1
|
Sergio CM, Rolando CA. Erythropoietin regulates signaling pathways associated with neuroprotective events. Exp Brain Res 2022; 240:1303-1315. [PMID: 35234993 DOI: 10.1007/s00221-022-06331-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022]
Abstract
Erythropoietin is a cytokine that binds to the Erythropoietin receptor and regulates the formation of erythroid cells during erythropoiesis in the bone marrow. However, many other organs and tissues express Erythropoietin and its receptor, such as the Nervous System, which principally regulates tissue protection. In the Central Nervous System, Erythropoietin is principally expressed by astrocytes, while neurons mainly express Erythropoietin receptors. Moreover, Erythropoietin acts as a pleiotropic molecule with neuroprotective effects, and its mechanisms of signal transduction pathways are defined, and there is a growing interest in its therapeutic potential. This review focuses on the role of Erythropoietin and its relationship with HIF1, PI3/Akt, GSK3B, JAK/STAT, and MAPKs signaling pathways that leads to cell survival after injury in the Central Nervous System. Knowledge of these signaling systems comprehensively could better guide EPO treatment to restoring different SNC alterations mediated by different insults.
Collapse
Affiliation(s)
- Cornelio-Martínez Sergio
- Universidad del Valle de México, Escuela de Ciencias de la Salud, Campus Zapopan, Zapopan, Mexico
| | - Castañeda-Arellano Rolando
- Laboratorio de Farmacología, Centro de Investigación Multidisciplinario en Salud, Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara, Av. Nuevo Periférico No. 555, 45425, Tonalá, Mexico.
| |
Collapse
|
2
|
Abstract
Cancer and kidney disease are linked by causality and comorbidities. Observational data show an increased risk of malignancy as renal function declines. Erythropoietin stimulating agents (ESAs), which are the cornerstone therapy for anemia patients with chronic kidney disease and cancer, are associated with increased risks for cancer, cancer-related mortality, progression of disease, and thromboembolic events. This article examines the recently published guidelines for ESA use in cancer patients from the American Society of Clinical Oncology and American Society of Hematology and attempts to contextualize them to the care of patients with coexistent CKD, cancer, and anemia.
Collapse
Affiliation(s)
- Sheron Latcha
- Renal Division, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| |
Collapse
|
3
|
Annese T, Tamma R, Ruggieri S, Ribatti D. Erythropoietin in tumor angiogenesis. Exp Cell Res 2019; 374:266-273. [DOI: 10.1016/j.yexcr.2018.12.013] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Revised: 12/11/2018] [Accepted: 12/16/2018] [Indexed: 12/19/2022]
|
4
|
Transferrin receptor 2 is a potential novel therapeutic target for β-thalassemia: evidence from a murine model. Blood 2018; 132:2286-2297. [PMID: 30209118 DOI: 10.1182/blood-2018-05-852277] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 08/31/2018] [Indexed: 12/15/2022] Open
Abstract
β-thalassemias are genetic disorders characterized by anemia, ineffective erythropoiesis, and iron overload. Current treatment of severe cases is based on blood transfusion and iron chelation or allogeneic bone marrow (BM) transplantation. Novel approaches are explored for nontransfusion-dependent patients (thalassemia intermedia) who develop anemia and iron overload. Here, we investigated the erythropoietin (EPO) receptor partner, transferrin receptor 2 (TFR2), as a novel potential therapeutic target. We generated a murine model of thalassemia intermedia specifically lacking BM Tfr2: because their erythroid cells are more susceptible to EPO stimulation, mice show improved erythropoiesis and red blood cell morphology as well as partial correction of anemia and iron overload. The beneficial effects become attenuated over time, possibly due to insufficient iron availability to sustain the enhanced erythropoiesis. Germ line deletion of Tfr2, including haploinsufficiency, had a similar effect in the thalassemic model. Because targeting TFR2 enhances EPO-mediated effects exclusively in cells expressing both receptors, this approach may have advantages over erythropoiesis-stimulating agents in the treatment of other anemias.
Collapse
|
5
|
RNF187 is Downregulated Following NF-κB Inhibition in Late Erythroblasts. Biochem Genet 2016; 54:714-21. [DOI: 10.1007/s10528-016-9750-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2015] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
|
6
|
Ueba H, Shiomi M, Brines M, Yamin M, Kobayashi T, Ako J, Momomura SI, Cerami A, Kawakami M. Suppression of coronary atherosclerosis by helix B surface Peptide, a nonerythropoietic, tissue-protective compound derived from erythropoietin. Mol Med 2013; 19:195-202. [PMID: 23648638 DOI: 10.2119/molmed.2013.00037] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2013] [Accepted: 04/30/2013] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO), a type I cytokine originally identified for its critical role in hematopoiesis, has been shown to have nonhematopoietic, tissue-protective effects, including suppression of atherosclerosis. However, prothrombotic effects of EPO hinder its potential clinical use in nonanemic patients. In the present study, we investigated the antiatherosclerotic effects of helix B surface peptide (HBSP), a nonerythropoietic, tissue-protective compound derived from EPO, by using human umbilical vein endothelial cells (HUVECs) and human monocytic THP-1 cells in vitro and Watanabe heritable hyperlipidemic spontaneous myocardial infarction (WHHLMI) rabbits in vivo. In HUVECs, HBSP inhibited apoptosis (≈70%) induced by C-reactive protein (CRP), a direct mediator of atherosclerosis. By using a small interfering RNA approach, Akt was shown to be a key molecule in HBSP-mediated prevention of apoptosis. HBSP also attenuated CRP-induced production of tumor necrosis factor (TNF)-α and matrix metalloproteinase-9 in THP-1 cells. In the WHHLMI rabbit, HBSP significantly suppressed progression of coronary atherosclerotic lesions as assessed by mean cross-sectional stenosis (HBSP 21.3 ± 2.2% versus control peptide 38.0 ± 2.7%) and inhibited coronary artery endothelial cell apoptosis with increased activation of Akt. Furthermore, TNF-α expression and the number of M1 macrophages and M1/M2 macrophage ratio in coronary atherosclerotic lesions were markedly reduced in HBSP-treated animals. In conclusion, these data demonstrate that HBSP suppresses coronary atherosclerosis, in part by inhibiting endothelial cell apoptosis through activation of Akt and in association with decreased TNF-α production and modified macrophage polarization in coronary atherosclerotic lesions. Because HBSP does not have the prothrombotic effects of EPO, our study may provide a novel therapeutic strategy that prevents progression of coronary artery disease.
Collapse
Affiliation(s)
- Hiroto Ueba
- Department of Integrated Medicine 1, Saitama Medical Center, Jichi Medical University, Saitama, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
7
|
Erythropoietin effect on sensorimotor recovery after contusive spinal cord injury: an electrophysiological study in rats. Neuroscience 2012; 219:290-301. [PMID: 22659566 DOI: 10.1016/j.neuroscience.2012.05.041] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2012] [Revised: 05/10/2012] [Accepted: 05/16/2012] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) is a debilitating clinical condition, characterized by a complex of neurological dysfunctions. It has been shown in rats that the acute administration of recombinant human erythropoietin (rhEPO) following a contusive SCI improves the recovery of hindlimb motor function, as measured with the locomotor BBB (Basso, Beattie, Bresnahan) scale. This scale evaluates overall locomotor activity, without testing whether the rhEPO-induced motor recovery is due to a parallel recovery of sensory and/or motor pathways. Aim of the present study was to utilize an electrophysiological test to evaluate, in a rat model of contusive SCI, the transmission of both ascending and descending pathways across the damaged cord at 2, 5, 7, 11, and 30 days after lesion, in animals treated with rhEPO (n=25) vs saline solution (n=25). Motor potentials evoked by epicortical stimulation were recorded in the spinal cord, and sensory-evoked potentials evoked by spinal stimulation were recorded at the cortical level. In the same animals BBB score and immunocytochemical evaluation of the spinal segments caudal to the lesion were performed. In rhEPO-treated animals results show a better general improvement both in sensory and motor transmission through spared spinal pathways, supposedly via the reticulo-spinal system, with respect to saline controls. This improvement is most prominent at relatively early times. Overall these features show a parallel time course to the changes observed in BBB score, suggesting that EPO-mediated spared spinal cord pathways might contribute to the improvement in transmission which, in turn, might be responsible for the recovery of locomotor function.
Collapse
|
8
|
Wang G, Huang H, Wu H, Wu C, Xu Y, Wang L, Liu X, Wang C, Shen Y, Li D, Jing H. Erythropoietin attenuates cardiopulmonary bypass-induced renal inflammatory injury by inhibiting nuclear factor-κB p65 expression. Eur J Pharmacol 2012; 689:154-9. [PMID: 22659586 DOI: 10.1016/j.ejphar.2012.05.027] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 05/09/2012] [Accepted: 05/16/2012] [Indexed: 11/30/2022]
Abstract
Acute renal injury is one of the most frequent complications after cardiopulmonary bypass (CPB). This study was designed to evaluate the potential protective effect of erythropoietin (EPO) on CPB-induced renal injury in a rat model. Male Sprague-Dawley rats were randomly divided into three groups, sham-operated group (sham), control CPB group (control), erythropoietin CPB group (EPO). Blood samples were collected at the beginning, at the end of CPB, and at 0.5, 1, 2 and 24 h post-operation, and the kidneys were harvested 24 h postoperatively and observed by optical microscopy. Levels of serum creatinine (Cr) and blood urea nitrogen (BUN) were assayed. Tumor necrosis factor-α (TNF-α), interleukin-1β (IL-1β) and interleukin-6(IL-6) levels in the renal tissues were evaluated by the method of enzyme linked immunosorbent assay (ELISA). Protein and mRNA levels of nuclear factor kappa B p65 (NF-κB p65), intercellular adhesion molecule-1 (ICAM-1) were also determined using western blot and real-time PCR respectively. Serum Cr and BUN levels as well as TNF-α, IL-1β and IL-6 levels in renal tissues in control group were significantly higher than those in the sham group. However, the levels of above biomarkers were markedly decreased in EPO group when comparing with control group. Furthermore, NF-κB p65, ICAM-1 protein and mRNA expression were significantly down-regulated in EPO group comparing with control group. In addition, microscopic examinations revealed that histological injury was alleviated when treated with EPO. The results indicated that EPO potently protected against CPB-induced acute renal injury and inhibited expression of NF-κB p65 and inflammatory response.
Collapse
Affiliation(s)
- Gaoming Wang
- Department of Cardiothoracic Surgery, Jinling Hospital, Clinical Medicine School of Nanjing University, 305 East Zhongshan Road, Nanjing 210002, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
9
|
Christensen B, Lundby C, Jessen N, Nielsen TS, Vestergaard PF, Møller N, Pilegaard H, Pedersen SB, Kopchick JJ, Jørgensen JOL. Evaluation of functional erythropoietin receptor status in skeletal muscle in vivo: acute and prolonged studies in healthy human subjects. PLoS One 2012; 7:e31857. [PMID: 22384088 PMCID: PMC3285196 DOI: 10.1371/journal.pone.0031857] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 01/18/2012] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Erythropoietin receptors have been identified in human skeletal muscle tissue, but downstream signal transduction has not been investigated. We therefore studied in vivo effects of systemic erythropoietin exposure in human skeletal muscle. METHODOLOGY/PRINCIPAL FINDINGS The protocols involved 1) acute effects of a single bolus injection of erythropoietin followed by consecutive muscle biopsies for 1-10 hours, and 2) a separate study with prolonged administration for 16 days with biopsies obtained before and after. The presence of erythropoietin receptors in muscle tissue as well as activation of Epo signalling pathways (STAT5, MAPK, Akt, IKK) were analysed by western blotting. Changes in muscle protein profiles after prolonged erythropoietin treatment were evaluated by 2D gel-electrophoresis and mass spectrometry. The presence of the erythropoietin receptor in skeletal muscle was confirmed, by the M20 but not the C20 antibody. However, no significant changes in phosphorylation of the Epo-R, STAT5, MAPK, Akt, Lyn, IKK, and p70S6K after erythropoietin administration were detected. The level of 8 protein spots were significantly altered after 16 days of rHuEpo treatment; one isoform of myosin light chain 3 and one of desmin/actin were decreased, while three isoforms of creatine kinase and two of glyceraldehyd-3-phosphate dehydrogenase were increased. CONCLUSIONS/SIGNIFICANCE Acute exposure to recombinant human erythropoietin is not associated by detectable activation of the Epo-R or downstream signalling targets in human skeletal muscle in the resting situation, whereas more prolonged exposure induces significant changes in the skeletal muscle proteome. The absence of functional Epo receptor activity in human skeletal muscle indicates that the long-term effects are indirect and probably related to an increased oxidative capacity in this tissue.
Collapse
Affiliation(s)
- Britt Christensen
- Department of Endocrinology and Internal Medicine, NBG/THG, Aarhus University Hospital, Aarhus, Denmark.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Hong Z, Hong H, Chen H, Wang Z, Hong D. Investigation of the protective effect of erythropoietin on spinal cord injury in rats. Exp Ther Med 2011; 2:837-841. [PMID: 22977585 DOI: 10.3892/etm.2011.285] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2011] [Accepted: 06/06/2011] [Indexed: 11/06/2022] Open
Abstract
Erythropoietin (EPO) is a promising therapeutic agent used in a variety of spinal cord injuries. Therefore, identifying the specific molecular pathway mediating the neuronal protective effect of EPO after spinal cord injury (SCI) is of great value to the patients concerned. Platelet-derived growth factor (PDGF)-B is an important factor in the recovery of neurological function. We explored changes in the expression of PDGF-B in spinal cord injury rats after receiving EPO treatment. We used a weight-drop contusion SCI model, and EPO treatment group rats received single doses of EPO (1,000 U/kg i.p.) immediately after the operation. Seven days after the operation, the results revealed a more rapid recovery as noted by the higher BBB scores, less disruption and more neuronal regeneration of the spinal cord in the EPO treatment group than that in the SCI group. PDGF-B expression also increased in the EPO treatment group compared to that in the SCI group (P<0.01). This study showed that PDGF-B plays a role in the neuronal protective effect of EPO on spinal cord injury in rats, which may help to explain the quick recovery after EPO treatment of spinal cord injury.
Collapse
Affiliation(s)
- Zhenghua Hong
- Department of Orthopedics, Taizhou Hospital of Zhejiang Province, Taizhou 317000, P.R. China
| | | | | | | | | |
Collapse
|
11
|
Cardioprotection by a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin. Proc Natl Acad Sci U S A 2010; 107:14357-62. [PMID: 20660739 DOI: 10.1073/pnas.1003019107] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Erythropoietin (EPO), originally identified for its critical hormonal role in regulating production and survival of erythrocytes, is a member of the type 1 cytokine superfamily. Recent studies have shown that EPO has cytoprotective effects in a wide variety of tissues, including the heart, by preventing apoptosis. However, EPO also has undesirable effects, such as thrombogenesis. In the present study, we investigated whether a helix B-surface peptide (HBSP), a nonerythropoietic, tissue-protective peptide mimicking the 3D structure of erythropoietin, protects cardiomyocytes from apoptosis in vitro and in vivo. In cultured neonatal rat cardiomyocytes, HBSP clearly inhibited apoptosis (approximately 80%) induced by TNF-alpha, which was comparable with the effect of EPO, and activated critical signaling pathways of cell survival, including Akt, ERK1/2, and STAT3. Among these pathways, Akt was shown to play an essential role in HBSP-induced prevention of apoptosis, as assessed by using a small interfering RNA approach. In the dilated cardiomyopathic hamster (J2N-k), whose cardiac tissues diffusely expressed TNF-alpha, HBSP also inhibited apoptosis (approximately 70%) and activated Akt in cardiomyocytes. Furthermore, the levels of serum creatine kinase activity and of cardiac expression of atrial natriuretic peptide, a marker of chronic heart failure, were down-regulated in animals treated with HBSP. These data demonstrate that HBSP protects cardiomyocytes from apoptosis and leads to a favorable outcome in failing hearts through an Akt-dependent pathway. Because HBSP does not have the undesirable effects of EPO, it could be a promising alternative for EPO to treat cardiovascular diseases, such as myocardial infarction and heart failure.
Collapse
|
12
|
c-FLIP is involved in erythropoietin-mediated protection of erythroid-differentiated cells from TNF-alpha-induced apoptosis. Cell Biol Int 2010; 34:621-30. [PMID: 20218968 DOI: 10.1042/cbi20090085] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The TNF-alpha (tumour necrosis factor) affects a wide range of biological activities, such as cell proliferation and apoptosis. Cell life or death responses to this cytokine might depend on cell conditions. This study focused on the modulation of factors that would affect the sensitivity of erythroid-differentiated cells to TNF-alpha. Hemin-differentiated K562 cells showed higher sensitivity to TNF-induced apoptosis than undifferentiated cells. At the same time, hemin-induced erythroid differentiation reduced c-FLIP (cellular FLICE-inhibitory protein) expression. However, this negative effect was prevented by prior treatment with Epo (erythropoietin), which allowed the cell line to maintain c-FLIP levels. On the other hand, erythroid-differentiated UT-7 cells - dependent on Epo for survival - showed resistance to TNF-alpha pro-apoptotic action. Only after the inhibition of PI3K (phosphatidylinositol-3 kinase)-mediated pathways, which was accompanied by negative c-FLIP modulation and increased erythroid differentiation, were UT-7 cells sensitive to TNF-alpha-triggered apoptosis. In summary, erythroid differentiation might deregulate the balance between growth promotion and death signals induced by TNF-alpha, depending on cell type and environmental conditions. The role of c-FLIP seemed to be critical in the protection of erythroid-differentiated cells from apoptosis or in the determination of their sensitivity to TNF-mediated programmed cell death. Epo, which for the first time was found to be involved in the prevention of c-FLIP down-regulation, proved to have an anti-apoptotic effect against the pro-inflammatory factor. The identification of signals related to cell life/death switching would have significant implications in the control of proliferative diseases and would contribute to the understanding of mechanisms underlying the anaemia associated with inflammatory processes.
Collapse
|
13
|
Harder Y, Amon M, Schramm R, Contaldo C, Metzkow E, Matzen A, Rücker M, Vollmar B, Menger MD. Erythropoietin reduces necrosis in critically ischemic myocutaneous tissue by protecting nutritive perfusion in a dose-dependent manner. Surgery 2009; 145:372-83. [PMID: 19303985 DOI: 10.1016/j.surg.2008.12.001] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2008] [Accepted: 06/12/2008] [Indexed: 10/21/2022]
Abstract
BACKGROUND Erythropoietin (Epo), the primary regulator of erythropoiesis, has recently been shown to exert antiinflammatory and antiapoptotic properties in neuronal and myocardial tissue. We herein studied whether Epo pretreatment can reduce cell death and ischemic necrosis in a chronic in vivo model. METHODS C57BL/6 mice were treated daily for 3 consecutive days with either 500 IU EPO/kg body weight (bw) (group Epo 500, n = 8) or 5000 IU EPO/kg bw (group Epo 5000, n = 8) administered intraperitoneally 24 hours before surgery. Thereafter, a random pattern myocutaneous flap subjected to acute persistent ischemia was elevated and fixed into a dorsal skinfold chamber. Flap elevation in animals receiving the water-soluble vitamin E analog Trolox (6-hydroxy-2, 5, 7, 8-tetramethylchroman-2-carboxylic acid) served as a nonspecific antiinflammatory agent control group (Tro); untreated control animals (Con) received saline only. Capillary perfusion, leukocyte-endothelial cell interaction, apoptotic cell death, and tissue necrosis were determined over a 10-day observation period using intravital multifluorescence microscopy. RESULTS Epo 5000 (44 +/- 26 cm/cm(2)) but, more noticeably, Epo 500 (116 +/- 32 cm/cm(2)) improved capillary perfusion compared with the two control groups, particularly the Con group (9 +/- 7 cm/cm(2); P < .05). The ischemia-associated leukocytic inflammation was found drastically attenuated in both Epo-pretreatment groups. Epo 500 further decreased apoptotic cell death and was effective in significantly reducing tissue necrosis (16% +/- 4% vs Tro: 48% +/- 7% and Con: 52% +/- 4%; P < .001). No angiogenic blood vessel formation could be observed in either of the Epo groups. Of interest, Epo 5000-but not Epo 500-increased systemic hematocrit. CONCLUSION Despite the lack of neovascularization, Epo pretreatment was capable of reducing ischemic tissue necrosis by protecting capillary perfusion, ie, nutrition of the tissue. Low-dose pretreatment was more effective, a result that was most likely due to the better perfusion conditions without an increase of the hematocrit values. Thus, low-dose Epo pretreatment might represent a promising strategy to protect critically perfused ischemic tissue.
Collapse
Affiliation(s)
- Yves Harder
- Institute for Clinical and Experimental Surgery, University of Saarland, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Merchionne F, Dammacco F. Biological functions and therapeutic use of erythropoiesis-stimulating agents: perplexities and perspectives. Br J Haematol 2009; 146:127-41. [PMID: 19388936 DOI: 10.1111/j.1365-2141.2009.07702.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Randomized clinical studies, carried out in patients with haematological malignancies and with solid tumours, have consistently demonstrated that treatment with recombinant human erythropoietin (Epo) increases haemoglobin levels, reduces blood transfusion requirements, and improves the quality of life. In addition, identification of erythropoietin receptor (EpoR) expression on many types of non-erythroid and cancer cells has spurred an interest in the extra-haematological activities of Epo itself and other erythropoiesis-stimulating agents (ESAs). Epo and its derivatives have emerged as major tissue-protective cytokines in ischaemic and degenerative damage of cardiovascular, neurological and renal diseases, while their angiogenetic and immunomodulatory properties indicate that their therapeutic potential may extend well beyond erythropoiesis alone. Both preclinical and clinical data, however, have suggested that they may contribute to tumour progression and prejudice survival when administered to anaemic cancer patients, though the results are equivocal and the assumed mechanisms by which tumour growth could be promoted are not fully understood. While these findings offer new perspectives, they nonetheless demand caution in the employment of ESAs. Further, well-designed experimental and clinical studies are warranted.
Collapse
Affiliation(s)
- Francesca Merchionne
- Department of Biomedical Sciences and Human Oncology, Section of Internal Medicine and Clinical Oncology, University of Bari Medical School, Bari 70124, Italy
| | | |
Collapse
|
15
|
Paragh G, Kumar SM, Rakosy Z, Choi SC, Xu X, Acs G. RNA interference-mediated inhibition of erythropoietin receptor expression suppresses tumor growth and invasiveness in A2780 human ovarian carcinoma cells. THE AMERICAN JOURNAL OF PATHOLOGY 2009; 174:1504-14. [PMID: 19264915 DOI: 10.2353/ajpath.2009.080592] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Although recombinant human erythropoietin (rHuEpo) has revolutionized the treatment of anemia, recent clinical trials suggested that rHuEpo use may be associated with decreased survival in cancer patients. Although the expression of erythropoietin (Epo) receptor (EpoR) has been demonstrated in various human cancers, the effect of exogenous Epo on the growth and therapy resistance of EpoR-bearing tumor cells is unclear at present. In the current study, we examined the hypothesis that EpoR may contribute to tumor growth independent of Epo in A2780 human ovarian carcinoma cells. A2780 human ovarian carcinoma cells showed high levels of EpoR expression, but lacked expression of Epo mRNA and biologically active Epo protein under both normoxic and hypoxic conditions. Exogenous Epo did not stimulate EpoR-mediated signaling, proliferation, invasiveness, or resistance to cytotoxic drugs in A2780 cells. In contrast, specific inhibition of EpoR expression using a short hairpin RNA (shRNA) expression plasmid resulted in markedly reduced proliferation and invasiveness in vitro. In addition, inhibition of EpoR expression led to abrogated in vivo ovarian cancer cell growth in a tumor xenograft system and resulted in decreased EpoR signaling. Our findings suggest that EpoR may be constitutively active in some cancer cells in the absence of Epo and provide the first evidence for a potential role of an Epo-independent, EpoR-mediated pathway in the growth of some human cancers.
Collapse
Affiliation(s)
- Gyorgy Paragh
- Experimental Therapeutics Program, University of Pennsylvania School of Medicine, Philadelphia, Pennsylvania, USA
| | | | | | | | | | | |
Collapse
|
16
|
Vaziri ND, Zhou XJ. Potential mechanisms of adverse outcomes in trials of anemia correction with erythropoietin in chronic kidney disease. Nephrol Dial Transplant 2008; 24:1082-8. [DOI: 10.1093/ndt/gfn601] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
17
|
Pregi N, Wenker S, Vittori D, Leirós CP, Nesse A. TNF-alpha-induced apoptosis is prevented by erythropoietin treatment on SH-SY5Y cells. Exp Cell Res 2008; 315:419-31. [PMID: 19056379 DOI: 10.1016/j.yexcr.2008.11.005] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2008] [Revised: 11/02/2008] [Accepted: 11/05/2008] [Indexed: 10/21/2022]
Abstract
The growth factor erythropoietin (Epo) has shown neuronal protective action in addition to its well known proerythroid activity. Furthermore, Epo has dealt with cellular inflammation by inhibiting the expression of several proinflammatory cytokines, such as IL-1 and TNF-alpha. The action of TNF can have both apoptotic and antiapoptotic consequences due to altered balance between different cell signalling pathways. This work has focused on the apoptotic effects of this cytokine and the potential protective action of Epo. The model we used was neuroblastoma SH-SY5Y cells cultured in the presence of 25 ng/ml TNF-alpha or pretreated with 25 U/ml Epo for 12 h before the addition of TNF-alpha. Apoptosis was evaluated by differential cell count after Hoechst staining, analysis of DNA ladder pattern, and measurement of caspase activity. Despite its ability to induce NF-kappaB nuclear translocation, TNF-alpha induced cell death, which was found to be associated to upregulation of TNF Receptor 1 expression. On the other hand, cells activated by Epo became resistant to cell death. Prevention of death receptor upregulation and caspase activation may explain this antiapoptotic effect of Epo, which may be also favoured by the induction of a higher expression of protective factors, such as Bcl-2 and NF-kappaB, through mechanisms involving Jak/STAT and PI3K signalling pathways.
Collapse
Affiliation(s)
- Nicolás Pregi
- Departamento de Química Biológica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pabellón II, Piso 4, Ciudad Universitaria, (C1428EHA), Ciudad Autónoma de Buenos Aires, Argentina.
| | | | | | | | | |
Collapse
|
18
|
Kong WN, Zhao SE, Duan XL, Yang Z, Qian ZM, Chang YZ. Decreased DMT1 and increased ferroportin 1 expression is the mechanisms of reduced iron retention in macrophages by erythropoietin in rats. J Cell Biochem 2008; 104:629-41. [PMID: 18189270 DOI: 10.1002/jcb.21654] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Recycled iron from reticuloendothelial macrophages to erythroid precursors is important to maintain the iron homeostasis. However, the molecular mechanisms underlying iron homeostasis in macrophages are poorly understood. In this study, male Sprague-Dawley rats were treated with recombinant human erythropoietin (rHuEpo, 500 IU/day, s.c.) for 3 days. At the fifth day, peritoneal exudate macrophages were harvested, and then (55)Fe uptake and release were measured by liquid scintillation counting method. The expression of divalent metal transporter 1 (DMT1) and ferroportin 1 (FPN1) in peritoneal exudate macrophages was detected by RT-PCR and Western blot. In order to exclude the direct effect of rHuEpo on macrophages, the parallel experiments were performed with incubation normal peritoneal exudate macrophages with rHuEpo (2 IU/ml). Our results showed rHuEpo injection reduced the peritoneal exudate macrophages iron retention. The uptake of Fe(II) was decreased via the suppression of DMT1 (+IRE) expression and the release of Fe(II) was increased with increasing the expression of FPN1 in macrophages. Moreover, the expression of HAMP mRNA was four times lower in rHuEpo-treated liver of rats than control group (CG). HAMP mRNA expression was increased; the synthesis of DMT1 had no significant change, whereas the FPN1 was decreased in normal peritoneal exudate macrophages after treatment with rHuEpo in vitro. We conclude that hepcidin may play a major, causative role in the change of FPN1 synthesis and that decreased the iron retention in macrophages of rHuEpo-treated rats.
Collapse
Affiliation(s)
- Wei-Na Kong
- Laboratory of Molecular Iron Metabolism, College of Life Science, Hebei Normal University, Shijiazhuang 050016, Hebei Province, PR China
| | | | | | | | | | | |
Collapse
|
19
|
Anemia and anemia correction: surrogate markers or causes of morbidity in chronic kidney disease? ACTA ACUST UNITED AC 2008; 4:436-45. [PMID: 18542121 DOI: 10.1038/ncpneph0847] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2008] [Accepted: 04/28/2008] [Indexed: 12/24/2022]
Abstract
Observational studies have shown a strong positive correlation between the severity of anemia and the risk of poor outcomes in patients with chronic kidney disease (CKD). This observation was initially taken to imply that adverse outcomes in CKD are caused by anemia. However, the assumption of causality ignores the possibility that anemia and adverse outcomes might be unrelated and that both are caused by underlying inflammation, oxidative stress and comorbid conditions. Randomized clinical trials of anemia correction have revealed an increased risk of adverse cardiovascular outcomes in patients assigned to normal, rather than subnormal, hemoglobin targets. As a result, correction of anemia is now considered potentially hazardous in patients with CKD. Notably, individuals who did not reach the target hemoglobin level in the clinical trials, despite receiving high doses of erythropoietin and iron, experienced a disproportionately large share of the adverse outcomes. These observations point to overdose of erythropoietin and iron, rather than anemia correction per se, as the likely culprit. This Review explores the reasons for the apparent contradiction between the findings of observational studies and randomized clinical trials of anemia treatment in CKD. I have focused on data from basic and translational studies, which are often overlooked in the design and interpretation of clinical studies and in the formulation of clinical guidelines.
Collapse
|
20
|
Signal mechanism activated by erythropoietin preconditioning and remote renal preconditioning-induced cardioprotection. Mol Cell Biochem 2008; 315:195-201. [PMID: 18528635 DOI: 10.1007/s11010-008-9808-3] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2008] [Accepted: 05/23/2008] [Indexed: 10/22/2022]
Abstract
It has been recently reported that release of erythropoietin could mediate the cardioprotective effects of remote renal preconditioning. However, the mechanism of erythropoietin-mediated cardioprotection in remote preconditioning is still unexplored. Therefore, the present study was designed to investigate the possible signal transduction pathway of erythropoietin-mediated cardioprotection in remote preconditioning in rats. Remote renal preconditioning was performed by four episodes of 5 min renal artery occlusion followed by 5 min reperfusion. Isolated rat hearts were perfused on Langendorff apparatus and were subjected to global ischemia for 30 min followed by 120 min reperfusion. The levels of lactate dehydrogenase (LDH) and creatine kinase (CK) were measured in coronary effluent to assess the degree of myocardial injury. Extent of myocardial infarct size and coronary flow rate was also measured. Remote renal preconditioning and erythropoietin preconditioning (5,000 IUkg(-1), i.p.) attenuated ischemia-reperfusion-induced myocardial injury and produced cardioprotective effects. However, administration of diethyldithiocarbamic acid (150 mg kg(-1) i.p.), a selective NFkB inhibitor, and glibenclamide (5 mg kg(-1) i.p.), a selective K(ATP) channel blocker, attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning. However, administration of minoxidil (1 mg kg(-1) i.v.), a selective K(ATP) channel opener, restored the attenuated cardioprotective effects of remote preconditioning and erythropoietin preconditioning in diethyldithiocarbamic acid pretreated rats. These results suggest that K(ATP) channel is a downstream mediator of NFkB activation in remote preconditioning and erythropoietin preconditioning. Therefore, it may be concluded that erythropoietin preconditioning and remote renal preconditioning trigger similar signaling mechanisms for cardioprotection, i.e., NFkB activation followed by opening of K(ATP) channels.
Collapse
|
21
|
Maiese K, Chong ZZ, Li F, Shang YC. Erythropoietin: elucidating new cellular targets that broaden therapeutic strategies. Prog Neurobiol 2008; 85:194-213. [PMID: 18396368 PMCID: PMC2441910 DOI: 10.1016/j.pneurobio.2008.02.002] [Citation(s) in RCA: 91] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2007] [Revised: 01/04/2008] [Accepted: 02/22/2008] [Indexed: 01/06/2023]
Abstract
Given that erythropoietin (EPO) is no longer believed to have exclusive biological activity in the hematopoietic system, EPO is now considered to have applicability in a variety of nervous system disorders that can overlap with vascular disease, metabolic impairments, and immune system function. As a result, EPO may offer efficacy for a broad number of disorders that involve Alzheimer's disease, cardiac insufficiency, stroke, trauma, and diabetic complications. During a number of clinical conditions, EPO is robust and can prevent metabolic compromise, neuronal and vascular degeneration, and inflammatory cell activation. Yet, use of EPO is not without its considerations especially in light of frequent concerns that may compromise clinical care. Recent work has elucidated a number of novel cellular pathways governed by EPO that can open new avenues to avert deleterious effects of this agent and offer previously unrecognized perspectives for therapeutic strategies. Obtaining greater insight into the role of EPO in the nervous system and elucidating its unique cellular pathways may provide greater cellular viability not only in the nervous system but also throughout the body.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| | | | | | | |
Collapse
|
22
|
Unraveling the Mystery of Erythropoietin-Stimulating Agents in Cancer Promotion. Cancer Res 2008; 68:4013-4017. [DOI: 10.1158/0008-5472.can-07-3324] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2007] [Revised: 02/07/2008] [Accepted: 02/26/2008] [Indexed: 11/16/2022]
Abstract
Abstract
Erythropoietin-stimulating agents (ESA) are approved for use in treating chemotherapy-induced anemia in patients with nonmyeloid malignancies. However, recent clinical trials have shown evidence of inferior overall survival and/or locoregional control of tumors in patients receiving ESAs. Given these concerning data, current studies are focused on elucidating the biological mechanisms by which ESAs may contribute to cancer promotion. Evidence suggests that ESAs activate several signaling pathways that are important in altering tumor behavior and response to treatment. Although further research is needed to more precisely elucidate these mechanisms, caution should be exercised in the use of ESAs beyond their approved indication in cancer patients. [Cancer Res 2008;68(11):4013–7]
Collapse
|
23
|
Abstract
Unmitigated oxidative stress can lead to diminished cellular longevity, accelerated aging, and accumulated toxic effects for an organism. Current investigations further suggest the significant disadvantages that can occur with cellular oxidative stress that can lead to clinical disability in a number of disorders, such as myocardial infarction, dementia, stroke, and diabetes. New therapeutic strategies are therefore sought that can be directed toward ameliorating the toxic effects of oxidative stress. Here we discuss the exciting potential of the growth factor and cytokine erythropoietin for the treatment of diseases such as cardiac ischemia, vascular injury, neurodegeneration, and diabetes through the modulation of cellular oxidative stress. Erythropoietin controls a variety of signal transduction pathways during oxidative stress that can involve Janus-tyrosine kinase 2, protein kinase B, signal transducer and activator of transcription pathways, Wnt proteins, mammalian forkhead transcription factors, caspases, and nuclear factor kappaB. Yet, the biological effects of erythropoietin may not always be beneficial and may be poor tolerated in a number of clinical scenarios, necessitating further basic and clinical investigations that emphasize the elucidation of the signal transduction pathways controlled by erythropoietin to direct both successful and safe clinical care.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, Michigan 48201, USA.
| | | | | | | |
Collapse
|
24
|
TNF receptor I sensitizes neurons to erythropoietin- and VEGF-mediated neuroprotection after ischemic and excitotoxic injury. Proc Natl Acad Sci U S A 2008; 105:6185-90. [PMID: 18413601 DOI: 10.1073/pnas.0801447105] [Citation(s) in RCA: 90] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
CNS neurons use robust cytoprotective mechanisms to ensure survival and functioning under conditions of injury. These involve pathways induced by endogenous neuroprotective cytokines such as erythropoietin (EPO). Recently, in contrast to its well known deleterious roles, TNF has also been shown to exhibit neuroprotective properties. In the present study, we investigated the molecular mechanisms by which TNF receptor (TNFR)I mediates neuroprotection by comparing the gene expression profiles of lesioned cortex from WT and TNFRI KO mice after permanent middle cerebral artery occlusion. Several known neuroprotective molecules were identified as TNFRI targets, notably members of the Bcl-2 family, DNA repair machinery and cell cycle, developmental, and differentiation factors, neurotransmitters and growth factors, as well as their receptors, including EPO receptor (EPOR), VEGF, colony-stimulating factor receptor 1, insulin-like growth factor (IGF), and nerve growth factor (NGF). Further analysis showed that induction of EPOR and VEGF expression in primary cortical neurons after glucose deprivation (GD) largely depended on TNFRI and was further up-regulated by TNF. Also, EPO- and VEGF-induced neuroprotection against GD, oxygen-glucose deprivation, and NMDA excitotoxicity depended significantly on TNFRI presence. Finally, EPO prevented neuronal damage induced by kainic acid in WT but not TNFRI KO mice. Our results identify cross-talk between tissue protective cytokines, specifically that TNFRI is necessary for constitutive and GD-induced expression of EPOR and VEGF and for EPO-mediated neuroprotection.
Collapse
|
25
|
Maiese K. Triple play: promoting neurovascular longevity with nicotinamide, WNT, and erythropoietin in diabetes mellitus. Biomed Pharmacother 2008; 62:218-32. [PMID: 18342481 PMCID: PMC2431130 DOI: 10.1016/j.biopha.2008.01.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2008] [Accepted: 01/23/2008] [Indexed: 12/17/2022] Open
Abstract
Oxidative stress is a principal pathway for the dysfunction and ultimate destruction of cells in the neuronal and vascular systems for several disease entities, not promoting the ravages of oxidative stress to any less of a degree than diabetes mellitus. Diabetes mellitus is increasing in incidence as a result of changes in human behavior that relate to diet and daily exercise and is predicted to affect almost 400 million individuals worldwide in another two decades. Furthermore, both type 1 and type 2 diabetes mellitus can lead to significant disability in the nervous and cardiovascular systems, such as cognitive loss and cardiac insufficiency. As a result, innovative strategies that directly target oxidative stress to preserve neuronal and vascular longevity could offer viable therapeutic options to diabetic patients in addition to more conventional treatments that are designed to control serum glucose levels. Here we discuss the novel application of nicotinamide, Wnt signaling, and erythropoietin that modulate cellular oxidative stress and offer significant promise for the prevention of diabetic complications in the nervous and vascular systems. Essential to this process is the precise focus upon diverse as well as common cellular pathways governed by nicotinamide, Wnt signaling, and erythropoietin to outline not only the potential benefits, but also the challenges and possible detriments of these therapies. In this way, new avenues of investigation can hopefully bypass toxic complications, or at the very least, avoid contraindications that may limit care and offer both safe and robust clinical treatment for patients.
Collapse
Affiliation(s)
- Kenneth Maiese
- Division of Cellular and Molecular Cerebral Ischemia, Wayne State University School of Medicine, Detroit, MI 48201, USA.
| |
Collapse
|
26
|
Effects of recombinant erythropoietin on breast cancer-initiating cells. Neoplasia 2008; 9:1122-9. [PMID: 18084619 DOI: 10.1593/neo.07694] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Revised: 10/08/2007] [Accepted: 10/09/2007] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Cancer anemia causes fatigue and correlates with poor treatment outcome. Erythropoietin has been introduced in an attempt to correct these defects. However, five recent clinical trials reported a negative impact of erythropoietin on survival and/or tumor control, indicating that experimental evaluation of a possible direct effect of erythropoietin on cancer cells is required. Cancer recurrence is thought to rely on the proliferation of cancer initiating cells (CICs). In breast cancer, CICs can be identified by phenotypic markers and their fate is controlled by the Notch pathway. METHODS In this study, we investigated the effect of erythropoietin on CICs in breast cancer cell lines. Levels of erythropoietin receptor (EpoR), CD24, CD44, Jagged-1 expression, and activation of Notch-1 were assessed by flow cytometry. Self-renewing capacity of CICs was investigated in sphere formation assays. RESULTS EpoR expression was found on the surface of CICs. Recombinant human Epo (rhEpo) increased the numbers of CICs and self-renewing capacity in a Notch-dependent fashion by induction of Jagged-1. Inhibitors of the Notch pathway and PI3-kinase blocked both effects. CONCLUSIONS Erythropoietin functionally affects CICs directly. Our observation may explain the negative impact of recombinant Epo on local control and survival of cancer patients with EpoR-positive tumors.
Collapse
|
27
|
Ranchon Cole I, Bonhomme B, Doly M. Pre-treatment of adult rats with high doses of erythropoietin induces caspase-9 but prevents light-induced retinal injury. Exp Eye Res 2007; 85:782-9. [DOI: 10.1016/j.exer.2007.08.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2007] [Revised: 07/30/2007] [Accepted: 08/15/2007] [Indexed: 10/22/2022]
|
28
|
Chong ZZ, Maiese K. The Src homology 2 domain tyrosine phosphatases SHP-1 and SHP-2: diversified control of cell growth, inflammation, and injury. Histol Histopathol 2007; 22:1251-67. [PMID: 17647198 PMCID: PMC2515712 DOI: 10.14670/hh-22.1251] [Citation(s) in RCA: 123] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Interest in the diverse biology of protein tyrosine phosphatases that are encoded by more than 100 genes in the human genome continues to grow at an accelerated pace. In particular, two cytoplasmic protein tyrosine phosphatases composed of two Src homology 2 (SH2) NH2-terminal domains and a C-terminal protein-tyrosine phosphatase domain referred to as SHP-1 and SHP-2 are known to govern a host of cellular functions. SHP-1 and SHP-2 modulate progenitor cell development, cellular growth, tissue inflammation, and cellular chemotaxis, but more recently the role of SHP-1 and SHP-2 to directly control cell survival involving oxidative stress pathways has come to light. SHP-1 and SHP-2 are fundamental for the function of several growth factor and metabolic pathways yielding far reaching implications for disease pathways and disorders such as diabetes, neurodegeneration, and cancer. Although SHP-1 and SHP-2 can employ similar or parallel cellular pathways, these proteins also clearly exert opposing effects upon downstream cellular cascades that affect early and late apoptotic programs. SHP-1 and SHP-2 modulate cellular signals that involve phosphatidylinositol 3-kinase, Akt, Janus kinase 2, signal transducer and activator of transcription proteins, mitogen-activating protein kinases, extracellular signal-related kinases, c-Jun-amino terminal kinases, and nuclear factor-kappaB. Our progressive understanding of the impact of SHP-1 and SHP-2 upon multiple cellular environments and organ systems should continue to facilitate the targeted development of treatments for a variety of disease entities.
Collapse
Affiliation(s)
- Z Z Chong
- Division of Cellular and Molecular Cerebral Ischemia, Institute of Environmental Health Sciences, Wayne State University School of Medicine, Detroit, Michigan 48201, USA
| | | |
Collapse
|
29
|
Vitellaro-Zuccarello L, Mazzetti S, Madaschi L, Bosisio P, Gorio A, De Biasi S. Erythropoietin-mediated preservation of the white matter in rat spinal cord injury. Neuroscience 2006; 144:865-77. [PMID: 17141961 DOI: 10.1016/j.neuroscience.2006.10.023] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2006] [Revised: 10/12/2006] [Accepted: 10/12/2006] [Indexed: 12/21/2022]
Abstract
We investigated the effect of a single administration of recombinant human erythropoietin (rhEPO) on the preservation of the ventral white matter of rats at 4 weeks after contusive spinal cord injury (SCI), a time at which functional recovery is significantly improved in comparison to the controls [Gorio A, Necati Gokmen N, Erbayraktar S, Yilmaz O, Madaschi L, Cichetti C, Di Giulio AM, Enver Vardar E, Cerami A, Brines M (2002) Recombinant human erythropoietin counteracts secondary injury and markedly enhances neurological recovery from experimental spinal cord trauma. Proc Natl Acad Sci U S A 99:9450-9455; Gorio A, Madaschi L, Di Stefano B, Carelli S, Di Giulio AM, De Biasi S, Coleman T, Cerami A, Brines M (2005) Methylprednisolone neutralizes the beneficial effects of erythropoietin in experimental spinal cord injury. Proc Natl Acad Sci U S A 102:16379-16384]. Specifically, we examined, by morphological and cytochemical methods combined with light, confocal and electron microscopy, i) myelin preservation, ii) activation of adult oligodendrocyte progenitors (OPCs) identified for the expression of NG2 transmembrane proteoglycan, iii) changes in the amount of the chondroitin sulfate proteoglycans neurocan, versican and phosphacan and of their glycosaminoglycan component labeled with Wisteria floribunda lectin, and iv) ventral horn density of the serotonergic plexus as a marker of descending motor control axons. Injured rats received either saline or a single dose of rhEPO within 30 min after SCI. The results showed that the significant improvement of functional outcome observed in rhEPO-treated rats was associated with a better preservation of myelin in the ventral white matter. Moreover, the significant increase of both the number of NG2-positive OPCs and the labeling for Nogo-A, a marker of differentiated oligodendrocytes, suggested that rhEPO treatment could result in the generation of new myelinating oligodendrocytes. Sparing of fiber tracts in the ventral white matter was confirmed by the increased density of the serotonergic plexus around motor neurons. As for chondroitin sulfate proteoglycans, only phosphacan, increased in saline-treated rats, returned to normal levels in rhEPO group, probably reflecting a better maintenance of glial-axolemmal relationships along nerve fibers. In conclusion, this investigation expands previous studies supporting the pleiotropic neuroprotective effect of rhEPO on secondary degenerative response and its therapeutic potential for the treatment of SCI and confirms that the preservation of the ventral white matter, which contains descending motor pathways, may be critical for limiting functional deficit.
Collapse
Affiliation(s)
- L Vitellaro-Zuccarello
- Dipartimento di Scienze Biomolecolari e Biotecnologie, Università degli Studi di Milano, Via Celoria 26, I-20133 Milano, Italy.
| | | | | | | | | | | |
Collapse
|
30
|
Lai SY, Grandis JR. Understanding the presence and function of erythropoietin receptors on cancer cells. J Clin Oncol 2006; 24:4675-6. [PMID: 17028292 DOI: 10.1200/jco.2006.08.1190] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|
31
|
Henke M, Mattern D, Pepe M, Bézay C, Weissenberger C, Werner M, Pajonk F. Do erythropoietin receptors on cancer cells explain unexpected clinical findings? J Clin Oncol 2006; 24:4708-13. [PMID: 17028293 DOI: 10.1200/jco.2006.06.2737] [Citation(s) in RCA: 181] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
PURPOSE Recent reports suggest that cancer control may worsen if erythropoietin is administered. We investigated whether erythropoietin receptor expression on cancer cells may correlate with this unexpected finding. PATIENTS AND METHODS Cancer tissue from patients with advanced carcinoma of the head and neck (T3, T4, or nodal involvement) and scheduled for radiotherapy was assayed retrospectively for erythropoietin receptor expression by immunohistochemistry. Patients were anemic and randomized to receive epoetin beta (300 U/kg) or placebo under double-blind conditions, given three times weekly starting 10 to 14 days before and continuing throughout radiotherapy. We administered 60 Gy following complete resection or 64 Gy subsequent to microscopically incomplete resection; 70 Gy were given following macroscopically incomplete resection or for definitive radiotherapy alone. We determined if the effect of epoetin beta on locoregional progression-free survival was correlated with the expression of erythropoietin receptors on cancer cells using a Cox proportional hazards regression model. RESULTS We studied 154 of 157 randomly assigned patients; 104 samples were positive, and 50 were negative for receptor expression. Locoregional progression-free survival was substantially poorer if epoetin beta was administered to patients positive for receptor expression compared with placebo (adjusted relative risk, 2.07; 95% CI, 1.27 to 3.36; P < .01). In contrast, epoetin beta did not impair outcome in receptor-negative patients (adjusted relative risk, 0.94; 95% CI, 0.47 to 1.90; P = .86). The difference in treatment associated relative risks (2.07 v 0.94) was borderline statistically significant (P = .08). CONCLUSION Erythropoietin might adversely affect prognosis of head and neck cancer patients if cancer cells express erythropoietin receptors.
Collapse
Affiliation(s)
- Michael Henke
- Klinik für Strahlenheilkunde, Universitätsklinikum, Robert Koch Strasse, 3 D-79106, Freiburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
32
|
Li F, Chong ZZ, Maiese K. Microglial integrity is maintained by erythropoietin through integration of Akt and its substrates of glycogen synthase kinase-3beta, beta-catenin, and nuclear factor-kappaB. Curr Neurovasc Res 2006; 3:187-201. [PMID: 16918383 PMCID: PMC1986678 DOI: 10.2174/156720206778018758] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Recognized as a robust cytoprotectant for multiple tissues of the hematopoietic, vascular, cardiac, and nervous systems, erythropoietin (EPO) also is considered to be an attractive therapeutic candidate to modulate inflammatory cell function and survival during neurodegenerative disorders. To this end, microglia of the central nervous system serve a complex function not only to dispense of foreign organisms and injured cells of the brain, but also to foster tissue repair and reorganization during neuronal and vascular cell insults. We therefore examined the ability of EPO to modulate microglial cell survival and the underlying signal transduction pathways that govern microglial integrity during oxygen-glucose deprivation (OGD)--induced oxidative stress. We demonstrate in the microglial cell line EOC 2 that EPO provides direct microglial protection against early and late apoptotic programs of membrane phosphatidylserine exposure and genomic DNA degradation. Furthermore, expression and activation of Akt1 is vital to the cytoprotective capacity of EPO, since pharmacological inhibition of the PI 3-K pathway or gene silencing of Akt1 expression eliminates the ability of EPO to protect microglial cells. Through Akt1 dependent mechanisms that can be abrogated through the gene silencing of Akt1, maintenance of microglial cell integrity during OGD by EPO is closely integrated with the phosphorylation and inhibition of glycogen synthase kinase-3beta activity as well as the intracellular trafficking of beta-catenin and nuclear factor-kappaB. Further work that continues to elucidate the ability of EPO to target the intricate pathways that determine inflammatory cell function and integrity may lay the ground work for new therapeutic avenues for neurodegenerative disease.
Collapse
Affiliation(s)
- Faqi Li
- Division of Cellular and Molecular Ischemia, Wayne State University School of Medicine, Michigan 48201, USA
| | | | | |
Collapse
|
33
|
Menon MP, Karur V, Bogacheva O, Bogachev O, Cuetara B, Wojchowski DM. Signals for stress erythropoiesis are integrated via an erythropoietin receptor-phosphotyrosine-343-Stat5 axis. J Clin Invest 2006; 116:683-94. [PMID: 16511603 PMCID: PMC1386105 DOI: 10.1172/jci25227] [Citation(s) in RCA: 91] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2005] [Accepted: 12/13/2005] [Indexed: 11/17/2022] Open
Abstract
Anemia due to chronic disease or chemotherapy often is ameliorated by erythropoietin (Epo). Present studies reveal that, unlike steady-state erythropoiesis, erythropoiesis during anemia depends sharply on an Epo receptor-phosphotyrosine-343-Stat5 signaling axis. In mice expressing a phosphotyrosine-null (PY-null) Epo receptor allele (EpoR-HM), severe and persistent anemia was induced by hemolysis or 5-fluorouracil. In short-term transplantation experiments, donor EpoR-HM bone marrow cells also failed to efficiently repopulate the erythroid compartment. In each context, stress erythropoiesis was rescued to WT levels upon the selective restoration of an EpoR PY343 Stat5-binding site (EpoR-H allele). As studied using a unique primary culture system, EpoR-HM erythroblasts exhibited marked stage-specific losses in Epo-dependent growth and survival. EpoR-H PY343 signals restored efficient erythroblast expansion, and the selective Epo induction of the Stat5 target genes proviral integration site-1 (Pim-1) and oncostatin-M. Bcl2-like 1 (Bcl-x), in contrast, was not significantly induced via WT-EpoR, EpoR-HM, or EpoR-H alleles. In Kit+ CD71+ erythroblasts, EpoR-PY343 signals furthermore enhanced SCF growth effects, and SCF modulation of Pim-1 kinase and oncostatin-M expression. In maturing Kit- CD71+ erythroblasts, oncostatin-M exerted antiapoptotic effects that likewise depended on EpoR PY343-mediated events. Stress erythropoiesis, therefore, requires stage-specific EpoR-PY343-Stat5 signals, some of which selectively bolster SCF and oncostatin-M action.
Collapse
Affiliation(s)
- Madhu P Menon
- Stem and Progenitor Cell Biology Program, Maine Medical Center Research Institute, Scarborough, Maine 04074, USA
| | | | | | | | | | | |
Collapse
|
34
|
Liu X, Xie W, Liu P, Duan M, Jia Z, Li W, Xu J. Mechanism of the cardioprotection of rhEPO pretreatment on suppressing the inflammatory response in ischemia–reperfusion. Life Sci 2006; 78:2255-64. [PMID: 16336978 DOI: 10.1016/j.lfs.2005.09.053] [Citation(s) in RCA: 70] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2005] [Accepted: 09/14/2005] [Indexed: 10/25/2022]
Abstract
Erythropoietin (EPO), originally known for its role in stimulation of erythropoiesis, has recently been shown to have a dramatic protective effect in animal models of myocardial ischemia-reperfusion (I-R) injury. However, the precise mechanisms remain unclear. We tried to study the anti-inflammatory properties of recombinant human erythropoietin (rhEPO) using an in vivo myocardial I-R rat model, which was established by 30 min ligation of left descending coronary and 3 h reperfusion. rhEPO or saline solution was intraperitoneally injected 24 h before I-R insult. The infarct size was measured by triphenyltetrazolium chloride (TTC)-Evans blue technique. Myeloperoxidase (MPO) activity and tissue neutrophil infiltration were studied. Ultrastructural organizations were observed and semiquantitatively evaluated. Tumor necrosis-alpha (TNF-alpha), interleukin-6 (IL-6), and IL-10 concentrations of left ventricle were analyzed by enzyme-linked immunosorbance assays; intercellular adhesion molecule-1 (ICAM-1) by reverse-transcription polymerase chain reaction; and nuclear factor-kappa B (NF-kappaB) and activator protein 1 (AP-1) by electrophoretic mobility shift assay, respectively. We found that a single bolus injection of 5000 units/kg of rhEPO 24 h before insult remarkably reduced infarct size and neutrophil infiltration. It greatly attenuated I-R-induced NF-kappaB and AP-1 activation with decreased TNF-alpha, IL-6, and ICAM-1 production, but enhanced IL-10 production. In conclusion, the cardioprotection of EPO may be due in part to the suppression of the inflammatory response via down-regulation of NF-kappaB and AP-1 induced by I-R. IL-10 was also suggested to play a protective role through another independent mechanism involved in cardioprotection of rhEPO.
Collapse
Affiliation(s)
- Xiaoming Liu
- Department of Anesthesiology, Jinling Hospital, School of Medicine, Nanjing University, Jiangsu Province, China
| | | | | | | | | | | | | |
Collapse
|
35
|
Um M, Lodish HF. Antiapoptotic effects of erythropoietin in differentiated neuroblastoma SH-SY5Y cells require activation of both the STAT5 and AKT signaling pathways. J Biol Chem 2006; 281:5648-56. [PMID: 16407271 DOI: 10.1074/jbc.m510943200] [Citation(s) in RCA: 84] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The hematopoietic cytokine erythropoietin (Epo) prevents neuronal death during ischemic events in the brain and in neurodegenerative diseases, presumably through its antiapoptotic effects. To explore the role of different signaling pathways in Epo-mediated antiapoptotic effects in differentiated human neuroblastoma SH-SY5Y cells, we employed a prolactin receptor (PrlR)/erythropoietin receptor (EpoR) chimera system, in which binding of prolactin (Prl) to the extracellular domain activates EpoR signaling in the cytosol. On induction of apoptosis by staurosporine, Prl supports survival of the SH-SY5Y cells expressing the wild-type PrlR/EpoR chimera. In these cells Prl treatment strongly activates the STAT5, AKT, and MAPK signaling pathways and induces weak activation of the p65 NF-kappaB factor. Selective mutation of the eight tyrosine residues of the EpoR cytoplasmic domain results in impaired or absent activation of either STAT5 (mutation of Tyr(343)) or AKT (mutation of Tyr(479)) or both (mutation of all eight tyrosine residues). Most interestingly, Prl treatment does not prevent apoptosis in cells expressing mutant PrlR/EpoR chimeras in which either the STAT5 or the AKT signaling pathways are not activated. In contrast, ERK 1/2 is fully activated by all mutant PrlR/EpoR chimeras, comparable with the level seen with the wild-type PrlR/EpoR chimera, implying that activation of the MAPK signaling pathway per se is not sufficient for antiapoptotic activity. Therefore, the antiapoptotic effects of Epo in neuronal cells require the combinatorial activation of multiple signaling pathways, including STAT5, AKT, and potentially MAPK as well, in a manner similar to that observed in hematopoietic cells.
Collapse
Affiliation(s)
- Moonkyoung Um
- Whitehead Institute for Biomedical Research, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA
| | | |
Collapse
|
36
|
Büchse T, Prietzsch H, Sasse T, Körbel S, Stigge G, Bogdanow S, Brock J, Bittorf T. Profiling of early gene expression induced by erythropoietin receptor structural variants. J Biol Chem 2005; 281:7697-707. [PMID: 16380376 DOI: 10.1074/jbc.m508481200] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The development of erythroid progenitor cells is triggered via the expression of the erythropoietin receptor (EPOR) and its activation by erythropoietin. The function of the resulting receptor complex depends critically on the presence of activated JAK2, and the complex contains a large number of signaling molecules recruited to eight phosphorylated tyrosine residues. Studies using mutant receptor forms have demonstrated that truncated receptors lacking all tyrosines are able to support red blood cell development with low efficiency, whereas add-back mutants containing either Tyr343 or Tyr479 reconstitute EPOR signaling and erythropoiesis in vivo. To study the contribution of tyrosines to receptor function, we analyzed the activation of essential signaling pathways and early gene induction promoted by different receptor structural variants using human epidermal growth factor receptor/murine EPOR hybrids. In our experiments, receptors lacking all tyrosine residues or the JAK2-binding site did not induce mitogenic and anti-apoptotic signaling, whereas add-back mutant receptors containing single tyrosine residues (Try343 and Tyr479) supported the activation of these functions efficiently. Profiling of early gene expression using cDNA array hybridization revealed that (i) the high redundancy in the activation of signaling pathways is continued at the level of transcription; (ii) the expression of many genes targeted by the wild-type receptor is not supported by add-back mutants; and (iii) a small set of genes are exclusively induced by add-back receptors. We report the identification of several early genes that have not been implicated in the EPOR-dependent response so far.
Collapse
Affiliation(s)
- Tom Büchse
- Institute of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Rostock, 18057 Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
37
|
Chong ZZ, Li F, Maiese K. Erythropoietin requires NF-kappaB and its nuclear translocation to prevent early and late apoptotic neuronal injury during beta-amyloid toxicity. Curr Neurovasc Res 2005; 2:387-99. [PMID: 16375720 PMCID: PMC1986681 DOI: 10.2174/156720205774962683] [Citation(s) in RCA: 117] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
No longer considered exclusive for the function of the hematopoietic system, erythropoietin (EPO) is now considered as a viable agent to address central nervous system injury in a variety of cellular systems that involve neuronal, vascular, and inflammatory cells. Yet, it remains unclear whether the protective capacity of EPO may be effective for chronic neurodegenerative disorders such as Alzheimer's disease (AD) that involve beta-amyloid (Abeta) apoptotic injury to hippocampal neurons. We therefore investigated whether EPO could prevent both early and late apoptotic injury during Abeta exposure in primary hippocampal neurons and assessed potential cellular pathways responsible for this protection. Primary hippocampal neuronal injury was evaluated by trypan blue dye exclusion, DNA fragmentation, membrane phosphatidylserine (PS) exposure, and nuclear factor-kappaB (NF-kappaB) expression with subcellular translocation. We show that EPO, in a concentration specific manner, is able to prevent the loss of both apoptotic genomic DNA integrity and cellular membrane asymmetry during Abeta exposure. This blockade of Abeta generated neuronal apoptosis by EPO is both necessary and sufficient, since protection by EPO is completely abolished by co-treatment with an anti-EPO neutralizing antibody. Furthermore, neuroprotection by EPO is closely linked to the expression of NF-kappaB p65 by preventing the degradation of this protein by Abeta and fostering the subcellular translocation of NF-kappaB p65 from the cytoplasm to the nucleus to allow the initiation of an anti-apoptotic program. In addition, EPO intimately relies upon NF-kappaB p65 to promote neuronal survival, since gene silencing of NF-kappaB p65 by RNA interference removes the protective capacity of EPO during Abeta exposure. Our work illustrates that EPO is an effective entity at the neuronal cellular level against Abeta toxicity and requires the close modulation of the NF-kappaB p65 pathway, suggesting that either EPO or NF-kappaB may be used as future potential therapeutic strategies for the management of chronic neurodegenerative disorders, such as AD.
Collapse
Affiliation(s)
- Zhao Zhong Chong
- Department of Neurology, 8C-1 UHC, Wayne State University School of Medicine, 4201 St. Antoine, Detroit, MI 48201, USA
| | | | | |
Collapse
|
38
|
Mohyeldin A, Lu H, Dalgard C, Lai SY, Cohen N, Acs G, Verma A. Erythropoietin signaling promotes invasiveness of human head and neck squamous cell carcinoma. Neoplasia 2005; 7:537-43. [PMID: 15967106 PMCID: PMC1501166 DOI: 10.1593/neo.04685] [Citation(s) in RCA: 89] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2004] [Revised: 11/23/2004] [Accepted: 11/23/2004] [Indexed: 11/18/2022] Open
Abstract
Erythropoietin (Epo) is used for managing anemia in cancer patients. However, recent studies have raised concerns for this practice. We investigated the expression and function of Epo and the erythropoietin receptor (EpoR) in tumor biopsies and cell lines from human head and neck cancer. Epo responsiveness of the cell lines was assessed by Epoetin-alpha-induced tyrosine phosphorylation of the Janus kinase 2 (JAK2) protein kinase. Transmigration assays across Matrigel-coated filters were used to examine the effects of Epoetin-alpha on cell invasiveness. In 32 biopsies, we observed a significant association between disease progression and expression of Epo and its receptor, EpoR. Expression was highest in malignant cells, particularly within hypoxic and infiltrating tumor regions. Although both Epo and EpoR were expressed in human head and neck carcinoma cell lines, only EpoR was upregulated by hypoxia. Epoetin-alpha treatment induced prominent JAK2 phosphorylation and enhanced cell invasion. Inhibition of JAK2 phosphorylation reduced both basal and Epo-induced invasiveness. Our findings support a role for autocrine or paracrine Epo signaling in the malignant progression and local invasiveness of head and neck cancer. This mechanism may also be activated by recombinant Epo therapy and could potentially produce detrimental effects in rhEpo-treated cancer patients.
Collapse
Affiliation(s)
- Ahmed Mohyeldin
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Huasheng Lu
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Clifton Dalgard
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| | - Stephen Y Lai
- Department of Otolaryngology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Noam Cohen
- Department of Otorhinolaryngology University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104
| | - Geza Acs
- Department of Pathology and Laboratory Medicine, University of Pennsylvania School of Medicine, 3400 Spruce Street, Philadelphia, PA 19104
| | - Ajay Verma
- Department of Neurology, Uniformed Services University of the Health Sciences, 4301 Jones Bridge Road, Bethesda, MD 20814, USA
| |
Collapse
|
39
|
Sae-Ung N, Matsushima T, Choi I, Abe Y, Winichagoon P, Fucharoen S, Nawata H, Muta K. Role of NF-kappa B in regulation of apoptosis of erythroid progenitor cells. Eur J Haematol 2005; 74:315-23. [PMID: 15777344 DOI: 10.1111/j.1600-0609.2004.00400.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Erythropoietin (EPO) and interferon-gamma (IFN-gamma) added to human erythroid progenitor cells purified from peripheral blood (erythroid colony-forming cells; ECFC) significantly reduces apoptosis as assessed by flow cytometry (FCM) using annexin V. To clarify the role of NF-kappaB in the regulation of the apoptosis of erythroid progenitor cells, cyclosporin A (CsA), which blocks dissociation of the NF-kappaB complex, was added to serum-free cultures of ECFC. CsA induced the apoptosis of ECFCs in the presence of EPO or IFN-gamma, but at different magnitudes. In the presence of a relatively low concentration of CsA (10 microm), apoptosis was induced only in cultures with EPO. The direct involvement of NF-kappaB was then assessed by Western blotting and confocal microscopy. In the presence of EPO, NF-kappaB was abundant both in the cytoplasm and in the nucleus, and nuclear expression was diminished after adding CsA. In contrast, NF-kappaB was undetectable in the nucleus in the presence of IFN-gamma. The effect of CsA on mitochondrial function was investigated by determining the DeltaPsim and reactive oxygen species production. CsA disturbed the transmembrane potential in the presence of either EPO or IFN-gamma, although the viability of the cells was maintained in the presence of IFN-gamma plus CsA. These results indicate that IFN-gamma reduced the apoptosis of erythroid progenitor cells through a unique signaling pathway that is independent of NF-kappaB translocation, and which is not mediated by modulating mitochondrial function, whereas EPO reduced apoptosis through NF-kappaB translocation to the nucleus.
Collapse
Affiliation(s)
- N Sae-Ung
- Department of Medicine and Bioregulatory Science, Graduate School of Medical Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Dagnon K, Pacary E, Commo F, Antoine M, Bernaudin M, Bernaudin JF, Callard P. Expression of Erythropoietin and Erythropoietin Receptor in Non–Small Cell Lung Carcinomas. Clin Cancer Res 2005. [DOI: 10.1158/1078-0432.993.11.3] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Abstract
Purpose: Expression of erythropoietin (Epo) and its receptor (Epo-R) has been shown in various normal and neoplastic nonhematopoietic tissues. This study, in non–small cell lung carcinoma, was designed to investigate the previously unreported expression of Epo and Epo-R as well as hypoxia-inducible factor-1α (HIF-1α), which is known to control Epo expression.
Experimental Design: Samples from lung squamous cell carcinomas (n = 17) and adenocarcinomas (n = 12) were obtained from patients undergoing curative surgery. mRNA transcripts of Epo, Epo-R, soluble Epo-R (sEpo-R), HIF-1α, and factor inhibiting HIF-1 (FIH-1) were evaluated by reverse transcription-PCR, whereas localization of Epo, Epo-R, and HIF-1α was assessed by immunohistochemistry.
Results: Epo, Epo-R, sEpo-R, HIF-1α, and FIH-1 transcripts were detected by reverse transcription-PCR in all samples tested, but with heterogeneous levels of expression for Epo, Epo-R, and sEpo-R. Coordinated levels of mRNA were observed for HIF-1α and FIH-1.
Epo was detected in carcinomatous cells by immunohistochemistry in 50% of samples and Epo-R was detected in 96% of samples. Co-expression of Epo and Epo-R was observed on contiguous sections from 50% of tumors. HIF-1α was immunolocalized in 80% of non–small cell lung carcinomas.
Conclusion: Epo-R was expressed in almost all samples and Epo was expressed in one half of samples on immunohistochemistry and in 100% of samples by mRNA detection, suggesting a potential paracrine and/or autocrine role of endogenous Epo in non–small cell lung carcinoma. The detection of stabilized HIF-1α suggests a possible role in Epo expression. Moreover, in the light of these results, the potential interactions between therapeutic recombinant Epo and the putative neoplastic Epo/Epo-R signaling pathways must be considered.
Collapse
Affiliation(s)
| | - Emilie Pacary
- 3Unité Mixte de Recherche-Centre National de la Recherche Scientifique 6185, Université de Caen, Caen, France
| | - Frédéric Commo
- 2Service d'Anatomie Pathologique, Unité Propre de Recherche de l'Enseignement Supérieur EA 3499, Université Paris 6, Hôpital Tenon, Paris, France and
| | - Martine Antoine
- 2Service d'Anatomie Pathologique, Unité Propre de Recherche de l'Enseignement Supérieur EA 3499, Université Paris 6, Hôpital Tenon, Paris, France and
| | - Myriam Bernaudin
- 3Unité Mixte de Recherche-Centre National de la Recherche Scientifique 6185, Université de Caen, Caen, France
| | | | - Patrice Callard
- 2Service d'Anatomie Pathologique, Unité Propre de Recherche de l'Enseignement Supérieur EA 3499, Université Paris 6, Hôpital Tenon, Paris, France and
| |
Collapse
|
41
|
Körbel S, Büchse T, Prietzsch H, Sasse T, Schümann M, Krause E, Brock J, Bittorf T. Phosphoprotein profiling of erythropoietin receptor- dependent pathways using different proteomic strategies. Proteomics 2005; 5:91-100. [PMID: 15672454 DOI: 10.1002/pmic.200400883] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Proteomic techniques provide new tools for the global analysis of protein profiles but also for the investigation of specific protein functions. The analysis of signaling cascades has traditionally been performed by the determination of enzymatic or transcription factor activities representing a certain pathway. Functional proteomics now allows more comprehensive approaches to study cellular responses induced during ligand/receptor interactions. In this study we evaluated proteomic strategies for the investigation of structure-function relationships in the erythropoietin receptor signalling complex. After expression of epidermal growth factor/erythropoietin receptor mutant molecules in an identical cellular background we characterized their potential to induce cellular activities. Using this system we focused our efforts on post-translational modifications of signalling proteins reflecting a substantial part of receptor-dependent signaling events. Although tyrosine phosphorylated proteins were enriched by immunoprecipitation the analysis using the classical approach combining two-dimensional gel electrophoresis and identification by matrix assisted laser desorption/ionization-time of flight-mass spectrometry revealed that low expressed signaling proteins cannot be detected by this technique. An alternative strategy using one-dimensional gel separation of phosphoproteins and liquid chromatography-tandem mass spectrometry, however, allowed us to identify multiple proteins involved in intracellular signalling representing already established pathways but also proteins which have not been linked to EPO-induced signaling so far. This approach offers the potential to extend functional proteomic studies to complex signaling processes.
Collapse
Affiliation(s)
- Sandra Körbel
- Institute of Medical Biochemistry and Molecular Biology, Medical Faculty, University of Rostock, D-18057 Rostock, Germany
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Körbel S, Schümann M, Bittorf T, Krause E. Relative quantification of erythropoietin receptor-dependent phosphoproteins using in-gel 18O-labeling and tandem mass spectrometry. RAPID COMMUNICATIONS IN MASS SPECTROMETRY : RCM 2005; 19:2259-71. [PMID: 16021614 DOI: 10.1002/rcm.2054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
On examining different proteomics approaches for the investigation of structure-function relationships of erythropoietin (EPO) receptor signaling, it was found that two-dimensional gel electrophoresis/mass spectrometry procedures are clearly limited in their ability to detect low-expressed signaling proteins. Instead it was found that a strategy involving anti-phosphotyrosine immunoprecipitation, one-dimensional gel electrophoresis (1DE), and capillary liquid chromatography/tandem mass spectrometry (LC/MS/MS) provides the sensitivity required for identification of signaling proteins. In the present work the immunoprecipitation/1DE/LC/MS approach was combined with an in-gel 18O-labeling technique to analyze EPO receptor-dependent proteins. Identification and relative quantification of more than 180 EPO receptor-dependent proteins were achieved directly based on the in-gel 18O-labeling approach.
Collapse
Affiliation(s)
- Sandra Körbel
- Institut für Medizinische Biochemie und Molekularbiologie, Universität Rostock, 18057 Rostock, Germany
| | | | | | | |
Collapse
|
43
|
Abstract
Normal tissue function in mammals depends on adequate supply of oxygen through blood vessels. A discrepancy between oxygen supply and consumption (hypoxia) induces a variety of specific adaptation mechanisms at the cellular, local and systemic level. These mechanisms are in part governed by the activation of hypoxia-inducible transcription factors (HIF-1, HIF-2), which in turn modulate expression of hypoxically regulated genes such as those encoding vascular endothelial growth factor (VEGF) and erythropoietin (EPO). EPO is a glycoprotein that is produced mainly by interstitial fibroblasts in the kidneys of the adult and in hepatocytes in the foetus. Released into the circulation, EPO makes its way to the bone marrow, where it regulates red cell production by preventing apoptosis of erythroid progenitor cells. Recently, EPO has emerged as a multifunctional growth factor that plays a significant role in the nervous system. Both EPO and its receptor are expressed throughout the brain in glial cells, neurones and endothelial cells. Hypoxia and ischaemia have been recognised as important driving forces of EPO expression in the brain. EPO has potent neuroprotective properties in vivo and in vitro and appears to act in a dual way by directly protecting neurones from ischaemic damage and by stimulating endothelial cells and thus supporting the angiogenic effect of VEGF in the nervous system. Thus, hypoxia-induced gene products such as VEGF and EPO might be part of a self-regulated physiological protection mechanism to prevent neuronal injury, especially under conditions of chronically reduced blood flow (chronic ischaemia). In this review, I will briefly summarize the recent findings on the molecular mechanisms of hypoxia-regulated EPO expression in general and give an overview of its expression in the central nervous system, its action as a growth factor with non-haematopoietic functions and its potential clinical relevance in various brain pathologies.
Collapse
Affiliation(s)
- Hugo H Marti
- Institute of Physiology and Pathophysiology, University of Heidelberg, Im Neuenheimer Feld 326, D-69120 Heidelberg, Germany.
| |
Collapse
|
44
|
Chung YH, Joo KM, Kim YS, Lee KH, Lee WB, Cha CI. Enhanced expression of erythropoietin in the central nervous system of SOD1G93A transgenic mice. Brain Res 2004; 1016:272-80. [PMID: 15246865 DOI: 10.1016/j.brainres.2004.05.040] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/10/2004] [Indexed: 10/26/2022]
Abstract
In the present study, we investigated the changes of erythropoietin (Epo) expression in the central nervous system (CNS) of SOD1(G93A) transgenic mice as an in vivo model of amyotrophic lateral sclerosis (ALS). In wild-type SOD1 (wtSOD1) transgenic mice, little immunoreactivity was found in all cortical regions. In the cerebral cortex of symptomatic SOD1(G93A) transgenic mice, there was a significant increase in Epo immunoreactivity. In the hippocampal formation, layer-specific alterations in the staining intensity were observed in the CA1-3 areas and dentate gyrus. Epo immunoreactivity was significantly increased in the midbrain, cerebellar cortex and brainstem of SOD1(G93A) transgenic mice. On the contrary, Epo immunoreactivity was moderately stained in the spinal cord and was not different between wtSOD1 and SOD1(G93A) transgenic mice at the age of 8 weeks, 13 weeks and 18 weeks. In the staining of Epo receptor (EpoR), the changing pattern was similar with that of Epo in the spinal cord and hippocampal formation in wtSOD1 and SOD1(G93A) transgenic mice. Although further studies of functional features of Epo in ALS are needed, the first demonstration of increased immunoreactivity for Epo in the CNS of SOD1(G93A) transgenic mice may provide initial insights into the development of interventional strategies to alleviate motor neuron degeneration in human ALS.
Collapse
Affiliation(s)
- Yoon Hee Chung
- Department of Anatomy, College of Medicine, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756, South Korea
| | | | | | | | | | | |
Collapse
|
45
|
Cervi D, Truong AHL, Lee JS, Sukhai N, Li YJ, Koki A, Ben-David Y. Phosphorylation status of c-Kit and Epo receptors, and the presence of wild-type p53 confer in vitro resistance of murine erythroleukemic cells to Celecoxib. Oncogene 2004; 23:2305-14. [PMID: 14743207 DOI: 10.1038/sj.onc.1207400] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
It is well established that selective COX-2 inhibitors exhibit potent effects against progression of select solid tumours. However, their effects on liquid tumours have not been fully established. By taking advantage of murine Friend Disease we have shown a strong antileukemic effect of celecoxib by determining novel in vitro targets. Western blot analyses revealed the expression of COX-2 in a panel of Friend Virus-transformed, splenic-derived primary erythroleukemic blasts and established cell lines generated in our laboratory. We have shown that celecoxib at concentrations as low as 20 microM significantly suppresses proliferation of the selected murine erythroleukemia cell line HB60-5. The greatest proliferative inhibition was seen at 40 microM of celecoxib, resulting in apoptosis. Our results also demonstrate that treatment of the established murine erythroleukemia cell line HB60-5 with celecoxib results in suppression of c-Kit and erythropoietin receptor (Epo-R) phosphorylation resulting in apoptosis, likely through decreased levels of survival factors. However, upon overexpression of c-Kit alone in these cells a significant increase in survival and twofold increase in proliferation in the presence of celecoxib were observed (P < 0.05). Finally, since responsiveness of our murine erythroleukemia cell lines to celecoxib is above the reported physiologically achievable levels in vivo, we have provided in vitro evidence to suggest that reduced sensitivity of erythroleukemic cells to lower doses of celecoxib may be a consequence of the loss of wild-type p53. These findings are pivotal in addressing potential discrepancies associated with sensitivity of murine erythroleukemic cells to celecoxib in vitro versus in vivo.
Collapse
Affiliation(s)
- David Cervi
- Department of Medical Biophysics, Sunnybrook and Women's College Health Sciences Centre and Toronto Sunnybrook Regional Cancer Centre, University of Toronto, Ontario M4N 3M5, Canada
| | | | | | | | | | | | | |
Collapse
|
46
|
Eid T, Brines ML, Cerami A, Spencer DD, Kim JH, Schweitzer JS, Ottersen OP, de Lanerolle NC. Increased expression of erythropoietin receptor on blood vessels in the human epileptogenic hippocampus with sclerosis. J Neuropathol Exp Neurol 2004; 63:73-83. [PMID: 14748563 DOI: 10.1093/jnen/63.1.73] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Microvascular (capillary) proliferation is a readily observed, but largely ignored phenomenon of the mesial temporal lobe epilepsy (MTLE) hippocampus. Here, we report that the proliferated capillaries in surgically resected MTLE hippocampi were strongly immunoreactive for erythropoietin receptor (EPO-r). Further, we found that these capillaries were most prominent in areas of the MTLE hippocampus with extensive neuronal loss and gliosis, i.e. the CA3, CA1, and dentate hilus. High-resolution immunogold electron microscopy revealed that the capillary EPO-r was localized to the luminal and abluminal plasma membrane of endothelial cells, to endosome-like structures of these cells, and to pericapillary astrocytic end-feet. Previous studies have shown that systemically administered EPO appears in the cerebrospinal fluid in experimental animals, and the present results are consistent with the idea that EPO enters the brain via receptor-mediated endocytosis. The enrichment of EPO-r shown here suggests a highly efficient uptake of plasma EPO into the MTLE hippocampus and a possible role for this cytokine in epileptogenesis. Moreover, the presence of EPO-r in the MTLE hippocampus may provide a new vehicle for highly efficient delivery of hitherto impermeable drugs into the epileptic brain.
Collapse
Affiliation(s)
- Tore Eid
- Department of Neurosurgery, Yale University School of Medicine, New Haven, Connecticut 06520-8082, USA.
| | | | | | | | | | | | | | | |
Collapse
|
47
|
Li K, Miller C, Hegde S, Wojchowski D. Roles for an Epo receptor Tyr-343 Stat5 pathway in proliferative co-signaling with kit. J Biol Chem 2003; 278:40702-9. [PMID: 12909618 DOI: 10.1074/jbc.m307182200] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Erythroid progenitor cell expansion depends upon co-signaling by Epo receptor (EpoR) and Kit, but underlying mechanisms are incompletely understood. To quantitatively analyze EpoR contributions to co-signaling, phosphotyrosine (Tyr(P)) mutants were expressed as human epidermal growth factor (hEGF) receptor-mEpoR EE chimeras at matched and physiological levels in FDCW2 hematopoietic progenitor cells and were assayed for proliferative activities in the absence or presence of endogenous Kit stimulation. Two Tyr(P)-null (but Jak2-coupled) EpoR forms each retained <or=25% of the wild-type activity, whereas the add-back of single Tyr(P) sites in the EpoR forms EE-T-Y343 (Stat5 binding site), EE-Y479 (p85/phosphatidylinositol 3-kinase binding site), or EE-Y464 (Src kinase binding site) significantly enhanced activities (to 100, 95, and 50% of EE-WT (wild type) levels, respectively). EE-Y343&Y401 and EEF343&F401 double add-back and deletion constructs were also prepared and were shown to possess 90 and <or=50% of wild-type activity. In contrast, efficient Kit co-signaling activity was retained only by EE-T-Y343 and EE-Y343&Y401 EpoR forms. EE-T-Y343 together with EE-T-Y343F and EE-WT EpoR forms were also analyzed in embryonic stem cell-derived erythroid G1E-2 cells with highly comparable outcomes, including the ability of EE-T-Y343 (but not EE-T-Y-343F) to synergize with Kit. Despite specific connection of EE-T-Y343 to Stat5, the contributions of Kit to EpoR-dependent proliferation did not involve Kit effects on Stat5 activation (but was limited by the mutation of Kit Tyr(P)-567 and Tyr(P)-569 Src kinase recruitment sites). Instead, co-signaling appears to depend upon the downstream integration of Kit signals with the targets of an EpoR/Jak2/Y343/Stat 5 response axis.
Collapse
Affiliation(s)
- Ke Li
- Department of Veterinary Science, The Pennsylvania State University, University Park, Pennsylvania 16802, USA
| | | | | | | |
Collapse
|
48
|
Batra S, Perelman N, Luck LR, Shimada H, Malik P. Pediatric tumor cells express erythropoietin and a functional erythropoietin receptor that promotes angiogenesis and tumor cell survival. J Transl Med 2003; 83:1477-87. [PMID: 14563949 DOI: 10.1097/01.lab.0000090156.94795.48] [Citation(s) in RCA: 98] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
Erythropoietin was traditionally considered an erythroid-restricted cytokine, but recent evidence indicates a broader role for it in nonhematopoietic tissues, specifically in neural development. Pediatric solid tumors are mostly developmental in origin, and more than 50% of the solid tumors are neural in origin. We found erythropoietin receptor and erythropoietin expression in common pediatric tumor cells: neuroblastomas, Ewing's sarcoma family of tumors, pediatric brain tumors (medulloblastoma, astrocytoma, and ependymoma), Wilms tumors, rhabdomyosarcomas, and hepatoblastomas (n = 24), and in cell lines derived from some of these tumors (n = 25). Expression of erythropoietin in tumor cell lines was hypoxia-inducible. Addition of exogenous erythropoietin to tumor cell lines expressing erythropoietin receptor increased nuclear DNA binding activity of nuclear factor kappa B and increased the expression of the antiapoptotic genes bcl-1, bcl-xL, and mcl-1. Additionally, exogenous erythropoietin increased production and secretion of angiogenic growth factors, vascular endothelial growth factor, or placenta growth factor from the tumor cell lines, which promoted endothelial cell proliferation and chemotaxis. Erythropoietin receptor expression that promotes tumor cell survival and releases angiogenic growth factors in pediatric tumors has not been previously described. Therefore, a careful evaluation of the impact of erythropoietin is warranted in vivo, in xenograft models of pediatric tumors, followed by evaluation in pediatric patients with cancer.
Collapse
MESH Headings
- Cell Hypoxia/physiology
- Cell Survival
- Child, Preschool
- Dose-Response Relationship, Drug
- Endothelial Growth Factors/metabolism
- Erythropoietin/genetics
- Erythropoietin/metabolism
- Erythropoietin/pharmacology
- Fluorescent Antibody Technique, Indirect
- Gene Expression Regulation, Neoplastic
- Humans
- Infant
- Intercellular Signaling Peptides and Proteins/metabolism
- Lymphokines/metabolism
- Neoplasms, Germ Cell and Embryonal/genetics
- Neoplasms, Germ Cell and Embryonal/metabolism
- Neoplasms, Germ Cell and Embryonal/pathology
- Neovascularization, Pathologic/pathology
- Neovascularization, Pathologic/physiopathology
- Placenta Growth Factor
- Pregnancy Proteins/metabolism
- RNA, Messenger/metabolism
- RNA, Neoplasm/analysis
- Receptors, Erythropoietin/genetics
- Receptors, Erythropoietin/metabolism
- Reverse Transcriptase Polymerase Chain Reaction
- Tumor Cells, Cultured
- Vascular Endothelial Growth Factor A
- Vascular Endothelial Growth Factors
Collapse
Affiliation(s)
- Sandeep Batra
- Division of Hematology-Oncology, Childrens Hospital Los Angeles, California, USA
| | | | | | | | | |
Collapse
|
49
|
Affiliation(s)
- Jens Samol
- Department of Haematology, John Radcliffe Hospital, Oxford, UK
| | | |
Collapse
|
50
|
Ketteler R, Moghraby CS, Hsiao JG, Sandra O, Lodish HF, Klingmüller U. The cytokine-inducible Scr homology domain-containing protein negatively regulates signaling by promoting apoptosis in erythroid progenitor cells. J Biol Chem 2003; 278:2654-60. [PMID: 12441334 DOI: 10.1074/jbc.m211236200] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The small cytokine-inducible SH2 domain-containing protein (CIS) has been implicated in the negative regulation of signaling through cytokine receptors. CIS reduces growth of erythropoietin receptor (EpoR)-dependent cell lines, but its role in proliferation, differentiation, and survival of erythroid progenitor cells has not been resolved. To dissect the function of CIS in cell lines and erythroid progenitor cells, we generated green fluorescent protein (GFP)-tagged versions of wild type CIS, a mutant harboring an inactivated SH2 domain (CIS R107K), and a mutant with a deletion of the SOCS Box (CISDeltaBox). Retroviral expression of the GFP fusion proteins in BaF3-EpoR cells revealed that both Tyr-401 in the EpoR and an intact SH2 domain within CIS are prerequisites for receptor recruitment. As a consequence, both are essential for the growth inhibitory effect of CIS, whereas the CIS SOCS box is dispensable. Accordingly, the retroviral expression of GFP-CIS but not GFP-CIS R107K impaired proliferation of erythroid progenitor cells in colony assays. Erythroid differentiation was unaffected by either protein. Interestingly, apoptosis of erythroid progenitor cells was increased upon GFP-CIS expression and this required the presence both of an intact SH2 domain and the SOCS box. Thus, CIS negatively regulates signaling at two levels, apoptosis and proliferation, and thereby sets a threshold for signal transduction.
Collapse
Affiliation(s)
- Robin Ketteler
- Hans-Spemann-Laboratory, Max-Planck Institute for Immunobiology, D-79108 Freiburg, Germany
| | | | | | | | | | | |
Collapse
|