1
|
Attaallah B, Petitet P, Husain M. Active information sampling in health and disease. Neurosci Biobehav Rev 2025; 175:106197. [PMID: 40324707 DOI: 10.1016/j.neubiorev.2025.106197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 04/28/2025] [Accepted: 05/01/2025] [Indexed: 05/07/2025]
Abstract
Active information gathering is a fundamental cognitive process that enables organisms to navigate uncertainty and make adaptive decisions. Here we synthesise current knowledge on the behavioural, neural, and computational mechanisms underlying information sampling in healthy people and across several brain disorders. The role of cortical and subcortical regions spanning limbic, insular, fronto-parietal, and striatal systems is considered, along with the contributions of key neurotransmitters involving norepinephrine, dopamine, and serotonin. We also examine how various clinical conditions, including schizophrenia, obsessive-compulsive disorder, and Parkinson's disease have an impact on information gathering behaviours. To account for the findings, we outline a neuroeconomic perspective on how the brain may evaluate the costs and benefits of acquiring information to resolve uncertainty. This work highlights how active information gathering is a crucial brain process for adaptive behaviour in healthy individuals and how its breakdown is relevant to several psychiatric and neurological conditions. The findings have important implications for developing novel computational assays as well as targeted interventions in brain disorders.
Collapse
Affiliation(s)
- Bahaaeddin Attaallah
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Centre for Preventive Neurology, Queen Mary University of London, London EC1M 6BQ, UK.
| | - Pierre Petitet
- Department of Experimental Psychology, University of Oxford, Oxford OX1 3PH, USA
| | - Masud Husain
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK; Department of Experimental Psychology, University of Oxford, Oxford OX1 3PH, USA
| |
Collapse
|
2
|
Paitel ER, Pettigrew C, Moghekar A, Miller MI, Faria AV, Albert M, Soldan A. Alzheimer's disease cerebrospinal fluid biomarker levels and APOE genetic status are associated with hippocampal-cerebellar functional connectivity. Neurobiol Aging 2025; 151:107-116. [PMID: 40273528 PMCID: PMC12101073 DOI: 10.1016/j.neurobiolaging.2025.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/20/2025] [Accepted: 04/12/2025] [Indexed: 04/26/2025]
Abstract
Recent research suggests that hippocampal-cerebellar (Hp-CB) functional connectivity may be altered early in the course of Alzheimer's disease (AD), given the early accumulation of AD pathology in the hippocampi and emerging evidence of cerebellar changes in early AD. This study analyzed the role of AD genetic risk (via APOE ε4 carrier status) and cerebrospinal fluid (CSF) biomarkers of AD pathology (ratio of phosphorylated tau (p-tau181) to amyloid beta (Aβ42/Aβ40)) on the relationship between age and functional Hp-CB resting state fMRI connectivity in 161 cognitively unimpaired older adults (M age =67.3; SD =9.0; 37 % APOE ε4 +). In multiple regression analyses with Hp-CB connectivity as the outcome, there were significant interactions between age and APOE ε4 status, and between age and CSF AD biomarkers. Older age was associated with greater Hp-CB connectivity in APOE ε4 non-carriers and participants with less abnormal CSF AD biomarkers. In contrast, Hp-CB connectivity was marginally lower with older age in ε4 carriers and those with more abnormal AD biomarkers. Furthermore, greater Hp-CB connectivity was associated with better episodic memory performance across all groups. These findings suggest that age-related increases in Hp-CB connectivity among APOE ε4 non-carriers and those with low AD biomarker levels reflect age-related changes that are largely unrelated to AD, while age-related decreases in Hp-CB connectivity in APOE ε4 carriers may reflect AD-related alterations. These findings also highlight the importance of cerebellar contributions to cognitive performance among older adults and suggest that Hp-CB connectivity may be altered in preclinical AD.
Collapse
Affiliation(s)
- Elizabeth R Paitel
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Corinne Pettigrew
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Abhay Moghekar
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Michael I Miller
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Andreia V Faria
- Department of Radiology, Johns Hopkins University, Baltimore, MD, USA
| | - Marilyn Albert
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Anja Soldan
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
3
|
Crain E, Minaya DM, de La Serre CB. Microbiota-induced inflammation mediates the impacts of a Western diet on hippocampal-dependent memory. Nutr Res 2025; 138:89-106. [PMID: 40339190 DOI: 10.1016/j.nutres.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 04/01/2025] [Accepted: 04/01/2025] [Indexed: 05/10/2025]
Abstract
Obesity is associated with impaired hippocampal-dependent memory, but the mechanisms driving this pathology are not fully understood. Western diets (WD) contribute to obesity, and previous reviews have described a role for WD in impaired hippocampal-dependent memory. However, there is need for a more detailed description of the pathways by which WD may impair memory. The short vs long-term effect of specific dietary components on brain structure and functions as well as the precise mechanism and molecular pathways involved are still not fully understood. This review focuses on the mechanisms and effects of gut microbiota-driven neuroinflammation. WD leads to changes and imbalance in bacterial taxa abundances that are deleterious to the host health (gut dysbiosis) and studies in rodent models show these changes are sufficient to impair hippocampal-dependent memory. Here, we discuss a variety of proposed mechanisms linking microbiota composition to hippocampal function, with a focus on neuroinflammation. Gut microbiota impacts gastrointestinal barrier function, leading to increased circulating proinflammatory bacterial products, increased blood-brain barrier permeability, and neuroinflammation.
Collapse
Affiliation(s)
- Eden Crain
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Dulce M Minaya
- Department of Nutritional Sciences, University of Georgia, Athens, GA, USA
| | - Claire B de La Serre
- Department of Biomedical Sciences, Colorado State University, Fort Collins, CO, USA.
| |
Collapse
|
4
|
Huang CF, Lin TK, Chang CC, Lee MY, Lu CY, Hung CF, Wang SJ. Birch Sap Preserves Memory Function in Rats by Enhancing Cerebral Blood Flow and Modulating the Presynaptic Glutamatergic System in the Hippocampus. Int J Mol Sci 2025; 26:5009. [PMID: 40507821 PMCID: PMC12154964 DOI: 10.3390/ijms26115009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2025] [Revised: 05/16/2025] [Accepted: 05/20/2025] [Indexed: 06/16/2025] Open
Abstract
As the average age of the population increases, memory impairment has become an increasingly prevalent issue. This study investigates the effects of 14 days of oral birch sap administration on memory functions in healthy rats using the Morris water maze (MWM) test and explores the underlying mechanisms. A compositional analysis revealed that birch soap is rich in polysaccharides, specifically a low-molecular weight polysaccharide (MW 1.29 kDa), and exhibits no hepatotoxicity or renal toxicity at the tested dose. The results from the MWM test demonstrated that the time and distance required to reach the platform were significantly shorter in the birch sap-treated group compared to the control group, suggesting that birch sap supports memory preservation. Moreover, rats treated with birch sap showed improved cerebral blood flow compared to the control rats. Additionally, in hippocampal nerve terminals (synaptosomes), rats treated with birch sap exhibited a significant increase in evoked glutamate release, as well as elevated levels of presynaptic proteins, including vesicular glutamate transporter 1 (VGluT1), synaptophysin, synaptobrevin, synaptotagmin, syntaxin, synapsin I, and the 25 kDa synaptosome-associated protein (SNAP-25). Transmission electron microscopy also revealed a notable increase in the number of synaptic vesicles in hippocampal synaptosomes of the birch-sap-treated rats. These findings suggest that birch sap enhances hippocampal presynaptic glutamatergic functions and cerebral blood flow, contributing to its memory-preserving effects in rats.
Collapse
Affiliation(s)
- Chien-Fen Huang
- Ph.D. Program in Pharmaceutical Biotechnology, Collage of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan;
| | - Tzu-Kang Lin
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan;
- Department of Neurosurgery, Fu Jen Catholic University Hospital, Fu Jen Catholic University, New Taipei 24205, Taiwan
| | - Chia-Chuan Chang
- School of Pharmacy, National Taiwan University, Taipei 106319, Taiwan; (C.-C.C.); (C.-Y.L.)
| | - Ming-Yi Lee
- Department of Medical Research, Far-Eastern Memorial Hospital, New Taipei 22060, Taiwan;
| | - Ching-Yi Lu
- School of Pharmacy, National Taiwan University, Taipei 106319, Taiwan; (C.-C.C.); (C.-Y.L.)
| | - Chi-Feng Hung
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan;
- School of Pharmacy, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Su-Jane Wang
- School of Medicine, Fu Jen Catholic University, New Taipei 24205, Taiwan;
- Research Center for Chinese Herbal Medicine, College of Human Ecology, Chang Gung University of Science and Technology, Taoyuan 33303, Taiwan
| |
Collapse
|
5
|
Kleis P, Paschen E, Djie-Maletz A, Vlachos A, Haas CA, Häussler U. Long-term hippocampal low-frequency stimulation alleviates focal seizures, memory deficits and synaptic pathology in epileptic mice. Neurobiol Dis 2025; 212:106965. [PMID: 40398519 DOI: 10.1016/j.nbd.2025.106965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 05/08/2025] [Accepted: 05/18/2025] [Indexed: 05/23/2025] Open
Abstract
BACKGROUND Mesial temporal lobe epilepsy (MTLE) is a prevalent form of focal epilepsy characterized by seizures originating from the hippocampus and adjacent regions. Neurostimulation presents an alternative for surgery-ineligible patients with intractable seizures. However, conventional approaches have limited efficacy and require refinement for better seizure control. While hippocampal low-frequency stimulation (LFS) has shown promising seizure reduction in animal studies and small clinical cohorts, its mechanisms, sex-specific outcomes, and long-term effects remain unknown. OBJECTIVES We aimed to identify the antiepileptic and cognitive outcomes and potential underlying mechanisms of long-term hippocampal LFS in chronically epileptic male and female mice. METHODS We used the intrahippocampal kainate mouse model replicating the features of MTLE: spontaneous seizures, hippocampal sclerosis, and memory deficits. During the chronic phase of epilepsy, we applied 1 Hz electrical LFS in the sclerotic hippocampus 6 h/day, four times/week for 5 weeks and examined its effects on epileptiform activity, spatial memory, and kainate-induced pathological features at cellular and synaptic levels. RESULTS Long-term hippocampal LFS consistently diminished focal seizures in epileptic male and female mice, with seizure reduction extending beyond the stimulation period. Additionally, long-term LFS relieved spatial memory deficits and reversed pathological modifications at perforant path-dentate granule cell synapses shortly after stimulation. LFS had no significant effect on secondarily generalized seizures, anxiety-like behaviour, neurogenesis, hippocampal sclerosis, or presynaptic vesicles in perforant path fibres. CONCLUSION These findings provide clinically relevant insights into the seizure type-specific effects of hippocampal LFS, which, alongside synaptic and behavioural improvements, could contribute to enhanced seizure control and quality of life in MTLE patients.
Collapse
Affiliation(s)
- Piret Kleis
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Faculty of Biology, University of Freiburg, Freiburg, Germany.
| | - Enya Paschen
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Andrea Djie-Maletz
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; Translational Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany
| | - Andreas Vlachos
- Department of Neuroanatomy, Institute of Anatomy and Cell Biology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Carola A Haas
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany
| | - Ute Häussler
- Experimental Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany; BrainLinks-BrainTools Center, University of Freiburg, Freiburg, Germany; Translational Epilepsy Research, Department of Neurosurgery, Medical Center - University of Freiburg, Faculty of Medicine, Freiburg, Germany.
| |
Collapse
|
6
|
Németh AR, Stojić S, Nadasdy Z. Navigating space and the developing mind. Front Psychol 2025; 16:1521487. [PMID: 40438758 PMCID: PMC12116597 DOI: 10.3389/fpsyg.2025.1521487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Accepted: 04/21/2025] [Indexed: 06/01/2025] Open
Abstract
In this article, we review the extensive and complex fabric of literature concerning the ontogenesis of spatial representations from earliest childhood to the elderly, including normal and abnormal aging (dementia and Alzheimer's disease). We also revisit fundamental concepts of the neuronal representations of space, egocentric vs. allocentric reference frames, and path integration. We highlight a thread of contradictions in spatial cognition from infant cognition to the first breakthrough at around the age of four. The contradictions reemerge in the literature on age-related decline in spatial cognition. We argue that these contradictions derive from the incorrect assumption that path integration is exclusively associated with allocentric frames of references, hence, signatures of path integration are often taken as evidence for allocentric perspective-taking. We posit that several contradictions in the literature can be resolved by acknowledging that path integration is agnostic to the type of reference frame and can be implemented in both egocentric and allocentric frames of reference. By freeing the frames of reference from path integration, we arrive at a developmental trajectory consistent across cognitive development studies, enabling us to ask questions that may dissolve the obscurity of this topic. The new model also sheds light on the very early stage of spatial cognition.
Collapse
Affiliation(s)
- Adrienn Réka Németh
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Sandra Stojić
- Doctoral School of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltan Nadasdy
- Institute of Psychology, ELTE Eötvös Loránd University, Budapest, Hungary
- Department of Neurology, Dell School of Medicine, University of Texas at Austin, Austin, TX, United States
- Zeto, Inc., Santa Clara, CA, United States
| |
Collapse
|
7
|
Garces-Arilla S, Hidalgo V, Fidalgo C, Salvador A, Juan MC, Mendez-Lopez M. Post-encoding stress and spatial memory consolidation: No significant associations with cortisol and DHEA reactivity. Behav Brain Res 2025; 485:115525. [PMID: 40049334 DOI: 10.1016/j.bbr.2025.115525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 02/28/2025] [Accepted: 03/03/2025] [Indexed: 03/09/2025]
Abstract
Memory consolidation is enhanced by post-encoding stress via cortisol, although the role of dehydroepiandrosterone (DHEA) remains uncertain. This study investigated the effect of the Maastricht Acute Stress Test (MAST) on psychological and hormonal (salivary cortisol and DHEA) responses and performance on a virtual reality object-location memory (OLM) task. The association between hormonal reactivity and OLM task performance was also investigated. Fifty-four participants aged 18-23 were randomly assigned to a stress group (n = 30) and a control group (n = 24). Participants completed an encoding trial of the OLM task and the MAST/control procedure in an acquisition session. A retrieval session 24 h later included verbal object and visual location recognition tests, as well as an object-context binding (OCB) trial. Results showed that the stress group reported significantly higher state anxiety and negative affect after the MAST, perceived as more stressful, painful, and unpleasant. This group also exhibited a significant increase in cortisol and DHEA levels in response to the MAST. Controlling for age, participants in the stress condition made fewer errors in recognising semantically unrelated objects and tended to complete the OCB trial in a shorter time. In addition, no associations were found between cortisol or DHEA reactivity and memory performance in either the stress group or the control group. Our data indicate that post-encoding stress enhances consolidation; however, no association was found between hormonal reactivity and this process, suggesting that these endocrine responses do not directly support the observed improvement in memory consolidation.
Collapse
Affiliation(s)
- Sara Garces-Arilla
- Department of Psychology and Sociology, University of Zaragoza, Faculty of Social and Human Sciences, Teruel, Spain.
| | - Vanesa Hidalgo
- Department of Psychology and Sociology, University of Zaragoza, Faculty of Social and Human Sciences, Teruel, Spain; Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Valencia, Spain; Instituto de Investigación Sanitaria Aragón (IIS), Zaragoza, Aragon, Spain.
| | - Camino Fidalgo
- Department of Psychology and Sociology, University of Zaragoza, Faculty of Social and Human Sciences, Teruel, Spain; Instituto de Investigación Sanitaria Aragón (IIS), Zaragoza, Aragon, Spain.
| | - Alicia Salvador
- Laboratory of Social Cognitive Neuroscience, Department of Psychobiology and IDOCAL, University of Valencia, Valencia, Spain; Spanish National Network for Research in Mental Health CIBERSAM, 28029, Spain.
| | - M-Carmen Juan
- Instituto Universitario de Automática e Informática Industrial, Universitat Politècnica de València, Valencia, Spain.
| | - Magdalena Mendez-Lopez
- Department of Psychology and Sociology, University of Zaragoza, Faculty of Social and Human Sciences, Teruel, Spain; Instituto de Investigación Sanitaria Aragón (IIS), Zaragoza, Aragon, Spain.
| |
Collapse
|
8
|
Barnaveli I, Viganò S, Reznik D, Haggard P, Doeller CF. Hippocampal-entorhinal cognitive maps and cortical motor system represent action plans and their outcomes. Nat Commun 2025; 16:4139. [PMID: 40319012 PMCID: PMC12049502 DOI: 10.1038/s41467-025-59153-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 04/14/2025] [Indexed: 05/07/2025] Open
Abstract
Efficiently interacting with the environment requires weighing and selecting among multiple alternative actions based on their associated outcomes. However, the neural mechanisms underlying these processes are still debated. We show that forming relations between arbitrary action-outcome associations involve building a cognitive map. Using an immersive virtual reality paradigm, participants learned 2D abstract motor action-outcome associations and later compared action combinations while their brain activity was monitored with fMRI. We observe a hexadirectional modulation of the activity in entorhinal cortex while participants compared different action plans. Furthermore, hippocampal activity scales with the 2D similarity between outcomes of these action plans. Conversely, the supplementary motor area represents individual actions, showing a stronger response to overlapping action plans. Crucially, the connectivity between hippocampus and supplementary motor area is modulated by the similarity between the action plans, suggesting their complementary roles in action evaluation. These findings provide evidence for the role of cognitive maps in action selection, challenging classical models of memory taxonomy and its neural bases.
Collapse
Affiliation(s)
- Irina Barnaveli
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
| | - Simone Viganò
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Center for Mind/Brain Sciences, University of Trento, Rovereto, Italy
| | - Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Patrick Haggard
- Institute of Cognitive Neuroscience, University College London, London, UK
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany.
- Kavli Institute for Systems Neuroscience, NTNU, Trondheim, Norway.
| |
Collapse
|
9
|
Xu R, Yang B, Li J, Wei X, Zhang L, Tian J, Zhang W. The impact of impulse control disorders on cognitive decline in de novo Parkinson's disease: a study based on structural MRI. Front Neurol 2025; 16:1565046. [PMID: 40352777 PMCID: PMC12061859 DOI: 10.3389/fneur.2025.1565046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/02/2025] [Indexed: 05/14/2025] Open
Abstract
Background Impulse control disorders (ICDs) are common neuropsychiatric symptoms (NPS), which are prevalent among patients with Parkinson's disease (PD). Current research has not clarified the impact of ICDs on cognitive function nor provided sufficient objective evidence. This study aims to explore the effects of ICDs on cognitive functions in PD patients, and further investigate associated cerebral structural changes. Methods Two hundred PD patients with normal cognition (PDNC) and 69 healthy controls were included from the Parkinson's Progression Markers Initiative (PPMI), among these PDNC, 81 patients with "pure" ICDs (p-ICDs), 69 ICDs combined with other NPS (c-ICDs), and 50 patients without NPS. The cognitive status of each PD patient was obtained every year in four-year follow-up. The difference in conversion rates was obtained by chi-square test. Survival analysis was used to explore the conversion time difference among these groups. Further analysis was conducted on the potential structural difference. Finally, the correlation between significant brain structural changes and neuropsychological assessments were evaluated. Results The survival analysis suggested that the conversion time of p-ICDs from normal cognition to MCI was significantly delayed compared to NPS-negative, with no significant difference relative to the c-ICDs. There is no significant difference in conversion rates among them. Morphological analysis revealed that compared to the NPS-negative group, the p-ICDs and c-ICDs groups exhibited thickness changes in certain regions (Bonferroni-corrected, p < 0.05). Conclusion Our findings suggest that ICDs might exert a protective effect against cognitive decline, potentially delay the occurrence of MCI in PDNC, which could be associated with alterations in cortical thickness.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Wei Zhang
- Department of Radiology, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
10
|
Orfila JE, Dietz RM, Schroeder C, Patsos OP, Burch A, Bahamonde KE, Coakley KA, Carter DJ, Clevenger AC, Hendry-Hofer TB, Le TD, Maddry JK, Schauer SG, Bebarta VS, Herson PS. A novel peptide inhibitor of TRPM2 channels improves recovery of memory function following traumatic brain injury. Front Synaptic Neurosci 2025; 17:1534379. [PMID: 40352737 PMCID: PMC12061953 DOI: 10.3389/fnsyn.2025.1534379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 02/24/2025] [Indexed: 05/14/2025] Open
Abstract
Traumatic Brain Injury (TBI) is a leading cause of mortality and morbidity in adults and can lead to long-term disability, including cognitive and motor deficits. Despite advances in research, there are currently no pharmacological interventions to improve outcomes after TBI. Studies suggest that non-selective transient receptor potential melastatin 2 (TRPM2) channels contribute to brain injury in models of ischemia, however TRPM2 remains understudied following TBI. Thus, we utilized TRPM2 KO mice and a novel TRPM2 inhibiting peptide, tatM2NX, to assess the role of TRPM2 in TBI-induced injury and functional recovery. This study used histological analysis of injury, neurobehavior and electrophysiology to assess the role of TRPM2 on injury and cognitive recovery (memory) impairments using the controlled cortical impact (CCI) model to induce TBI in mice. Histological analysis used to investigate brain injury volume at 7 days after TBI showed sex differences in response to injury in TRPM2 KO mice but no pharmacological effects in our WT mice. A contextual fear-conditioning task was used to study memory function 7 or 30 days after TBI and demonstrates that sham-operated mice exhibited significant freezing behavior compared to TBI-operated mice, indicating impaired memory function. Mice administered tat-M2NX 2 h after TBI exhibited a significant reduction of freezing behavior compared to control tat-scrambled (tat-SCR)-treated mice, suggesting improvement in memory function after TBI. To test the effect of TBI on hippocampal long-term potentiation (LTP), a well-established cellular model of synaptic plasticity associated with changes in learning and memory, extracellular field recordings of CA1 neurons were performed in hippocampal slices prepared 7 days after TBI. Consistent with our behavioral testing, we observed impaired hippocampal LTP in mice following TBI (tat-SCR), compared to sham control mice. However, mice treated with tat-M2NX after TBI exhibited preserved LTP, consistent with the improved memory function observed in our behavioral studies. While this data implicates TRPM2 in brain pathology following TBI, the improvement in memory function without providing histological protection suggests that administration of tatM2NX at an acute time point differentially affects hippocampal regions compared to cortical regions.
Collapse
Affiliation(s)
- James E. Orfila
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Robert M. Dietz
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Christian Schroeder
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Olivia P. Patsos
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Amelia Burch
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Kiara E. Bahamonde
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Kelley A. Coakley
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| | - Danelle J. Carter
- Department of Anesthesiology, University of Colorado School of Medicine, Aurora, CO, United States
| | - Amy C. Clevenger
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
| | - Tara B. Hendry-Hofer
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Tuan D. Le
- Department of Epidemiology and Biostatistics, The University of Texas Tyler School of Medicine, Tyler, TX, United States
| | - Joseph K. Maddry
- CU Center for COMBAT Research, University of Colorado School of Medicine, Aurora, CO, United States
- Uniformed Services University of the Health Sciences, Bethesda, MD, United States
- Brooke Army Medical Center, San Antonio, TX, United States
| | - Steven G. Schauer
- Department of Pediatrics, University of Colorado School of Medicine, Aurora, CO, United States
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, United States
- CU Center for COMBAT Research, University of Colorado School of Medicine, Aurora, CO, United States
| | - Vikhyat S. Bebarta
- Department of Emergency Medicine, University of Colorado School of Medicine, Aurora, CO, United States
| | - Paco S. Herson
- Department of Neurological Surgery, The Ohio State University College of Medicine, Columbus, OH, United States
| |
Collapse
|
11
|
Mohyee RA, Elliott BL, Pike MR, Smith E, Kring AM, Olson IR, Breen EC, Cohn BA, Cirillo PM, Krigbaum NY, Olino TM, D’Esposito M, Cogan AB, Patwardan BP, Ellman LM. Decreased hippocampal neurite density in late middle-aged adults following prenatal exposure to higher levels of maternal inflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.01.616156. [PMID: 40196686 PMCID: PMC11974695 DOI: 10.1101/2024.10.01.616156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
In animal models, exposure to heightened maternal inflammation in utero is associated with altered offspring hippocampal development, including reduced dendritic arborization and density. However, the effects of prenatal maternal inflammation (PNMI) on offspring hippocampal microstructure in humans remains unclear. Here, we examined the relationship between exposure to PNMI and neurite density in the hippocampus and its subfields among offspring during late middle age. Participants included 72 mother-offspring dyads from the Child Health and Development Studies (CHDS) cohort. Data for four inflammatory biomarkers (IL-6, IL-8, IL-1 receptor antagonist [IL-1RA], and soluble TNF receptor-II [sTNF-RII]) were available from first and second trimester maternal sera. Neurite density in the offspring hippocampus and its subfields was estimated using microstructural modeling of offsprings' diffusion-weighted Magnetic Resonance Imaging data (mean age of offspring at imaging = 59 years; 51% male). We estimated the relationship between each biomarker and region-of-interest's neurite density. Higher first trimester maternal IL-1RA and IL-6 levels were associated with lower offspring hippocampal neurite density. These relationships were specific to the CA3, CA4, dentate gyrus, and subiculum subfields. In addition, higher second trimester IL-6 was associated with lower subiculum neurite density. Our findings reveal that exposure to heightened prenatal levels of maternal inflammation is linked to altered offspring hippocampal microstructure in late middle age, which could have implications for memory decreases during this period and may be relevant for understanding risk of aging-related cognitive changes.
Collapse
Affiliation(s)
| | | | | | - Emma Smith
- Department of Psychology & Neuroscience, Temple University
| | - Ann M. Kring
- Department of Psychology, University of California, Berkeley
| | | | - Elizabeth C. Breen
- Cousins Center for Psychoneuroimmunology, University of California, Los Angeles
| | - Barbara A. Cohn
- Child Health and Development Studies, Public Health Institute
| | | | | | | | - Mark D’Esposito
- Department of Psychology, University of California, Berkeley
| | - Ashby B. Cogan
- Department of Psychology, University of California, Berkeley
| | | | | |
Collapse
|
12
|
Wang YH, Zhou N, Wan PP, Li XT, Yu CY, Chou J, Feng ZY, Zhang LX, Li JJ, Yu BC, Tang ZN, Liu KM, Guo L. Hippocampus- and neocortex-specific deletion of Aeg-1 causes learning memory impairment and depression in mice. Cell Death Dis 2025; 16:199. [PMID: 40122859 PMCID: PMC11930984 DOI: 10.1038/s41419-025-07508-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 02/02/2025] [Accepted: 03/10/2025] [Indexed: 03/25/2025]
Abstract
Astrocyte elevated gene-1 (AEG-1) has been characterized as an oncogene promoting the progression of various tumors. The role of AEG-1 in neurological diseases was highlighted by recent researches. However, the physiological function of AEG-1 remains elusive. Our study aimed to investigate the physiological role of AEG-1 in the central nervous system by generating a mouse model with specific deletion of Aeg-1 in the hippocampus and neocortex (Aeg-1fl/flCre+ mice). Behavioral assessments revealed that Aeg-1 deficiency caused impaired learning and memory capabilities in juvenile and adult mice. Depressive-like behaviors were also observed in Aeg-1fl/flCre+ mice. Gene Ontology (GO) enrichment analyses indicated that AEG-1 was involved in the neuronal morphogenesis. Interestingly, Aeg-1 knockout was irrelevant to the neuron loss but reduced the dendritic length and the dendritic spines density in hippocampus. Electrophysiological analyses showed a decreased response of paired-pulse facilitation (PPF) and a compromised efficiency of excitatory synaptic transmission following Aeg-1 deletion in hippocampus. In conclusion, our findings suggest that Aeg-1 deficiency in the hippocampus and neocortex leads to learning and memory impairments and depression in mice, which is mediated by the abnormalities of neuronal morphology and the impaired synaptic functions.
Collapse
Affiliation(s)
- Ya-He Wang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Ning Zhou
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Pan-Pan Wan
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Xin-Tong Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Chun-Yang Yu
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Jinjiang Chou
- Department of Cell and Molecular Biology, Karolinska Institutet, Solnavägen 9, 17165, Stockholm, Sweden
| | - Zong-Yi Feng
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Lian-Xiang Zhang
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Juan-Juan Li
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Bao-Cong Yu
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China
| | - Zhen-Ning Tang
- Department of Surgical Oncology, General Hospital of Ningxia Medical University, 750004, Yinchuan, Ningxia, PR China.
| | - Kun-Mei Liu
- Ningxia Key Laboratory of Cerebrocranial Disease, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| | - Le Guo
- Ningxia Key Laboratory of Clinical and Pathogenic Microbiology, General Hospital of Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
- College of Laboratory Medicine, Ningxia Medical University, Yinchuan, Ningxia, 750004, China.
| |
Collapse
|
13
|
Pollali E, Draguhn A. Differential suppression of hippocampal network oscillations by neuropeptide Y. Neuropharmacology 2025; 266:110281. [PMID: 39725122 DOI: 10.1016/j.neuropharm.2024.110281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 12/28/2024]
Abstract
Neuropeptide Y (NPY) is the most abundant neuropeptide in the brain. It exerts anxiolytic and anticonvulsive actions, reduces stress and suppresses fear memory. While its effects at the behavioral and cellular levels have been well studied, much less is known about the modulation of physiological activity patterns at the network level. We therefore studied the impact of NPY on two prominent, memory-related hippocampal activity patterns, gamma oscillations and sharp wave-ripple complexes in C57BL/6 male mice. Using established in vitro brain slice models for both patterns, we assessed the effects of NPY and receptor-specific agonists and antagonists on network activity in the CA3 and CA1 subnetworks. We report that NPY strongly suppresses sharp waves, and has significant, but much weaker effects on the power of carbachol-induced gamma oscillations. Both effects are primarily mediated via Y2 receptors. Additionally, NPY effects are much more prominent in the CA1 region compared to CA3. Our results show pattern- and region-specific effects of NPY on hippocampal networks, which suggest specific modulatory actions on hippocampus-dependent memory processes.
Collapse
Affiliation(s)
- Evangelia Pollali
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany.
| | - Andreas Draguhn
- Institute of Physiology and Pathophysiology, Heidelberg University, Im Neuenheimer Feld 326, 69120, Heidelberg, Germany
| |
Collapse
|
14
|
Kim T, Li J, Tao L, Tao J, Wei X. Neuroimaging Characteristics of Pruritus Induced by Eczema: An fMRI Study. Brain Behav 2025; 15:e70415. [PMID: 40123167 PMCID: PMC11930857 DOI: 10.1002/brb3.70415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 02/17/2025] [Accepted: 02/22/2025] [Indexed: 03/25/2025] Open
Abstract
OBJECTIVE To explore the neuroimaging characteristics of eczema-induced pruritus with resting-state functional magnetic resonance imaging (rs-fMRI). METHODS A total of 42 patients with eczema were recruited in the PE group, and 42 healthy participants were included in the HC group. The Visual Analogue Score (VAS), 12-Item Pruritus Severity Scale (12-PSS), Pittsburgh Sleep Quality Index (PSQI), and Self-Rating Anxiety Scale (SAS) were recorded in the PE group. The different values of fraction amplitude of low-frequency fluctuation (fALFF) and functional connectivity (FC) were compared after rs-fMRI scanning. RESULTS Compared with the HC group, the fALFF values of the left precentral gyrus, left postcentral gyrus, left supplementary motor area (SMA), and left midcingulate cortex in the PE group were increased. The FC values between the left precentral gyrus, bilateral superior temporal gyrus, bilateral hippocampus, and left inferior occipital gyrus in the PE group were decreased. The FC values between left SMA and bilateral superior temporal gyrus in the PE group were decreased. The 12-PSS score was positively correlated with fALFF value of the left precentral gyrus and left postcentral gyrus. CONCLUSION Pruritus caused increased spontaneous activity in given cerebral regions, involving the perception of itch, control of scratching movements, and expression of itch-related emotions. Meanwhile, there is a correlation between fALFF values of given cerebral regions and clinical scales, which provided potential neurobiological markers for the future study of pruritus.
Collapse
Affiliation(s)
- Tae‐eun Kim
- Department of AcupunctureShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- International Education CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Jin Li
- Department of Rehabilitation MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Larissa Tao
- Department of AcupunctureShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
- International Education CollegeShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Ji‐ming Tao
- Department of Rehabilitation MedicineShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| | - Xiang‐yu Wei
- Department of AcupunctureShuguang Hospital Affiliated to Shanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
15
|
Eppinger B, Ruel A, Bolenz F. Diminished State Space Theory of Human Aging. PERSPECTIVES ON PSYCHOLOGICAL SCIENCE 2025; 20:325-339. [PMID: 37931229 PMCID: PMC11881524 DOI: 10.1177/17456916231204811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2023]
Abstract
Many new technologies, such as smartphones, computers, or public-access systems (like ticket-vending machines), are a challenge for older adults. One feature that these technologies have in common is that they involve underlying, partially observable, structures (state spaces) that determine the actions that are necessary to reach a certain goal (e.g., to move from one menu to another, to change a function, or to activate a new service). In this work we provide a theoretical, neurocomputational account to explain these behavioral difficulties in older adults. Based on recent findings from age-comparative computational- and cognitive-neuroscience studies, we propose that age-related impairments in complex goal-directed behavior result from an underlying deficit in the representation of state spaces of cognitive tasks. Furthermore, we suggest that these age-related deficits in adaptive decision-making are due to impoverished neural representations in the orbitofrontal cortex and hippocampus.
Collapse
Affiliation(s)
- Ben Eppinger
- Institute of Psychology, University of Greifswald
- Department of Psychology, Concordia University
- PERFORM Centre, Concordia University
- Faculty of Psychology, Technische Universität Dresden
| | - Alexa Ruel
- Department of Psychology, Concordia University
- PERFORM Centre, Concordia University
- Institute of Psychology, University of Hamburg
| | - Florian Bolenz
- Center for Adaptive Rationality, Max Planck Institute for Human Development, Berlin, Germany
- Science of Intelligence/Cluster of Excellence, Technical University of Berlin
| |
Collapse
|
16
|
Aydin DD, Taşkınalp O, Uluçam E, Karadağ H, Özfidan GK, Topuz R, Ersoy O. The effect of acute and chronic formaldehyde exposure on learning and memory in male and female rats. Int J Neurosci 2025; 135:313-321. [PMID: 38152865 DOI: 10.1080/00207454.2023.2300728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Revised: 12/20/2023] [Accepted: 12/26/2023] [Indexed: 12/29/2023]
Abstract
AIM Formaldehyde is a chemical that lies behind the various systemical failures in organism. Many products that people use contain formaldehyde. Owing to its tissue fixative properties, scientists who work in life sciences are exposed to this substance more than others. Several studies have shown that formaldehyde affects the CA1 and CA3 regions of the hippocampus, which play crucial roles in memory consolidation. In this study, we aimed to investigate anxiety levels and indicate the short and long term effects of formaldehyde and sex-related differences by exposing formaldehyde to male and female rats. MATERIALS AND METHODS Formaldehyde (10 mg/kg) was administered intraperitoneally for 7 days for acute exposure and 30 days for chronic exposure. Cognitive assessment was performed using fear conditioning, elevated plus maze, and Morris water maze tests. TUNEL staining was used to identify apoptosis in the brains obtained after decapitation. RESULTS Exposure to intraperitoneal formaldehyde does not impair learning and memory in acute and chronic periods and has no effect on depression or anxiety. After acute exposure, apoptosis was observed in the hippocampal CA1 and CA3 regions in males. When the cognitive test results were examined, no differences were found between the experimental and control groups. There was also no significant difference between males and females.
Collapse
Affiliation(s)
- Didem Dönmez Aydin
- Faculty of Medicine, Department of Anatomy, Trakya University, Edirne, Turkey
| | - Oğuz Taşkınalp
- Faculty of Medicine, Department of Anatomy, Trakya University, Edirne, Turkey
| | - Enis Uluçam
- Faculty of Medicine, Department of Anatomy, Trakya University, Edirne, Turkey
| | - Hakan Karadağ
- Faculty of Medicine Department of Pharmacology, Trakya University, Edirne, Turkey
| | - Gülnur Kızılay Özfidan
- Faculty of Medicine, Department of Histology and Embryology, Trakya University, Edirne, Turkey
| | - Ruhan Topuz
- Faculty of Medicine Department of Pharmacology, Trakya University, Edirne, Turkey
| | - Onur Ersoy
- School of Health Sciences, Trakya University, Edirne, Turkey
| |
Collapse
|
17
|
Ottink L, de Haas N, Doeller CF. Integration of Euclidean and path distances in hippocampal maps. Sci Rep 2025; 15:7104. [PMID: 40016304 PMCID: PMC11868619 DOI: 10.1038/s41598-025-90504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 02/13/2025] [Indexed: 03/01/2025] Open
Abstract
The hippocampus is a key region for forming mental maps of our environment. These maps represent spatial information such as distances between landmarks. A cognitive map can allow for flexible inference of spatial relationships that have never been directly experienced before. Previous work has shown that the human hippocampus encodes distances between locations, but it is unclear how Euclidean and path distances are distinguished. In this study, participants performed an object-location task in a virtual environment. We combined functional magnetic resonance imaging with representational similarity analysis to test how Euclidean and path distances are represented in the hippocampus. We observe that hippocampal neural pattern similarity for objects scales with distance between object locations, and suggest that the hippocampus integrates Euclidean and path distances. One key characteristic of cognitive maps is their adaptive and flexible nature. We therefore subsequently modified path distances between objects using roadblocks in the environment. We found that hippocampal pattern similarity between objects adapted as a function of these changes in path distance, selectively in route learners but not in map learners. Taken together, our study supports the idea that the hippocampus creates integrative and flexible cognitive maps.
Collapse
Affiliation(s)
- Loes Ottink
- Donders Institute, Radboud University, Nijmegen, The Netherlands.
| | - Naomi de Haas
- Donders Institute, Radboud University, Nijmegen, The Netherlands
| | - Christian F Doeller
- Donders Institute, Radboud University, Nijmegen, The Netherlands
- Psychology Department, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
- Kavli Insitute for Systems Neuroscience, NTNU, Trondheim, Norway
| |
Collapse
|
18
|
Rau EMB, Fellner MC, Heinen R, Zhang H, Yin Q, Vahidi P, Kobelt M, Asano E, Kim-McManus O, Sattar S, Lin JJ, Auguste KI, Chang EF, King-Stephens D, Weber PB, Laxer KD, Knight RT, Johnson EL, Ofen N, Axmacher N. Reinstatement and transformation of memory traces for recognition. SCIENCE ADVANCES 2025; 11:eadp9336. [PMID: 39970226 PMCID: PMC11838014 DOI: 10.1126/sciadv.adp9336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 01/16/2025] [Indexed: 02/21/2025]
Abstract
Episodic memory relies on the formation and retrieval of content-specific memory traces. In addition to their veridical reactivation, previous studies have indicated that traces may undergo substantial transformations. However, the exact time course and regional distribution of reinstatement and transformation during recognition memory have remained unclear. We applied representational similarity analysis to human intracranial electroencephalography to track the spatiotemporal dynamics underlying the reinstatement and transformation of memory traces. Specifically, we examined how reinstatement and transformation of item-specific representations across occipital, ventral visual, and lateral parietal cortices contribute to successful memory formation and recognition. Our findings suggest that reinstatement in temporal cortex and transformation in parietal cortex coexist and provide complementary strategies for recognition. Further, we find that generalization and differentiation of neural representations contribute to memory and probe memory-specific correspondence with deep neural network (DNN) model features. Our results suggest that memory formation is particularly supported by generalized and mnemonic representational formats beyond the visual features of a DNN.
Collapse
Affiliation(s)
- Elias M. B. Rau
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Marie-Christin Fellner
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Rebekka Heinen
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Hui Zhang
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Qin Yin
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
| | - Parisa Vahidi
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, College of Liberal Arts and Sciences, Wayne State University, Detroit, MI, USA
| | - Malte Kobelt
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| | - Eishi Asano
- Departments of Pediatrics and Neurology, Children’s Hospital of Michigan, Detroit Medical Center, Wayne State University, Detroit, MI, USA
| | - Olivia Kim-McManus
- Department of Neurosciences, University of California, San Diego, San Diego, CA, USA
- Division of Child Neurology, Rady Children’s Hospital, San Diego, CA, USA
| | - Shifteh Sattar
- Division of Child Neurology, Rady Children’s Hospital, San Diego, CA, USA
| | - Jack J. Lin
- Department of Neurology, University of California, Davis, Davis, CA, USA
| | - Kurtis I. Auguste
- Department of Pediatric Neurosurgery, Benioff Children's Hospital, Weill Institute for Neurosciences, University of California, San Francisco, San Francisco, CA, USA
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - Edward F. Chang
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, CA, USA
| | - David King-Stephens
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
- Department of Neurology, Yale School of Medicine, New Haven, CT, USA
| | - Peter B. Weber
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Kenneth D. Laxer
- Department of Neurology and Neurosurgery, California Pacific Medical Center, San Francisco, CA, USA
| | - Robert T. Knight
- Helen Wills Neuroscience Institute and Department of Psychology, University of California, Berkeley, Berkeley, CA, USA
| | - Elizabeth L. Johnson
- Departments of Medical Social Sciences and Pediatrics, Northwestern University, Chicago, IL, USA
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Noa Ofen
- Center for Vital Longevity, School of Behavioral and Brain Sciences, University of Texas at Dallas, Dallas, TX, USA
- Life-Span Cognitive Neuroscience Program, Institute of Gerontology, Wayne State University, Detroit, MI, USA
- Department of Psychology, School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Nikolai Axmacher
- Department of Neuropsychology, Institute of Cognitive Neuroscience, Ruhr University Bochum, Bochum, Germany
| |
Collapse
|
19
|
Lundervold A, Bjørsvik BR, Billing J, Berentsen B, Lied GA, Steinsvik EK, Hausken T, Pfabigan DM, Lundervold AJ. Brain Morphometry and Cognitive Features in the Prediction of Irritable Bowel Syndrome. Diagnostics (Basel) 2025; 15:470. [PMID: 40002622 PMCID: PMC11854466 DOI: 10.3390/diagnostics15040470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/27/2025] Open
Abstract
Background/Objectives: Irritable bowel syndrome (IBS) is a gut-brain disorder characterized by abdominal pain, altered bowel habits, and psychological distress. While brain-gut interactions are recognized in IBS pathophysiology, the relationship between brain morphometry, cognitive function, and clinical features remains poorly understood. The study aims to conduct the following: (i) to replicate previous univariate morphometric findings in IBS patients and conduct software comparisons; (ii) to investigate whether multivariate analysis of brain morphometric measures and cognitive performance can distinguish IBS patients from healthy controls (HCs), and evaluate the importance of structural and cognitive features in this discrimination. Methods: We studied 49 IBS patients and 29 HCs using structural brain magnetic resonance images (MRIs) and the Repeatable Battery for the Assessment of Neuropsychological Status (RBANS). Brain morphometry was analyzed using FreeSurfer v6.0.1 and v7.4.1, with IBS severity assessed via the IBS-Severity Scoring System. We employed univariate, multivariate, and machine learning approaches with cross-validation. Results: The FreeSurfer version comparison revealed substantial variations in morphometric measurements, while morphometric measures alone showed limited discrimination between groups; combining morphometric and cognitive measures achieved 93% sensitivity in identifying IBS patients (22% specificity). The feature importance analysis highlighted the role of subcortical structures (the hippocampus, caudate, and putamen) and cognitive domains (recall and verbal skills) in group discrimination. Conclusions: Our comprehensive open-source framework suggests that combining brain morphometry and cognitive measures improves IBS-HC discrimination compared to morphometric measures alone. The importance of subcortical structures and specific cognitive domains supports complex brain-gut interaction in IBS, emphasizing the need for multimodal approaches and rigorous methodological considerations.
Collapse
Affiliation(s)
- Arvid Lundervold
- Department of Biomedicine, University of Bergen, 5020 Bergen, Norway;
- Medical-AI, Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Ben René Bjørsvik
- Medical-AI, Mohn Medical Imaging and Visualization Centre, Department of Radiology, Haukeland University Hospital, 5021 Bergen, Norway;
| | - Julie Billing
- Department of Biological and Medical Psychology, University of Bergen, 5020 Bergen, Norway; (J.B.); (D.M.P.)
| | - Birgitte Berentsen
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (B.B.); (T.H.)
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.A.L.); (E.K.S.)
| | - Gülen Arslan Lied
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.A.L.); (E.K.S.)
- Center for Nutrition, Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway
| | - Elisabeth K. Steinsvik
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.A.L.); (E.K.S.)
| | - Trygve Hausken
- Department of Clinical Medicine, University of Bergen, 5021 Bergen, Norway; (B.B.); (T.H.)
- National Center for Functional Gastrointestinal Disorders, Department of Medicine, Haukeland University Hospital, 5021 Bergen, Norway; (G.A.L.); (E.K.S.)
| | - Daniela M. Pfabigan
- Department of Biological and Medical Psychology, University of Bergen, 5020 Bergen, Norway; (J.B.); (D.M.P.)
| | - Astri J. Lundervold
- Department of Biological and Medical Psychology, University of Bergen, 5020 Bergen, Norway; (J.B.); (D.M.P.)
| |
Collapse
|
20
|
Gimbel BA, Wozniak JR, Mueller BA, Tuominen KA, Ernst AM, Anthony ME, de Water E, Roediger DJ. Regional hippocampal thinning and gyrification abnormalities and associated cognition in children with prenatal alcohol exposure. J Neurodev Disord 2025; 17:5. [PMID: 39910445 PMCID: PMC11796126 DOI: 10.1186/s11689-025-09595-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 01/30/2025] [Indexed: 02/07/2025] Open
Abstract
BACKGROUND Prenatal alcohol exposure (PAE) impacts hippocampal structure and function, contributing to deficits in memory and decision-making in affected individuals. Here, we evaluate hippocampal anomalies in children with PAE and an unexposed comparison group using advanced MRI methods that characterize hippocampal curvature and thickness. METHODS Participants, ages 8 to 16 years, included children with PAE (n = 48) and an unexposed comparison group (n = 46) who underwent a dysmorphology exam, neuropsychological assessment, and an MRI scan. Height, weight, head circumference, and dysmorphic facial features were evaluated. Of those with PAE, 4.2% had fetal alcohol syndrome (FAS), 22.9% had partial FAS, and 72.9% had alcohol-related neurodevelopmental disorder. Neuropsychological testing included measures of intelligence and memory functioning. T1-weighted anatomical data were processed with the Hippunfold pipeline, which "unfolds" the complex hippocampal structure onto a template surface and provides measures of thickness and gyrification/curvature at each vertex. Permutation Analysis of Linear Models (PALM) was used to test for group differences (PAE vs. comparison) in hippocampal thickness and gyrification at each vertex and also to assess correlations with cognitive functioning. RESULTS There were significant regional differences in thickness and gyrification across bilateral hippocampi, with the PAE group showing substantially thinner tissue and less curvature than the comparison group, especially in CA1 and subiculum regions. For those with PAE, thinner subicular tissue (bilateral) was associated with lower IQ. Also in the PAE group, lower episodic memory performance was associated with thinness in the right hippocampus, especially in the subiculum region. There were no significant regional hippocampal patterns that were associated with cognitive functioning for individuals in the unexposed comparison group. CONCLUSIONS We used a novel MRI method to evaluate hippocampal structure in children with PAE and an unexposed comparison group. The data suggest that PAE disrupts hippocampal development, impacting both the early-stage folding of the structure and its ultimate thickness. The data also demonstrate that these developmental anomalies have functional consequences in terms of core memory functions as well as global intellectual functioning in children with PAE.
Collapse
Affiliation(s)
- Blake A Gimbel
- Nationwide Children's Hospital, Columbus, USA
- The Ohio State University, Columbus, USA
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Sun L, Li S, Ren P, Liu Q, Li Z, Liang X. Pattern Separation and Pattern Completion Within the Hippocampal Circuit During Naturalistic Stimuli. Hum Brain Mapp 2025; 46:e70150. [PMID: 39878229 PMCID: PMC11775762 DOI: 10.1002/hbm.70150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 12/05/2024] [Accepted: 01/17/2025] [Indexed: 01/31/2025] Open
Abstract
Pattern separation and pattern completion in the hippocampus play a critical role in episodic learning and memory. However, there is limited empirical evidence supporting the role of the hippocampal circuit in these processes during complex continuous experiences. In this study, we analyzed high-resolution fMRI data from the "Forrest Gump" open-access dataset (16 participants) using a sliding-window temporal autocorrelation approach to investigate whether the canonical hippocampal circuit (DG-CA3-CA1-SUB) shows evidence consistent with the occurrence of pattern separation or pattern completion during a naturalistic audio movie task. Our results revealed that when processing continuous naturalistic stimuli, the DG-CA3 pair exhibited evidence consistent with the occurrence of the pattern separation process, whereas both the CA3-CA1 and CA1-SUB pairs showed evidence consistent with pattern completion. Moreover, during the latter half of the audio movie, we observed evidence consistent with a reduction in pattern completion in the CA3-CA1 pair and an increase in pattern completion in the CA1-SUB pair. Overall, these findings improve our understanding of the evidence related to the occurrence of pattern separation and pattern completion processes during natural experiences.
Collapse
Affiliation(s)
- Lili Sun
- School of Life Science and Technology, HIT Faculty of Life Science and MedicineHarbin Institute of TechnologyHarbinChina
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
| | | | - Peng Ren
- Institute of Science and Technology for Brain‐Inspired Intelligence and Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Qiuyi Liu
- School of Life Science and Technology, HIT Faculty of Life Science and MedicineHarbin Institute of TechnologyHarbinChina
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
| | - Zhipeng Li
- School of Life Science and Technology, HIT Faculty of Life Science and MedicineHarbin Institute of TechnologyHarbinChina
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
| | - Xia Liang
- Research Center for Social Computing and Information RetrievalHarbin Institute of TechnologyHarbinChina
- Frontiers Science Center for Matter Behave in Space EnvironmentHarbin Institute of TechnologyHarbinChina
| |
Collapse
|
22
|
Logie MR, Donaldson DI. Optimising episodic encoding within segmented virtual contexts. Conscious Cogn 2025; 128:103807. [PMID: 39756357 DOI: 10.1016/j.concog.2024.103807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 12/28/2024] [Accepted: 12/31/2024] [Indexed: 01/07/2025]
Abstract
The encoding of episodic memories depends on segmentation; memory performance improves when segmentation is available and performance is impaired when segmentation is absent. Indeed, for episodic memories to be created, the encoding of information into long-term memory requires the experience of event boundaries (i.e., context-shifts defined by salient moments of change between packets of to-be-learned stimuli). According to this view episodic encoding, and therefore learning, is critically dependent on the nature of working memory. Motived by this theoretical framework, here we explore the effects of segmentation on long-term memory performance, investigating the possibility of optimising learning by aligning the presentation of stimuli to the capacity of working memory. Across two experiments, we examined whether manipulating the boundaries between events influences memory. Participants travelled within a virtual environment, with spatial-temporal gaps between virtual locations providing context-shifts to segment sequentially presented lists of words. Both accurate recall and memory for temporal order improve and the number of falsely recalled words reduces when reducing the quantity of information presented between boundaries. Taken together, the present results suggest that closely matching the quantity of information between boundaries to working memory capacity optimises long-term memory performance.
Collapse
Affiliation(s)
- Matthew R Logie
- CEA, DRF/Joliot, Neurospin; INSERM, Cognitive Neuroimaging Unit; Université Paris-Saclay, F-91191 Gif/Yvette, France; Department of Psychology, University of Stirling, Stirling FK9 4LA, United Kingdom.
| | - David I Donaldson
- School of Psychology and Neuroscience, University of St. Andrews. KY16 9JP, United Kingdom
| |
Collapse
|
23
|
Solem MA, Pelzel RG, Rozema NB, Brown TG, Reid E, Mansky RH, Gomez-Pastor R. Absence of hippocampal pathology persists in the Q175DN mouse model of Huntington's disease despite elevated HTT aggregation. J Huntingtons Dis 2025; 14:59-84. [PMID: 39973391 PMCID: PMC11974504 DOI: 10.1177/18796397251316762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
BackgroundHuntington's disease (HD) is a neurodegenerative disorder causing motor, cognitive, and psychiatric impairments, with the striatum being the most affected brain region. However, the role of other regions, such as the hippocampus, in HD remains less understood.ObjectiveHere, we study the comparative impact of enhanced mHTT aggregation and neuropathology in the striatum and hippocampus of two HD mouse models.MethodsWe utilized the zQ175 as a control HD mouse model and the Q175DN mice lacking the PGK-Neomycin cassette generated in house. We performed a comparative characterization of the neuropathology between zQ175 and Q175DN mice in the striatum and the hippocampus by assessing HTT aggregation, neuronal and glial pathology, chaperone expression, and synaptic density.ResultsWe showed that Q175DN mice presented enhanced mHTT aggregation in both striatum and hippocampus compared to zQ175. Striatal neurons showed a greater susceptibility to enhanced accumulation of mHTT in Q175DN. On the contrary, no signs of hippocampal pathology were found in zQ175 and absence of hippocampal pathology persisted in Q175DN mice despite higher levels of mHTT. In addition, Q175DN hippocampus presented increased synaptic density, decreased Iba1+ microglia density and enhanced HSF1 levels in specific subregions of the hippocampus compared to zQ175.ConclusionsQ175DN mice are a valuable tool to understand the fundamental susceptibility differences to mHTT toxicity between striatal neurons and other neuronal subtypes. Furthermore, our findings also suggest that cognitive deficits observed in HD animals might arise from either striatum dysfunction or other regions involved in cognitive processes but not from hippocampal degeneration.
Collapse
Affiliation(s)
- Melissa A Solem
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Ross G Pelzel
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Nicholas B Rozema
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Taylor G Brown
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Emma Reid
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rachel H Mansky
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Rocio Gomez-Pastor
- Department of Neuroscience, School of Medicine, University of Minnesota, Minneapolis, MN, USA
| |
Collapse
|
24
|
Ray S, Yona I, Elami N, Palgi S, Latimer KW, Jacobsen B, Witter MP, Las L, Ulanovsky N. Hippocampal coding of identity, sex, hierarchy, and affiliation in a social group of wild fruit bats. Science 2025; 387:eadk9385. [PMID: 39883756 DOI: 10.1126/science.adk9385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 11/11/2024] [Indexed: 02/01/2025]
Abstract
Social animals live in groups and interact volitionally in complex ways. However, little is known about neural responses under such natural conditions. Here, we investigated hippocampal CA1 neurons in a mixed-sex group of five to 10 freely behaving wild Egyptian fruit bats that lived continuously in a laboratory-based cave and formed a stable social network. In-flight, most hippocampal place cells were socially modulated and represented the identity and sex of conspecifics. Upon social interactions, neurons represented specific interaction types. During active observation, neurons encoded the bat's own position and head direction, together with the position, direction, and identity of multiple conspecifics. Identity-coding neurons encoded the same bat across contexts. The strength of identity coding was modulated by sex, hierarchy, and social affiliation. Thus, hippocampal neurons form a multidimensional sociospatial representation of the natural world.
Collapse
Affiliation(s)
- Saikat Ray
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Itay Yona
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nadav Elami
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Shaked Palgi
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | | | - Bente Jacobsen
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
- Faculty of Medicine and Health Science, Kavli Institute for Systems Neuroscience, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Menno P Witter
- Faculty of Medicine and Health Science, Kavli Institute for Systems Neuroscience, NTNU Norwegian University for Science and Technology, Trondheim, Norway
| | - Liora Las
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| | - Nachum Ulanovsky
- Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
25
|
Pecsok MK, Robinson H, Atkins A, Calkins ME, Elliott MA, Mordy A, Stifelman J, Gur RC, Moberg PJ, Nanga RPR, Ruparel K, Shinohara RT, Wolk DA, Reddy R, Roalf DR. Mapping hippocampal glutamate in healthy aging with in vivo glutamate-weighted CEST (GluCEST) imaging. Front Aging Neurosci 2025; 16:1535158. [PMID: 39926356 PMCID: PMC11802501 DOI: 10.3389/fnagi.2024.1535158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Introduction Hippocampal glutamate (Glu) dysfunction is a pertinent indicator of neurodegeneration, yet mapping typical age-related changes in Glu has been challenging. Here, we use a 7T MRI approach, Glutamate Chemical Exchange Saturation Transfer (GluCEST), to measure bilateral hippocampal Glu in healthy old (HOA) and young (HYA) adults. Methods Bilateral hippocampal GluCEST data was acquired from 27 HOA and 22 HYA using 7T MRI. GluCEST differences by age and hemisphere were tested with a linear mixed model. GluCEST asymmetry index was also evaluated by age. Exploratory analyses examined associations between hippocampal GluCEST, age group, and scores on the Montreal Cognitive Assessment (MoCA) and Cognitive Complaints Index (CCI). Results GluCEST levels showed an age group and hemisphere interaction. In HOA, GluCEST was higher in left than right hippocampus, but in HYA, GluCEST level was equivalent across hemispheres. HOA had lower GluCEST than HYA in the right hippocampus. GluCEST asymmetry index confirmed significant left asymmetry in HOA. Lower GluCEST levels in HOA were associated with subjective cognitive complaints as measured by the CCI. Discussion Hippocampal GluCEST provides insight into age-related neural changes, with lower GluCEST in the right hippocampus in older adults. These findings offer a step toward elucidating the asymmetrical trajectory of hippocampal glutamatergic alterations and their relationship to cognitive phenotypes.
Collapse
Affiliation(s)
- Maggie K. Pecsok
- Brain and Behavior Lab, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Heather Robinson
- Department of Psychological Sciences, Institute for the Brain and Cognitive Sciences, University of Connecticut, Storrs, CT, United States
| | - Ally Atkins
- Brain and Behavior Lab, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Monica E. Calkins
- Brain and Behavior Lab, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute (LiBI) of CHOP and Penn Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Mark A. Elliott
- Center for Advanced Metabolic Imaging in Precision Medicine (CAMIPM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Arianna Mordy
- Cognitive and Clinical Neuroscience Lab, UCLA Brain Mapping Center, Department of Psychiatry and Behavioral Sciences, University of California, Los Angeles, Los Angeles, CA, United States
| | - Jacquelyn Stifelman
- Brain and Behavior Lab, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ruben C. Gur
- Brain and Behavior Lab, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute (LiBI) of CHOP and Penn Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Paul J. Moberg
- Brain and Behavior Lab, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
| | - Ravi Prakash Reddy Nanga
- Center for Advanced Metabolic Imaging in Precision Medicine (CAMIPM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Kosha Ruparel
- Brain and Behavior Lab, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute (LiBI) of CHOP and Penn Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| | - Russell T. Shinohara
- Penn Statistics in Imaging and Visualization Endeavor (PennSIVE), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David A. Wolk
- Penn Memory Center and Alzheimer's Disease Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Ravinder Reddy
- Center for Advanced Metabolic Imaging in Precision Medicine (CAMIPM), Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - David R. Roalf
- Brain and Behavior Lab, Neurodevelopment and Psychosis Section, Department of Psychiatry, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, United States
- Department of Child and Adolescent Psychiatry and Behavioral Sciences, Lifespan Brain Institute (LiBI) of CHOP and Penn Medicine, Children’s Hospital of Philadelphia, Philadelphia, PA, United States
| |
Collapse
|
26
|
Matera A, Compagnion AC, Pedicone C, Kotah JM, Ivanov A, Monsorno K, Labouèbe G, Leggio L, Pereira-Iglesias M, Beule D, Mansuy-Aubert V, Williams TL, Iraci N, Sierra A, Marro SG, Goate AM, Eggen BJL, Kerr WG, Paolicelli RC. Microglial lipid phosphatase SHIP1 limits complement-mediated synaptic pruning in the healthy developing hippocampus. Immunity 2025; 58:197-217.e13. [PMID: 39657671 DOI: 10.1016/j.immuni.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 10/13/2024] [Accepted: 11/04/2024] [Indexed: 12/12/2024]
Abstract
The gene inositol polyphosphate-5-phosphatase D (INPP5D), which encodes the lipid phosphatase SH2-containing inositol polyphosphate 5-phosphatase 1 (SHIP1), is associated with the risk of Alzheimer's disease (AD). How it influences microglial function and brain physiology is unclear. Here, we showed that SHIP1 was enriched in early stages of healthy brain development. By combining in vivo loss-of-function approaches and proteomics, we discovered that mice conditionally lacking microglial SHIP1 displayed increased complement and synapse loss in the early postnatal brain. SHIP1-deficient microglia showed altered transcriptional signatures and abnormal synaptic pruning that was dependent on the complement system. Mice exhibited cognitive defects in adulthood only when microglial SHIP1 was depleted early postnatally but not at later stages. Induced pluripotent stem cell (iPSC)-derived microglia lacking SHIP1 also showed increased engulfment of synaptic structures. These findings suggest that SHIP1 is essential for proper microglia-mediated synapse remodeling in the healthy developing brain. Disrupting this process has lasting behavioral effects and may be linked to vulnerability to neurodegeneration.
Collapse
Affiliation(s)
- Alessandro Matera
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | | | - Chiara Pedicone
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Janssen M Kotah
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Andranik Ivanov
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Katia Monsorno
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Gwenaël Labouèbe
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| | - Loredana Leggio
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Marta Pereira-Iglesias
- Achucarro Basque Center for Neuroscience, Barrio Sarriena s/n, Leioa, Spain; Department of Neuroscience, University of the Basque Country EHU/UPV, Barrio Sarriena s/n, Leioa, Spain
| | - Dieter Beule
- Core Unit Bioinformatics, Berlin Institute of Health, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | | | - Tim L Williams
- Department of Veterinary Medicine, University of Cambridge, Cambridge, UK
| | - Nunzio Iraci
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy
| | - Amanda Sierra
- Achucarro Basque Center for Neuroscience, Barrio Sarriena s/n, Leioa, Spain; Department of Biochemistry and Molecular Biology, University of the Basque Country EHU/UPV, Barrio Sarriena, Leioa, Spain; Ikerbasque Foundation, Bilbao, Spain
| | - Samuele G Marro
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosciences, Black Family Stem Cell Institute, Icahn School of Medicine at Mt. Sinai, New York, NY, USA
| | - Alison M Goate
- Department of Genetics and Genomics Sciences, Icahn School of Medicine at Mt. Sinai, New York, NY, USA; Ronald M. Loeb Center for Alzheimer's Disease, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Nash Family Department of Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Bart J L Eggen
- Department of Biomedical Sciences, Section Molecular Neurobiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - William G Kerr
- Institute for Regenerative Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Pediatrics, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rosa C Paolicelli
- Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
27
|
Khalil MH. Walking and Hippocampal Formation Volume Changes: A Systematic Review. Brain Sci 2025; 15:52. [PMID: 39851420 PMCID: PMC11763604 DOI: 10.3390/brainsci15010052] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 01/01/2025] [Accepted: 01/08/2025] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND/OBJECTIVES Sustaining the human brain's hippocampus from atrophy throughout ageing is critical. Exercise is proven to be effective in promoting adaptive hippocampal plasticity, and the hippocampus has a bidirectional relationship with the physical environment. Therefore, this systematic review explores the effects of walking, a simple physical activity in the environment, on hippocampal formation volume changes for lifelong brain and cognitive health. METHOD PubMed, Scopus, and Web of Science were searched for studies on humans published up to November 2022 examining hippocampal volume changes and walking. Twelve studies met the inclusion criteria. Study quality was assessed using the PEDro scale and ROBINS-I tool. A narrative synthesis explored walking factors associated with total, subregional, and hemisphere-specific hippocampal volume changes. RESULTS Overall, walking had positive effects on hippocampal volumes. Several studies found benefits of higher-intensity and greater amounts of walking for total hippocampal volume. The subiculum increased after low-intensity walking and nature exposure, while the parahippocampal gyrus benefited from vigorous intensity. The right hippocampus increased with spatial navigation during walking. No studies examined the effect of walking on the dentate gyrus. CONCLUSIONS This systematic review highlights walking as a multifaceted variable that can lead to manifold adaptive hippocampal volume changes. These findings support the promotion of walking as a simple, effective strategy to enhance brain health and prevent cognitive decline, suggesting the design of physical environments with natural and biophilic characteristics and layouts with greater walkability and cognitive stimulation. Future research is encouraged to explore the hippocampal subregional changes instead of focusing on total hippocampal volume, since the hippocampal formation is multicompartmental and subfields respond differently to different walking-related variables.
Collapse
|
28
|
Ghosh Hajra S, Meltzer JA, Keerthi P, Pappas C, Sekuler AB, Cam-CAN Group, Liu CC. Spontaneous blinking and brain health in aging: Large-scale evaluation of blink-related oscillations across the lifespan. Front Aging Neurosci 2025; 16:1473178. [PMID: 39839308 PMCID: PMC11747640 DOI: 10.3389/fnagi.2024.1473178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 11/25/2024] [Indexed: 01/23/2025] Open
Abstract
Blink-related oscillations (BROs) are newly discovered neurophysiological brainwave responses associated with spontaneous blinking, and represent environmental monitoring and awareness processes as the brain evaluates new visual information appearing after eye re-opening. BRO responses have been demonstrated in healthy young adults across multiple task states and are modulated by both task and environmental factors, but little is known about this phenomenon in aging. To address this, we undertook the first large-scale evaluation of BRO responses in healthy aging using the Cambridge Centre for Aging and Neuroscience (Cam-CAN) repository, which contains magnetoencephalography (MEG) data from a large sample (N = 457) of healthy adults across a broad age range (18-88) during the performance of a simple target detection task. The results showed that BRO responses were present in all age groups, and the associated effects exhibited significant age-related modulations comprising an increase in sensor-level global field power (GFP) and source-level theta and alpha spectral power within the bilateral precuneus. Additionally, the extent of cortical activations also showed an inverted-U relationship with age, consistent with neurocompensation with aging. Crucially, these age-related differences were not observed in the behavioral measures of task performance such as reaction time and accuracy, suggesting that blink-related neural responses during the target detection task are more sensitive in capturing aging-related brain function changes compared to behavioral measures alone. Together, these results suggest that BRO responses are not only present throughout the adult lifespan, but the effects can also capture brain function changes in healthy aging-thus providing a simple yet powerful avenue for evaluating brain health in aging.
Collapse
Affiliation(s)
- Sujoy Ghosh Hajra
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| | - Jed A. Meltzer
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | - Prerana Keerthi
- School of Biomedical Engineering, McMaster University, Hamilton, ON, Canada
| | - Chloe Pappas
- School of Computer Science, McGill University, Hamilton, ON, Canada
| | - Allison B. Sekuler
- Rotman Research Institute, Baycrest Health Sciences, Toronto, ON, Canada
| | | | - Careesa Chang Liu
- Department of Biomedical Engineering and Science, Florida Institute of Technology, Melbourne, FL, United States
| |
Collapse
|
29
|
Pandi-Perumal SR, Paul S, Saravanan KM, Namasivayam GP, Chidambaram SB. Clock-Sleep Communication. Curr Mol Med 2025; 25:399-415. [PMID: 39694958 DOI: 10.2174/0115665240305615240630113434] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/09/2024] [Accepted: 05/29/2024] [Indexed: 12/20/2024]
Abstract
Rhythmicity is a characteristic feature of the inanimate universe. The organization of biological rhythms in time is an adaptation to the cyclical environmental changes brought on by the earth's rotation on its axis and around the sun. Circadian (L. Circa = "around or approximately"; diem = "a day") rhythms are biological responses to the geophysical light/dark (LD) cycle in which an organism adjusts to alterations in its internal physiology or external environment as a function of the time of day. Sleep has been considered a biological rhythm. Normal human sleep, an essential physiologic process, comprises two distinct phases: non-rapid eye movement (NREM) sleep and rapid eye movement (REM) sleep. A mature adult human's sleep/wake cycle displays a circadian rhythm with a ~24-hour cycle. According to the two-process model of sleep regulation, the human sleep/wake cycle is orchestrated by circadian and homeostatic processes. Sleep homeostasis (a sleep-dependent process) and circadian rhythm (a sleep-independent process) are two biological processes controlling the sleep/wake cycle. There are also ultradian (< 24-hour) rhythms, including the NREM-REM sleep cycle, which has been extensively studied. The clock and sleep genes both influence sleep. In this overview, we have reviewed the circadian genes and their role in regulating sleep. Besides, the gene expression and biological pathways associated with sleep and circadian rhythm-associated diseases also have been highlighted.
Collapse
Affiliation(s)
- Seithikurippu R Pandi-Perumal
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
- Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
- Centre for Research and Development, Chandigarh University, Mohali, Punjab, 140413, India
| | - Sayan Paul
- Department of Biochemistry & Molecular Biology, The University of Texas Medical Branch at Galveston, Galveston, Texas, 77555, USA
| | - Konda Mani Saravanan
- Department of Biotechnology, Bharath Institute of Higher Education and Research, Chennai, Tamil Nadu, 600073, India
| | - Ganesh Pandian Namasivayam
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), A210, Kyoto University Institute for Advanced Study, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Saravana Babu Chidambaram
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
- Special Interest Group, Brain, Behaviour and Cognitive Neurosciences, JSS Academy of Higher Education & Research, Mysuru, Karnataka, 570015, India
| |
Collapse
|
30
|
Calderón C, Bekios-Calfa J, Bekios-Canales N, Véliz-García O, Beyle C, Palominos D, Ávalos-Tejeda M, Domic-Siede M. Application of machine learning techniques for dementia severity prediction from psychometric tests in the elderly population. APPLIED NEUROPSYCHOLOGY. ADULT 2025; 32:187-195. [PMID: 36587834 DOI: 10.1080/23279095.2022.2162899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Previous research has shown the benefits of early detection and treatment of dementia. This detection is usually performed manually by one or more clinicians based on reports and psychometric testing. Machine learning algorithms provide an alternative method of prediction that may contribute, with an automated process and insights, to the diagnosis and classification of the severity level of dementia. The aim of this study is to explore the use of neuropsychological data from a reduced version of the Addenbrooke's Cognitive Examination III (ACE-III) to predict absence or different levels of dementia severity using the Global Deterioration Scale (GDS) scores through the implementation of the kNN machine learning algorithm. A sample of 1164 elderly people over sixty years old were evaluated using a reduced version of the ACE-III and the GDS. The kNN classifier provided good accuracies using 15 items from the ACE-III and adequately differentiating people with absence and mild impairment, from those with more severe levels of impairment according to the GDS rating. Our results suggest that the kNN algorithm may be used to automate aspects of clinical cognitive impairment classification in the elderly population.
Collapse
Affiliation(s)
- Carlos Calderón
- Núcleo de Investigación en Neurociencia Cognitiva, Afectiva y Neuropsicología, Laboratorio de Neurociencia Cognitiva, Escuela de Psicología, Universidad Católica del Norte, Antofagasta, Chile
| | - Juan Bekios-Calfa
- Núcleo de Investigación en Neurociencia Cognitiva, Afectiva y Neuropsicología, Escuela de Ingeniería, Universidad Católica del Norte, Coquimbo, Chile
| | - Nikolás Bekios-Canales
- Núcleo de Investigación en Neurociencia Cognitiva, Afectiva y Neuropsicología, Laboratorio de Neurociencia Cognitiva, Escuela de Psicología, Universidad Católica del Norte, Antofagasta, Chile
| | - Oscar Véliz-García
- Núcleo de Investigación en Neurociencia Cognitiva, Afectiva y Neuropsicología, Laboratorio de Neurociencia Cognitiva, Escuela de Psicología, Universidad Católica del Norte, Antofagasta, Chile
| | - Christian Beyle
- Departamento de Psicología, Facultad de Ciencias de la Salud, Universidad Católica de Temuco. Temuco, Chile
| | - Diego Palominos
- Núcleo de Investigación en Neurociencia Cognitiva, Afectiva y Neuropsicología, Laboratorio de Neurociencia Cognitiva, Escuela de Psicología, Universidad Católica del Norte, Antofagasta, Chile
| | - Marcelo Ávalos-Tejeda
- Núcleo de Investigación en Neurociencia Cognitiva, Afectiva y Neuropsicología, Laboratorio de Neurociencia Cognitiva, Escuela de Psicología, Universidad Católica del Norte, Antofagasta, Chile
| | - Marcos Domic-Siede
- Núcleo de Investigación en Neurociencia Cognitiva, Afectiva y Neuropsicología, Laboratorio de Neurociencia Cognitiva, Escuela de Psicología, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
31
|
Xu P, Estrada S, Etteldorf R, Liu D, Shahid M, Zeng W, Früh D, Reuter M, Breteler MMB, Aziz NA. Hypothalamic volume is associated with age, sex and cognitive function across lifespan: a comparative analysis of two large population-based cohort studies. EBioMedicine 2025; 111:105513. [PMID: 39708426 PMCID: PMC11732039 DOI: 10.1016/j.ebiom.2024.105513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 12/02/2024] [Accepted: 12/06/2024] [Indexed: 12/23/2024] Open
Abstract
BACKGROUND Emerging findings indicate that the hypothalamus, the body's principal homeostatic centre, plays a crucial role in modulating cognition, but comprehensive population-based studies are lacking. METHODS We used cross-sectional data from the Rhineland Study (N = 5812, 55.2 ± 13.6 years, 58% women) and the UK Biobank Imaging Study (UKB) (N = 45,076, 64.2 ± 7.7 years, 53% women), two large-scale population-based cohort studies. Volumes of hypothalamic structures were obtained from 3T structural magnetic resonance images through an automatic parcellation procedure (FastSurfer-HypVINN). The standardised cognitive domain scores were derived from extensive neuropsychological test batteries. We employed multivariable linear regression to assess associations of hypothalamic volumes with age, sex and cognitive performance. FINDINGS In older individuals, volumes of total, anterior and posterior hypothalamus, and mammillary bodies were smaller, while those of medial hypothalamus and tuberal region were larger. Larger medial hypothalamus volume was related to higher cortisol levels in older individuals, providing functional validation. Volumes of all hypothalamic structures were larger in men compared to women. In both sexes, larger volumes of total, anterior and posterior hypothalamus, and mammillary bodies were associated with better domain-specific cognitive performance, whereas larger volumes of medial hypothalamus and tuberal region were associated with worse domain-specific cognitive performance. INTERPRETATION We found strong age and sex effects on hypothalamic structures, as well as robust associations between these structures and domain-specific cognitive functions. Overall, these findings thus implicate specific hypothalamic subregions as potential therapeutic targets against age-associated cognitive decline. FUNDING Institutional funds, Federal Ministry of Education and Research of Germany, Alzheimer's Association.
Collapse
Affiliation(s)
- Peng Xu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Santiago Estrada
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Artificial Intelligence in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Rika Etteldorf
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Dan Liu
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Mohammad Shahid
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Weiyi Zeng
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Deborah Früh
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Martin Reuter
- Artificial Intelligence in Medical Imaging, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; A.A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA; Department of Radiology, Harvard Medical School, Boston, MA, USA
| | - Monique M B Breteler
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Institute for Medical Biometry, Informatics and Epidemiology (IMBIE), Faculty of Medicine, University of Bonn, Germany
| | - N Ahmad Aziz
- Population Health Sciences, German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany; Department of Neurology, Faculty of Medicine, University of Bonn, Germany.
| |
Collapse
|
32
|
Semenza C, Benavides-Varela S, Salillas E. Brain laterality of numbers and calculation: Complex networks and their development. HANDBOOK OF CLINICAL NEUROLOGY 2025; 208:461-480. [PMID: 40074415 DOI: 10.1016/b978-0-443-15646-5.00017-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/14/2025]
Abstract
This chapter reviews notions about the lateralization of numbers and calculation in the brain, including its developmental pattern. Such notions have changed dramatically in recent decades. What was once considered a function almost exclusively located in the left hemisphere has been found to be sustained by complex brain networks encompassing both hemispheres. Depending on the specific task, however, each hemisphere has its own role. Much of this progress was determined by the convergency of investigations conducted with different methods. Contrary to traditional wisdom, the right hemisphere is not involved in arithmetic just as far as generic spatial aspects are concerned. Very specific arithmetic functions like remembering the spatial templates for complex operations, or processing of zero in complex numbers, are indeed sustained in specific right-sided areas. The system used in the typical adult appears to be the result of a complex pattern of development. The numerical brain clearly evolved from less mature to more advanced brain networks because of growth and education. Children seem to be equipped with the ability to represent the number nonverbally from a very early age. The bilateral processing of number-related tasks is however a late acquisition.
Collapse
Affiliation(s)
- Carlo Semenza
- Department of Neuroscience, University of Padova, Padova, Italy; Padova Neuroscience Center, University of Padova, Padova, Italy.
| | - Silvia Benavides-Varela
- Padova Neuroscience Center, University of Padova, Padova, Italy; Department of Developmental Psychology and Socialisation, University of Padova, Padova, Italy
| | - Elena Salillas
- Department of Psychology and Sociology, University of Zaragoza, Zaragoza, Spain
| |
Collapse
|
33
|
Nadel L, Simon KC. Perceived memory credibility: The role of details. Proc Natl Acad Sci U S A 2024; 121:e2416373121. [PMID: 39700147 DOI: 10.1073/pnas.2416373121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/19/2024] [Indexed: 12/21/2024] Open
Abstract
The sharing of personal memories is a unique aspect of the human experience. Humans communicate to provide information, to influence, or even to amuse. How do we distinguish between credible and noncredible narratives? Forensic science has identified race, age, and detail quantity as influential. We do not know how the nature of narrated details impacts believability. We report two studies investigating how detail composition influences credibility ratings using definitions of details suggested by Levine et al. (2002). Internal details are directly connected to the episodic aspects of the memory, while external details refer to semantic facts or depictions not directly related to the main event. A total of 825 participants rated narratives that varied detail number and type for perceived credibility or saliency. Episodic memory details enhanced credibility more than semantic memory details. In addition, within episodic memories, person-related details enhanced credibility more than non-person-related details. Our results suggest a lens through which to view the credibility of what we hear and read.
Collapse
Affiliation(s)
- Lynn Nadel
- Cognitive Science Program, University of Arizona, Tucson, AZ 85721
- Department of Psychology, University of Arizona, Tucson, AZ 85721
| | - Katharine C Simon
- Department of Pediatrics, School of Medicine, University of California, Irvine, CA 92697
- Pulmonology Department, Children's Hospital of Orange County (CHOC), Orange, CA 92868
| |
Collapse
|
34
|
Biljman K, Gozes I, Lam JCK, Li VOK. An experimental framework for conjoint measures of olfaction, navigation, and motion as pre-clinical biomarkers of Alzheimer's disease. J Alzheimers Dis Rep 2024; 8:1722-1744. [PMID: 40034341 PMCID: PMC11863766 DOI: 10.1177/25424823241307617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 11/19/2024] [Indexed: 03/05/2025] Open
Abstract
Elucidating Alzheimer's disease (AD) prodromal symptoms can resolve the outstanding challenge of early diagnosis. Based on intrinsically related substrates of olfaction and spatial navigation, we propose a novel experimental framework for their conjoint study. Artificial intelligence-driven multimodal study combining self-collected olfactory and motion data with available big clinical datasets can potentially promote high-precision early clinical screenings to facilitate timely interventions targeting neurodegenerative progression.
Collapse
Affiliation(s)
- Katarina Biljman
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Illana Gozes
- Elton Laboratory for Neuroendocrinology, Department of Human Molecular Genetics and Biochemistry, Faculty of Medical and Health Sciences, The Adams Super Center for Brain Studies and Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Jacqueline CK Lam
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| | - Victor OK Li
- Department of Electrical and Electronic Engineering, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
35
|
Kostakos K, Pliakopanou A, Meimaridis V, Galanou ONO, Anagnostou AA, Sertidou D, Katis P, Anastasiou P, Katsoulidis K, Lykogiorgos Y, Mytilinaios D, Katsenos AP, Simos YV, Bellos S, Konitsiotis S, Peschos D, Tsamis KI. Development of Spatial Memory: A Behavioral Study. NEUROSCI 2024; 5:713-728. [PMID: 39728682 DOI: 10.3390/neurosci5040050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 11/28/2024] [Accepted: 12/16/2024] [Indexed: 12/28/2024] Open
Abstract
Although spatial memory has been widely studied in rodents, developmental studies involving humans are limited in number and sample size. We designed and studied the validity of two simple experimental setups for the evaluation of spatial memory and navigation development. The dataset of this study was composed of 496 schoolchildren, from 4 to 15 years old. Participants were tested blindfolded on their ability to navigate in a square area between three stool stations while performing an item-collecting task, having observed the experimental space and procedure (Test 1) or having, in addition, executed the task open-eyed (Test 2). The performance times were analyzed to identify age-specific differences. Parametric methods, including the one-way ANOVA and independent samples t-test, were employed. Statistically significant differences were observed in the mean performance time among age groups, as well as within the same age groups when comparing Test 1 and Test 2. Our results revealed a performance improvement with aging for both functions and showed that spatial memory and spatial navigation develop throughout childhood and puberty and interact during development. When children integrate visual stimuli with other sensory inputs, they can form stronger spatial memories, thereby enhancing their navigation skills. The proposed experimental setup is considered feasible and can be used for behavioral studies of navigation-related memory in children and beyond with appropriate adaptations, allowing for large-scale assessment.
Collapse
Affiliation(s)
- Konstantinos Kostakos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Alexandra Pliakopanou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Vasileios Meimaridis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Ourania-Natalia Oriana Galanou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Aikaterini Argyro Anagnostou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitra Sertidou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Panagiotis Katis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Periklis Anastasiou
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos Katsoulidis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis Lykogiorgos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of Electrical and Computer Engineering, University of Western Macedonia, 50100 Kozani, Greece
| | | | - Andreas P Katsenos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Yannis V Simos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Stefanos Bellos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Spyridon Konitsiotis
- Department of Neurology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece
| | - Dimitrios Peschos
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
| | - Konstantinos I Tsamis
- Department of Physiology, Faculty of Medicine, School of Health Sciences, University of Ioannina, 45110 Ioannina, Greece
- Department of Neurology, University Hospital of Ioannina, University of Ioannina, 45110 Ioannina, Greece
| |
Collapse
|
36
|
Ripperger HS, Reed RG, Kang C, Lesnovskaya A, Aghjayan SL, Huang H, Wan L, Sutton BP, Oberlin L, Collins AM, Burns JM, Vidoni ED, Kramer AF, McAuley E, Hillman CH, Grove GA, Jakicic JM, Erickson KI. Cardiorespiratory fitness, hippocampal subfield morphology, and episodic memory in older adults. Front Aging Neurosci 2024; 16:1466328. [PMID: 39749255 PMCID: PMC11694150 DOI: 10.3389/fnagi.2024.1466328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/25/2024] [Indexed: 01/04/2025] Open
Abstract
Objective Age-related hippocampal atrophy is associated with memory loss in older adults, and certain hippocampal subfields are more vulnerable to age-related atrophy than others. Cardiorespiratory fitness (CRF) may be an important protective factor for preserving hippocampal volume, but little is known about how CRF relates to the volume of specific hippocampal subfields, and whether associations between CRF and hippocampal subfield volumes are related to episodic memory performance. To address these gaps, the current study evaluates the associations among baseline CRF, hippocampal subfield volumes, and episodic memory performance in cognitively unimpaired older adults from the Investigating Gains in Neurocognition Trial of Exercise (IGNITE) (NCT02875301). Methods Participants (N = 601, ages 65-80, 72% female) completed assessments including a graded exercise test measuring peak oxygen comsumption (VO2peak) to assess CRF, cognitive testing, and high-resolution magnetic resonance imaging of the hippocampus processed with Automated Segmentation of Hippocampal Subfields (ASHS). Separate linear regression models examined whether CRF was associated with hippocampal subfield volumes and whether those assocations were moderated by age or sex. Mediation models examined whether hippocampal volumes statistically mediated the relationship between CRF and episodic memory performance. Covariates included age, sex, years of education, body mass index, estimated intracranial volume, and study site. Results Higher CRF was significantly associated with greater total left (B = 5.82, p = 0.039) and total right (B = 7.64, p = 0.006) hippocampal volume, as well as greater left CA2 (B = 0.14, p = 0.022) and dentate gyrus (DG; B = 2.34, p = 0.031) volume, and greater right CA1 (B = 3.99, p = 0.011), CA2 (B = 0.15, p = 0.002), and subiculum (B = 1.56, p = 0.004) volume. Sex significantly moderated left DG volume (B = -4.26, p = 0.017), such that the association was positive and significant only for males. Total left hippocampal volume [indirect effect = 0.002, 95% CI (0.0002, 0.00), p = 0.027] and right subiculum volume [indirect effect = 0.002, 95% CI (0.0007, 0.01), p = 0.006] statistically mediated the relationship between CRF and episodic memory performance. Discussion While higher CRF was significantly associated with greater total hippocampal volume, CRF was not associated with all underlying subfield volumes. Our results further demonstrate the relevance of the associations between CRF and hippocampal volume for episodic memory performance. Finally, our results suggest that the regionally-specific effects of aging and Alzheimer's disease on hippocampal subfields could be mitigated by maintaining higher CRF in older adulthood.
Collapse
Affiliation(s)
- Hayley S. Ripperger
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rebecca G. Reed
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - Chaeryon Kang
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Alina Lesnovskaya
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States
| | - Sarah L. Aghjayan
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Center for the Neural Basis of Cognition, University of Pittsburgh and Carnegie Mellon University, Pittsburgh, PA, United States
| | - Haiqing Huang
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
| | - Lu Wan
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
| | - Bradley P. Sutton
- The Grainger College of Engineering, Bioengineering Department, University of Illinois, Champaign, IL, United States
- Beckman Institute, University of Illinois, Urbana, IL, United States
| | - Lauren Oberlin
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
- Weill Cornell Institute of Geriatric Psychiatry, Weill Cornell Medicine, White Plains, NY, United States
| | - Audrey M. Collins
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
| | - Jeffrey M. Burns
- Department of Neurology, University of Kansas Medical Center, Kansas, KS, United States
| | - Eric D. Vidoni
- Department of Neurology, University of Kansas Medical Center, Kansas, KS, United States
| | - Arthur F. Kramer
- Beckman Institute, University of Illinois, Urbana, IL, United States
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
| | - Edward McAuley
- Beckman Institute, University of Illinois, Urbana, IL, United States
- Department of Health and Kinesiology, University of Illinois, Urbana, IL, United States
| | - Charles H. Hillman
- Center for Cognitive and Brain Health, Northeastern University, Boston, MA, United States
- Department of Psychology, Northeastern University, Boston, MA, United States
- Department of Physical Therapy, Movement, and Rehabilitation Sciences, Northeastern University, Boston, MA, United States
| | - George A. Grove
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
| | - John M. Jakicic
- Department of Internal Medicine, University of Kansas Medical Center, Kansas, KS, United States
| | - Kirk I. Erickson
- Department of Psychology, University of Pittsburgh, Pittsburgh, PA, United States
- Department of Neuroscience, AdventHealth, AdventHealth Research Institute, Orlando, FL, United States
| |
Collapse
|
37
|
Freelin A, Wolfe C, Lega B. Models of human hippocampal specialization: a look at the electrophysiological evidence. Trends Cogn Sci 2024:S1364-6613(24)00318-8. [PMID: 39668062 DOI: 10.1016/j.tics.2024.11.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 11/08/2024] [Accepted: 11/20/2024] [Indexed: 12/14/2024]
Abstract
From an anatomical perspective, the concept that the anterior and posterior hippocampus fulfill distinct cognitive roles may seem unsurprising. When compared with the posterior hippocampus, the anterior region is proportionally larger, with visible expansion of the CA1 subfield and intimate continuity with adjacent medial temporal lobe (MTL) structures such as the uncus and amygdala. However, the functional relevance emerging from these anatomical differences remains to be established in humans. Drawing on both rodent and human data, several models of hippocampal longitudinal specialization have been proposed. For the brevity and clarity of this review, we focus on human electrophysiological evidence supporting and contravening these models with limited inclusion of noninvasive data. We then synthesize these data to propose a novel longitudinal model based on the amount of contextual information, drawing on previous conceptions described within the past decade.
Collapse
Affiliation(s)
- Anne Freelin
- Department of Neuroscience, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Cody Wolfe
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA
| | - Bradley Lega
- Department of Neurosurgery, University of Texas Southwestern, Dallas, TX, 75390, USA.
| |
Collapse
|
38
|
Martell RN, Daker RJ, Sokolowski HM, Ansari D, Lyons IM. Implications of neural integration of math and spatial experiences for math ability and math anxiety. PSYCHOLOGICAL RESEARCH 2024; 89:34. [PMID: 39653840 DOI: 10.1007/s00426-024-02063-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 11/13/2024] [Indexed: 03/04/2025]
Abstract
Mathematical and spatial abilities are positively related at both the behavioral and neural levels. Much of the evidence illuminating this relationship comes from classic laboratory-based experimental methods focused on cognitive performance despite most individuals also experiencing math and space in other contexts, such as in conversations or lectures. To broaden our understanding of math-space integration in these more commonplace situations, we used an auditory memory-encoding task with stimuli whose content evoked a range of educational and everyday settings related to math or spatial thinking. We used a multivariate approach to directly assess the extent of neural similarity between activity patterns elicited by these math and spatial stimuli. Results from whole-brain searchlight analysis revealed a highly specific positive relation between math and spatial activity patterns in bilateral anterior hippocampi. Examining individual variation in math-space similarity, we found that greater math-space similarity in bilateral anterior hippocampi was associated with poorer math skills and higher anxiety about math. Integration of neural responses to mathematical and spatial content may not always portend positive outcomes. We suggest that episodic simulation of quotidian contexts may link everyday experiences with math and spatial thinking-and the strength of this link is predictive of math in a manner that diverges from math-space associations derived from more lab-based tasks. On a methodological level, this work points to the value of considering a wider range of experimental paradigms, and of the value of combining multivariate fMRI analysis with behavioral data to better contextualize interpretations of brain data.
Collapse
Affiliation(s)
- Raeanne N Martell
- Department of Psychology, Georgetown University, Washington, DC, 20057, USA
| | - Richard J Daker
- Department of Psychology, Georgetown University, Washington, DC, 20057, USA
| | - H Moriah Sokolowski
- Department of Psychology, Toronto Metropolitan University, Toronto, ON, M5B 1W7, Canada
- Rotman Research Institute, Baycrest Hospital, North York, ON, M6A 2E1, Canada
| | - Daniel Ansari
- Department of Psychology and Faculty of Education, Western University, London, ON, N6A 3K7, Canada
| | - Ian M Lyons
- Department of Psychology, Georgetown University, Washington, DC, 20057, USA.
| |
Collapse
|
39
|
Reznik D, Margulies DS, Witter MP, Doeller CF. Evidence for convergence of distributed cortical processing in band-like functional zones in human entorhinal cortex. Curr Biol 2024; 34:5457-5469.e2. [PMID: 39488200 DOI: 10.1016/j.cub.2024.10.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 11/04/2024]
Abstract
The wide array of cognitive functions associated with the hippocampus is supported through interactions with the cerebral cortex. However, most of the direct cortical input to the hippocampus originates in the entorhinal cortex, forming the hippocampal-entorhinal system. In humans, the role of the entorhinal cortex in mediating hippocampal-cortical interactions remains unknown. In this study, we used precision neuroimaging to examine the distributed cortical anatomy associated with the human hippocampal-entorhinal system. Consistent with animal anatomy, our results associate different subregions of the entorhinal cortex with different parts of the hippocampus long axis. Furthermore, we find that the entorhinal cortex comprises three band-like zones that are associated with functionally distinct cortical networks. Importantly, the entorhinal cortex bands traverse the proposed human homologs of rodent lateral and medial entorhinal cortices. Finally, we show that the entorhinal cortex is a major convergence area of distributed cortical processing and that the topography of cortical networks associated with the anterior medial temporal lobe mirrors the macroscale structure of high-order cortical processing.
Collapse
Affiliation(s)
- Daniel Reznik
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany.
| | - Daniel S Margulies
- Integrative Neuroscience and Cognition Center, Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75016 Paris, France; Wellcome Centre for Integrative Neuroimaging, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX3 9DU, UK
| | - Menno P Witter
- Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| | - Christian F Doeller
- Department of Psychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig 04103, Germany; Kavli Institute for Systems Neuroscience, the Egil and Pauline Braathen and Fred Kavli Centre for Cortical Microcircuits, Jebsen Centre for Alzheimer's Disease, NTNU Norwegian University of Science and Technology, 7034 Trondheim, Norway
| |
Collapse
|
40
|
John YJ, Wang J, Bullock D, Barbas H. Amygdalar Excitation of Hippocampal Interneurons Can Lead to Emotion-driven Overgeneralization of Context. J Cogn Neurosci 2024; 36:2667-2686. [PMID: 38261402 DOI: 10.1162/jocn_a_02109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Context is central to cognition: Detailed contextual representations enable flexible adjustment of behavior via comparison of the current situation with prior experience. Emotional experiences can greatly enhance contextual memory. However, sufficiently intense emotional signals can have the opposite effect, leading to weaker or less specific memories. How can emotional signals have such intensity-dependent effects? A plausible mechanistic account has emerged from recent anatomical data on the impact of the amygdala on the hippocampus in primates. In hippocampal CA3, the amygdala formed potent synapses on pyramidal neurons, calretinin (CR) interneurons, as well as parvalbumin (PV) interneurons. CR interneurons are known to disinhibit pyramidal neuron dendrites, whereas PV neurons provide strong perisomatic inhibition. This potentially counterintuitive connectivity, enabling amygdala to both enhance and inhibit CA3 activity, may provide a mechanism that can boost or suppress memory in an intensity-dependent way. To investigate this possibility, we simulated this connectivity pattern in a spiking network model. Our simulations revealed that moderate amygdala input can enrich CA3 representations of context through disinhibition via CR interneurons, but strong amygdalar input can impoverish CA3 activity through simultaneous excitation and feedforward inhibition via PV interneurons. Our model revealed an elegant circuit mechanism that mediates an affective "inverted U" phenomenon: There is an optimal level of amygdalar input that enriches hippocampal context representations, but on either side of this zone, representations are impoverished. This circuit mechanism helps explain why excessive emotional arousal can disrupt contextual memory and lead to overgeneralization, as seen in severe anxiety and posttraumatic stress disorder.
Collapse
|
41
|
Shivakumar AB, Mehak SF, Jijimon F, Gangadharan G. Extrahippocampal Contributions to Social Memory: The Role of Septal Nuclei. Biol Psychiatry 2024; 96:835-847. [PMID: 38718881 DOI: 10.1016/j.biopsych.2024.04.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/22/2024] [Accepted: 04/22/2024] [Indexed: 06/16/2024]
Abstract
Social memory, the ability to recognize and remember individuals within a social group, is crucial for social interactions and relationships. Deficits in social memory have been linked to several neuropsychiatric and neurodegenerative disorders. The hippocampus, especially the circuit that links dorsal CA2 and ventral CA1 neurons, is considered a neural substrate for social memory formation. Recent studies have provided compelling evidence of extrahippocampal contributions to social memory. The septal nuclei, including the medial and lateral septum, make up a basal forebrain region that shares bidirectional neuronal connections with the hippocampus and has recently been identified as critical for social memory. The focus of our review is the neural circuit mechanisms that underlie social memory, with a special emphasis on the septum. We also discuss the social memory dysfunction associated with neuropsychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Apoorva Bettagere Shivakumar
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Sonam Fathima Mehak
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Feyba Jijimon
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Gireesh Gangadharan
- Department of Ageing Research, Manipal School of Life Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India.
| |
Collapse
|
42
|
She X, Moore BJ, Roeder BM, Nune G, Robinson BS, Lee B, Shaw S, Gong H, Heck CN, Popli G, Couture DE, Laxton AW, Marmarelis VZ, Deadwyler SA, Liu C, Berger TW, Hampson RE, Song D. Distributed Temporal Coding of Visual Memory Categories in Human Hippocampal Neurons. RESEARCH SQUARE 2024:rs.3.rs-5486087. [PMID: 39649160 PMCID: PMC11623771 DOI: 10.21203/rs.3.rs-5486087/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/10/2024]
Abstract
The hippocampus is crucial for forming new episodic memories. While the encoding of spatial and temporal information (where and when) in the hippocampus is well understood, the encoding of objects (what) remains less clear due to the high dimensions of object space. Rather than encoding each individual object separately, the hippocampus may instead encode categories of objects to reduce this dimensionality. In this study, we developed and applied a combined experimental-modeling approach to investigate how the hippocampus encodes visual memory categories in humans. We recorded spikes from hippocampal CA3 and CA1 neurons in 24 epilepsy patients performing a visual delayed match-to-sample (DMS) task involving five image categories. An ensemble multi-temporal-resolution classification model was employed to decode these visual memory categories from the hippocampal spiking activity with moderate numbers of trials. This model enables the identification of the spatio-temporal characteristics of hippocampal encoding through its interpretable representations. Using this model, we estimated the optimal temporal resolutions for decoding each visual memory category for each neuron in the ensemble. Results indicate that visual memory categories can be decoded from hippocampal spike patterns despite the short data length, supporting the presence of category-specific coding in the human hippocampus. We found that hippocampal neuron ensembles encode visual memory categories in a distributed manner, akin to a population code, while individual neurons use a temporal code. Additionally, CA3 and CA1 neurons exhibit similar and redundant information regarding visual memory categories, likely due to the strong and diffuse feedforward synaptic connections from the CA3 region to the CA1 region.
Collapse
Affiliation(s)
- Xiwei She
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California
| | - Bryan J. Moore
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California
| | - Brent M. Roeder
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine
| | - George Nune
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
| | - Brian S. Robinson
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California
| | - Brian Lee
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
| | - Susan Shaw
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital
| | - Hui Gong
- Department of Neurology, Rancho Los Amigos National Rehabilitation Hospital
| | - Christianne N. Heck
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
| | - Gautam Popli
- Department of Neurology, Wake Forest University School of Medicine
| | - Daniel E. Couture
- Department of Neurosurgery, Wake Forest University School of Medicine
| | - Adrian W. Laxton
- Department of Neurosurgery, Wake Forest University School of Medicine
| | - Vasilis Z. Marmarelis
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California
| | - Samuel A. Deadwyler
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine
| | - Charles Liu
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
| | - Theodore W. Berger
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California
| | - Robert E. Hampson
- Wake Forest Institute for Regenerative Medicine, Wake Forest University School of Medicine
- Department of Neurology, Wake Forest University School of Medicine
| | - Dong Song
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California
- Department of Neurological Surgery, Keck School of Medicine, University of Southern California
| |
Collapse
|
43
|
Das A, Menon V. Electrophysiological dynamics of salience, default mode, and frontoparietal networks during episodic memory formation and recall revealed through multi-experiment iEEG replication. eLife 2024; 13:RP99018. [PMID: 39556109 PMCID: PMC11573350 DOI: 10.7554/elife.99018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Dynamic interactions between large-scale brain networks underpin human cognitive processes, but their electrophysiological mechanisms remain elusive. The triple network model, encompassing the salience network (SN), default mode network (DMN), and frontoparietal network (FPN), provides a framework for understanding these interactions. We analyzed intracranial electroencephalography (EEG) recordings from 177 participants across four diverse episodic memory experiments, each involving encoding as well as recall phases. Phase transfer entropy analysis revealed consistently higher directed information flow from the anterior insula (AI), a key SN node, to both DMN and FPN nodes. This directed influence was significantly stronger during memory tasks compared to resting state, highlighting the AI's task-specific role in coordinating large-scale network interactions. This pattern persisted across externally driven memory encoding and internally governed free recall. Control analyses using the inferior frontal gyrus (IFG) showed an inverse pattern, with DMN and FPN exerting higher influence on IFG, underscoring the AI's unique role. We observed task-specific suppression of high-gamma power in the posterior cingulate cortex/precuneus node of the DMN during memory encoding, but not recall. Crucially, these results were replicated across all four experiments spanning verbal and spatial memory domains with high Bayes replication factors. Our findings advance understanding of how coordinated neural network interactions support memory processes, highlighting the AI's critical role in orchestrating large-scale brain network dynamics during both memory encoding and retrieval. By elucidating the electrophysiological basis of triple network interactions in episodic memory, our study provides insights into neural circuit dynamics underlying memory function and offer a framework for investigating network disruptions in memory-related disorders.
Collapse
Affiliation(s)
- Anup Das
- Department of Biomedical Engineering, Columbia UniversityNew YorkUnited States
| | - Vinod Menon
- Department of Psychiatry and Behavioral Sciences, Stanford University School of MedicineStanfordUnited States
- Department of Neurology and Neurological Sciences, Stanford University School of MedicineStanfordUnited States
- Wu Tsai Neurosciences Institute, Stanford University School of MedicineStanfordUnited States
| |
Collapse
|
44
|
Murray NWG, Choma ME, Lo A, Thayer Z, Graham PL, Harvey EE. Assessing spatial memory using the Brown Location Test: Lateralizing seizures in a presurgical cohort of patients with temporal lobe epilepsy. Epilepsy Behav 2024; 161:110137. [PMID: 39546886 DOI: 10.1016/j.yebeh.2024.110137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/27/2024] [Accepted: 11/02/2024] [Indexed: 11/17/2024]
Abstract
OBJECTIVE Whilst the dominant temporal lobe has a well-established role in memory, the functions of its nondominant counterpart remain enigmatic. We compared the lateralizing ability of a promising spatial memory task (Brown Location Test, BLT) to other commonly used verbal and visual memory tasks in a sample of patients with unilateral temporal lobe epilepsy (TLE). METHODS Neuropsychological data from 48 TLE patients (right n = 28 and left n = 20) were compared on several verbal and nonverbal memory tasks. Univariate logistic regression analyses were used to examine the relationship between test scores and the odds of being categorised as right or left TLE, while multivariable logistic regression and decision tree analyses were used to establish the optimal combination of cognitive measures for lateralizing the epileptogenic zone (EZ). RESULTS Relative to normative expectations, the right TLE group was specifically impaired on BLT measures, whereas the left TLE group was impaired on verbal and nonverbal memory tasks. The combination of BLT Delayed Recall and Delayed Recall on the Rey Auditory Verbal Learning Task (RAVLT) was identified as optimal for correctly predicting EZ laterality (AUC = 0.79). These two variables were also optimal predictors in the decision tree analysis, correctly predicting 79% of the overall sample (AUC = 0.83). CONCLUSIONS Our findings support the BLT as a measure of right temporal lobe function. They demonstrate its superior sensitivity compared to another commonly used nonverbal memory test (i.e., Visual Reproduction; VR) and highlight the added lateralizing value of combining both verbal and nonverbal memory measures in the neuropsychological evaluation of epilepsy surgery candidates.
Collapse
Affiliation(s)
- Nicholas W G Murray
- School of Psychological Sciences, Macquarie University, Sydney, Australia; Comprehensive Epilepsy Service, Westmead Hospital, Sydney, Australia
| | - Madison E Choma
- Mater Center for Neurosciences, Mater Hospital, Brisbane, Australia
| | - Ada Lo
- Department of Psychology, Royal Brisbane and Women's Hospital, Brisbane, Australia
| | - Zoe Thayer
- Neuropsychology Unit, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney, Australia
| | - Petra L Graham
- School of Mathematical and Physical Sciences, Macquarie University, Sydney, Australia
| | - Evelyn E Harvey
- School of Psychological Sciences, Macquarie University, Sydney, Australia; Comprehensive Epilepsy Service, Westmead Hospital, Sydney, Australia.
| |
Collapse
|
45
|
Martínez-Gallego I, Coatl-Cuaya H, Rodriguez-Moreno A. Astrocytes mediate two forms of spike timing-dependent depression at entorhinal cortex-hippocampal synapses. eLife 2024; 13:RP98031. [PMID: 39541232 PMCID: PMC11563576 DOI: 10.7554/elife.98031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024] Open
Abstract
The entorhinal cortex (EC) connects to the hippocampus sending different information from cortical areas that is first processed at the dentate gyrus (DG) including spatial, limbic and sensory information. Excitatory afferents from lateral (LPP) and medial (MPP) perforant pathways of the EC connecting to granule cells of the DG play a role in memory encoding and information processing and are deeply affected in humans suffering Alzheimer's disease and temporal lobe epilepsy, contributing to the dysfunctions found in these pathologies. The plasticity of these synapses is not well known yet, as are not known the forms of long-term depression (LTD) existing at those connections. We investigated whether spike timing-dependent long-term depression (t-LTD) exists at these two different EC-DG synaptic connections in mice, and whether they have different action mechanisms. We have found two different forms of t-LTD, at LPP- and MPP-GC synapses and characterised their cellular and intracellular mechanistic requirements. We found that both forms of t-LTD are expressed presynaptically and that whereas t-LTD at LPP-GC synapses does not require NMDAR, t-LTD at MPP-GC synapses requires ionotropic NMDAR containing GluN2A subunits. The two forms of t-LTD require different group I mGluR, mGluR5 LPP-GC synapses and mGluR1 MPP-GC synapses. In addition, both forms of t-LTD require postsynaptic calcium, eCB synthesis, CB1R, astrocyte activity, and glutamate released by astrocytes. Thus, we discovered two novel forms of t-LTD that require astrocytes at EC-GC synapses.
Collapse
Affiliation(s)
- Irene Martínez-Gallego
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de OlavideSevillaSpain
| | - Heriberto Coatl-Cuaya
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de OlavideSevillaSpain
| | - Antonio Rodriguez-Moreno
- Laboratory of Cellular Neuroscience and Plasticity, Department of Physiology, Anatomy and Cell Biology, Universidad Pablo de OlavideSevillaSpain
| |
Collapse
|
46
|
Echeverria-Villalobos M, Fabian CA, Mitchell JG, Mazzotta E, Fiorda Diaz JC, Noon K, Weaver TE. Cannabinoids and General Anesthetics: Revisiting Molecular Mechanisms of Their Pharmacological Interactions. Anesth Analg 2024; 140:00000539-990000000-01027. [PMID: 39504269 PMCID: PMC12063680 DOI: 10.1213/ane.0000000000007313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2024] [Indexed: 11/08/2024]
Abstract
Cannabis has been used for recreation and medical purposes for more than a millennium across the world; however, its use's consequences remain poorly understood. Although a growing number of surgical patients are regular cannabis consumers, little is known regarding the pharmacological interactions between cannabis and general anesthetics; consequently, there is not a solid consensus among anesthesiologists on the perioperative management of these patients. The existing evidence about the molecular mechanisms underlying pharmacological interactions between cannabinoids and anesthetic agents, both in animal models and in humans, shows divergent results. While some animal studies have demonstrated that phytocannabinoids (tetrahydrocannabinol [THC], cannabidiol [CBD], and cannabinol [CBN]) potentiate the anesthetic effects of inhalation and intravenous anesthetics, while others have found effects comparable with what has been described in humans so far. Clinical studies and case reports have consistently shown increased requirements of GABAergic anesthetic drugs (isoflurane, sevoflurane, propofol, midazolam) to achieve adequate levels of clinical anesthesia. Several potential molecular mechanisms have been proposed to explain the effects of these interactions. However, it is interesting to mention that in humans, it has been observed that the ingestion of THC enhances the hypnotic effect of ketamine. Animal studies have reported that cannabinoids enhance the analgesic effect of opioids due to a synergistic interaction of the endogenous cannabinoid system (ECS) with the endogenous opioid system (EOS) at the spinal cord level and in the central nervous system. However, human data reveals that cannabis users show higher scores of postoperative pain intensity as well as increased requirements of opioid medication for analgesia. This review aims to improve understanding of the molecular mechanisms and pharmacological interactions between cannabis and anesthetic drugs and the clinical outcomes that occur when these substances are used together.
Collapse
Affiliation(s)
| | - Catherine A. Fabian
- Department of Anesthesiology. University of Michigan Hospital, Ann Arbor, Michigan
| | - Justin G. Mitchell
- Department of Anesthesiology & Perioperative Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, California
| | - Elvio Mazzotta
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Juan C. Fiorda Diaz
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Kristen Noon
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| | - Tristan E. Weaver
- From the Department of Anesthesiology, The Ohio State University Wexner Medical Center, Columbus, Ohio
| |
Collapse
|
47
|
Osvath M, Johansson M. A short natural history of mental time travels: a journey still travelled? Philos Trans R Soc Lond B Biol Sci 2024; 379:20230402. [PMID: 39278257 PMCID: PMC11496716 DOI: 10.1098/rstb.2023.0402] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 06/28/2024] [Accepted: 07/09/2024] [Indexed: 09/18/2024] Open
Abstract
Tulving's introduction of episodic memory and the metaphor of mental time travel has immensely enriched our understanding of human cognition. However, his focus on human psychology, with limited consideration of evolutionary perspectives, led to the entrenched notion that mental time travel is uniquely human. We contend that adopting a phylogenetic perspective offers a deeper insight into cognition, revealing it as a continuous evolutionary process. Adherence to the uniqueness of pre-defined psychological concepts obstructs a more complete understanding. We offer a concise natural history to elucidate how events that occurred hundreds of millions of years ago have been pivotal for our ability to mentally time travel. We discuss how the human brain, utilizing parts with ancient origins in a networked manner, enables mental time travel. This underscores that episodic memories and mental time travel are not isolated mental constructs but integral to our perception and representation of the world. We conclude by examining recent evidence of neuroanatomical correlates found only in great apes, which show great variability, indicating the ongoing evolution of mental time travel in humans.This article is part of the theme issue 'Elements of episodic memory: lessons from 40 years of research'.
Collapse
|
48
|
Cabalo DG, DeKraker J, Royer J, Xie K, Tavakol S, Rodríguez-Cruces R, Bernasconi A, Bernasconi N, Weil A, Pana R, Frauscher B, Caciagli L, Jefferies E, Smallwood J, Bernhardt BC. Differential reorganization of episodic and semantic memory systems in epilepsy-related mesiotemporal pathology. Brain 2024; 147:3918-3932. [PMID: 39054915 PMCID: PMC11531848 DOI: 10.1093/brain/awae197] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 05/07/2024] [Accepted: 06/05/2024] [Indexed: 07/27/2024] Open
Abstract
Declarative memory encompasses episodic and semantic divisions. Episodic memory captures singular events with specific spatiotemporal relationships, whereas semantic memory houses context-independent knowledge. Behavioural and functional neuroimaging studies have revealed common and distinct neural substrates of both memory systems, implicating mesiotemporal lobe (MTL) regions such as the hippocampus and distributed neocortices. Here, we explored declarative memory system reorganization in patients with unilateral temporal lobe epilepsy (TLE) as a human disease model to test the impact of variable degrees of MTL pathology on memory function. Our cohort included 31 patients with TLE and 60 age- and sex-matched healthy controls, and all participants underwent episodic and semantic retrieval tasks during a multimodal MRI session. The functional MRI tasks were closely matched in terms of stimuli and trial design. Capitalizing on non-linear connectome gradient-mapping techniques, we derived task-based functional topographies during episodic and semantic memory states, in both the MTL and neocortical networks. Comparing neocortical and hippocampal functional gradients between TLE patients and healthy controls, we observed a marked topographic reorganization of both neocortical and MTL systems during episodic memory states. Neocortical alterations were characterized by reduced functional differentiation in TLE across lateral temporal and midline parietal cortices in both hemispheres. In the MTL, in contrast, patients presented with a more marked functional differentiation of posterior and anterior hippocampal segments ipsilateral to the seizure focus and pathological core, indicating perturbed intrahippocampal connectivity. Semantic memory reorganization was also found in bilateral lateral temporal and ipsilateral angular regions, whereas hippocampal functional topographies were unaffected. Furthermore, leveraging MRI proxies of MTL pathology, we observed alterations in hippocampal microstructure and morphology that were associated with TLE-related functional reorganization during episodic memory. Moreover, correlation analysis and statistical mediation models revealed that these functional alterations contributed to behavioural deficits in episodic memory, but again not in semantic memory in patients. Altogether, our findings suggest that semantic processes rely on distributed neocortical networks, whereas episodic processes are supported by a network involving both the hippocampus and the neocortex. Alterations of such networks can provide a compact signature of state-dependent reorganization in conditions associated with MTL damage, such as TLE.
Collapse
Affiliation(s)
- Donna Gift Cabalo
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jordan DeKraker
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Jessica Royer
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Ke Xie
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Shahin Tavakol
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Raúl Rodríguez-Cruces
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Andrea Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Neda Bernasconi
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Neuroimaging of Epilepsy Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Alexander Weil
- Research Centre, CHU St Justine, Montreal, QC H3T 1C5, Canada
| | - Raluca Pana
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| | - Birgit Frauscher
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
- Analytical Neurophysiology Laboratory, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
| | - Lorenzo Caciagli
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | | | - Jonathan Smallwood
- Department of Psychology, Queen’s University, Kingston, ON K7L 3N6, Canada
| | - Boris C Bernhardt
- Multimodal Imaging and Connectome Analysis Laboratory, McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, Montreal, QC H3A 2B4, Canada
- Montreal Neurological Institute and Hospital, McGill University, Montreal, QC H3A 2B4, Canada
| |
Collapse
|
49
|
Wang HF, Li YB, Liu ZY, Xie WM, Liu Q, Zhang RJ, Wang WY, Hao JX, Wang L, Geng DD. Circ-Bptf Ameliorates Learning and Memory Impairments via the miR-138-5p/p62 Axis in APP/PS1 Mice. Mol Neurobiol 2024; 61:8575-8589. [PMID: 38528305 DOI: 10.1007/s12035-024-04066-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 02/20/2024] [Indexed: 03/27/2024]
Abstract
Alzheimer's disease (AD) is a common age-associated progressive neurodegenerative disorder that is implicated in the aberrant regulation of numerous circular RNAs (circRNAs). Here, we reported that circ-Bptf, a conserved circRNA derived from the Bptf gene, showed an age-dependent decrease in the hippocampus of APP/PS1 mice. Overexpression of circ-Bptf significantly reversed dendritic spine loss and learning and memory impairment in APP/PS1 mice. Moreover, we found that circ-Bptf was predominantly localized to the cytoplasm and upregulated p62 expression by binding to miR-138-5p. Furthermore, the miR-138-5p mimics reversed the decreased expression of p62 induced by the silencing of circ-Bptf. Together, our findings suggested that circ-Bptf ameliorated learning and memory impairments via the miR-138-5p/p62 axis in APP/PS1 mice. It may act as a potential player in AD pathogenesis and therapy.
Collapse
Affiliation(s)
- Hong-Fang Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Yi-Bo Li
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Zi-Yu Liu
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Wen-Meng Xie
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Qing Liu
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Run-Jiao Zhang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Wen-Yu Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Jia-Xin Hao
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China
| | - Lei Wang
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| | - Dan-Dan Geng
- Department of Human Anatomy, Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, 050017, Hebei, China.
| |
Collapse
|
50
|
Narattil NR, Maroun M. Differential role of NMDA receptors in hippocampal-dependent spatial memory and plasticity in juvenile male and female rats. Hippocampus 2024; 34:564-574. [PMID: 39143939 DOI: 10.1002/hipo.23631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Revised: 05/17/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024]
Abstract
Early life, or juvenility, stands out as the most pivotal phase in neurodevelopment due to its profound impact over the long-term cognition. During this period, significant changes are made in the brain's connections both within and between different areas, particularly in tandem with the development of more intricate behaviors. The hippocampus is among the brain regions that undergo significant postnatal remodeling, including dendritic arborization, synaptogenesis, the formation of complex spines and neuron proliferation. Given the crucial role of the hippocampus in spatial memory processing, it has been observed that spatial memory abilities continue to develop as the hippocampus matures, particularly before puberty. The N-methyl-d-aspartate (NMDA) type of glutamate receptor channel is crucial for the induction of activity-dependent synaptic plasticity and spatial memory formation in both rodents and humans. Although extensive evidence shows the role of NMDA receptors (NMDAr) in spatial memory and synaptic plasticity, the studies addressing the role of NMDAr in spatial memory of juveniles are sparse and mostly limited to adult males. In the present study, we, therefore, aimed to investigate the effects of systemic NMDAr blockade by the MK-801 on spatial memory (novel object location memory, OLM) and hippocampal plasticity in the form of long-term potentiation (LTP) of both male and female juvenile rats. Our results show the sex-dimorphic role of NMDAr in spatial memory and plasticity during juvenility, as systemic NMDAr blockade impairs the OLM and LTP in juvenile males without an effect on juvenile females. Taken together, our results demonstrate that spatial memory and hippocampal plasticity are NMDAr-dependent in juvenile males and NMDAr-independent in juvenile females. These sex-specific differences in the mechanisms of spatial memory and plasticity may imply gender-specific treatment for spatial memory disorders even in children.
Collapse
Affiliation(s)
- Nisha Rajan Narattil
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
| | - Mouna Maroun
- Sagol Department of Neurobiology, Faculty of Natural Sciences, and the Integrated Brain and Behavior Center, University of Haifa, Haifa, Israel
| |
Collapse
|