1
|
Lu Q, Wang H, Zhang X, Yuan T, Wang Y, Feng C, Li Z, Sun S. Corydaline attenuates osteolysis in rheumatoid arthritis via mitigating reactive oxygen species production and suppressing calcineurin-Nfatc1 signaling. Int Immunopharmacol 2024; 142:113158. [PMID: 39293314 DOI: 10.1016/j.intimp.2024.113158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 09/04/2024] [Accepted: 09/09/2024] [Indexed: 09/20/2024]
Abstract
AIM OF THE STUDY Osteolysis in Rheumatoid arthritis (RA) is principally provoked by osteoclast hyperactivity. This study aims to employ Corydaline (Cory), a plant extract, as an osteoclast inhibitor in treating RA-inflicted osteolysis while unveiling the corresponding mechanism. MATERIALS AND METHODS Osteoclasts were derived from mouse bone marrow-derived monocytes (BMMs) stimulated with M-CSF and RANKL. Subsequently, utilizing network pharmacology, we performed a thorough analysis of Cory's molecular structure and discerned its preliminary therapeutic potential. Subsequently, LPS was used to simulate and establish an in vitro model of RA, and the biological effect of Cory on osteoclast behaviors was evaluated through various staining methods, RT-qPCR, and Western blot. In addition, a collagen-induced arthritis (CIA) mouse model was developed to evaluate the therapeutic effects of Cory in vivo. RESULTS The results from network pharmacology indicated a significant correlation between Cory, oxidative stress, and calcium signaling. Subsequent in vitro experiments demonstrated Cory's capacity to inhibit the formation and function of osteoclast under inflammatory stimuli, thereby protecting against abnormal bone resorption. This effect is achieved by activating the Nrf2 signaling pathway, mitigating the generation of reactive oxygen species (ROS), and modulating the calcineurin-Nfatc1 signaling. Furthermore, this therapeutic effect of Cory on RA-associated osteolysis was proved in CIA mice models. CONCLUSIONS Cory demonstrates the potential to activate the Nrf2 signaling pathway, effectively countering oxidative stress, and simultaneously inhibit the calcineurin-Nfatc1 signaling pathway to regulate the terminals of calcium signaling. These dual effects collectively reduce osteoclast activity, ultimately contributing to a therapeutic role in RA osteolysis. Therefore, our study presents Cory as a novel pharmaceutical candidate for the prevention and treatment of RA.
Collapse
Affiliation(s)
- Qizhen Lu
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Haojue Wang
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Xin Zhang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Tao Yuan
- Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China
| | - Yi Wang
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Changgong Feng
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Ziqing Li
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China.
| | - Shui Sun
- Department of Joint Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China; Orthopaedic Research Laboratory, Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China; Department of Joint Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, China.
| |
Collapse
|
2
|
Baek HS, Kim N, Park JW, Kwon TK, Kim S. The role of Pim-1 kinases in inflammatory signaling pathways. Inflamm Res 2024; 73:1671-1685. [PMID: 39079978 PMCID: PMC11457682 DOI: 10.1007/s00011-024-01924-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 10/02/2024] Open
Abstract
OBJECTIVE AND DESIGN This observational study investigated the regulatory mechanism of Pim-1 in inflammatory signaling pathways. MATERIALS THP-1, RAW 264.7, BV2, and Jurkat human T cell lines were used. TREATMENT None. METHODS Lipopolysaccharide (LPS) was used to induce inflammation, followed by PIM1 knockdown. Western blot, immunoprecipitation, immunofluorescence, and RT-PCR assays were used to assess the effect of PIM1 knockdown on LPS-induced inflammation. RESULTS PIM1 knockdown in macrophage-like THP-1 cells suppressed LPS-induced upregulation of pro-inflammatory cytokines, inducible nitric oxide synthase, cyclooxygenase-2, phosphorylated Janus kinase, signal transducer and activator of transcription 3, extracellular signal-regulated kinase, c-Jun N-terminal kinase, p38, and nuclear factor kappa B p65 (NF-κB p65). It also suppressed upregulation of inhibitor of NF-κB kinase α/β and enhanced the nuclear translocation of NF-κB p65. Moreover, it inhibited the upregulation of Nod-like receptor family pyrin domain-containing 3 (NLRP3) and cleavage of caspase-1 induced by co-treatment of LPS with adenosine triphosphate. Additionally, p-transforming growth factor-β-activated kinase 1 (TAK1) interacted with Pim-1. All three members of Pim kinases (Pim-1, Pim-2, and Pim-3) were required for LPS-mediated inflammation in macrophages; however, unlike Pim-1 and Pim-3, Pim-2 functioned as a negative regulator of T cell activity. CONCLUSIONS Pim-1 interacts with TAK1 in LPS-induced inflammatory responses and is involved in MAPK/NF-κB/NLRP3 signaling pathways. Additionally, considering the negative regulatory role of Pim-2 in T cells, further in-depth studies on their respective functions are needed.
Collapse
Affiliation(s)
- Hye Suk Baek
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
| | - Nacksung Kim
- Department of Pharmacology, Chonnam University, Gwangju, 61469, Republic of Korea
| | - Jong Wook Park
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
| | - Taeg Kyu Kwon
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea
- Institute for Cancer Research, Keimyung University Dongsan Medical Center, Dalseo-gu, Daegu, 42601, Republic of Korea
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea
| | - Shin Kim
- Department of Immunology, School of Medicine, Keimyung University, Daegu, 42601, Republic of Korea.
- Institute of Medical Science, Keimyung University, Daegu, 42601, Republic of Korea.
- Center for Forensic Pharmaceutical Science, Keimyung University, Daegu, 42601, Republic of Korea.
| |
Collapse
|
3
|
Appel K, Rose T, Zimmermann C, Günnewich N. In Vitro Anti-inflammatory Effects of Larch Turpentine, Turpentine Oil, Eucalyptus Oil, and Their Mixture as Contained in a Marketed Ointment. PLANTA MEDICA 2024; 90:1023-1029. [PMID: 39260387 DOI: 10.1055/a-2388-7527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/13/2024]
Abstract
An ointment containing larch turpentine, turpentine oil, and eucalyptus oil has been used for almost a century for the symptomatic treatment of mild, localized, purulent inflammations of the skin. Its clinical efficacy in the treatment of skin infections has been shown in clinical trials, but the mode of action of the active ingredients on inflammation is not known. We studied the anti-inflammatory properties of the active ingredients of the ointment and their mixture in a human monocyte cell model, in which the cells were stimulated with lipopolysaccharide and incubated with the test substances. The cytotoxic threshold of each test substance and the mixture was identified using the alamarBlue assay, and their anti-inflammatory activity was assessed by measuring the release of interleukins IL-1β, IL-6, IL-8, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α. Cell toxicity was observed at a mixture concentration of 10 µg/mL. All immunological assays were carried out at nontoxic concentrations. Larch turpentine decreased IL-1β, monocyte chemoattractant protein-1, and prostaglandin E2 release at a concentration of 3.9 µg/mL and TNF-α at concentrations > 1.95 µg/mL, whereas eucalyptus oil and turpentine oil had no relevant inhibitory effects. The mixture dose-dependently inhibited IL-1β, IL-6, monocyte chemoattractant protein-1, prostaglandin E2, and TNF-α release at concentrations > 1 µg/mL. IL-8 release was only marginally affected. The anti-inflammatory activity of the herbal ingredients and their mixture was confirmed in this model. This effect seems to be mediated mainly by larch turpentine, with turpentine oil and eucalyptus oil exerting an additive or possibly synergistic function.
Collapse
Affiliation(s)
- Kurt Appel
- VivaCell Biotechnology GmbH, Denzlingen, Germany
| | | | | | | |
Collapse
|
4
|
Monmai C, Baek SH. Anti-Inflammatory Effects of the Combined Treatment of Resveratrol- and Protopanaxadiol-Enriched Rice Seed Extract on Lipopolysaccharide-Stimulated RAW264.7 Cells. Molecules 2024; 29:4343. [PMID: 39339339 PMCID: PMC11434488 DOI: 10.3390/molecules29184343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/30/2024] Open
Abstract
The overproduction of proinflammatory cytokines triggers a variety of diseases. Protopanaxadiol (PPD) and resveratrol are naturally found in plants such as ginseng and have potential anti-inflammatory properties, and resveratrol- and PPD-enriched rice seeds have been previously successfully generated. Herein, the synergistic anti-inflammatory activities of extracts of these enriched seeds were assessed in lipopolysaccharide (LPS)-stimulated RAW264.7 cells. In comparison with treatment using extract prepared from PPD-producing transgenic rice (DJ-PPD) alone, cotreatment with DJ526 and DJ-PPD (TR_3) markedly enhanced the anti-inflammatory activities at a similar (compared to DJ526) or higher (compared to DJ-PPD) level. Cotreatment with DJ526 and DJ-PPD markedly inhibited the activation of nuclear factor kappa B (NF-κB) and mitogen-activated protein kinase (MAPK) signaling pathways. Thus, DJ526 and DJ-PPD in combination suppressed the expression of phosphorylated (p)-NF-κB p65, p-p38 MAPK, and p-ERK 1/2. Cotreatment with DJ526 and DJ-PPD downregulated the expression of proinflammatory cytokines (IL-1β, IL-6, and TNF-α), LPS receptor (toll-like receptor-4, TLR-4), proinflammatory mediators (nitric oxide and PGE2), and arachidonic acid pathway critical enzyme (COX-2). These findings demonstrate the synergistic potential anti-inflammatory activities of resveratrol- and PPD-enriched rice seed extract.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Agriculture Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| | - So-Hyeon Baek
- Department of Agriculture Life Science, Sunchon National University, Suncheon 59722, Republic of Korea
| |
Collapse
|
5
|
Cui L, Zhang M, Zheng F, Yuan C, Wang Z, Qiu S, Meng X, Dong J, Liu K, Guo L, Wang H, Li J. Selenium elicited an enhanced anti-inflammatory effect in primary bovine endometrial stromal cells with high cortisol background. BMC Vet Res 2024; 20:383. [PMID: 39192330 DOI: 10.1186/s12917-024-04240-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/21/2024] [Indexed: 08/29/2024] Open
Abstract
BACKGROUND An elevated endogenous cortisol level due to the peripartum stress is one of the risk factors of postpartum bovine uterine infections. Selenium is a trace element that elicits anti-inflammation and antioxidation properties. This study aimed to reveal the modulatory effect of selenium on the inflammatory response of primary bovine endometrial stromal cells in the presence of high-level cortisol. The cells were subjected to lipopolysaccharide to establish cellular inflammation. The mRNA expression of toll-like receptor 4 (TLR4), proinflammatory factors, and selenoproteins was measured with qPCR. The activation of NF-κB and MAPK signalling pathways was detected with Western blot and immunofluorescence. RESULTS The pretreatment with sodium selenite (2 and 4 µΜ) resulted in a down-regulation of TLR4 and genes encoding proinflammatory factors, including interleukin (IL)-1β, IL-6, IL-8, tumour necrosis factor α, cyclooxygenase 2, and inducible nitric oxide synthase. Selenium inhibited the activation of NF-κB and the phosphorylation of mitogen-activated protein kinase kinase, extracellular signal-regulated kinase, p38MAPK and c-Jun N-terminal kinase/stress-activated protein kinase. The suppression of those genes and pathways by selenium was more significant in the presence of high cortisol level (30 ng/mL). Meanwhile the gene expression of glutathione peroxidase 1 and 4 was promoted by selenium, and was even higher in the presence of cortisol and selenium. CONCLUSIONS The anti-inflammatory action of selenium is probably mediated through NF-κB and MAPK, and is augmented by cortisol in primary bovine endometrial stromal cells.
Collapse
Affiliation(s)
- Luying Cui
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Min Zhang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Fangling Zheng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Changning Yuan
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Zhihao Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Shangfei Qiu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Xia Meng
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Junsheng Dong
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Kangjun Liu
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Long Guo
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China
| | - Heng Wang
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China.
| | - Jianji Li
- College of Veterinary Medicine, Yangzhou University, Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou, Jiangsu, PR China.
- Joint International Research Laboratory of Agriculture and Agriproduct Safety of the Ministry of Education, Yangzhou, Jiangsu, PR China.
- International Research Laboratory of Prevention and Control of Important Animal Infectious Diseases and Zoonotic Diseases of Jiangsu Higher Education Institutions, Yangzhou University, Yangzhou, Jiangsu, PR China.
| |
Collapse
|
6
|
Kwak JE, Lee JY, Baek JY, Kim SW, Ahn MR. The Antioxidant and Anti-Inflammatory Properties of Bee Pollen from Acorn ( Quercus acutissima Carr.) and Darae ( Actinidia arguta). Antioxidants (Basel) 2024; 13:981. [PMID: 39199227 PMCID: PMC11352170 DOI: 10.3390/antiox13080981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/24/2024] [Accepted: 08/03/2024] [Indexed: 09/01/2024] Open
Abstract
Aging is a complex biological process characterized by a progressive decline in physical function and an increased risk of age-related chronic diseases. Additionally, oxidative stress is known to cause severe tissue damage and inflammation. Pollens from acorn and darae are extensively produced in Korea. However, the underlying molecular mechanisms of these components under the conditions of inflammation and oxidative stress remain largely unknown. This study aimed to investigate the effect of bee pollen components on lipopolysaccharide (LPS)-induced RAW 264.7 mouse macrophages. This study demonstrates that acorn and darae significantly inhibit the LPS-induced production of inflammatory mediators, such as nitric oxide (NO) and prostaglandin E2 (PGE2), in RAW 264.7 cells. Specifically, bee pollen from acorn reduces NO production by 69.23 ± 0.04% and PGE2 production by 44.16 ± 0.08%, while bee pollen from darae decreases NO production by 78.21 ± 0.06% and PGE2 production by 66.23 ± 0.1%. Furthermore, bee pollen from acorn and darae reduced active oxygen species (ROS) production by 47.01 ± 0.5% and 60 ± 0.9%, respectively. It increased the nuclear potential of nuclear factor erythroid 2-related factor 2 (Nrf2) in LPS-stimulated RAW 264.7 cells. Moreover, treatment with acorn and darae abolished the nuclear potential of nuclear factor κB (NF-κB) and reduced the expression of extracellular signal-associated kinase (ERK) and c-Jun N-terminal kinase (JNK) phosphorylation in LPS-stimulated RAW 264.7 cells. Specifically, acorn decreased NF-κB nuclear potential by 90.01 ± 0.3%, ERK phosphorylation by 76.19 ± 1.1%, and JNK phosphorylation by 57.14 ± 1.2%. Similarly, darae reduced NF-κB nuclear potential by 92.21 ± 0.5%, ERK phosphorylation by 61.11 ± 0.8%, and JNK phosphorylation by 59.72 ± 1.12%. These results suggest that acorn and darae could be potential antioxidants and anti-inflammatory agents.
Collapse
Affiliation(s)
- Jeong-Eun Kwak
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Joo-Yeon Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Ji-Yoon Baek
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
| | - Sun Wook Kim
- Research and Business Planning Team, Panolos Bioscience Inc., Hwaseong 18471, Republic of Korea;
| | - Mok-Ryeon Ahn
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-E.K.); (J.-Y.L.); (J.-Y.B.)
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
7
|
Sarkar B, Rana N, Singh C, Singh A. Medicinal herbal remedies in neurodegenerative diseases: an update on antioxidant potential. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5483-5511. [PMID: 38472370 DOI: 10.1007/s00210-024-03027-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
It has been widely documented that medicinal herbal remedies are effective, have fewer side effects than conventional medicine, and have a synergistic effect on health collaborations in the fight against complicated diseases. Traditional treatments for neurological problems in ancient times sometimes involved the use of herbal remedies and conventional methods from East Asian countries including India, Japan, China, and Korea. We collected and reviewed studies on plant-derived neuroprotective drugs and tested them in neurotoxic models. Basic research, preclinical and clinical transgene research can benefit from in silico, in vitro, and in vivo investigations. Research, summaries of the extracts, fractions, and herbal ingredients were compiled from popular scientific databases, which were then examined according to origin and bioactivity. Given the complex and varied causes of neurodegeneration, it may be beneficial to focus on multiple mechanisms of action and a neuroprotection approach. This approach aims to prevent cell death and restore function to damaged neurons, offering promising strategies for preventing and treating neurodegenerative diseases. Neurodegenerative illnesses can potentially be treated with natural compounds that have been identified as neuroprotective agents. To gain deeper insights into the neuropharmacological mechanisms underlying the neuroprotective and therapeutic properties of naturally occurring antioxidant phytochemical compounds in diverse neurodegenerative diseases, this study aims to comprehensively review such compounds, focusing on their modulation of apoptotic markers such as caspase, Bax, Bcl-2, and proinflammatory markers. In addition, we delve into a range of efficacies of antioxidant phytochemical compounds as neuroprotective agents in animal models. They reduce the oxidative stress of the brain and have been shown to have anti-apoptotic effects. Many researches have demonstrated that plant extracts or bioactive compounds can fight neurodegenerative disorders. Herbal medications may offer neurodegenerative disease patients' new treatments. This may be a cheaper and more culturally appropriate alternative to standard drugs for millions of people with age-related NDDs.
Collapse
Affiliation(s)
- Biplob Sarkar
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Nitasha Rana
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India
| | - Charan Singh
- Department of Pharmaceutical Sciences, HNB Garhwal University (A Central University), Chauras Campus, Distt. Tehri Garhwal, Srinagar, 249161, Uttarakhand, India
| | - Arti Singh
- Department of Pharmacology, ISF College of Pharmacy, Moga, Punjab, affiliated to IK Gujral Punjab Technical University, Jalandhar, 144603, Punjab, India.
| |
Collapse
|
8
|
Guevara-Cruz M, Hernández-Gómez KG, Condado-Huerta C, González-Salazar LE, Peña-Flores AK, Pichardo-Ontiveros E, Serralde-Zúñiga AE, Sánchez-Tapia M, Maya O, Medina-Vera I, Noriega LG, López-Barradas A, Rodríguez-Lima O, Mata I, Olin-Sandoval V, Torres N, Tovar AR, Velázquez-Villegas LA. Intermittent fasting, calorie restriction, and a ketogenic diet improve mitochondrial function by reducing lipopolysaccharide signaling in monocytes during obesity: A randomized clinical trial. Clin Nutr 2024; 43:1914-1928. [PMID: 39003957 DOI: 10.1016/j.clnu.2024.06.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 06/24/2024] [Accepted: 06/30/2024] [Indexed: 07/16/2024]
Abstract
BACKGROUND Mitochondrial dysfunction occurs in monocytes during obesity and contributes to a low-grade inflammatory state; therefore, maintaining good mitochondrial conditions is a key aspect of maintaining health. Dietary interventions are primary strategies for treating obesity, but little is known about their impact on monocyte bioenergetics. Thus, the aim of this study was to evaluate the effects of calorie restriction (CR), intermittent fasting (IF), a ketogenic diet (KD), and an ad libitum habitual diet (AL) on mitochondrial function in monocytes and its modulation by the gut microbiota. METHODS AND FINDINGS A randomized controlled clinical trial was conducted in which individuals with obesity were assigned to one of the 4 groups for 1 month. Subsequently, the subjects received rifaximin and continued with the assigned diet for another month. The oxygen consumption rate (OCR) was evaluated in isolated monocytes, as was the gut microbiota composition in feces and anthropometric and biochemical parameters. Forty-four subjects completed the study, and those who underwent CR, IF and KD interventions had an increase in the maximal respiration OCR (p = 0.025, n2p = 0.159 [0.05, 0.27] 95% confidence interval) in monocytes compared to that in the AL group. The improvement in mitochondrial function was associated with a decrease in monocyte dependence on glycolysis after the IF and KD interventions. Together, diet and rifaximin increased the gut microbiota diversity in the IF and KD groups (p = 0.0001), enriched the abundance of Phascolarctobacterium faecium (p = 0.019) in the CR group and Ruminococcus bromii (p = 0.020) in the CR and KD groups, and reduced the abundance of lipopolysaccharide (LPS)-producing bacteria after CR, IF and KD interventions compared to the AL group at the end of the study according to ANCOVA with covariate adjustment. Spearman's correlation between the variables measured highlighted LPS as a potential modulator of the observed effects. In line with this findings, serum LPS and intracellular signaling in monocytes decreased with the three interventions (CR, p = 0.002; IF, p = 0.001; and KD, p = 0.001) compared to those in the AL group at the end of the study. CONCLUSIONS We conclude that these dietary interventions positively regulate mitochondrial bioenergetic health and improve the metabolic profile of monocytes in individuals with obesity via modulation of the gut microbiota. Moreover, the evaluation of mitochondrial function in monocytes could be used as an indicator of metabolic and inflammatory status, with potential applications in future clinical trials. TRIAL REGISTRATION This trial was registered with ClinicalTrials.gov (NCT05200468).
Collapse
Affiliation(s)
- Martha Guevara-Cruz
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Karla G Hernández-Gómez
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Citlally Condado-Huerta
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Luis E González-Salazar
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Ana Karen Peña-Flores
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Edgar Pichardo-Ontiveros
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Aurora E Serralde-Zúñiga
- Servicio de Nutriología Clínica, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Mónica Sánchez-Tapia
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Otoniel Maya
- Chalmers e-Commons. Chalmers University of Technology, Gotemburg, Vastra Gotaland, Sweden
| | - Isabel Medina-Vera
- Departamento de Metodología de la Investigación, Instituto Nacional de Pediatría, Ciudad de México, Mexico
| | - Lilia G Noriega
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Adriana López-Barradas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Oscar Rodríguez-Lima
- Departamento de Microbiología y Parasitología, Facultad de Medicina, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Irma Mata
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Viridiana Olin-Sandoval
- Laboratorio 43. Departamento de Biotecnología y Bioingeniería, Cinvestav-Zacatenco, Ciudad de México, Mexico
| | - Nimbe Torres
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Armando R Tovar
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico
| | - Laura A Velázquez-Villegas
- Departamento de Fisiología de la Nutrición, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Ciudad de México, Mexico.
| |
Collapse
|
9
|
Yan J, Cai M, Zang C, Li W, Liu Z, Li X, Gao Y, Qi Y. The natural sesquiterpene lactone inulicin suppresses the production of pro-inflammatory mediators via inhibiting NF-κB and AP-1 pathways in LPS-activated macrophages. Immunopharmacol Immunotoxicol 2024:1-36. [PMID: 39048515 DOI: 10.1080/08923973.2024.2384899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE Inulicin is a sesquiterpene lactone in Inulae Flos which is clinically used for the treatment of inflammatory diseases, such as cough, sputum production and vomit. This study aimed to demonstrate the anti-inflammatory activity and the underlying mechanism of inulicin by using LPS-induced in vitro and in vivo models. METHODS LPS-stimulated RAW264.7 macrophages and mouse peritoneal macrophages (MPMs) were used for evaluating the in vitro anti-inflammatory activity of inulicin, while endotoxemia mice were used for evaluating its in vivo action. Cytokines' levels were determined by ELISA. RT-qPCR and western blot were used for assaying the mRNA and protein levels of target genes. RAW264.7 macrophages transfected with reporter plasmid pNFκB-TA-luc or pAP1-TA-luc were used for assaying the activation of NF-κB or AP-1 signaling. RESULTS Inulicin significantly inhibited LPS-induced production of NO, IL-6, c-c motif chemokine ligand 2 (CCL2) and IL-1β in both RAW264.7 cells and MPMs. Mechanism study indicated that it could suppress inducible nitric oxide synthase (iNOS), IL-6, CCL2 and IL-1β mRNA levels in LPS-stimulated RAW264.7 cells. Moreover, inulicin inhibited IκBα phosphorylation and prevented the nuclear translocation of p65, thereby inactivating NF-κB signaling. Concurrently, it also inhibited AP-1 signaling through reducing the phosphorylation of JNK and ERK. In endotoxemia mice, a single intraperitoneal administration of inulicin could decrease the production of pro-inflammatory cytokines in serum and peritoneal lavage fluid. CONCLUSIONS The present study demonstrates that inulicin possesses anti-inflammatory effects in vitro and in vivo, which suggests that inulicin might be a promising candidate for the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Jingjing Yan
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Min Cai
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Chenchen Zang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Wenjing Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Zhuangzhuang Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Ximeng Li
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yuan Gao
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| | - Yun Qi
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100193, China
| |
Collapse
|
10
|
Gao J, Zhang C, Xu H, Zhang T, Wang H, Wang Y, Wang X. Dissecting the Role of the Hydroxyl Moiety at C14 in (+)-Opioid-Based TLR4 Antagonists via Wet-Lab Experiments and Molecular Dynamics Simulations. J Chem Inf Model 2024; 64:5273-5284. [PMID: 38921627 DOI: 10.1021/acs.jcim.4c00692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Toll-like receptor 4 (TLR4) is pivotal as an innate immune receptor, playing a critical role in mediating neuropathic pain and drug addiction through its regulation of the neuroinflammatory response. The nonclassical (+)-opioid isomers represent a unique subset of TLR4 antagonists known for their effective blood-brain barrier permeability. Despite growing interest in the structure-activity relationship of these (+)-opioid-based TLR4 antagonists, the specific impact of heteroatoms on their TLR4 antagonistic activities has not been fully explored. This study investigated the influence of the hydroxyl group at C14 in six (+)-opioid TLR4 antagonists (1-6) using wet-lab experiments and in silico simulations. The corresponding C14-deoxy derivatives (7-12) were synthesized, and upon comparison with their corresponding counterparts (1-6), it was discovered that their TLR4 antagonistic activities were significantly diminished. Molecular dynamics simulations showed that the (+)-opioid TLR4 antagonists (1-6) possessed more negative binding free energies to the TLR4 coreceptor MD2, which was responsible for ligand recognition. This was primarily attributed to the formation of a hydrogen bond between the hydroxyl group at the C-14 position of the antagonists (1-6) and the R90 residue of MD2 during the binding process. Such an interaction facilitated the entry and subsequent binding of these molecules within the MD2 cavity. In contrast, the C14-deoxy derivatives (7-12), lacking the hydroxyl group at the C-14 position, missed this crucial hydrogen bond interaction with the R90 residue of MD2, leading to their egression from the MD2 cavity during simulations. This study underscores the significant role of the C14 hydroxyl moiety in enhancing the effectiveness of (+)-opioid TLR4 antagonists, which provides insightful guidance for designing future (+)-isomer opioid-derived TLR4 antagonists.
Collapse
Affiliation(s)
- Jingwei Gao
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Cong Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hangyu Xu
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Tianshu Zhang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
| | - Hongshuang Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Yibo Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
| | - Xiaohui Wang
- Laboratory of Chemical Biology, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, Anhui, China
- Beijing National Laboratory for Molecular Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Wang D, Sun Z, Yin Y, Xiang J, Wei Y, Ma Y, Wang L, Liu G. Vitamin D and Atherosclerosis: Unraveling the Impact on Macrophage Function. Mol Nutr Food Res 2024; 68:e2300867. [PMID: 38864846 DOI: 10.1002/mnfr.202300867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 04/02/2024] [Indexed: 06/13/2024]
Abstract
Vitamin D plays a crucial role in preventing atherosclerosis and in the regulation of macrophage function. This review aims to provide a comprehensive summary of the clinical evidence regarding the impact of vitamin D on atherosclerotic cardiovascular disease, atherosclerotic cerebrovascular disease, peripheral arterial disease, and associated risk factors. Additionally, it explores the mechanistic studies investigating the influence of vitamin D on macrophage function in atherosclerosis. Numerous findings indicate that vitamin D inhibits monocyte or macrophage recruitment, macrophage cholesterol uptake, and esterification. Moreover, it induces autophagy of lipid droplets in macrophages, promotes cholesterol efflux from macrophages, and regulates macrophage polarization. This review particularly focuses on analyzing the molecular mechanisms and signaling pathways through which vitamin D modulates macrophage function in atherosclerosis. It claims that vitamin D has a direct inhibitory effect on the formation, adhesion, and migration of lipid-loaded monocytes, thus exerting anti-atherosclerotic effects. Therefore, this review emphasizes the crucial role of vitamin D in regulating macrophage function and preventing the development of atherosclerosis.
Collapse
Affiliation(s)
- Dongxia Wang
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Zhen Sun
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yajuan Yin
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Jingyi Xiang
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Yuzhe Wei
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Yuxia Ma
- Department of Nutrition and Food Hygiene, School of Public Health, Hebei Key Laboratory of Environment and Human Health, Hebei Medical University, Shijiazhuang, 050017, China
| | - Le Wang
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| | - Gang Liu
- Department of Cardiology, Hebei International Joint Research Center for Structural Heart Disease, Hebei Key Laboratory of Cardiac Injury Repair Mechanism Study, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, China
| |
Collapse
|
12
|
Tian M, Xie D, Hong Y, Ding F, Wu X, Tang D. Anti-inflammatory effects and related mechanisms in vitro and in vivo of Hedychium coccineum rhizome essential oil. JOURNAL OF ETHNOPHARMACOLOGY 2024; 328:118103. [PMID: 38527573 DOI: 10.1016/j.jep.2024.118103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/12/2024] [Accepted: 03/22/2024] [Indexed: 03/27/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Hedychium coccineum rhizome is an anti-inflammatory ethnomedicine used to remedy inflammation-related swelling and bronchial asthma. AIM OF THE STUDY The study aimed to analyze the phytochemical constituents of H. coccineum rhizome essential oil (EO) and evaluate its in vitro and in vivo anti-inflammatory effects and underlying mechanisms. MATERIALS AND METHODS Phytochemical constituents of H. coccineum rhizome EO were analyzed using GC-FID/MS. In RAW264.7 macrophages induced by LPS, blockade of PGE2, NO, IL-1β, IL-6, and TNF-α secretion by H. coccineum rhizome EO was measured, and then Western blot, qRT-PCR, and immunofluorescent staining were used to evaluate its underlying mechanisms. Moreover, we used the xylene-induced ear edema model for testing anti-inflammatory potential in vivo and examined auricular swelling as well as tissue and serum contents of IL-1β, IL-6, and TNF-α. RESULTS EO's main components were E-nerolidol (40.5%), borneol acetate (24.8%), spathulenol (4.5%), linalool (3.8%), elemol (3.5%), and borneol (3.4%). In RAW264.7 cells stimulated by LPS, EO downregulated the expression of pro-inflammatory enzyme (iNOS and COX-2) genes and proteins, thereby suppressing pro-inflammatory mediators (NO and PGE2) secretion. Simultaneously, it reduced TNF-α, IL-1β, and IL-6 release by downregulating their mRNA expression. Besides, H. coccineum EO attenuated LPS-stimulated activation of NF-κB (by reducing IκBα phosphorylation and degradation to inhibit NF-κB nuclear translocation) and MAPK (by downregulating JNK, p38, and ERK phosphorylation). In xylene-induced mouse ear edema, EO relieved auricular swelling and lowered serum and tissue levels of TNF-α, IL-1β, and IL-6. CONCLUSIONS H. coccineum EO had powerful in vivo and in vitro anti-inflammatory effects by inhibiting MAPK and NF-κB activation. Hence, H. coccineum EO should have great potential for application in the pharmaceutical field as a novel anti-inflammatory agent.
Collapse
Affiliation(s)
- Minyi Tian
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China; National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China; Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China.
| | - Dan Xie
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China
| | - Yi Hong
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, China
| | - Furong Ding
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Xia Wu
- National & Local Joint Engineering Research Center for the Exploitation of Homology Resources of Southwest Medicine and Food, Guizhou University, Guiyang, 550025, China
| | - Dongxin Tang
- First Affiliated Hospital of Guizhou University of Traditional Chinese Medicine, Guiyang, 550000, China.
| |
Collapse
|
13
|
Yao Z, Bai R, Liu W, Liu Y, Zhou W, Xu Z, Sheng J. Activation of angiogenin expression in macrophages by lipopolysaccharide via the TLR4/NF-κB pathway in colitis. Acta Biochim Biophys Sin (Shanghai) 2024; 56:857-865. [PMID: 38567413 PMCID: PMC11214953 DOI: 10.3724/abbs.2024013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 01/10/2024] [Indexed: 04/04/2024] Open
Abstract
Inflammatory bowel disease (IBD) is a debilitating condition that can lead to life-threatening complications. Macrophages are crucial in IBD management because they secrete various cytokines and regulate tissue repair. Macrophage-derived angiogenin (ANG) has been shown to be essential for limiting colonic inflammation, but its upstream regulatory pathway and role in macrophages remain unclear. Here we show that ANG expression is up-regulated in macrophages during colitis treatment or upon lipopolysaccharides (LPS) treatment. Mechanistically, LPS activates Toll-like receptor 4 (TLR4) to initiate NF-κB translocation from the cytoplasm to the nucleus, where it binds to the ANG promoter and enhances its transcriptional activity, leading to increased ANG expression. Interestingly, our data also reveal that the deletion of ANG in macrophages has no adverse effect on key macrophage functions, such as phagocytosis, chemotaxis, and cell survival. Our findings establish a "LPS-TLR4-NF-κB-ANG" regulatory axis in inflammatory disorders and confirm that ANG controls inflammation in a paracrine manner, highlighting the importance of ANG as a key mediator in the complex network of inflammatory processes.
Collapse
Affiliation(s)
- Zhengrong Yao
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Rongpan Bai
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Wei Liu
- Department of General SurgerySir Run Run Shaw Hospital.Zhejiang University School of MedicineHangzhou310016China
| | - Yaxing Liu
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
| | - Wei Zhou
- Department of General SurgerySir Run Run Shaw Hospital.Zhejiang University School of MedicineHangzhou310016China
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
- Cancer CenterZhejiang UniversityHangzhou310012China
- Zhejiang Provincial Key Laboratory of BioelectromagneticsHangzhou310058China
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General SurgerySir Run Run Shaw HospitalZhejiang University School of MedicineHangzhou310058China
- Liangzhu LaboratoryZhejiang UniversityHangzhou311121China
- Cancer CenterZhejiang UniversityHangzhou310012China
- Zhejiang Provincial Key Laboratory of BioelectromagneticsHangzhou310058China
| |
Collapse
|
14
|
Echrish J, Pasca MI, Cabrera D, Yang Y, Harper AGS. Developing a Biomimetic 3D Neointimal Layer as a Prothrombotic Substrate for a Humanized In Vitro Model of Atherothrombosis. Biomimetics (Basel) 2024; 9:372. [PMID: 38921252 PMCID: PMC11201422 DOI: 10.3390/biomimetics9060372] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/07/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Acute cardiovascular events result from clots caused by the rupture and erosion of atherosclerotic plaques. This paper aimed to produce a functional biomimetic hydrogel of the neointimal layer of the atherosclerotic plaque that can support thrombogenesis upon exposure to human blood. A biomimetic hydrogel of the neointima was produced by culturing THP-1-derived foam cells within 3D collagen hydrogels in the presence or absence of atorvastatin. Prothrombin time and platelet aggregation onset were measured after exposure of the neointimal models to platelet-poor plasma and washed platelet suspensions prepared from blood of healthy, medication-free volunteers. Activity of the extrinsic coagulation pathway was measured using the fluorogenic substrate SN-17. Foam cell formation was observed following preincubation of the neointimal biomimetic hydrogels with oxidized LDL, and this was inhibited by pretreatment with atorvastatin. The neointimal biomimetic hydrogel was able to trigger platelet aggregation and blood coagulation upon exposure to human blood products. Atorvastatin pretreatment of the neointimal biomimetic layer significantly reduced its pro-aggregatory and pro-coagulant properties. In the future, this 3D neointimal biomimetic hydrogel can be incorporated as an additional layer within our current thrombus-on-a-chip model to permit the study of atherosclerosis development and the screening of anti-thrombotic drugs as an alternative to current animal models.
Collapse
Affiliation(s)
| | | | - David Cabrera
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (D.C.); (Y.Y.)
| | - Ying Yang
- School of Pharmacy and Bioengineering, Keele University, Keele ST5 5BG, UK; (D.C.); (Y.Y.)
| | | |
Collapse
|
15
|
Le VL, Chang CY, Chuang CW, Syu SH, Shih HJ, Nguyen Vo HP, Van MN, Huang CJ. Therapeutic Effects of Engineered Exosomes from RAW264.7 Cells Overexpressing hsa-let-7i-5p against Sepsis in Mice-A Comparative Study with Human Placenta-Derived Mesenchymal Stem Cell Exosomes. J Pers Med 2024; 14:619. [PMID: 38929840 PMCID: PMC11204613 DOI: 10.3390/jpm14060619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/01/2024] [Accepted: 06/05/2024] [Indexed: 06/28/2024] Open
Abstract
This study compared the therapeutic effects of engineered exosomes derived from RAW264.7 cells overexpressing hsa-let-7i-5p (engineered exosomes) to exosomes from human placenta-derived mesenchymal stem cells (hpMSC exosomes) against sepsis-induced acute lung injury. Adult male C57BL/6 mice were divided into lipopolysaccharide (LPS), LPS plus engineered exosome (LEExo), or LPS plus hpMSC exosome (LMExo) groups, alongside control groups. The results showed that lung injury scores (based on pathohistological characteristics) and the levels of lung function alterations, tissue edema, and leukocyte infiltration in LEExo and LMExo groups were comparable and significantly lower than in the LPS group (all p < 0.05). Furthermore, the levels of inflammation (nuclear factor-κB activation, cytokine upregulation), macrophage activation (hypoxia-inducible factor-1α activation, M1 phase polarization), oxidation, and apoptosis were diminished in LEExo and LMExo groups compared to the LPS group (all p < 0.05). Inhibition of hsa-let-7i-5p attenuated the therapeutic effects of both engineered and hpMSC exosomes. These findings underscore the potent therapeutic capacity of engineered exosomes enriched with hsa-let-7i-5p and their potential as an alternative to hpMSC exosomes for sepsis treatment. Continued research into the mechanisms of action and optimization of engineered exosomes could pave the way for their future clinical application.
Collapse
Affiliation(s)
- Van Long Le
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.L.L.); (H.-P.N.V.)
- Department of Anesthesiology and Intensive Care & Emergency Medicine, Hue University of Medicine and Pharmacy, Hue City 52000, Vietnam
| | - Chao-Yuan Chang
- Department of Medical Research, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan;
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-W.C.); (S.-H.S.)
| | - Ching-Wei Chuang
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-W.C.); (S.-H.S.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| | - Syuan-Hao Syu
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-W.C.); (S.-H.S.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Urology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
| | - Hung-Jen Shih
- Division of Urology, Department of Surgery, Changhua Christian Hospital, Changhua 500, Taiwan;
- Department of Post-Baccalaureate Medicine, College of Medicine, National Chung Hsing University, Taichung 402, Taiwan
| | - Hong-Phuc Nguyen Vo
- International Ph.D. Program in Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan; (V.L.L.); (H.-P.N.V.)
- Department of Anesthesiology, College of Medicine, Can Tho University of Medicine and Pharmacy, Can Tho City 900000, Vietnam
| | - Minh Nguyen Van
- Department of Anesthesiology and Intensive Care & Emergency Medicine, Hue University of Medicine and Pharmacy, Hue City 52000, Vietnam
| | - Chun-Jen Huang
- Integrative Research Center for Critical Care, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan; (C.-W.C.); (S.-H.S.)
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
- Department of Anesthesiology, Wan Fang Hospital, Taipei Medical University, Taipei 116, Taiwan
- Department of Anesthesiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
16
|
Wang M, Li H, Hu B, Tang C, Xu H, Ke C, Xie Z, Ye Y, Yao S. Anti-inflammatory germacrane-type sesquiterpene lactones from Vernonia sylvatica. Chin J Nat Med 2024; 22:568-576. [PMID: 38906603 DOI: 10.1016/s1875-5364(24)60656-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Indexed: 06/23/2024]
Abstract
Nine new germacranolides, sylvaticalides A-H (1-9), and three known analogues (10-12) were isolated from the aerial part of Vernonia sylvatica. Their structures were established using comprehensive spectroscopic analysis, including high-resolution electrospray ionization mass spectroscopy (HR-ESI-MS) and 1D and 2D nuclear magnetic resonance (NMR) spectra. Their absolute configurations were determined by X-ray diffraction experiments. The anti-inflammatory activities of all isolated compounds were assessed by evaluating their inhibitory effects on the nuclear factor kappa B (NF-κB) pathway, which was activated by lipopolysaccharide (LPS)-stimulated human THP1-Dual cells, and the interferon-stimulated gene (ISG) pathway, activated by STING agonist MSA-2 in the same cell model. Compounds 1, 2 and 6 showed inhibitory effects on the NF-κB and ISG signaling pathways, with IC50 values ranging from 4.12 to 10.57 μmol·L-1.
Collapse
Affiliation(s)
- Min Wang
- State Key Laboratory of Drug Research & Natural Products Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Han Li
- School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China; State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Bintao Hu
- State Key Laboratory of Drug Research & Natural Products Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Chunping Tang
- State Key Laboratory of Drug Research & Natural Products Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Hui Xu
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Changqiang Ke
- State Key Laboratory of Drug Research & Natural Products Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Zuoquan Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China.
| | - Yang Ye
- State Key Laboratory of Drug Research & Natural Products Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; School of Life Science and Technology, Shanghai Tech University, Shanghai 201210, China.
| | - Sheng Yao
- State Key Laboratory of Drug Research & Natural Products Research Center, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences, Beijing 100049, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan 528400, China.
| |
Collapse
|
17
|
Rocchetti MT, Russo P, De Simone N, Capozzi V, Spano G, Fiocco D. Immunomodulatory Activity on Human Macrophages by Cell-Free Supernatants to Explore the Probiotic and Postbiotic Potential of Lactiplantibacillus plantarum Strains of Plant Origin. Probiotics Antimicrob Proteins 2024; 16:911-926. [PMID: 37202651 PMCID: PMC11126452 DOI: 10.1007/s12602-023-10084-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Upon dietary administration, probiotic microorganisms can reach as live cells the human gut, where they interact with the microbiota and host cells, thereby exerting a beneficial impact on host functions, mainly through immune-modulatory activities. Recently, attention has been drawn by postbiotics, i.e. non-viable probiotic microbes, including their metabolic products, which possess biological activities that benefit the host. Lactiplantibacillus plantarum is a bacterial species that comprises recognised probiotic strains. In this study, we investigated in vitro the probiotic (and postbiotic) potential of seven L. plantarum strains, including five newly isolated from plant-related niches. The strains were shown to possess some basic probiotic attributes, including tolerance to the gastrointestinal environment, adhesion to the intestinal epithelium and safety. Besides, their cell-free culture supernatants modulated cytokine patterns in human macrophages in vitro, promoting TNF-α gene transcription and secretion, while attenuating the transcriptional activation and secretion of both TNF-α and IL-8 in response to a pro-inflammatory signal, and enhancing the production of IL-10. Some strains induced a high IL-10/IL-12 ratio that may correlate to an anti-inflammatory capacity in vivo. Overall, the investigated strains are good probiotic candidates, whose postbiotic fraction exhibits immunomodulatory properties that need further in vivo studies. The main novelty of this work consists in the polyphasic characterisation of candidate beneficial L. plantarum strains obtained from relatively atypical plant-associated niches, by an approach that explores both probiotic and postbiotic potentials, in particular studying the effect of microbial culture-conditioned media on cytokine pattern, analysed at both transcriptional and secretion level in human macrophages.
Collapse
Affiliation(s)
| | - Pasquale Russo
- Department of Food, Environmental and Nutritional Sciences, University of Milan, Milan, Italy
| | - Nicola De Simone
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Vittorio Capozzi
- Institute of Sciences of Food Production, National Research Council (CNR) of Italy, C/O CS-DAT, Foggia, Italy
| | - Giuseppe Spano
- Department of Agriculture Food Natural Science Engineering (DAFNE), University of Foggia, Foggia, Italy
| | - Daniela Fiocco
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.
| |
Collapse
|
18
|
Crocetti L, Khlebnikov AI, Guerrini G, Schepetkin IA, Melani F, Giovannoni MP, Quinn MT. Anti-Inflammatory Activity of Pyrazolo[1,5- a]quinazolines. Molecules 2024; 29:2421. [PMID: 38893295 PMCID: PMC11173647 DOI: 10.3390/molecules29112421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 06/21/2024] Open
Abstract
Chronic inflammation contributes to a number of diseases. Therefore, control of the inflammatory response is an important therapeutic goal. To identify novel anti-inflammatory compounds, we synthesized and screened a library of 80 pyrazolo[1,5-a]quinazoline compounds and related derivatives. Screening of these compounds for their ability to inhibit lipopolysaccharide (LPS)-induced nuclear factor κB (NF-κB) transcriptional activity in human THP-1Blue monocytic cells identified 13 compounds with anti-inflammatory activity (IC50 < 50 µM) in a cell-based test system, with two of the most potent being compounds 13i (5-[(4-sulfamoylbenzyl)oxy]pyrazolo[1,5-a]quinazoline-3-carboxamide) and 16 (5-[(4-(methylsulfinyl)benzyloxy]pyrazolo[1,5-a]quinazoline-3-carboxamide). Pharmacophore mapping of potential targets predicted that 13i and 16 may be ligands for three mitogen-activated protein kinases (MAPKs), including extracellular signal-regulated kinase 2 (ERK2), p38α, and c-Jun N-terminal kinase 3 (JNK3). Indeed, molecular modeling supported that these compounds could effectively bind to ERK2, p38α, and JNK3, with the highest complementarity to JNK3. The key residues of JNK3 important for this binding were identified. Moreover, compounds 13i and 16 exhibited micromolar binding affinities for JNK1, JNK2, and JNK3. Thus, our results demonstrate the potential for developing lead anti-inflammatory drugs based on the pyrazolo[1,5-a]quinazoline and related scaffolds that are targeted toward MAPKs.
Collapse
Affiliation(s)
- Letizia Crocetti
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Andrei I. Khlebnikov
- Kizhner Research Center, National Research Tomsk Polytechnic University, Tomsk 634050, Russia;
| | - Gabriella Guerrini
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Igor A. Schepetkin
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| | - Fabrizio Melani
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Maria Paola Giovannoni
- Dipartimento di Neuroscienze, Psicologia, Area del Farmaco e Salute del Bambino (NEUROFARBA), Pharmaceutical and Nutraceutical Section, University of Florence, Via Ugo Schiff 6, 50019 Florence, Italy; (L.C.); (F.M.); (M.P.G.)
| | - Mark T. Quinn
- Department of Microbiology and Cell Biology, Montana State University, Bozeman, MT 59717, USA;
| |
Collapse
|
19
|
Li K, Nie H, Jin R, Wu X. Mesenchymal stem cells-macrophages crosstalk and myeloid malignancy. Front Immunol 2024; 15:1397005. [PMID: 38779660 PMCID: PMC11109455 DOI: 10.3389/fimmu.2024.1397005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024] Open
Abstract
As major components of the tumor microenvironment, both mesenchymal stem cells (MSCs) and macrophages can be remodelled and exhibit different phenotypes and functions during tumor initiation and progression. In recent years, increasing evidence has shown that tumor-associated macrophages (TAMs) play a crucial role in the growth, metastasis, and chemotherapy resistance of hematological malignancies, and are associated with poor prognosis. Consequently, TAMs have emerged as promising therapeutic targets. Notably, MSCs exert a profound influence on modulating immune cell functions such as macrophages and granulocytes, thereby playing a crucial role in shaping the immunosuppressive microenvironment surrounding tumors. However, in hematological malignancies, the cellular and molecular mechanisms underlying the interaction between MSCs and macrophages have not been clearly elucidated. In this review, we provide an overview of the role of TAMs in various common hematological malignancies, and discuss the latest advances in understanding the interaction between MSCs and macrophages in disease progression. Additionally, potential therapeutic approaches targeting this relationship are outlined.
Collapse
Affiliation(s)
- Kun Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongyan Nie
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Runming Jin
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
20
|
Nagy G, Bojcsuk D, Tzerpos P, Cseh T, Nagy L. Lineage-determining transcription factor-driven promoters regulate cell type-specific macrophage gene expression. Nucleic Acids Res 2024; 52:4234-4256. [PMID: 38348998 PMCID: PMC11077085 DOI: 10.1093/nar/gkae088] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/18/2024] [Accepted: 01/29/2024] [Indexed: 05/09/2024] Open
Abstract
Mammalian promoters consist of multifarious elements, which make them unique and support the selection of the proper transcript variants required under diverse conditions in distinct cell types. However, their direct DNA-transcription factor (TF) interactions are mostly unidentified. Murine bone marrow-derived macrophages (BMDMs) are a widely used model for studying gene expression regulation. Thus, this model serves as a rich source of various next-generation sequencing data sets, including a large number of TF cistromes. By processing and integrating the available cistromic, epigenomic and transcriptomic data from BMDMs, we characterized the macrophage-specific direct DNA-TF interactions, with a particular emphasis on those specific for promoters. Whilst active promoters are enriched for certain types of typically methylatable elements, more than half of them contain non-methylatable and prototypically promoter-distal elements. In addition, circa 14% of promoters-including that of Csf1r-are composed exclusively of 'distal' elements that provide cell type-specific gene regulation by specialized TFs. Similar to CG-rich promoters, these also contain methylatable CG sites that are demethylated in a significant portion and show high polymerase activity. We conclude that this unusual class of promoters regulates cell type-specific gene expression in macrophages, and such a mechanism might exist in other cell types too.
Collapse
Affiliation(s)
- Gergely Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Dóra Bojcsuk
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Petros Tzerpos
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Tímea Cseh
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - László Nagy
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Departments of Medicine and Biological Chemistry, Johns Hopkins University School of Medicine, Institute for Fundamental Biomedical Research, Johns Hopkins All Children's Hospital, St. Petersburg, FL, USA
| |
Collapse
|
21
|
Kukan EN, Fabiano GL, Cobb BA. Siglecs as modulators of macrophage phenotype and function. Semin Immunol 2024; 73:101887. [PMID: 39357273 DOI: 10.1016/j.smim.2024.101887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 10/04/2024]
Abstract
The sialic acid-binding immunoglobulin-like lectins (Siglecs) are a family of receptors expressed widely on cells of the hematopoietic system. Siglecs recognize terminal sialic acid residues on glycans and often initiate intracellular signaling upon ligation. Cells can express several Siglec family members concurrently with each showing differential specificities for sialic acid linkages to the underlying glycan as well as varied hydroxyl substitutions, allowing these receptors to fine tune downstream responses. Macrophages are among the many immune cells that express Siglec family members. Macrophages exhibit wide diversity in their phenotypes and functions, and this diversity is often mediated by signals from the local environment, including those from glycans. In this review, we detail the known expression of Siglecs in macrophages while focusing on their functional importance and potential clinical relevance.
Collapse
Affiliation(s)
- Emily N Kukan
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Gabrielle L Fabiano
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States
| | - Brian A Cobb
- Case Western Reserve University School of Medicine, 10900 Euclid Ave., Cleveland, OH 44106, United States.
| |
Collapse
|
22
|
Lv Z, Fan H, Gao M, Zhang X, Li G, Fan Y, Ning Z, Guo Y. The accessible chromatin landscape of lipopolysaccharide-induced systemic inflammatory response identifying epigenome signatures and transcription regulatory networks in chickens. Int J Biol Macromol 2024; 266:131136. [PMID: 38547952 DOI: 10.1016/j.ijbiomac.2024.131136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/11/2024] [Accepted: 03/23/2024] [Indexed: 04/01/2024]
Abstract
Lipopolysaccharide (LPS) can induce systemic inflammatory response (SIR) in animals. Understanding the regulatory mechanism of SIR and therapies to ensure healthy growth is urgently needed. Chromatin remodeling plays a crucial role in the expression of genes involved in immune diseases. In the present study, the ATAC-seq analysis revealed 3491 differential open chromatin sites in the spleen of chicks with SIR induced by LPS challenge, and we presented the motifs on these sites and the associated transcription factors. The regulatory network was presented by combining the differential open chromatin data with the mRNAs and exploded cytokines. Interestingly, the LPS challenge could regulate the mRNA expression of 202 genes through chromatin reprogramming, including critical genes such as TLE1 and JUN, which regulate signaling pathways such as I-κB kinase/NF-κB, Toll-like receptor, and downstream cytokine genes. Furthermore, dietary daidzein could inhibit DNA topoisomerase II, which reprograms the spatial conformation of chromatin in the inflammatory response and attenuates SIR. In conclusion, we successfully identified key genes directly regulated by chromatin reprogramming in SIR and demonstrated the chromatin epigenome signatures and transcriptional regulatory network, which provides an important reference for further research on avian epigenetics. There is great potential for alleviating SIR using dietary daidzein.
Collapse
Affiliation(s)
- Zengpeng Lv
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| | - Hao Fan
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China; Section of Hematology and Oncology, Department of Medicine, The University of Chicago, Chicago, IL 60637, USA
| | - Mingkun Gao
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Xiaodan Zhang
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Guang Li
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuyang Fan
- Xi'an Jiaotong-Liverpool University, Suzhou 215123, PR China
| | - Zhonghua Ning
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China
| | - Yuming Guo
- State Key Laboratory of Animal Nutrition and Feeding, College of Animal Science and Technology, China Agricultural University, Beijing 100193, PR China.
| |
Collapse
|
23
|
Hong JP, Yoo BG, Song HY, Byun EB, Ryu GH, Byun EH. Immunostimulatory potential of extruded plant-based meat: effect of extrusion moisture level on macrophage activation. Food Sci Biotechnol 2024; 33:1459-1466. [PMID: 38585568 PMCID: PMC10992094 DOI: 10.1007/s10068-023-01432-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 08/15/2023] [Accepted: 09/06/2023] [Indexed: 04/09/2024] Open
Abstract
In this study, the effect of different moisture levels in extruded plant-based meat on macrophage immunostimulation, and the potential of this meat as a protein source and a solution to environmental and economic challenges associated with conventional meat was investigated. To determine the effects of the extruded plant-based meat, cell viability assay, enzyme-linked immunosorbent assay, flow cytometry, and western blotting were performed. Low-moisture (LMME) and high-moisture meat extracts (HMME) showed higher potential to activate macrophages and regulate cytokine production than raw material extract. Treatment with LMME and HMME resulted in increased expression of CD80, CD86, and MHC class I/II proteins, indicating their potential to activate macrophages. Western blotting suggested that the immune activation observed in a previous study of macrophages was because of the phosphorylation of MAPKs and NF-κB. These findings suggest that extruded plant-based meat can potentially be used as an immunostimulatory food ingredient.
Collapse
Affiliation(s)
- Jun-Pyo Hong
- Department of Food Science and Technology, Kongju National University, Yesan, 32439 Republic of Korea
| | - Bo-Gyeong Yoo
- Department of Food Science and Technology, Kongju National University, Yesan, 32439 Republic of Korea
| | - Ha-Yeon Song
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Eui-Baek Byun
- Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, Republic of Korea
| | - Gi-Hyung Ryu
- Department of Food Science and Technology, Kongju National University, Yesan, 32439 Republic of Korea
- Food Science Research Institute, Kongju National University, Yesan, 32439 Republic of Korea
| | - Eui-Hong Byun
- Department of Food Science and Technology, Kongju National University, Yesan, 32439 Republic of Korea
- Food Science Research Institute, Kongju National University, Yesan, 32439 Republic of Korea
| |
Collapse
|
24
|
Howell LM, Manole S, Reitter AR, Forbes NS. Controlled production of lipopolysaccharides increases immune activation in Salmonella treatments of cancer. Microb Biotechnol 2024; 17:e14461. [PMID: 38758181 PMCID: PMC11100551 DOI: 10.1111/1751-7915.14461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 03/12/2024] [Accepted: 03/17/2024] [Indexed: 05/18/2024] Open
Abstract
Immunotherapies have revolutionized cancer treatment. These treatments rely on immune cell activation in tumours, which limits the number of patients that respond. Inflammatory molecules, like lipopolysaccharides (LPS), can activate innate immune cells, which convert tumour microenvironments from cold to hot, and increase therapeutic efficacy. However, systemic delivery of lipopolysaccharides (LPS) can induce cytokine storm. In this work, we developed immune-controlling Salmonella (ICS) that only produce LPS in tumours after colonization and systemic clearance. We tuned the expression of msbB, which controls production of immunogenic LPS, by optimizing its ribosomal binding sites and protein degradation tags. This genetic system induced a controllable inflammatory response and increased dendritic cell cross-presentation in vitro. The strong off state did not induce TNFα production and prevented adverse events when injected into mice. The accumulation of ICS in tumours after intravenous injection focused immune responses specifically to tumours. Tumour-specific expression of msbB increased infiltration of immune cells, activated monocytes and neutrophils, increased tumour levels of IL-6, and activated CD8 T cells in draining lymph nodes. These immune responses reduced tumour growth and increased mouse survival. By increasing the efficacy of bacterial anti-cancer therapy, localized production of LPS could provide increased options to patients with immune-resistant cancers.
Collapse
Affiliation(s)
- Lars M. Howell
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Simin Manole
- Molecular and Cellular Biology ProgramUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Alec R. Reitter
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
| | - Neil S. Forbes
- Department of Chemical EngineeringUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- Molecular and Cellular Biology ProgramUniversity of Massachusetts AmherstAmherstMassachusettsUSA
- Institute for Applied Life Sciences, University of Massachusetts AmherstAmherstMassachusettsUSA
| |
Collapse
|
25
|
Jang AY, Choi J, Rod-In W, Choi KY, Lee DH, Park WJ. In Vitro Anti-Inflammatory and Skin Protective Effects of Codium fragile Extract on Macrophages and Human Keratinocytes in Atopic Dermatitis. J Microbiol Biotechnol 2024; 34:940-948. [PMID: 38314445 DOI: 10.4014/jmb.2312.12002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 12/27/2023] [Accepted: 01/05/2024] [Indexed: 02/06/2024]
Abstract
Codium fragile has been traditionally used in oriental medicine to treat enterobiasis, dropsy, and dysuria, and it has been shown to possess many biological properties. Atopic dermatitis (AD) is one of the types of skin inflammation and barrier disruption, which leads to chronic inflammatory skin diseases. In the current investigation, the protective effects of C. fragile extract (CFE) on anti-inflammation and skin barrier improvement were investigated. In LPS-stimulated RAW 264.7 cells, nitric oxide generation and the expression levels of interleukin (IL)-1β, IL-4, IL-6, iNOS, COX-2, and tumor necrosis factor-alpha (TNF)-α were reduced by CFE. CFE also inhibited the phosphorylation of NF-κB-p65, ERK, p-38, and JNK. Additionally, CFE showed inhibitory activity on TSLP and IL-4 expression in HaCaT cells stimulated with TNF-α/interferon-gamma (IFN-γ). Enhanced expression of factors related to skin barrier function, FLG, IVL, and LOR, was confirmed. These findings implied that CFE may be used as a therapeutic agent against AD due to its skin barrier-strengthening and anti-inflammatory activities, which are derived from natural marine products.
Collapse
Affiliation(s)
- A-Yeong Jang
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - JeongUn Choi
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Weerawan Rod-In
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Naresuan University, Phitsanulok 65000 Thailand
| | - Ki Young Choi
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| | - Dae-Hee Lee
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
- Nbios Inc., Gangneung, Gangwon 25457, Republic of Korea
| | - Woo Jung Park
- Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung 25457, Republic of Korea
| |
Collapse
|
26
|
Wu Y, Bashir MA, Shao C, Wang H, Zhu J, Huang Q. Astaxanthin targets IL-6 and alleviates the LPS-induced adverse inflammatory response of macrophages. Food Funct 2024; 15:4207-4222. [PMID: 38512055 DOI: 10.1039/d4fo00610k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/22/2024]
Abstract
Numerous natural compounds are recognized for their anti-inflammatory properties attributed to antioxidant effects and the modulation of key inflammatory factors. Among them, astaxanthin (AST), a potent carotenoid antioxidant, remains relatively underexplored regarding its anti-inflammatory mechanisms and specific molecular targets. In this study, human monocytic leukemia cell-derived macrophages (THP-1) were selected as experimental cells, and lipopolysaccharides (LPS) served as inflammatory stimuli. Upon LPS treatment, the oxidative stress was significantly increased, accompanied by remarkable cellular damage. Moreover, LPSs escalated the expression of inflammation-related molecules. Our results demonstrate that AST intervention could effectively alleviate LPS-induced oxidative stress, facilitate cellular repair, and significantly attenuate inflammation. Further exploration of the anti-inflammatory mechanism revealed AST could substantially inhibit NF-κB translocation and activation, and mitigate inflammatory factor production by hindering NF-κB through the antioxidant mechanism. We further confirmed that AST exhibited protective effects against cell damage and reduced the injury from inflammatory cytokines by activating p53 and inhibiting STAT3. In addition, utilizing network pharmacology and in silico calculations based on molecular docking, molecular dynamics simulation, we identified interleukin-6 (IL-6) as a prominent core target of AST anti-inflammation, which was further validated by the RNA interference experiment. This IL-6 binding capacity actually enabled AST to curb the positive feedback loop of inflammatory factors, averting the onset of possible inflammatory storms. Therefore, this study offers a new possibility for the application and development of astaxanthin as a popular dietary supplement of anti-inflammatory or immunomodulatory function.
Collapse
Affiliation(s)
- Yahui Wu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Mona A Bashir
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Changsheng Shao
- High Magnetic Field Laboratory, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China
| | - Han Wang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| | - Jianxia Zhu
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- School of Nursing, Anhui Medical University, Hefei, Anhui 230032, China
| | - Qing Huang
- CAS Key Laboratory of High Magnetic Field and Ion Beam Physical Biology, Anhui Key Laboratory of Environmental Toxicology and Pollution Control Technology, Hefei Institute of Intelligent Agriculture, Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China.
- Science Island Branch of Graduate School, University of Science & Technology of China, Hefei 230026, China
| |
Collapse
|
27
|
Zeng Z, Yoshida Y, Wang D, Fujii Y, Shen M, Mimura T, Tanaka Y. Inflammatory Cytokines and Chemokines Are Synergistically Induced in a ROS-Dependent Manner by a Co-Culture of Corneal Epithelial Cells and Neutrophil-like Cells in the Presence of Particulate Matter. Antioxidants (Basel) 2024; 13:467. [PMID: 38671915 PMCID: PMC11047649 DOI: 10.3390/antiox13040467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/31/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Ocular exposure to particulate matter (PM) causes local inflammation; however, the influence of neutrophils on PM-induced ocular inflammation is still not fully understood. In this study, we constructed a system to investigate the role of PM in ocular inflammation using a co-culture of human corneal epithelial cells (HCE-T) and differentiation-induced neutrophils (dHL-60). To investigate whether HCE-T directly endocytosed PM, we performed a holographic analysis, which showed the endocytosis of PM in HCE-T. The cytokines and chemokines produced by HCE-T were measured using an ELISA. HCE-T treated with PM produced IL-6 and IL-8, which were inhibited by N-Acetyl-L-cysteine (NAC), suggesting the involvement of ROS. Their co-culture with dHL-60 enhanced their production of IL-6, IL-8, and MCP-1. This suggests an inflammatory loop involving intraocular corneal epithelial cells and neutrophils. These cytokines and chemokines are mainly regulated by NF-κB. Therefore, this co-culture system was examined in the presence of an IKK inhibitor known to downregulate NF-κB activity. The IKK inhibitor dramatically suppressed the production of these factors in co-culture supernatants. The results suggest that the inflammatory loop observed in the co-culture is mediated through ROS and the transcription factor NF-κB. Thus, the co-culture system is considered a valuable tool for analyzing complex inflammations.
Collapse
Affiliation(s)
- Zirui Zeng
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yasuhiro Yoshida
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (Y.F.)
| | - Duo Wang
- Department of Radiobiology and Hygiene Management, Institute of Industrial Ecological Sciences, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| | - Yuri Fujii
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (Y.F.)
| | - Mengyue Shen
- Department of Immunology and Parasitology, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan; (Y.F.)
- Department of Medical Teaching, West China Center of Medical Sciences of Sichuan University, Chengdu 610041, China
| | - Tatsuya Mimura
- Department of Ophthalmology, Teikyo University School of Medicine, Tokyo 173-0003, Japan
| | - Yoshiya Tanaka
- The First Department of Internal Medicine, School of Medicine, University of Occupational and Environmental Health, Japan, 1-1 Iseigaoka, Yahatanishi-ku, Kitakyushu 807-8555, Japan
| |
Collapse
|
28
|
Karati D, Mukherjee S, Roy S. A Promising Drug Candidate as Potent Therapeutic Approach for Neuroinflammation and Its In Silico Justification of Chalcone Congeners: a Comprehensive Review. Mol Neurobiol 2024; 61:1873-1891. [PMID: 37801205 DOI: 10.1007/s12035-023-03632-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 08/31/2023] [Indexed: 10/07/2023]
Abstract
Multiple genetic, environmental, and immunological variables cause neuropsychiatric disorders (NPDs). The induced inflammatory immune response is also connected to the severity and treatment outcomes of various NPDs. These reactions also significantly impact numerous brain functions such as GABAergic signaling and neurotransmitter synthesis through inflammatory cytokines and chemokines. Chalcones (1,3-diaryl-2-propen-1-ones) and their heterocyclic counterparts are flavonoids with various biological characteristics including anti-inflammatory activity. Several pure chalcones have been clinically authorized or studied in humans. Chalcones are favored for their diagnostic and therapeutic efficacy in neuroinflammation due to their tiny molecular size, easy manufacturing, and flexibility for changes to adjust lipophilicity ideal for BBB penetrability. These compounds reached an acceptable plasma concentration and were well-tolerated in clinical testing. As a result, they are attracting increasing attention from scientists. However, chalcones' therapeutic potential remains largely untapped. This paper is aimed at highlighting the causes of neuroinflammation, more potent chalcone congeners, their mechanisms of action, and relevant structure-activity relationships.
Collapse
Affiliation(s)
- Dipanjan Karati
- Department of Pharmaceutical Technology, School of Pharmacy, Techno India University, Kolkata, West Bengal, 700091, India
| | - Swarupananda Mukherjee
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India
| | - Souvik Roy
- Department of Pharmaceutical Technology, NSHM Knowledge Campus, Kolkata, 124 B.L. Saha Road, Kolkata, West Bengal, 700053, India.
| |
Collapse
|
29
|
Ge Y, Palanisamy S, Kwon MH, Kou F, Uthamapriya RA, Lee DJ, Jeong D, Bao H, You S. Angelica gigas polysaccharide induces CR3-mediated macrophage activation and the cytotoxicity of natural killer cells against HCT-116 cells via NF-κB and MAPK signaling pathways. Int J Biol Macromol 2024; 263:130320. [PMID: 38412933 DOI: 10.1016/j.ijbiomac.2024.130320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/04/2024] [Accepted: 02/18/2024] [Indexed: 02/29/2024]
Abstract
Angelica gigas (A. gigas) is traditional medicinal herb that mainly exists in Korea and northeastern China. There have been relatively few studies conducted thus far on its polysaccharides and their bioactivities. We purified and described a novel water-soluble polysaccharide derived from A. gigas and investigated its immunoenhancing properties. The basic components of crude and purified polysaccharides (F1 and F2) were total sugar (41.07% - 70.55%), protein (1.12-10.33%), sulfate (2.9-5.5%), and uronic acids (0.5-31.05%) in total content. Our results demonstrated that the crude and fractions' molecular weights (Mw) varied from 42.2 to 285.2 × 103 g/mol. As the most effective polysaccharide, F2 significantly stimulated RAW264.7 cells to release nitric oxide (NO) and express several cytokines. Furthermore, F2 increased the expression of tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-ɣ), natural killer cytotoxicity receptors (NKp44), and granzyme-B in NK-92 cells and enhanced the cytotoxicity against HCT-116 cells. In our experiments, we found that F2 stimulated RAW264.7 cells and NK-92 cells via MAPK and NF-κB pathways. The monosaccharide and methylation analysis of the high immunostimulant F2 polysaccharide findings revealed that the polysaccharide was primarily composed of 1 → 4, 1 → 6, 1 → 3, 6, 1 → 3 and 1 → 3, 4, 6 galactopyranose residues, 1 → 3 arabinofuranose residues, 1 → 4 glucopyranose residues. These results demonstrated that the F2 polysaccharide of A. gigas which possesses potential immunostimulatory attributes, could be used to create a novel functional food.
Collapse
Affiliation(s)
- Yunfei Ge
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Subramanian Palanisamy
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Mi-Hye Kwon
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Fang Kou
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Rajavel Arumugam Uthamapriya
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Dong-Jin Lee
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea
| | - Duyun Jeong
- Department of Food and Food Service Industry, Kyungpook National University, Sangju 37224, Republic of Korea
| | - Honghui Bao
- School of Food Science and Technology, School of Chemical Engineering, Hubei University of Arts and Science, Xiangyang, Hubei 441053, China.
| | - SangGuan You
- Department of Marine Food Science and Technology, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea; East Coast Life Sciences Institute, Gangneung-Wonju National University, 120, Gangneung, Gangwon 210-702, Republic of Korea.
| |
Collapse
|
30
|
Pirone L, Lenza MP, Di Gaetano S, Capasso D, Filocaso M, Russo R, Di Carluccio C, Saviano M, Silipo A, Pedone E. Biophysical and Structural Characterization of the Interaction between Human Galectin-3 and the Lipopolysaccharide from Pseudomonas aeruginosa. Int J Mol Sci 2024; 25:2895. [PMID: 38474141 PMCID: PMC10932368 DOI: 10.3390/ijms25052895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 02/23/2024] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Given the significant involvement of galectins in the development of numerous diseases, the aim of the following work is to further study the interaction between galectin-3 (Gal3) and the LPS from Pseudomonas aeruginosa. This manuscript focused on the study of the interaction of the carbohydrate recognition domain of Gal3 with the LPS from Pseudomonas aeruginosa by means of different complementary methodologies, such as circular dichroism; spectrofluorimetry; dynamic and static light scattering and evaluation of the impact of Gal3 on the redox potential membranes of Escherichia coli and P. aeruginosa cells, as well as ITC and NMR studies. This thorough investigation reinforces the hypothesis of an interaction between Gal3 and LPS, unraveling the structural details and providing valuable insights into the formation of these intricate molecular complexes. Taken together, these achievements could potentially prompt the design of therapeutic drugs useful for the development of agonists and/or antagonists for LPS receptors such as galectins as adjunctive therapy for P. aeruginosa.
Collapse
Affiliation(s)
- Luciano Pirone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
| | - Maria Pia Lenza
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.P.L.); (C.D.C.)
| | - Sonia Di Gaetano
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
| | - Domenica Capasso
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
- Department of Physics “Ettore Pancini”, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy
| | - Martina Filocaso
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
- Institute of Crystallography, National Research Council (CNR), 81100 Caserta, Italy
| | - Rita Russo
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, University of Campania “Luigi Vanvitelli”, 81100 Caserta, Italy
| | - Cristina Di Carluccio
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.P.L.); (C.D.C.)
| | - Michele Saviano
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
- Institute of Crystallography, National Research Council (CNR), 81100 Caserta, Italy
| | - Alba Silipo
- Department of Chemical Sciences, University of Naples Federico II, Via Cinthia 4, 80126 Naples, Italy; (M.P.L.); (C.D.C.)
| | - Emilia Pedone
- Institute of Biostructures and Bioimaging, National Research Council (CNR), Via P. Castellino 111, 80131 Naples, Italy; (L.P.); (S.D.G.); (M.F.); (R.R.)
- Interuniversity Research Centre on Bioactive Peptides (CIRPEB), University of Naples Federico II, 80134 Naples, Italy; (D.C.); (M.S.)
| |
Collapse
|
31
|
Morrow AL, Boero G, Balan I. Emerging evidence for endogenous neurosteroid modulation of pro-inflammatory and anti-inflammatory pathways that impact neuropsychiatric disease. Neurosci Biobehav Rev 2024; 158:105558. [PMID: 38244954 DOI: 10.1016/j.neubiorev.2024.105558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/01/2023] [Accepted: 01/16/2024] [Indexed: 01/22/2024]
Abstract
This mini-review presents emerging evidence that endogenous neurosteroids modulate both pro- and anti-inflammatory signaling by immune cells and brain cells that contribute to depression, alcohol use disorders, and other inflammatory conditions. We first review the literature on pregnenolone and allopregnanolone inhibition of proinflammatory neuroimmune pathways in the periphery and the brain - effects that are independent of GABAergic mechanisms. We follow with evidence for neurosteroid enhancement of anti-inflammatory and protective pathways in brain and immune cells. These studies draw clinical relevance from a large body of evidence that pro-inflammatory immune signaling is dysregulated in many brain disorders and the fact that neurosteroids inhibit the same inflammatory pathways that are activated in depression, alcohol use disorders and other inflammatory conditions. Thus, we describe evidence that neurosteroid levels are decreased and neurosteroid supplementation has therapeutic efficacy in these neuropsychiatric conditions. We conclude with a perspective that endogenous regulation of immune balance between pro- and anti-inflammatory pathways by neurosteroid signaling is essential to prevent the onset of disease. Deficits in neurosteroids may unleash excessive pro-inflammatory activation which progresses in a feed-forward manner to disrupt brain networks that regulate stress, emotion and motivation. Neurosteroids can block various inflammatory pathways in mouse and human macrophages, rat brain and human blood and therefore provide new hope for treatment of intractable conditions that involve excessive inflammatory signaling.
Collapse
Affiliation(s)
- A Leslie Morrow
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| | - Giorgia Boero
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Irina Balan
- Department of Psychiatry and Pharmacology, Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
32
|
Xu L, Bai X, Li K, Zhang G, Zhang M, Hu M, Huang Y. Human Exposure to Ambient Atmospheric Microplastics in a Megacity: Spatiotemporal Variation and Associated Microorganism-Related Health Risk. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:3702-3713. [PMID: 38356452 DOI: 10.1021/acs.est.3c09271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/16/2024]
Abstract
Microplastics are found in various human tissues and are considered harmful, raising concerns about human exposure to microplastics in the environment. Existing research has analyzed indoor and occupational scenarios, but long-term monitoring of ambient atmospheric microplastics (AMPs), especially in highly polluted urban regions, needs to be further investigated. This study estimated human environmental exposure to AMPs by considering inhalation, dust ingestion, and dermal exposure in three urban functional zones within a megacity. The annual exposure quantity was 7.37 × 104 items for children and 1.06 × 105 items for adults, comparable with the human microplastic consumption from food and water. Significant spatiotemporal differences were observed in the characteristics of AMPs that humans were exposed to, with wind speed and rainfall frequency mainly driving these changes. The annual human AMP exposure quantity in urban green land spaces, which were recognized as relatively low polluted zones, was comparable with that in public service zones and residential zones. Notably, significant positive correlations between the AMP characteristics and the pathogenicity of the airborne bacterial community were discovered. AMP size and immune-mediated disease risks brought by atmospheric microbes showed the most significant relationship, where Sphingomonas might act as the potential key mediator.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
- PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China
| |
Collapse
|
33
|
Theofilis P, Vlachakis PK, Oikonomou E, Tsioufis K, Tousoulis D. Targeting the Gut Microbiome to Treat Cardiometabolic Disease. Curr Atheroscler Rep 2024; 26:25-34. [PMID: 38180642 DOI: 10.1007/s11883-023-01183-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/04/2023] [Indexed: 01/06/2024]
Abstract
PURPOSE OF REVIEW Cardiometabolic diseases, which include obesity, type 2 diabetes, and cardiovascular diseases, constitute a worldwide health crisis of unparalleled proportions. The human gut microbiota has emerged as a prominent topic of inquiry in the search for novel treatment techniques. This review summarizes current research on the potential of addressing the gut microbiota to treat cardiometabolic disease. RECENT FINDINGS Recent studies have highlighted a complex link between the gut microbiota and host physiology, shedding light on the several processes through which gut microorganisms impact metabolic health, inflammation, and cardiovascular function. Furthermore, a growing corpus of research is available on microbiome-based therapies such as dietary interventions, probiotics, prebiotics, synbiotics, and fecal microbiota transplantation. These therapies show promise as methods for reshaping the gut microbiota and, as a result, improving cardiometabolic outcomes. However, hurdles remain, ranging from the intricacies of microbiome research to the necessity for tailored treatments that take individual microbial variations into consideration, emphasizing the significance of furthering research to bridge the gap between microbiome science and clinical practice. The gut microbiome is a beacon of hope for improving the management of cardiometabolic disease in the age of precision medicine, since its association with their pathophysiology is constantly being unraveled and strengthened. Available studies point to the potential of gut microbiome-based therapeutics, which remains to be tested in appropriately designed clinical trials. Further preclinical research is, however, essential to provide answers to the existing obstacles, with the ultimate goal of enhancing patient care.
Collapse
Affiliation(s)
- Panagiotis Theofilis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece
| | - Panayotis K Vlachakis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece
| | - Evangelos Oikonomou
- 3rd Department of Cardiology, Sotiria Chest Disease Hospital, National and Kapodistrian University of Athens, 11527, Athens, Greece
| | - Konstantinos Tsioufis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece
| | - Dimitris Tousoulis
- 1st Department of Cardiology, "Hippokration" General Hospital, National and Kapodistrian University of Athens Medical School, Vas. Sophias 114, 11527, Athens, Greece.
| |
Collapse
|
34
|
Dong K, Zhang Y, Ji HR, Guan ZL, Wang DY, Guo ZY, Deng SJ, He BY, Xing JF, You CY. Dexamethasone-Loaded Lipid Calcium Phosphate Nanoparticles Treat Experimental Colitis by Regulating Macrophage Polarization in Inflammatory Sites. Int J Nanomedicine 2024; 19:993-1016. [PMID: 38299194 PMCID: PMC10829593 DOI: 10.2147/ijn.s442369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/20/2024] [Indexed: 02/02/2024] Open
Abstract
Background The M1/M2 polarization of intestinal macrophages exerts an essential function in the pathogenesis of ulcerative colitis (UC), which can be adjusted to alleviate the UC symptoms. Purpose A kind of pH-sensitive lipid calcium phosphate core-shell nanoparticles (NPs), co-loading with dexamethasone (Dex) and its water-soluble salts, dexamethasone sodium phosphate (Dsp), was constructed to comprehensively regulate macrophages in different states towards the M2 phenotype to promote anti-inflammatory effects. Methods Dex and Dsp were loaded in the outer lipid shell and inner lipid calcium phosphate (Cap) core of the LdCaPd NPs, respectively. Then, the morphology of NPs and methods for determining drug concentration were investigated, followed by in vitro protein adsorption, stability, and release tests. Cell experiments evaluated the cytotoxicity, cellular uptake, and macrophage polarization induction ability of NPs. The in vivo distribution and anti-inflammatory effect of NPs were evaluated through a 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced BALB/c mice ulcerative colitis model. Results The LdCaPd NPs showed a particle size of about 200 nm and achieved considerable loading amounts of Dex and Dsp. The in vitro and in vivo studies revealed that in the acidic UC microenvironment, the cationic lipid shell of LdCaPd underwent protonated dissociation to release Dex first for creating a microenvironment conducive to M2 polarization. Then, the exposed CaP core was further engulfed by M1 macrophages to release Dsp to restrict the pro-inflammatory cytokines production by inhibiting the activation and function of the nuclear factor kappa-B (NF-κB) through activating the GC receptor and the NF kappa B inhibitor α (I-κBα), respectively, ultimately reversing the M1 polarization to promote the anti-inflammatory therapy. Conclusion The LdCaPd NPs accomplished the sequential release of Dex and Dsp to the UC site and the inflammatory M1 macrophages at this site, promoting the regulation of macrophage polarization to accelerate the remission of UC symptoms.
Collapse
Affiliation(s)
- Kai Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ying Zhang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Hong Rui Ji
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Ze Lin Guan
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Dan Yang Wang
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Zi Yang Guo
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Shu Jing Deng
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Bin Yang He
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Jian Feng Xing
- School of Pharmacy, Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| | - Cui Yu You
- Department of Pharmacy, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, People’s Republic of China
| |
Collapse
|
35
|
Lee TH, Chen JL, Chang CH, Tsai MM, Tseng HC, Chang YC, Shanmugam V, Hsieh HL. A Brain-Protective Sterol from Soft Coral Inhibits Lipopolysaccharide-Induced Matrix Metalloproteinase-9-Mediated Astrocytic Migration. Biomedicines 2024; 12:226. [PMID: 38275397 PMCID: PMC10813456 DOI: 10.3390/biomedicines12010226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
Matrix metalloproteinases (MMPs), which are proteolytic enzymes, promote blood-brain barrier (BBB) disruption, leading to neuronal damage and neuroinflammation. Among them, MMP-9 upregulation serves as an inflammatory biomarker in the central nervous system (CNS). Currently, the development of marine organism-derived bioactive compounds or metabolites as anti-inflammatory drugs has received considerable attention. The 9,11-secosteroid, 3β,11-dihydroxy-9,11-secogorgost-5-en-9-one (4p3f), is a novel sterol compound extracted from the soft coral Sinularia leptoclado with potential anti-inflammatory activity. However, the effect of and potential for brain protection of 4p3f on brain astrocytes remain unclear. Herein, we used rat brain astrocytes (RBAs) to investigate the effects and signaling mechanisms of 4p3f on lipopolysaccharide (LPS)-induced MMP-9 expression via zymographic, quantitative reverse transcription-polymerase chain reaction (qRT-PCR), Western blot, immunofluorescence staining, promoter-reporter, and cell migration analyses. We first found that 4p3f blocked LPS-induced MMP-9 expression in RBAs. Next, we demonstrated that LPS induced MMP-9 expression via the activation of ERK1/2, p38 MAPK, and JNK1/2, which is linked to the STAT3-mediated NF-κB signaling pathway. Finally, 4p3f effectively inhibited LPS-induced upregulation of MMP-9-triggered RBA cell migration. These data suggest that a novel sterol from soft coral, 4p3f, may have anti-inflammatory and brain-protective effects by attenuating these signaling pathways of MMP-9-mediated events in brain astrocytes. Accordingly, the soft coral-derived sterol 4p3f may emerge as a potential candidate for drug development or as a natural compound with neuroprotective properties.
Collapse
Affiliation(s)
- Tsong-Hai Lee
- Stroke Center and Stroke Section, Department of Neurology, Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Jiun-Liang Chen
- Division of Chinese Internal Medicine, Center for Traditional Chinese Medicine, Chang Gung Memorial Hospital, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan 333, Taiwan;
| | - Chuan-Hsin Chang
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (C.-H.C.); (M.-M.T.); (H.-C.T.); (Y.-C.C.)
| | - Ming-Ming Tsai
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (C.-H.C.); (M.-M.T.); (H.-C.T.); (Y.-C.C.)
| | - Hui-Ching Tseng
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (C.-H.C.); (M.-M.T.); (H.-C.T.); (Y.-C.C.)
| | - Yu-Chia Chang
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (C.-H.C.); (M.-M.T.); (H.-C.T.); (Y.-C.C.)
| | | | - Hsi-Lung Hsieh
- Division of Basic Medical Sciences, Department of Nursing, Research Center for Chinese Herbal Medicine, Graduate Institute of Health Industry Technology, Chang Gung University of Science and Technology, Taoyuan 333, Taiwan; (C.-H.C.); (M.-M.T.); (H.-C.T.); (Y.-C.C.)
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan 333, Taiwan
- Department of Chemical Engineering, Ming Chi University of Technology, R&D Center of Biochemical Engineering Technology, New Taipei City 301, Taiwan
| |
Collapse
|
36
|
Xu L, Li K, Bai X, Zhang G, Tian X, Tang Q, Zhang M, Hu M, Huang Y. Microplastics in the atmosphere: Adsorb on leaves and their effects on the phyllosphere bacterial community. JOURNAL OF HAZARDOUS MATERIALS 2024; 462:132789. [PMID: 37862903 DOI: 10.1016/j.jhazmat.2023.132789] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/02/2023] [Accepted: 10/13/2023] [Indexed: 10/22/2023]
Abstract
Phyllosphere is the largest interface between the atmosphere and terrestrial ecosystems and serves as a major sink for atmospheric microplastics (MPs). It is also a unique habitat for microbiota with diverse ecological functions. This field study investigated the characteristics of atmospheric MPs adsorbed on leaves with automatic technology, and found their abundance was 3.62 ± 1.29 items cm-2. MPs on leaves were mainly below 80 µm, and dominated by polyamide, polyethene, and rubber. MPs on leaves correlated significantly with the structure and functions of the phyllosphere bacterial community (PBC). Both the MPs abundance and size distribution (MSD) were positively correlated with the α diversity and negatively correlated with the β diversity and network complexity of PBC. PBC functions of environmental and genetic information process were negatively correlated with MPs abundance, and functions related to human diseases and cellular process were positively correlated with MSD significantly. The relative abundance of Sphingomonas was significantly correlated with the MSD, suggesting that Sphingomonas might emerge as the key genus involved in the pathogenicity of PBC mediated by MPs. These results highlighted the ecological health risks of atmospheric MPs as they can be transferred anywhere and potentially increase the pathogenicity of local phyllosphere microflora.
Collapse
Affiliation(s)
- Libo Xu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Kang Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xinyi Bai
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Guangbao Zhang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Xudong Tian
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Qian Tang
- Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control of Zhejiang, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China
| | - Mengjun Zhang
- Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China; PKU-HKUST Shenzhen-Hongkong Institution, Shenzhen, Guangdong 518057, China.
| | - Min Hu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Peking University Shenzhen Institute, Shenzhen, Guangdong 518057, China.
| |
Collapse
|
37
|
Rullah K, Shamsudin NF, Koeberle A, Tham CL, Fasihi Mohd Aluwi MF, Leong SW, Jantan I, Lam KW. Flavonoid diversity and roles in the lipopolysaccharide-mediated inflammatory response of monocytes and macrophages. Future Med Chem 2024; 16:75-99. [PMID: 38205612 DOI: 10.4155/fmc-2023-0174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 11/27/2023] [Indexed: 01/12/2024] Open
Abstract
Targeting lipopolysaccharide (LPS)/toll-like receptor 4 signaling in mononuclear phagocytes has been explored for the treatment of inflammation and inflammation-related disorders. However, only a few key targets have been translated into clinical applications. Flavonoids, a class of ubiquitous plant secondary metabolites, possess a privileged scaffold which serves as a valuable template for designing pharmacologically active compounds directed against diseases with inflammatory components. This perspective provides a general overview of the diversity of flavonoids and their multifaceted mechanisms that interfere with LPS-induced signaling in monocytes and macrophages. Focus is placed on flavonoids targeting MD-2, IκB kinases, c-Jun N-terminal kinases, extracellular signal-regulated kinase, p38 MAPK and PI3K/Akt or modulating LPS-related gene expression.
Collapse
Affiliation(s)
- Kamal Rullah
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Nur Farisya Shamsudin
- Department of Pharmaceutical Chemistry, Kulliyyah of Pharmacy, International Islamic University Malaysia, 25200 Kuantan, Pahang, Malaysia
| | - Andreas Koeberle
- Michael Popp Institute and Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, 6020 Innsbruck, Austria
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Fadhlizil Fasihi Mohd Aluwi
- Faculty of Industrial Sciences and Technology, Universiti Malaysia Pahang Al-Sultan Abdullah, Lebuhraya Tun Razak, 26300 Gambang, Kuantan, Pahang, Malaysia
| | - Sze-Wei Leong
- Department of Chemistry, Faculty of Science, University of Malaya, 50603 Kuala Lumpur, Malaysia
| | - Ibrahim Jantan
- Institute of Systems Biology (INBIOSIS), Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia
| | - Kok Wai Lam
- Centre for Drug & Herbal Development, Faculty of Pharmacy, Universiti Kebangsaan Malaysia, Jalan Raja Muda Abdul Aziz, 50300 Kuala Lumpur, Malaysia
| |
Collapse
|
38
|
Gwon YG, Rod-In W, Lee HJ, Lee SM, Shin IS, Park WJ. Inhibitory effects of Oncorhynchus mykiss lipids in LPS-induced RAW264.7 cells via suppression of NF-κB and MAPK pathways. FISH & SHELLFISH IMMUNOLOGY 2024; 144:109266. [PMID: 38043872 DOI: 10.1016/j.fsi.2023.109266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/25/2023] [Accepted: 11/27/2023] [Indexed: 12/05/2023]
Abstract
Oncorhynchus mykiss, a significant aquaculture species, possesses compounds with numerous biological and pharmacological functions, including antioxidant, anticancer, anti-microbial, and anti-obesity effects. However, possible anti-inflammatory effects of lipids extracted from O. mykiss eggs on RAW264.7 cells induced by LPS have not been elucidated yet. The current study identified 13 fatty acids in lipids extracted from O. mykiss eggs that contained high amounts (51.92% of total fatty acids) of polyunsaturated fatty acids (PUFAs), especially DHA (33.66%) and EPA (7.77%). These O. mykiss lipids (100-400 μg/mL) showed significant anti-inflammatory effects by inhibiting NO and iNOS expression in LPS-stimulated RAW264.7 cells. They also inhibited expression of pro-inflammatory cytokines IL-1β, IL-6, and TNF-α, while upregulating anti-inflammatory cytokines IL-10, IL-11, and TGF-β. These lipids from O. mykiss effectively inhibited LPS-induced expression CD86 as a surface biomarker on RAW264.7 cells. Additionally, O. mykiss lipids suppressed phosphorylation of p38, JNK, and ERK1/2 and the expression of phosphorylated NF-κB subunit p65. These findings indicate that O. mykiss lipids possess anti-inflammatory properties by inhibiting NF-κB and MAPK signaling pathways.
Collapse
Affiliation(s)
- Yun Gu Gwon
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Weerawan Rod-In
- Department of Agricultural Science, Faculty of Agriculture Natural Resources and Environment, Nar-esuan University, Phitsanulok, 65000, Thailand; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Ha Jun Lee
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Sang-Min Lee
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Aquatic Life Medicine, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Il-Shik Shin
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea
| | - Woo Jung Park
- Department of Wellness-Bio Industry, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea; Department of Marine Bio Food Science, Gangneung-Wonju National University, Gangneung, Gangwon, 25457, South Korea.
| |
Collapse
|
39
|
Balan I, Grusca A, O’Buckley TK, Morrow AL. Neurosteroid [3α,5α]-3-hydroxy-pregnan-20-one enhances IL-10 production via endosomal TRIF-dependent TLR4 signaling pathway. Front Endocrinol (Lausanne) 2023; 14:1299420. [PMID: 38179300 PMCID: PMC10765172 DOI: 10.3389/fendo.2023.1299420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024] Open
Abstract
Background Previous studies demonstrated the inhibitory effect of allopregnanolone (3α,5α-THP) on the activation of inflammatory toll-like receptor 4 (TLR4) signals in RAW264.7 macrophages and the brains of selectively bred alcohol-preferring (P) rats. In the current study, we investigated the impact of 3α,5α-THP on the levels of IL-10 and activation of the TRIF-dependent endosomal TLR4 pathway. Methods The amygdala and nucleus accumbens (NAc) of P rats, which exhibit innately activated TLR4 pathways as well as RAW264.7 cells, were used. Enzyme-linked immunosorbent assays (ELISA) and immunoblotting assays were used to ascertain the effects of 3α,5α-THP on the TRIF-dependent endosomal TLR4 pathway and endosomes were isolated to examine translocation of TLR4 and TRIF. Additionally, we investigated the effects of 3α,5α-THP and 3α,5α-THDOC (0.1, 0.3, and 1.0 µM) on the levels of IL-10 in RAW264.7 macrophages. Finally, we examined whether inhibiting TRIF (using TRIF siRNA) in RAW264.7 cells altered the levels of IL-10. Results 3α,5α-THP administration facilitated activation of the endosomal TRIF-dependent TLR4 pathway in males, but not female P rats. 3α,5α-THP increased IL-10 levels (+13.2 ± 6.5%) and BDNF levels (+21.1 ± 11.5%) in the male amygdala. These effects were associated with increases in pTRAM (+86.4 ± 28.4%), SP1 (+122.2 ± 74.9%), and PI(3)K-p110δ (+61.6 ± 21.6%), and a reduction of TIRAP (-13.7 ± 6.0%), indicating the activation of the endosomal TRIF-dependent TLR4 signaling pathway. Comparable effects were observed in NAc of these animals. Furthermore, 3α,5α-THP enhanced the accumulation of TLR4 (+43.9 ± 11.3%) and TRIF (+64.8 ± 32.8%) in endosomes, with no significant effect on TLR3 accumulation. Additionally, 3α,5α-THP facilitated the transition from early endosomes to late endosomes (increasing Rab7 levels: +35.8 ± 18.4%). In RAW264.7 cells, imiquimod (30 µg/mL) reduced IL-10 while 3α,5α-THP and 3α,5α-THDOC (0.1, 0.3, and 1.0 µM) restored IL-10 levels. To determine the role of the TRIF-dependent TLR4 signaling pathway in IL-10 production, the downregulation of TRIF (-62.9 ± 28.2%) in RAW264.7 cells led to a reduction in IL-10 levels (-42.3 ± 8.4%). TRIF (-62.9 ± 28.2%) in RAW264.7 cells led to a reduction in IL-10 levels (-42.3 ± 8.4%) and 3α,5α-THP (1.0 µM) no longer restored the reduced IL-10 levels. Conclusion The results demonstrate 3α,5α-THP enhancement of the endosomal TLR4-TRIF anti-inflammatory signals and elevations of IL-10 in male P rat brain that were not detected in female P rat brain. These effects hold significant implications for controlling inflammatory responses in both the brain and peripheral immune cells.
Collapse
Affiliation(s)
- Irina Balan
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Adelina Grusca
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Todd K. O’Buckley
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - A. Leslie Morrow
- Bowles Center for Alcohol Studies, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| |
Collapse
|
40
|
Zhou Y, Li QX, Liao ZZ, Liu Y, Ouyang Y, Jiang WJ, Tang MT, Hu JF, Zhang W. Anti-inflammatory effect and component analysis of Chaihu Qingwen granules. JOURNAL OF ETHNOPHARMACOLOGY 2023; 317:116763. [PMID: 37315646 DOI: 10.1016/j.jep.2023.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 06/04/2023] [Accepted: 06/07/2023] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE As prevalent acute respiratory condition in clinical practice, acute lung injury has a quick start and severe symptoms which can harm patients physically. Chaihu Qingwen granules (CHQW) is a classic formula for the treatment of respiratory diseases. Clinical observation shows that CHQW has good efficacy in treating colds, coughs, and fevers. AIM OF THE STUDY The aim of this study was to investigate the anti-inflammatory effect of CHQW on lipopolysaccharide (LPS)-induced acute lung injury (ALI) model in rats and to explore its potential mechanism, as well as to clarify its substance composition. MATERIALS AND METHODS Male SD rats were randomly divided into the blank group, the model group, the ibuprofen group, the Lianhua Qingwen capsule group and the CHQW group (2, 4 and 8 g/kg, respectively). The LPS-induced acute lung injury (ALI) model in rats was established after pre-administration. The histopathological changes in the lung and the levels of inflammatory factors in bronchoalveolar lavage fluid (BALF) and serum of ALI rats were observed. The inflammation-related proteins toll-like receptor 4 (TLR4), inhibitory kappa B alpha (IκBα), phospho-IκBα (p-IκBα), nuclear-factor-kappa B (NF-κB), and NLR family pyrin domain containing 3(NLRP3) expression levels were measured by western blotting analysis and immunohistochemical analysis. The chemical composition of CHQW was identified by liquid chromatography-quadrupole-time of flight-mass spectrometry (LC-Q-TOF-MS). RESULTS CHQW significantly ameliorated lung tissue pathological injury in LPS-induced ALI rats and decreased the release of inflammatory cytokines (interleukin-1β, interleukin-17 and tumor necrosis factor-α) in BALF and serum. In addition, CHQW decreased the expression of TLR4, p-IκBα and NF-κB proteins, increased the level of IκBα, regulated the TLR4/NF-κB signaling pathway, and inhibited the activation of NLRP3. The chemical components of CHQW were analyzed by LC-Q-TOF-MS, and a total of 48 components were identified by combining information from the literature, mainly flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides. CONCLUSION The results of this study showed that the pretreatment of CHQW had a strong protective effect on LPS-induced ALI in rats, reducing lung tissue lesions and decreasing inflammatory cytokines released in BALF and serum. The protective mechanism of CHQW may be related to the inhibition of the TLR4/NF-κB signaling pathway and NLRP3 activation. The main active ingredients of CHQW are flavonoids, organic acids, lignans, iridoids and phenylethanoid glycosides.
Collapse
Affiliation(s)
- Ying Zhou
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Qing-Xian Li
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Zheng-Zheng Liao
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Yang Liu
- Department of Laboratory Medicine, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Ying Ouyang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Wen-Jing Jiang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Meng-Ting Tang
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China; School of Pharmacy, Nanchang University, Nanchang 330006, China
| | - Jin-Fang Hu
- Department of Pharmacy, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Wei Zhang
- Department of Respiratory, The First Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| |
Collapse
|
41
|
Kim SH, Kang IC. Induction of TNF-α by Filifactor alocis in THP-1 macrophagic cells. Arch Oral Biol 2023; 155:105806. [PMID: 37729700 DOI: 10.1016/j.archoralbio.2023.105806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/08/2023] [Accepted: 09/14/2023] [Indexed: 09/22/2023]
Abstract
OBJECTIVES Filifactor alocis is an emerging periodontal pathogen, and macrophage-produced tumor necrosis factor-α (TNF-α) plays important roles in periodontal pathogenesis. In this study, we investigated F. alocis-stimulated TNF-α production in THP-1 macrophagic cells. DESIGN Phorbol 12-myristate 13-acetate-differentiated THP-1 macrophagic cells were challenged with F. alocis ATCC 35896 for various durations. TNF-α mRNA expression and protein secretion were determined using RT-PCR and ELISA, respectively. Activation of protein kinases and transcription factor proteins was evaluated by Western blot analysis. RESULTS Live F. alocis stimulated THP-1 cells to produce TNF-α in a dose-dependent manner. However, glutaraldehyde-killed or heat-killed F. alocis showed no effectiveness for TNF-α induction. In contrast, both live and killed Porphyromonas gingivalis robustly increased TNF-α expression. Furthermore, F. alocis was unable to stimulate TNF-α expression in Toll-like receptor 2 (TLR2) knockout THP-1 cells. F. alocis activated all three mitogen-activated protein kinases: extracellular signal-regulated kinase (ERK), p38, and c-Jun N-terminal kinase (JNK). Pharmacological inhibition of ERK and JNK, but not p38, significantly reduced F. alocis-induced TNF-α production. Finally, increased levels of phospho-c-Jun were detected in F. alocis-stimulated THP-1 cells. CONCLUSIONS These results suggest that F. alocis induces TNF-α production in THP-1 macrophagic cells primarily by activating the TLR2, JNK, and c-Jun pathways.
Collapse
Affiliation(s)
- So-Hee Kim
- Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju, the Republic of Korea
| | - In-Chol Kang
- Department of Oral Microbiology, School of Dentistry, Chonnam National University, Gwangju, the Republic of Korea.
| |
Collapse
|
42
|
Ge S, Lian W, Bai Y, Wang L, Zhao F, Li H, Wang D, Pang Q. TMT-based quantitative proteomics reveals the targets of andrographolide on LPS-induced liver injury. BMC Vet Res 2023; 19:199. [PMID: 37817228 PMCID: PMC10563216 DOI: 10.1186/s12917-023-03758-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/27/2023] [Indexed: 10/12/2023] Open
Abstract
BACKGROUND Andrographolide (Andro) is a diterpenoid derived from Andrographis paniculate, which has anti-inflammatory, antibacterial, antiviral and hepatoprotective activities. Gram-negative bacterial infections can cause varying degrees of liver injury in chickens, although Andro has been shown to have a protective effect on the liver, its underlying mechanism of action and effects on liver proteins are not known. METHODS The toxicity of Andro on the viability of leghorn male hepatoma (LMH) cells at different concentrations and times was analyzed by CCK-8 assays. Alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities in the culture supernatants were measured using an automatic biochemical analyzer to evaluate the protective effect of androscopolide on LPS-induced injury of LMH cells. Subsequently, TMT proteomics analysis were performed on the negative control group (NC group), LPS, and LPS-Andro groups, and bioinformatics analysis was performed on the differentially expressed proteins (DEPs). RESULTS It was found that Andro reduced ALT and AST levels in the cell supernatant and alleviated LPS-induced injury in LMH cells. Proteomic analysis identified 50 and 166 differentially expressed proteins in the LPS vs. NC group and LPS-Andro vs. LPS group, respectively. Andro may be involved in steroid metabolic processes, negative regulation of MAPK cascade, oxidative stress, and other processes to protect against LPS-induced liver injury. CONCLUSIONS Andro protects against LPS-induced liver injury, HMGCS1, HMGCR, FDPS, PBK, CAV1, PRDX1, PRDX4, and PRDX6, which were identified by differential proteomics, may be the targets of Andro. Our study may provide new theoretical support for Andro protection against liver injury.
Collapse
Affiliation(s)
- Shihao Ge
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Wenqi Lian
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Yongjiang Bai
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China
| | - Linzheng Wang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, 250035, Shangdong, China
| | - Fuwei Zhao
- College of Pharmacy, Heze University, Heze, 274000, Shangdong, China
| | - Houmei Li
- Shuozhou grass and animal husbandry development center, ShuoZhou, 036000, Shanxi, China
| | - Dongliang Wang
- ShuoZhou Vocational Technology College, ShuoZhou, 036000, Shanxi, China
| | - Quanhai Pang
- College of Veterinary Medicine, Shanxi Agricultural University, Taigu, 030801, Shanxi, China.
| |
Collapse
|
43
|
Mikkelsen K, Dargahi N, Fraser S, Apostolopoulos V. High-Dose Vitamin B6 (Pyridoxine) Displays Strong Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated Monocytes. Biomedicines 2023; 11:2578. [PMID: 37761018 PMCID: PMC10526783 DOI: 10.3390/biomedicines11092578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Vitamin B6 is shown to have anti-inflammatory properties, which makes it an interesting nutraceutical agent. Vitamin B6 deficiency is well established as a contributor to inflammatory-related conditions, whilst B6 supplementation can reverse these inflammatory effects. There is less information available regarding the effects of high-dose vitamin B6 supplementation as a therapeutic agent. This study set out to examine the effects of high-dose vitamin B6 on an LPS-stimulated monocyte/macrophage cell population via an analysis of protein and gene expression using an RT2 profiler PCR array for Human Innate and Adaptive Immune responses. It was identified that high-dose vitamin B6 has a global anti-inflammatory effect on lipopolysaccharide-induced inflammation in monocyte/macrophage cells by downregulating the key broad-spectrum inflammatory mediators CCL2, CCL5, CXCL2, CXCL8, CXCL10, CCR4, CCR5, CXCR3, IL-1β, IL-5, IL-6, IL-10, IL-18, IL-23-a, TNF-α, CSF2, DDX58, NLRP3, NOD1, NOD2, TLR-1 -2 -4 -5 -7 -8 -9, MYD88, C3, FOXP3, STAT1, STAT3, STAT6, LYZ, CASP-1, CD4, HLA-E, MAPK1, MAPK8 MPO, MX-1, NF-κβ, NF-κβ1A, CD14, CD40, CD40LG, CD86, Ly96, ICAM1, IRF3, ITGAM, and IFCAM2. The outcomes of this study show promise regarding vitamin B6 within the context of a potent broad-spectrum anti-inflammatory mediator and could prove useful as an adjunct treatment for inflammatory-related diseases.
Collapse
Affiliation(s)
| | | | | | - Vasso Apostolopoulos
- Immunology and Translational Research Group, Institute for Health and Sport, Werribee Campus, Victoria University, Melbourne, VIC 3030, Australia; (K.M.); (N.D.); (S.F.)
| |
Collapse
|
44
|
Ribeiro E. Silva A, Diallo MA, Sausset A, Robert T, Bach S, Bussière FI, Laurent F, Lacroix-Lamandé S, Silvestre A. Overexpression of Eimeria tenella Rhoptry Kinase 2 Induces Early Production of Schizonts. Microbiol Spectr 2023; 11:e0013723. [PMID: 37260371 PMCID: PMC10434272 DOI: 10.1128/spectrum.00137-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 05/04/2023] [Indexed: 06/02/2023] Open
Abstract
Eimeria tenella is an obligate intracellular parasite responsible for avian coccidiosis. Like other apicomplexan parasites, such as Toxoplasma gondii, cell invasion and intracellular development rely on apical organelle content discharge, named micronemes and rhoptries. Some rhoptry (ROP) kinases (ROPK) are key virulence factors in T. gondii. To date, among the 28 ropk genes carried by E. tenella, only two to four were confirmed by proteomic analysis or immunostaining to be expressed at the sporozoite stage. We have previously shown that EtROP1 is implicated in the inhibition of host cell apoptosis by interacting with the cellular p53. This work functionally described the second ROP kinase expressed at the sporozoite stage in E. tenella. EtROP2 is an active kinase that phosphorylates cell substrates of approximately 50 kDa. Its overexpression leads to the shortening of the prepatent period and to the early development of first-generation schizonts. Conduction of RNA sequencing analysis and reverse transcriptase quantitative PCR (RT-qPCR) on the host cell allowed us to identify the mitogen-activated protein kinase (MAPK) pathway and the transcription factor cFos to be upregulated by EtROP2. We also showed by immunofluorescence assay that the active kinase EtROP2 is implicated in the p38 MAPK pathway activation. We established here that EtROP2 activates the p38 MAPK pathway through a direct or indirect phosphorylation, leading to the overexpression of the master transcription factor cFos known to be implicated in E. tenella development. IMPORTANCE Rhoptries are specialized secretory organelles found in zoite stages of apicomplexan parasites. In addition to well-conserved rhoptry neck proteins, their protein consists mostly of kinase proteins, highly divergent from eukaryotic kinases. Some of those kinases are described as major virulence factors in Toxoplasma gondii, secreted into the host cell to hijack signaling pathways. Most of those kinases remain to be characterized in Eimeria tenella. Deciphering their cellular function is a prerequisite to supporting their relevance as a druggable target in development of new means of Eimeria tenella control. Secreted divergent kinases that interact with host cell partners to modulate pathways are good candidates, as they coevolve with their host targets to ensure their function within the host and are less prone to mutations that would lead to drug resistance. The absence of any orthologous kinase in host cells makes these parasite kinases a promising drug target candidate.
Collapse
Affiliation(s)
| | | | - Alix Sausset
- ISP, INRAE, Université de Tours, Nouzilly, France
| | - Thomas Robert
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Roscoff, France
- Sorbonne Université, CNRS, FR 2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Roscoff, France
| | - Stéphane Bach
- Sorbonne Université, CNRS, UMR 8227, Integrative Biology of Marine Models Laboratory (LBI2M), Station Biologique de Roscoff, Roscoff, France
- Sorbonne Université, CNRS, FR 2424, Plateforme de Criblage KISSf (Kinase Inhibitor Specialized Screening Facility), Station Biologique de Roscoff, Roscoff, France
- Centre of Excellence for Pharmaceutical Sciences, North-West University, Potchefstroom, South Africa
| | | | | | | | | |
Collapse
|
45
|
Monmai C, Kim JS, Sim HB, Yun DW, Oh SD, Rha ES, Kim JJ, Baek SH. Protopanaxadiol-Enriched Rice Exerted Antiadipogenic Activity during 3T3-L1 Differentiation and Anti-Inflammatory Activity in 3T3-L1 Adipocytes. Pharmaceutics 2023; 15:2123. [PMID: 37631337 PMCID: PMC10458103 DOI: 10.3390/pharmaceutics15082123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 07/28/2023] [Accepted: 08/10/2023] [Indexed: 08/27/2023] Open
Abstract
Ginseng is a traditional medicine with health benefits for humans. Protopanaxadiol (PPD) is an important bioactive compound found in ginseng. Transgenic rice containing PPD has been generated previously. In the present study, extracts of this transgenic rice were evaluated to assess their antiadipogenic and anti-inflammatory activities. During adipogenesis, cells were treated with transgenic rice seed extracts. The results revealed that the concentrations of the rice seed extracts tested in this study did not affect cell viability at 3 days post-treatment. However, the rice seed extracts significantly reduced the accumulation of lipids in cells and suppressed the activation of CCAAT/enhancer-binding protein α (C/EBPα) and peroxisome proliferator-activated receptor γ (PPARγ), which in turn inhibited the expression of adipogenesis-related mRNAs, such as adiponectin, PPARγ, C/EBPα, sterol regulatory element-binding protein 1, glucose transport member 4, and fatty acid synthase. In adipocytes, the extracts significantly reduced the mRNA expression of inflammation-related factors following LPS treatment. The activation of NF-κB p65 and ERK 1/2 was inhibited in extract-treated adipocytes. Moreover, treatment with extract #8 markedly reduced the cell population of the G2/M phase. Collectively, these results indicate that transgenic rice containing PPD may act as an obesity-reducing and/or -preventing agent.
Collapse
Affiliation(s)
- Chaiwat Monmai
- Department of Agricultural Life Science, Sunchon National University, Sunchon 59722, Republic of Korea; (C.M.); (J.-S.K.); (E.-S.R.)
| | - Jin-Suk Kim
- Department of Agricultural Life Science, Sunchon National University, Sunchon 59722, Republic of Korea; (C.M.); (J.-S.K.); (E.-S.R.)
| | - Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, Sunchon 57922, Republic of Korea;
| | - Doh-Won Yun
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (D.-W.Y.); (S.-D.O.)
| | - Sung-Dug Oh
- National Institute of Agricultural Sciences, Rural Development Administration, Jeonju 54874, Republic of Korea; (D.-W.Y.); (S.-D.O.)
| | - Eui-Shik Rha
- Department of Agricultural Life Science, Sunchon National University, Sunchon 59722, Republic of Korea; (C.M.); (J.-S.K.); (E.-S.R.)
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, Sunchon 57922, Republic of Korea;
| | - So-Hyeon Baek
- Department of Agricultural Life Science, Sunchon National University, Sunchon 59722, Republic of Korea; (C.M.); (J.-S.K.); (E.-S.R.)
| |
Collapse
|
46
|
Khan H, Shaikh F, Syed MH, Mamdani M, Saposnik G, Qadura M. Current Biomarkers for Carotid Artery Stenosis: A Comprehensive Review of the Literature. Metabolites 2023; 13:919. [PMID: 37623863 PMCID: PMC10456624 DOI: 10.3390/metabo13080919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/26/2023] Open
Abstract
Carotid artery stenosis (CAS), an atherosclerotic disease of the carotid artery, is one of the leading causes of transient ischemic attacks (TIA) and cerebrovascular attacks (CVA). The atherogenic process of CAS affects a wide range of physiological processes, such as inflammation, endothelial cell function, smooth muscle cell migration and many more. The current gold-standard test for CAS is Doppler ultrasound; however, there is yet to be determined a strong, clinically validated biomarker in the blood that can diagnose patients with CAS and/or predict adverse outcomes in such patients. In this comprehensive literature review, we evaluated all of the current research on plasma and serum proteins that are current contenders for biomarkers for CAS. In this literature review, 36 proteins found as potential biomarkers for CAS were categorized in to the following nine categories based on protein function: (1) Inflammation and Immunity, (2) Lipid Metabolism, (3) Haemostasis, (4) Cardiovascular Markers, (5) Markers of Kidney Function, (6) Bone Health, (7) Cellular Structure, (8) Growth Factors, and (9) Hormones. This literature review is the most up-to-date and current comprehensive review of research on biomarkers of CAS, and the only review that demonstrated the several pathways that contribute to the initiation and progression of the disease. With this review, future studies can determine if any new markers, or a panel of the proteins explored in this study, may be contenders as diagnostic or prognostic markers for CAS.
Collapse
Affiliation(s)
- Hamzah Khan
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Farah Shaikh
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muzammil H. Syed
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
| | - Muhammad Mamdani
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Temerty Centre for Artificial Intelligence Research and Education in Medicine (T-CAIREM), University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Gustavo Saposnik
- Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Unity Health Toronto, Toronto, ON M5B 1W8, Canada; (M.M.); (G.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
| | - Mohammad Qadura
- Division of Vascular Surgery, St. Michael’s Hospital, Toronto, ON M5B 1W8, Canada; (H.K.); (F.S.); (M.H.S.)
- Division of Neurology, Department of Medicine, St. Michael’s Hospital, University of Toronto, 55 Queen St E, Toronto, ON M5C 1R6, Canada
- Department of Surgery, University of Toronto, Toronto, ON M5T 1P5, Canada
| |
Collapse
|
47
|
Zhao L, Jin L, Yang B. Protocatechuic acid inhibits LPS-induced mastitis in mice through activating the pregnane X receptor. J Cell Mol Med 2023; 27:2321-2327. [PMID: 37328960 PMCID: PMC10424283 DOI: 10.1111/jcmm.17812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/18/2023] Open
Abstract
Mastitis refers to the inflammation in the mammary gland caused by various reasons. Protocatechuic acid (PCA) exerts anti-inflammatory effect. However, no studies have shown the protective role of PCA on mastitis. We investigated the protective effect of PCA on LPS-induced mastitis in mice and elucidated its possible mechanism. LPS-induced mastitis model was established by injection of LPS into the mammary gland. The pathology of mammary gland, MPO activity and inflammatory cytokine production were detected to evaluate the effects of PCA on mastitis. In vivo, PCA significantly attenuated LPS-induced mammary pathological changes, MPO activity, TNF-α and IL-1β production. In vitro, the production of inflammatory cytokines TNF-α and IL-1β was significantly reduced by PCA. Furthermore, LPS-induced NF-κB activation was also inhibited by PCA. In addition, PCA was found to activate pregnane X receptor (PXR) transactivation and PCA dose-dependently increased the expression of PXR downstream molecule CYP3A4. In addition, the inhibitory effect of PCA on inflammatory cytokine production was also reversed when PXR was knocked down. In conclusion, the protective effects of PCA on LPS-induced mastitis in mice through regulating PXR.
Collapse
Affiliation(s)
- Lihua Zhao
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinChina
| | - Lei Jin
- Department of AnesthesiologyChina‐Japan Union Hospital of Jilin UniversityJilinChina
| | - Bin Yang
- Department of Breast SurgeryChina‐Japan Union Hospital of Jilin UniversityJilinChina
| |
Collapse
|
48
|
Oh SJ, Cho YG, Kim DH, Hwang YH. Effect of Lactobacillus sakei OK67 in Reducing Body and Visceral Fat in Lifestyle-Modified Overweight Individuals: A 12-Week, Randomized, Double-Blind, Placebo-Controlled Clinical Trial. Nutrients 2023; 15:3074. [PMID: 37447399 DOI: 10.3390/nu15133074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 06/28/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Obesity is a global health problem that affects the quality of life. It is a multidimensional chronic risk factor for major medical conditions, such as cardiovascular diseases, diabetes, and cancer. This clinical trial evaluated the efficacy of Lactobacillus sakei OK67 (DW2010), a lactic acid bacterium, in reducing body and visceral fat in overweight individuals (body mass index ≥25 kg/m2 and <30 kg/m2), aged 20-60 years. A total of 100 subjects placed in a lifestyle modification program were randomly assigned to receive either DW2010 (2.0 g/day, 1.0 × 1010 CFU) or a placebo for 12 weeks. The efficacy of DW2010 was evaluated by measuring body fat mass using dual-energy X-ray absorptiometry and visceral fat area using computed tomography. After 12 weeks, the change in body fat in the DW2010 group was not markedly different from that in the placebo group. However, visceral fat area decreased more in the DW2010 group than in the placebo group (p = 0.035). During the clinical trial, no major adverse events were reported. Moreover, no statistical differences were observed in the biochemical parameters of the DW2010 and placebo groups. Overall, we concluded that the intake of DW2010 for 12 weeks is safe and potentially reduces visceral fat in lifestyle-modified overweight subjects.
Collapse
Affiliation(s)
- Seong-Jun Oh
- DONGWHA Pharm Research Institute, 35-71, Topsil-ro, Giheung-gu, Yongin-si 17084, Republic of Korea
| | - Young-Gyu Cho
- Department of Family Medicine, Seoul Paik Hospital, College of Medicine, Inje University, 9, Mareunnae-ro, Jung-gu, Seoul 04551, Republic of Korea
| | - Dong-Hyun Kim
- Department of Life and Nanopharmaceutical Sciences, College of Pharmacy, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea
| | - Yun-Ha Hwang
- DONGWHA Pharm Research Institute, 35-71, Topsil-ro, Giheung-gu, Yongin-si 17084, Republic of Korea
| |
Collapse
|
49
|
Kumar P, Mathew S, Gamage R, Bodkin F, Doyle K, Rossetti I, Wagnon I, Zhou X, Raju R, Gyengesi E, Münch G. From the Bush to the Brain: Preclinical Stages of Ethnobotanical Anti-Inflammatory and Neuroprotective Drug Discovery-An Australian Example. Int J Mol Sci 2023; 24:11086. [PMID: 37446262 DOI: 10.3390/ijms241311086] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/29/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
The Australian rainforest is a rich source of medicinal plants that have evolved in the face of dramatic environmental challenges over a million years due to its prolonged geographical isolation from other continents. The rainforest consists of an inherent richness of plant secondary metabolites that are the most intense in the rainforest. The search for more potent and more bioavailable compounds from other plant sources is ongoing, and our short review will outline the pathways from the discovery of bioactive plants to the structural identification of active compounds, testing for potency, and then neuroprotection in a triculture system, and finally, the validation in an appropriate neuro-inflammatory mouse model, using some examples from our current research. We will focus on neuroinflammation as a potential treatment target for neurodegenerative diseases including multiple sclerosis (MS), Parkinson's (PD), and Alzheimer's disease (AD) for these plant-derived, anti-inflammatory molecules and highlight cytokine suppressive anti-inflammatory drugs (CSAIDs) as a better alternative to conventional nonsteroidal anti-inflammatory drugs (NSAIDs) to treat neuroinflammatory disorders.
Collapse
Affiliation(s)
- Payaal Kumar
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Shintu Mathew
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Rashmi Gamage
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Frances Bodkin
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Kerrie Doyle
- Indigenous Health Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ilaria Rossetti
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Ingrid Wagnon
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Xian Zhou
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| | - Ritesh Raju
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Erika Gyengesi
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
| | - Gerald Münch
- Pharmacology Unit, School of Medicine, Western Sydney University, Campbelltown, NSW 2560, Australia
- NICM Health Research Institute, Western Sydney University, Westmead, NSW 2145, Australia
| |
Collapse
|
50
|
Petrick JL, Florio AA, Zen J, Wang Y, Gewirtz AT, Pfeiffer RM, Loftus S, Inglefield J, Koshiol J, Yang B, Yu K, Hildesheim A, Chen CJ, Yang HI, Lee MH, McGlynn KA. Biomarkers of gut barrier dysfunction and risk of hepatocellular carcinoma in the REVEAL-HBV and REVEAL-HCV cohort studies. Int J Cancer 2023; 153:44-53. [PMID: 36878686 PMCID: PMC10548479 DOI: 10.1002/ijc.34492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 12/16/2022] [Accepted: 01/16/2023] [Indexed: 03/08/2023]
Abstract
Gut barrier dysfunction can result in the liver being exposed to an elevated level of gut-derived bacterial products via portal circulation. Growing evidence suggests that systemic exposure to these bacterial products promotes liver diseases including hepatitis, cirrhosis, and hepatocellular carcinoma (HCC). However, prospective studies have not examined the association between biomarkers of gut barrier dysfunction and HCC risk in a population of hepatitis B or C viral (HBV/HCV) carriers. We investigated whether prediagnostic, circulating biomarkers of gut barrier dysfunction were associated with HCC risk, using the Risk Evaluation of Viral Load Elevation and Associated Liver Disease/Cancer (REVEAL)-HBV and REVEAL-HCV cohorts from Taiwan. REVEAL-HBV included 185 cases and 161 matched controls, and REVEAL-HCV 96 cases and 96 matched controls. The biomarkers quantitated were immunoglobulin A (IgA), IgG, and IgM against lipopolysaccharide (LPS) and flagellin, soluble CD14 (an LPS coreceptor), and LPS-binding protein (LBP). Odds ratios (ORs) and 95% confidence intervals (CIs) for associations between biomarker levels and HCC were calculated using multivariable-adjusted logistic regression. A doubling of the circulating levels of antiflagellin IgA or LBP was associated with a 76% to 93% increased risk of HBV-related HCC (OR per one unit change in log2 antiflagellin IgA = 1.76, 95% CI: 1.06-2.93; OR for LBP = 1.93, 95% CI: 1.10-3.38). None of the other markers were associated with an increased risk of HBV-related or HCV-related HCC. Results were similar when cases diagnosed in the first 5 years of follow-up were excluded. Our findings contribute to understanding the interplay of gut barrier dysfunction and primary liver cancer etiology.
Collapse
Affiliation(s)
| | - Andrea A. Florio
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Jane Zen
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Yanyu Wang
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Andrew T. Gewirtz
- Center for Inflammation, Immunity and Infection, Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Ruth M. Pfeiffer
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Sarah Loftus
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jon Inglefield
- Applied Developmental Research Directorate, Leidos Biomedical Research, Inc, Frederick National Laboratory for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Jill Koshiol
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Baiyu Yang
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Kelly Yu
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Allan Hildesheim
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| | - Chien-Jen Chen
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
| | - Hwai-I Yang
- Genomics Research Center, Academia Sinica, Taipei, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung, Taiwan
- Biomedical Translation Research Center, Academia Sinica, Taipei, Taiwan
| | - Mei-Hsuan Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Katherine A. McGlynn
- Division of Cancer Epidemiology and Genetics, National Cancer Institute, Bethesda, MD, USA
| |
Collapse
|