI: 10.1124/mol.117.111187] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2017] [Accepted: 01/12/2018] [Indexed: 01/14/2023] Open
Abstract
The question of whether signaling bias is a viable discovery strategy for drug therapy is discussed as a value proposition. On the positive side, bias is easily identified and quantified in simple in vitro functional assays with little resource expenditure. However, there are valid pharmacological reasons why these in vitro bias numbers may not accurately translate to in vivo therapeutic systems making the expectation of direct correspondence of in vitro bias to in vivo systems a problematic process. Presently, in vitro bias is used simply as a means to identify unique molecules to be advanced to more complex therapeutic assays but from this standpoint alone, the value proposition lies far to the positive. However, pharmacological attention needs to be given to the translational gap to reduce inevitable and costly attrition in biased molecule progression.
Collapse
Affiliation(s)
- Terry Kenakin
- Department of Pharmacology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
42
|
Michel MC, Charlton SJ. Biased Agonism in Drug Discovery-Is It Too Soon to Choose a Path? Mol Pharmacol 2018; 93:259-265. [PMID: 29326242 DOI: 10.1124/mol.117.110890] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 01/01/2018] [Indexed: 12/13/2022] Open
Abstract
A single receptor can activate multiple signaling pathways that have distinct or even opposite effects on cell function. Biased agonists stabilize receptor conformations preferentially stimulating one of these pathways, and therefore allow a more targeted modulation of cell function and treatment of disease. Dedicated development of biased agonists has led to promising drug candidates in clinical development, such as the G protein-biased µ opioid receptor agonist oliceridine. However, leveraging the theoretical potential of biased agonism for drug discovery faces several challenges. Some of these challenges are technical, such as techniques for quantitative analysis of bias and development of suitable screening assays; others are more fundamental, such as the need to robustly identify in a very early phase which cell type harbors the cellular target of the drug candidate, which signaling pathway leads to the desired therapeutic effect, and how these pathways may be modulated in the disease to be treated. We conclude that biased agonism has potential mainly in the treatment of conditions with a well-understood pathophysiology; in contrast, it may increase effort and commercial risk under circumstances where the pathophysiology has been less well defined, as is the case with many highly innovative treatments.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| | - Steven J Charlton
- Department of Pharmacology, Johannes Gutenberg University, Mainz, Germany (M.C.M.); Department of Life Sciences, University of Nottingham, Nottingham, United Kingdom (S.J.C.); and Excellerate Biosciences Ltd., MediCity, Nottingham, United Kingdom (S.J.C.)
| |
Collapse
|
43
|
Abstract
G protein-coupled receptors (GPCRs) are the largest class of receptors in the human genome and some of the most common drug targets. It is now well established that GPCRs can signal through multiple transducers, including heterotrimeric G proteins, GPCR kinases and β-arrestins. While these signalling pathways can be activated or blocked by 'balanced' agonists or antagonists, they can also be selectively activated in a 'biased' response. Biased responses can be induced by biased ligands, biased receptors or system bias, any of which can result in preferential signalling through G proteins or β-arrestins. At many GPCRs, signalling events mediated by G proteins and β-arrestins have been shown to have distinct biochemical and physiological actions from one another, and an accurate evaluation of biased signalling from pharmacology through physiology is crucial for preclinical drug development. Recent structural studies have provided snapshots of GPCR-transducer complexes, which should aid in the structure-based design of novel biased therapies. Our understanding of GPCRs has evolved from that of two-state, on-and-off switches to that of multistate allosteric microprocessors, in which biased ligands transmit distinct structural information that is processed into distinct biological outputs. The development of biased ligands as therapeutics heralds an era of increased drug efficacy with reduced drug side effects.
Collapse
|
44
|
Gendron L, Cahill CM, von Zastrow M, Schiller PW, Pineyro G. Molecular Pharmacology of δ-Opioid Receptors. Pharmacol Rev 2017; 68:631-700. [PMID: 27343248 DOI: 10.1124/pr.114.008979] [Citation(s) in RCA: 89] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Opioids are among the most effective analgesics available and are the first choice in the treatment of acute severe pain. However, partial efficacy, a tendency to produce tolerance, and a host of ill-tolerated side effects make clinically available opioids less effective in the management of chronic pain syndromes. Given that most therapeutic opioids produce their actions via µ-opioid receptors (MOPrs), other targets are constantly being explored, among which δ-opioid receptors (DOPrs) are being increasingly considered as promising alternatives. This review addresses DOPrs from the perspective of cellular and molecular determinants of their pharmacological diversity. Thus, DOPr ligands are examined in terms of structural and functional variety, DOPrs' capacity to engage a multiplicity of canonical and noncanonical G protein-dependent responses is surveyed, and evidence supporting ligand-specific signaling and regulation is analyzed. Pharmacological DOPr subtypes are examined in light of the ability of DOPr to organize into multimeric arrays and to adopt multiple active conformations as well as differences in ligand kinetics. Current knowledge on DOPr targeting to the membrane is examined as a means of understanding how these receptors are especially active in chronic pain management. Insight into cellular and molecular mechanisms of pharmacological diversity should guide the rational design of more effective, longer-lasting, and better-tolerated opioid analgesics for chronic pain management.
Collapse
Affiliation(s)
- Louis Gendron
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Catherine M Cahill
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Mark von Zastrow
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Peter W Schiller
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| | - Graciela Pineyro
- Département de Pharmacologie-Physiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Centre de Recherche du CHU de Sherbrooke, Centre d'excellence en neurosciences de l'Univeristé de Sherbrooke, and Institut de Pharmacologie de Sherbrooke, Sherbrooke, Quebec, Canada (L.G.); Québec Pain Research Network, Sherbrooke, Quebec, Canada (L.G.); Departments of Anesthesiology and Perioperative Care and Pharmacology, University of California, Irvine, California (C.M.C.); Department of Biomedical and Molecular Sciences, Queen's University, Kingston, Ontario, Canada (C.M.C.); Departments of Psychiatry and Cellular and Molecular Pharmacology, University of California, San Francisco, California (M.v.Z.); Laboratory of Chemical Biology and Peptide Research, Clinical Research Institute of Montréal, Montreal, Quebec, Canada (P.W.S.); and Departments of Psychiatry, Pharmacology, and Neurosciences, Faculty of Medicine, University of Montréal and Sainte-Justine Hospital Research Center, Montreal, Quebec, Canada (G.P.)
| |
Collapse
|
45
|
Johnson TA, Milan-Lobo L, Che T, Ferwerda M, Lambu E, McIntosh NL, Li F, He L, Lorig-Roach N, Crews P, Whistler JL. Identification of the First Marine-Derived Opioid Receptor "Balanced" Agonist with a Signaling Profile That Resembles the Endorphins. ACS Chem Neurosci 2017; 8:473-485. [PMID: 27744679 DOI: 10.1021/acschemneuro.6b00167] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Opioid therapeutics are excellent analgesics, whose utility is compromised by dependence. Morphine (1) and its clinically relevant derivatives such as OxyContin (2), Vicodin (3), and Dilaudid (4) are "biased" agonists at the μ opioid receptor (OR), wherein they engage G protein signaling but poorly engage β-arrestin and the endocytic machinery. In contrast, endorphins, the endogenous peptide agonists for ORs, are potent analgesics, show reduced liability for tolerance and dependence, and engage both G protein and β-arrestin pathways as "balanced" agonists. We set out to determine if marine-derived alkaloids could serve as novel OR agonist chemotypes with a signaling profile distinct from morphine and more similar to the endorphins. Screening of 96 sponge-derived extracts followed by LC-MS-based purification to pinpoint the active compounds and subsequent evaluation of a mini library of related alkaloids identified two structural classes that modulate the ORs. These included the following: aaptamine (10), 9-demethyl aaptamine (11), demethyl (oxy)-aaptamine (12) with activity at the δ-OR (EC50: 5.1, 4.1, 2.3 μM, respectively) and fascaplysin (17), and 10-bromo fascaplysin (18) with activity at the μ-OR (EC50: 6.3, 4.2 μM respectively). An in vivo evaluation of 10 using δ-KO mice indicated its previously reported antidepressant-like effects are dependent on the δ-OR. Importantly, 17 functioned as a balanced agonist promoting both G protein signaling and β-arrestin recruitment along with receptor endocytosis similar to the endorphins. Collectively these results demonstrate the burgeoning potential for marine natural products to serve as novel lead compounds for therapeutic targets in neuroscience research.
Collapse
Affiliation(s)
- Tyler A. Johnson
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
- Department
of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Laura Milan-Lobo
- Department
of Neurology, University of California, San Francisco, California 94158, United States
| | - Tao Che
- National
Institute of Mental Health Psychoactive Drug Screening Program, University of North Carolina, Chapel Hill, North Carolina 27514, United States
| | - Madeline Ferwerda
- Department
of Neurology, University of California, San Francisco, California 94158, United States
| | - Eptisam Lambu
- Department
of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Nicole L. McIntosh
- Department
of Natural Sciences and Mathematics, Dominican University of California, San Rafael, California 94901, United States
| | - Fei Li
- Department
of Neurology, University of California, San Francisco, California 94158, United States
| | - Li He
- Department
of Neurology, University of California, San Francisco, California 94158, United States
| | - Nicholas Lorig-Roach
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Phillip Crews
- Department
of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, United States
| | - Jennifer L. Whistler
- Department
of Neurology, University of California, San Francisco, California 94158, United States
| |
Collapse
|
46
|
Berríos-Cárcamo P, Quintanilla ME, Herrera-Marschitz M, Vasiliou V, Zapata-Torres G, Rivera-Meza M. Racemic Salsolinol and its Enantiomers Act as Agonists of the μ-Opioid Receptor by Activating the Gi Protein-Adenylate Cyclase Pathway. Front Behav Neurosci 2017; 10:253. [PMID: 28167903 PMCID: PMC5253357 DOI: 10.3389/fnbeh.2016.00253] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
Background: Several studies have shown that the ethanol-derived metabolite salsolinol (SAL) can activate the mesolimbic system, suggesting that SAL is the active molecule mediating the rewarding effects of ethanol. In vitro and in vivo studies suggest that SAL exerts its action on neuron excitability through a mechanism involving opioid neurotransmission. However, there is no direct pharmacologic evidence showing that SAL activates opioid receptors. Methods: The ability of racemic (R/S)-SAL, and its stereoisomers (R)-SAL and (S)-SAL, to activate the μ-opioid receptor was tested in cell-based (light-emitting) receptor assays. To further characterizing the interaction of SAL stereoisomers with the μ-opioid receptor, a molecular docking study was performed using the crystal structure of the μ-opioid receptor. Results: This study shows that SAL activates the μ-opioid receptor by the classical G protein-adenylate cyclase pathway with an half-maximal effective concentration (EC50) of 2 × 10−5 M. The agonist action of SAL was fully blocked by the μ-opioid antagonist naltrexone. The EC50 for the purified stereoisomers (R)-SAL and (S)-SAL were 6 × 10−4 M and 9 × 10−6 M respectively. It was found that the action of racemic SAL on the μ-opioid receptor did not promote the recruitment of β-arrestin. Molecular docking studies showed that the interaction of (R)- and (S)-SAL with the μ-opioid receptor is similar to that predicted for the agonist morphine. Conclusions: It is shown that (R)-SAL and (S)-SAL are agonists of the μ-opioid receptor. (S)-SAL is a more potent agonist than the (R)-SAL stereoisomer. In silico analysis predicts a morphine-like interaction between (R)- and (S)-SAL with the μ-opioid receptor. These results suggest that an opioid action of SAL or its enantiomers is involved in the rewarding effects of ethanol.
Collapse
Affiliation(s)
- Pablo Berríos-Cárcamo
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, University of ChileSantiago, Chile; Department of Environmental Health Sciences, Yale School of Public HealthNew Haven, CT, USA
| | - María E Quintanilla
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Mario Herrera-Marschitz
- Program of Molecular and Clinical Pharmacology, Faculty of Medicine, Institute of Biomedical Sciences, University of Chile Santiago, Chile
| | - Vasilis Vasiliou
- Department of Environmental Health Sciences, Yale School of Public Health New Haven, CT, USA
| | - Gerald Zapata-Torres
- Department of Analytical and Inorganic Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile Santiago, Chile
| | - Mario Rivera-Meza
- Department of Pharmacological and Toxicological Chemistry, Faculty of Chemical and Pharmaceutical Sciences, University of Chile Santiago, Chile
| |
Collapse
|
47
|
Huroy S, Kanawaty A, Magomedova L, Cummins CL, George SR, van der Kooy D, Henderson JT. EphB2 reverse signaling regulates learned opiate tolerance via hippocampal function. Behav Brain Res 2016; 300:85-96. [DOI: 10.1016/j.bbr.2015.09.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 11/27/2022]
|
48
|
Abstract
Acute pain management remains a challenge in opioid dependent patients, and it has been recognised that these patients are commonly under-treated.Chronic opioid exposure leads to widespread adaptations both at cellular and synaptic level.Physical dependence is a neuropharmacological phenomenon as a result of neuroadaptation and neuroplasticity, in contrast to addiction that is both neuropharmacological and behavioural.While providing the patient's pre-existing opioid requirement, the acute pain episode should be managed using additional multimodal analgesia: non-opioid medications in combination with local anaesthetic techniques and as required, short-acting opioid titrated to effect.Patients on long term buprenorphine and methadone with acute pain episode should be continued with their maintenance therapy and an additional short-acting opioid analgesic titrated to achieve therapeutic effect.
Collapse
Affiliation(s)
- Vivek Mehta
- Consultants in Pain Medicine and Anaesthesia, Pain and Anaesthesia Research Centre, St Bartholomew's Hospital. Barts and The London NHS Trust, London, UK
| | - Richard Langford
- Consultants in Pain Medicine and Anaesthesia, Pain and Anaesthesia Research Centre, St Bartholomew's Hospital. Barts and The London NHS Trust, London, UK
| |
Collapse
|
49
|
Gonzalez G, DiGirolamo G, Romero-Gonzalez M, Smelson D, Ziedonis D, Kolodziej M. Memantine improves buprenorphine/naloxone treatment for opioid dependent young adults. Drug Alcohol Depend 2015; 156:243-253. [PMID: 26454835 PMCID: PMC4652072 DOI: 10.1016/j.drugalcdep.2015.09.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2015] [Revised: 09/11/2015] [Accepted: 09/15/2015] [Indexed: 01/24/2023]
Abstract
BACKGROUND Opioid use disorders are considered a serious public health problem among young adults. Current treatment is limited to long-term opioid substitution therapy, with high relapse rates after discontinuation. This study evaluated the co-administration of memantine to brief buprenorphine pharmacotherapy as a treatment alternative. METHODS 13-week double-blind placebo-controlled trial evaluating 80 young adult opioid dependent participants treated with buprenorphine/naloxone 16-4mg/day and randomized to memantine (15mg or 30mg) or placebo. Primary outcomes were a change in the weekly mean proportion of opioid use, and cumulative abstinence rates after rapid buprenorphine discontinuation on week 9. RESULTS Treatment retention was not significantly different between groups. The memantine 30mg group was significantly less likely to relapse and to use opioids after buprenorphine discontinuation. Among participants abstinent on week 8, those in the memantine 30mg group (81.9%) were significantly less likely to relapse after buprenorphine was discontinued compared to the placebo group (30%) (p<0.025). Also, the memantine 30mg group had significantly reduced opioid use (mean=0, SEM±0.00) compared to the placebo group (mean=0.33, SEM±0.35; p<0.004) during the last 2 weeks of study participation. CONCLUSIONS Memantine 30mg significantly improved short-term treatment with buprenorphine/naloxone for opioid dependent young adults by reducing relapse and opioid use after buprenorphine discontinuation. Combined short-term treatment with buprenorphine/naloxone may be an effective alternative treatment to long-term methadone or buprenorphine maintenance in young adults.
Collapse
Affiliation(s)
- Gerardo Gonzalez
- Division of Addiction Psychiatry, University of Massachusetts Medical School, USA; VA Central Western Massachusetts Healthcare System, USA; MAYU of New England, USA.
| | | | | | | | | | | |
Collapse
|
50
|
Ligand-biased activation of extracellular signal-regulated kinase 1/2 leads to differences in opioid induced antinociception and tolerance. Behav Brain Res 2015; 298:17-24. [PMID: 26497105 DOI: 10.1016/j.bbr.2015.10.032] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2015] [Revised: 10/11/2015] [Accepted: 10/15/2015] [Indexed: 12/25/2022]
Abstract
Opioids produce antinociception by activation of G protein signaling linked to the mu-opioid receptor (MOPr). However, opioid binding to the MOPr also activates β-arrestin signaling. Opioids such as DAMGO and fentanyl differ in their relative efficacy for activation of these signaling cascades, but the behavioral consequences of this differential signaling are not known. The purpose of this study was to evaluate the behavioral significance of G protein and internalization dependent signaling within ventrolateral periaqueductal gray (vlPAG). Antinociception induced by microinjecting DAMGO into the vlPAG was attenuated by blocking Gαi/o protein signaling with administration of pertussis toxin (PTX), preventing internalization with administration of dynamin dominant-negative inhibitory peptide (dyn-DN) or direct inhibition of ERK1/2 with administration of the MEK inhibitor, U0126. In contrast, the antinociceptive effect of microinjecting fentanyl into the vlPAG was not altered by administration of PTX or U0126, and was enhanced by administration of dyn-DN. Microinjection of DAMGO, but not fentanyl, into the vlPAG induced phosphorylation of ERK1/2, which was blocked by inhibiting receptor internalization with administration of dyn-DN, but not by inhibition of Gαi/o proteins. ERK1/2 inhibition also prevented the development and expression of tolerance to repeated DAMGO microinjections, but had no effect on fentanyl tolerance. These data reveal that ERK1/2 activation following MOPr internalization contributes to the antinociceptive effect of some (e.g., DAMGO), but not all opioids (e.g., fentanyl) despite the known similarities for these agonists to induce β-arrestin recruitment and internalization.
Collapse
|