1
|
Wu KY, Chen YJ, Lin SF, Hsu HM. Iron triggers TvPI4P5K proteostasis and Arf-mediated cell membrane trafficking to regulate PIP 2 signaling crucial for multiple pathogenic activities of the parasitic protozoan Trichomonas vaginalis. mBio 2024:e0186424. [PMID: 39714186 DOI: 10.1128/mbio.01864-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 12/04/2024] [Indexed: 12/24/2024] Open
Abstract
Trichomonas vaginalis is the etiologic agent of trichomoniasis, one of the most common non-viral sexually transmitted infections globally. Our previous work reported the role of phosphatidylinositol 4,5-bisphosphates (PIP2) signaling in the actin-dependent pathogenicity of T. vaginalis. This study further demonstrated that iron transiently regulated T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) proteostasis and its complex formation with an active ADP ribosylation factor TvArf220, facilitating co-trafficking to the plasma membrane, crucial for PIP2 production. In dominant-active HA-TvArf220 Q71L mutant, TvPI4P5K plasma membrane trafficking, PIP2 production, and intracellular calcium levels were increased, while these processes were inhibited in dominant-negative T31N mutant or those by Brefeldin A (BFA) treatment. Additionally, PIP2 replenishment reversed these inhibitions in the T31N mutant, suggesting the critical role of TvArf220 activation in PIP2-calcium signaling. Also, T31N mutant and BFA treatment impaired actin dynamics and cytoskeleton-dependent processes in T. vaginalis, further linking the role of TvArf220 to PIP2-calcium-dependent actin dynamics. Beyond cytoadherence, during host-parasite interactions, TvArf220 influenced both contact-dependent and -independent cytotoxicity, as well as phagocytotic capacity, contributing to the cytopathogenesis of human vaginal epithelial cells. Our findings underscore the key upstream regulation mechanisms of the PIP2 signaling, orchestrating the interplay between TvArf220-PIP2-calcium signaling and downstream actin cytoskeleton-driven pathogenicity in T. vaginalis.IMPORTANCETrichomonas vaginalis actin cytoskeleton-centric pathogenicity is regulated by the phosphatidylinositol 4,5-bisphosphates (PIP2)-triggered calcium signaling cascade in response to environmental iron, though the detailed mechanism by which iron modulates PIP2 signaling remains unclear. Our findings reveal that iron rapidly induces T. vaginalis phosphatidylinositol-4-phosphate 5-kinase (TvPI4P5K) translation followed by its degradation, while simultaneously activating TvArf220 binding, which facilitates TvPI4P5K localization to the plasma membrane for PIP2 production. In contrast to the TvArf220 Q71L mutant, the reduced PIP2 production, intracellular calcium, actin assembly, morphogenesis, and cytoadherence in the dominant-negative T31N mutant were recovered by PIP2 supplementation, indicating the essential role of TvArf220 in PIP2-dependent calcium signaling. Additionally, the contact-dependent or -independent cytotoxicity, along with the phagocytosis, was impaired in the TvPI4P5K- or TvArf220-deficient parasites, as well as in those treated with BAPTA or Latrunculin B. These findings highlight that TvArf220-mediated PIP2-calcium signaling cascade regulates actin cytoskeleton and cytopathogenicity of T. vaginalis. This study uncovers a novel pathogenic mechanism and suggests potential therapeutic targets for parasite control.
Collapse
Affiliation(s)
- Kuan-Yi Wu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Yen-Ju Chen
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Shu-Fan Lin
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Hong-Ming Hsu
- Department of Tropical Medicine and Parasitology, College of Medicine, National Taiwan University, Taipei, Taiwan
| |
Collapse
|
2
|
Khalid E, Chang JP. Small GTPase control of pituitary hormone secretion: Evidence from studies in the goldfish (Carassius auratus) neuroendocrine model. Gen Comp Endocrinol 2023; 339:114287. [PMID: 37060929 DOI: 10.1016/j.ygcen.2023.114287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/27/2023] [Accepted: 04/10/2023] [Indexed: 04/17/2023]
Abstract
The secretion of vertebrate pituitary hormones is regulated by multiple hypothalamic factors, which, while generally activating unique receptor systems, ultimately propagate signals through interacting intracellular regulatory elements to modulate hormone exocytosis. One important family of intracellular regulators is the monomeric small GTPases, a subset of which (Arf1/6, Rac, RhoA, and Ras) is highly conserved across vertebrates and regulates secretory vesicle exocytosis in many cell types. In this study, we investigated the roles of these small GTPases in basal and agonist-dependent hormone release from dispersed goldfish (Carassius auratus) pituitary cells in perifusion experiments. Inhibition of these small GTPases elevated basal LH and GH secretion, except for Ras inhibition which only increased basal LH release. However, variable responses were observed with regard to LH and GH responses to the two goldfish native gonadotropin-releasing hormones (GnRH2 and GnRH3). GnRH-dependent LH release, but not GH secretion, was mediated by Arf1/6 GTPases. In contrast, inhibition of Rac and RhoA GTPases selectively enhanced GnRH3- and GnRH2-dependent GH release, respectively, while Ras inhibition only enhanced GnRH3-evoked LH secretion. Together, our results reveal novel divergent cell-type- and ligand-specific roles for small GTPases in the control of goldfish pituitary hormone exocytosis in unstimulated and GnRH-evoked release.
Collapse
Affiliation(s)
- Enezi Khalid
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9
| | - John P Chang
- Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada, T6G 2E9.
| |
Collapse
|
3
|
Hormones Secretion and Rho GTPases in Neuroendocrine Tumors. Cancers (Basel) 2020; 12:cancers12071859. [PMID: 32664294 PMCID: PMC7408961 DOI: 10.3390/cancers12071859] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
Neuroendocrine tumors (NETs) belong to a heterogeneous group of neoplasms arising from hormone secreting cells. These tumors are often associated with a dysfunction of their secretory activity. Neuroendocrine secretion occurs through calcium-regulated exocytosis, a process that is tightly controlled by Rho GTPases family members. In this review, we compiled the numerous mutations and modification of expression levels of Rho GTPases or their regulators (Rho guanine nucleotide-exchange factors and Rho GTPase-activating proteins) that have been identified in NETs. We discussed how they might regulate neuroendocrine secretion.
Collapse
|
4
|
Shi W, Ye B, Rame M, Wang Y, Cioca D, Reibel S, Peng J, Qi S, Vitale N, Luo H, Wu J. The receptor tyrosine kinase EPHB6 regulates catecholamine exocytosis in adrenal gland chromaffin cells. J Biol Chem 2020; 295:7653-7668. [PMID: 32321761 DOI: 10.1074/jbc.ra120.013251] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/20/2020] [Indexed: 11/06/2022] Open
Abstract
The erythropoietin-producing human hepatocellular receptor EPH receptor B6 (EPHB6) is a receptor tyrosine kinase that has been shown previously to control catecholamine synthesis in the adrenal gland chromaffin cells (AGCCs) in a testosterone-dependent fashion. EPHB6 also has a role in regulating blood pressure, but several facets of this regulation remain unclear. Using amperometry recordings, we now found that catecholamine secretion by AGCCs is compromised in the absence of EPHB6. AGCCs from male knockout (KO) mice displayed reduced cortical F-actin disassembly, accompanied by decreased catecholamine secretion through exocytosis. This phenotype was not observed in AGCCs from female KO mice, suggesting that testosterone, but not estrogen, contributes to this phenotype. Of note, reverse signaling from EPHB6 to ephrin B1 (EFNB1) and a 7-amino acid-long segment in the EFNB1 intracellular tail were essential for the regulation of catecholamine secretion. Further downstream, the Ras homolog family member A (RHOA) and FYN proto-oncogene Src family tyrosine kinase (FYN)-proto-oncogene c-ABL-microtubule-associated monooxygenase calponin and LIM domain containing 1 (MICAL-1) pathways mediated the signaling from EFNB1 to the defective F-actin disassembly. We discuss the implications of EPHB6's effect on catecholamine exocytosis and secretion for blood pressure regulation.
Collapse
Affiliation(s)
- Wei Shi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Bei Ye
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada.,Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Marion Rame
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Yujia Wang
- Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | | | | | - Junzheng Peng
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Shijie Qi
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Nicolas Vitale
- Institut des Neurosciences Cellulaires et Intégratives, UPR-3212 Centre National de la Recherche Scientifique and Université de Strasbourg, Strasbourg, France
| | - Hongyu Luo
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada
| | - Jiangping Wu
- Research Centre, Centre hospitalier de l'Université de Montréal (CRCHUM), Montreal, Quebec, Canada .,Nephrology Department, CHUM, Montreal, Quebec, Canada
| |
Collapse
|
5
|
Shi W, Wang Y, Peng J, Qi S, Vitale N, Kaneda N, Murata T, Luo H, Wu J. EPHB6 controls catecholamine biosynthesis by up-regulating tyrosine hydroxylase transcription in adrenal gland chromaffin cells. J Biol Chem 2019; 294:6871-6887. [PMID: 30824540 DOI: 10.1074/jbc.ra118.005767] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
EPHB6 is a member of the erythropoietin-producing hepatocellular kinase (EPH) family and a receptor tyrosine kinase with a dead kinase domain. It is involved in blood pressure regulation and adrenal gland catecholamine (CAT) secretion, but several facets of EPHB6-mediated CAT regulation are unclear. In this study, using biochemical, quantitative RT-PCR, immunoblotting, and gene microarray assays, we found that EPHB6 up-regulates CAT biosynthesis in adrenal gland chromaffin cells (AGCCs). We observed that epinephrine content is reduced in the AGCCs from male Ephb6-KO mice, caused by decreased expression of tyrosine hydroxylase, the rate-limiting enzyme in CAT biosynthesis. We demonstrate that the signaling pathway from EPHB6 to tyrosine hydroxylase expression in AGCCs involves Rac family small GTPase 1 (RAC1), MAP kinase kinase 7 (MKK7), c-Jun N-terminal kinase (JNK), proto-oncogene c-Jun, activator protein 1 (AP1), and early growth response 1 (EGR1). On the other hand, signaling via extracellular signal-regulated kinase (ERK1/2), p38 mitogen-activated protein kinase, and ELK1, ETS transcription factor (ELK1) was not affected by EPHB6 deletion. We further report that EPHB6's effect on AGCCs was via reverse signaling through ephrin B1 and that EPHB6 acted in concert with the nongenomic effect of testosterone to control CAT biosynthesis. Our findings elucidate the mechanisms by which EPHB6 modulates CAT biosynthesis and identify potential therapeutic targets for diseases, such as hypertension, caused by dysfunctional CAT biosynthesis.
Collapse
Affiliation(s)
- Wei Shi
- From the Research Centre and
| | - Yujia Wang
- From the Research Centre and.,the Children's Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310003, China
| | | | | | - Nicolas Vitale
- the Institut des Neurosciences Cellulaires et Intégratives, UPR-3212, CNRS-Université de Strasbourg, 5 rue Blaise Pascal, 67000 Strasbourg, France, and
| | - Norio Kaneda
- the Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 4688503, Japan
| | - Tomiyasu Murata
- the Department of Analytical Neurobiology, Faculty of Pharmacy, Meijo University, Tempaku, Nagoya 4688503, Japan
| | | | - Jiangping Wu
- From the Research Centre and .,Nephrology Department, Centre Hospitalier de l'Université de Montréal Montreal, Quebec, H2X 0A9, Canada
| |
Collapse
|
6
|
Papadopulos A. Membrane shaping by actin and myosin during regulated exocytosis. Mol Cell Neurosci 2017; 84:93-99. [PMID: 28536001 DOI: 10.1016/j.mcn.2017.05.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 04/21/2017] [Accepted: 05/19/2017] [Indexed: 12/01/2022] Open
Abstract
The cortical actin network in neurosecretory cells is a dense mesh of actin filaments underlying the plasma membrane. Interaction of actomyosin with vesicular membranes or the plasma membrane is vital for tethering, retention, transport as well as fusion and fission of exo- and endocytic membrane structures. During regulated exocytosis the cortical actin network undergoes dramatic changes in morphology to accommodate vesicle docking, fusion and replenishment. Most of these processes involve plasma membrane Phosphoinositides (PIP) and investigating the interactions between the actin cortex and secretory structures has become a hotbed for research in recent years. Actin remodelling leads to filopodia outgrowth and the creation of new fusion sites in neurosecretory cells and actin, myosin and dynamin actively shape and maintain the fusion pore of secretory vesicles. Changes in viscoelastic properties of the actin cortex can facilitate vesicular transport and lead to docking and priming of vesicle at the plasma membrane. Small GTPase actin mediators control the state of the cortical actin network and influence vesicular access to their docking and fusion sites. These changes potentially affect membrane properties such as tension and fluidity as well as the mobility of embedded proteins and could influence the processes leading to both exo- and endocytosis. Here we discuss the multitudes of actin and membrane interactions that control successive steps underpinning regulated exocytosis.
Collapse
Affiliation(s)
- Andreas Papadopulos
- The Clem Jones Centre for Ageing Dementia Research, Queensland Brain Institute, The University of Queensland, Brisbane, QLD, 4072, Australia.
| |
Collapse
|
7
|
Meunier FA, Gutiérrez LM. Captivating New Roles of F-Actin Cortex in Exocytosis and Bulk Endocytosis in Neurosecretory Cells. Trends Neurosci 2016; 39:605-613. [DOI: 10.1016/j.tins.2016.07.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 07/01/2016] [Accepted: 07/06/2016] [Indexed: 12/01/2022]
|
8
|
Villanueva J, Gimenez-Molina Y, Viniegra S, Gutiérrez LM. F-actin cytoskeleton and the fate of organelles in chromaffin cells. J Neurochem 2016; 137:860-6. [PMID: 26843469 DOI: 10.1111/jnc.13560] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Revised: 01/21/2016] [Accepted: 01/22/2016] [Indexed: 12/31/2022]
Abstract
In addition to playing a fundamental structural role, the F-actin cytoskeleton in neuroendocrine chromaffin cells has a prominent influence on governing the molecular mechanism and regulating the secretory process. Performing such roles, the F-actin network might be essential to first transport, and later locate the cellular organelles participating in the secretory cycle. Chromaffin granules are transported from the internal cytosolic regions to the cell periphery along microtubular and F-actin structures. Once in the cortical region, they are embedded in the F-actin network where these vesicles experience restrictions in motility. Similarly, mitochondria transport is affected by both microtubule and F-actin inhibitors and suffers increasing motion restrictions when they are located in the cortical region. Therefore, the F-actin cortex is a key factor in defining the existence of two populations of cortical and perinuclear granules and mitochondria which could be distinguished by their different location and mobility. Interestingly, other important organelles for controlling intracellular calcium levels, such as the endoplasmic reticulum network, present clear differences in distribution and much lower mobility than chromaffin vesicles and mitochondria. Nevertheless, both mitochondria and the endoplasmic reticulum appear to distribute in the proximity of secretory sites to fulfill a pivotal role, forming triads with calcium channels ensuring the fine tuning of the secretory response. This review presents the contributions that provide the basis for our current view regarding the influence that F-actin has on the distribution of organelles participating in the release of catecholamines in chromaffin cells, and summarizes this knowledge in simple models. In chromaffin cells, organelles such as granules and mitochondria distribute forming cortical and perinuclear populations whereas others like the ER present homogenous distributions. In the present review we discuss the role of transport systems and the existence of an F-actin cortical structure as the main factors behind the formation of organelle subpopulations in this neuroendocrine cell model. This article is part of a mini review series on Chromaffin cells (ISCCB Meeting, 2015). Cover image for this issue: doi: 10.1111/jnc.13322.
Collapse
Affiliation(s)
- José Villanueva
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Yolanda Gimenez-Molina
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Salvador Viniegra
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| | - Luis M Gutiérrez
- Instituto de Neurociencias, Centro Mixto Universidad Miguel Hernández-CSIC, Sant Joan d'Alacant (Alicante), Spain
| |
Collapse
|
9
|
Langert KA, Pervan CL, Stubbs EB. Novel role of Cdc42 and RalA GTPases in TNF-α mediated secretion of CCL2. Small GTPases 2014; 5:29260. [PMID: 24911990 DOI: 10.4161/sgtp.29260] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Transendothelial migration of autoreactive leukocytes into peripheral nerves is an early pathological hallmark of acute inflammatory demyelinating polyneuropathy (AIDP), a North American and European variant of Guillain-Barré Syndrome. Whereas the clinical management of AIDP is currently limited to non-selective immune modulating therapies, recent experimental studies support selective targeting of leukocyte trafficking as a promising alternative therapeutic strategy. Here, using a combination of targeted siRNA knockdown and pharmacological inhibitors, we report a novel role of both Cdc42 and RalA GTPases in facilitating TNF-α mediated CCL2 trafficking and release from immortalized rat peripheral nerve microvascular endoneurial endothelial cells. These findings raise interest in Cdc42 and RalA GTPases as potential therapeutic targets for the management of autoimmune inflammatory peripheral nerve disease.
Collapse
Affiliation(s)
- Kelly A Langert
- Research Service; Department of Veterans Affairs; Edward Hines Jr. VA Hospital; Hines, IL USA; Neuroscience Institute; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA; Department of Ophthalmology; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA
| | - Cynthia L Pervan
- Research Service; Department of Veterans Affairs; Edward Hines Jr. VA Hospital; Hines, IL USA; Neuroscience Institute; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA; Department of Ophthalmology; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA
| | - Evan B Stubbs
- Research Service; Department of Veterans Affairs; Edward Hines Jr. VA Hospital; Hines, IL USA; Neuroscience Institute; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA; Department of Ophthalmology; Stritch School of Medicine; Loyola University Chicago; Maywood, IL USA
| |
Collapse
|
10
|
Hissa B, Pontes B, Roma PMS, Alves AP, Rocha CD, Valverde TM, Aguiar PHN, Almeida FP, Guimarães AJ, Guatimosim C, Silva AM, Fernandes MC, Andrews NW, Viana NB, Mesquita ON, Agero U, Andrade LO. Membrane cholesterol removal changes mechanical properties of cells and induces secretion of a specific pool of lysosomes. PLoS One 2013; 8:e82988. [PMID: 24376622 PMCID: PMC3869752 DOI: 10.1371/journal.pone.0082988] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2013] [Accepted: 10/29/2013] [Indexed: 11/18/2022] Open
Abstract
In a previous study we had shown that membrane cholesterol removal induced unregulated lysosomal exocytosis events leading to the depletion of lysosomes located at cell periphery. However, the mechanism by which cholesterol triggered these exocytic events had not been uncovered. In this study we investigated the importance of cholesterol in controlling mechanical properties of cells and its connection with lysosomal exocytosis. Tether extraction with optical tweezers and defocusing microscopy were used to assess cell dynamics in mouse fibroblasts. These assays showed that bending modulus and surface tension increased when cholesterol was extracted from fibroblasts plasma membrane upon incubation with MβCD, and that the membrane-cytoskeleton relaxation time increased at the beginning of MβCD treatment and decreased at the end. We also showed for the first time that the amplitude of membrane-cytoskeleton fluctuation decreased during cholesterol sequestration, showing that these cells become stiffer. These changes in membrane dynamics involved not only rearrangement of the actin cytoskeleton, but also de novo actin polymerization and stress fiber formation through Rho activation. We found that these mechanical changes observed after cholesterol sequestration were involved in triggering lysosomal exocytosis. Exocytosis occurred even in the absence of the lysosomal calcium sensor synaptotagmin VII, and was associated with actin polymerization induced by MβCD. Notably, exocytosis triggered by cholesterol removal led to the secretion of a unique population of lysosomes, different from the pool mobilized by actin depolymerizing drugs such as Latrunculin-A. These data support the existence of at least two different pools of lysosomes with different exocytosis dynamics, one of which is directly mobilized for plasma membrane fusion after cholesterol removal.
Collapse
Affiliation(s)
- Barbara Hissa
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Bruno Pontes
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Paula Magda S. Roma
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ana Paula Alves
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Carolina D. Rocha
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Thalita M. Valverde
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Pedro Henrique N. Aguiar
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Fernando P. Almeida
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Allan J. Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro, RJ, Brazil
| | - Cristina Guatimosim
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Aristóbolo M. Silva
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Maria C. Fernandes
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Norma W. Andrews
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, Maryland, United States of America
| | - Nathan B. Viana
- LPO-COPEA, Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
- Instituto de Física, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Oscar N. Mesquita
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Ubirajara Agero
- Departamento de Física, Instituto de Ciências Exatas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
| | - Luciana O. Andrade
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- * E-mail:
| |
Collapse
|
11
|
Pathak R, Dermardirossian C. GEF-H1: orchestrating the interplay between cytoskeleton and vesicle trafficking. Small GTPases 2013; 4:174-9. [PMID: 23648943 DOI: 10.4161/sgtp.24616] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Vesicle trafficking is crucial for delivery of membrane compartments as well as signaling molecules to specific sites on the plasma membrane for regulation of diverse processes such as cell division, migration, polarity establishment and secretion. Rho GTPases are well-studied signaling molecules that regulate actin cytoskeleton in response to variety of extracellular stimuli. Increasing amounts of evidence suggest that Rho proteins play a critical role in vesicle trafficking in both the exocytic and endocytic pathways; however, the molecular mechanism underlying the process remains largely unclear. We recently defined a mechanism of action for RhoA in membrane trafficking pathways through regulation of the octameric complex exocyst in a manuscript published in Developmental Cell. We have shown that microtubule-associated RhoA-activating factor GEF-H1 is involved in endocytic and excocytic vesicle trafficking. GEF-H1 activates RhoA in response to RalA GTPase, which in turn regulates the localization and the assembly of exocyst components and exocytosis. Our work defines a mechanism for RhoA activation in response to RalA signaling and during vesicle trafficking. These results provide a framework for understanding how RhoA/GEF-H1 regulates the coordination of actin and microtubule cytoskeleton modulation and vesicle trafficking during migration and cell division.
Collapse
Affiliation(s)
- Ritu Pathak
- Departments of Immunology and Microbial Science; The Scripps Research Institute; La Jolla, CA USA
| | - Celine Dermardirossian
- Departments of Immunology and Microbial Science; The Scripps Research Institute; La Jolla, CA USA
| |
Collapse
|
12
|
Grey CL, Chang JP. Differential involvement of protein kinase C and protein kinase A in ghrelin-induced growth hormone and gonadotrophin release from goldfish (Carassius auratus) pituitary cells. J Neuroendocrinol 2011; 23:1273-87. [PMID: 21919972 DOI: 10.1111/j.1365-2826.2011.02221.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Ghrelin (GRLN) and its receptor have been identified and characterised in goldfish brain and the pituitary, and recent evidence shows that goldfish (g)GRLN(19) induces both growth hormone (GH) and maturational gonadotrophin (LH) release through an extracellular Ca(2+) -dependent mechanism in goldfish. To further understand the role of GRLN in hormone release, the present study examined the involvement of protein kinase C (PKC) and protein kinase A (PKA) in gGRLN(19) -induced GH and LH release and corresponding Ca(2+) signals in primary cultures of goldfish pituitary cells. Treatments with PKC inhibitors, Bis-II and Gö 6976, significantly reduced gGRLN(19) -induced GH and LH release and their corresponding intracellular Ca(2+) signals in identified somatotrophs and gonadotrophs, respectively. gGRLN(19) was unable to further stimulate hormone release or Ca(2+) signals when cells were pretreated with the PKC agonist, DiC8. PKA inhibitors, H-89 and KT 5720, inhibited gGRLN(19) -induced LH release and Ca(2+) signals in gonadotrophs but not GH release or Ca(2+) signals in somatotrophs. Interestingly, pretreatment of pituitary cells with the adenylate cyclase activator forskolin potentiated gGRLN(19) -induced GH, but not LH, release, although it had no effect on intracellular Ca(2+) signals in either cell type. Taken together, the results suggest that PKC is an important intracellular component in gGRLN(19) -induced GH and LH release, whereas PKA is involved in gGRLN(19) -elicited LH release. Furthermore, the PKA pathway potentiates gGRLN(19) -induced GH release via a Ca(2+) -independent mechanism. Overall, the present study provides insight into the neuroendocrine regulation of GH and LH release by elucidating the mechanistic aspects of GRLN, a hormone involved in many critical physiological processes, including pituitary functions.
Collapse
Affiliation(s)
- C L Grey
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | | |
Collapse
|
13
|
Abstract
Cytokine secretion is a widely studied process, although little is known regarding the specific mechanisms that regulate cytokine release. Recent findings have shed light on some of the precise molecular pathways that regulate the packaging of newly synthesized cytokines from immune cells. These findings begin to elucidate pathways and mechanisms that underpin cytokine release in all cells. In this article, we review the highlights of some of these novel discoveries.
Collapse
Affiliation(s)
- Amanda C. Stanley
- Institute for Molecular Bioscience, University of Queensland, St. Lucia, Queensland, Australia; and
| | - Paige Lacy
- Pulmonary Research Group, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
14
|
Wang Z, Thurmond DC. Differential phosphorylation of RhoGDI mediates the distinct cycling of Cdc42 and Rac1 to regulate second-phase insulin secretion. J Biol Chem 2009; 285:6186-97. [PMID: 20028975 DOI: 10.1074/jbc.m109.072421] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Cdc42 cycling through GTP/GDP states is critical for its function in the second/granule mobilization phase of insulin granule exocytosis in pancreatic islet beta cells, although the identities of the Cdc42 cycling proteins involved remain incomplete. Using a tandem affinity purification-based mass spectrometry screen for Cdc42 cycling factors in beta cells, RhoGDI was identified. RNA interference-mediated depletion of RhoGDI from isolated islets selectively amplified the second phase of insulin release, consistent with the role of RhoGDI as a Cdc42 cycling factor. Replenishment of RhoGDI to RNA interference-depleted cells normalized secretion, confirming the action of RhoGDI to be that of a negative regulator of Cdc42 activation. Given that RhoGDI also regulates Rac1 activation in beta cells, and that Rac1 activation occurs in a Cdc42-dependent manner, the question as to how the beta cell utilized RhoGDI for differential Cdc42 and Rac1 cycling was explored. Co-immunoprecipitation was used to determine that RhoGDI-Cdc42 complexes dissociated upon stimulation of beta cells with glucose for 3 min, correlating with the timing of glucose-induced Cdc42 activation and the onset of RhoGDI tyrosine phosphorylation. Glucose-induced disruption of RhoGDI-Rac1 complexes occurred subsequent to this, coincident with Rac1 activation, which followed the onset of RhoGDI serine phosphorylation. RhoGDI-Cdc42 complex dissociation was blocked by mutation of RhoGDI residue Tyr-156, whereas RhoGDI-Rac1 dissociation was blocked by RhoGDI mutations Y156F and S101A/S174A. Finally, expression of a triple Y156F/S101A/S174A-RhoGDI mutant specifically inhibited only the second/granule mobilization phase of glucose-stimulated insulin secretion, overall supporting the integration of RhoGDI into the activation cycling mechanism of glucose-responsive small GTPases.
Collapse
Affiliation(s)
- Zhanxiang Wang
- Herman B Wells Center for Pediatric Research, Basic Diabetes Research Group, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, Indiana 46202, USA
| | | |
Collapse
|
15
|
Bader MF, Vitale N. Phospholipase D in calcium-regulated exocytosis: Lessons from chromaffin cells. Biochim Biophys Acta Mol Cell Biol Lipids 2009; 1791:936-41. [DOI: 10.1016/j.bbalip.2009.02.016] [Citation(s) in RCA: 55] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2008] [Revised: 02/23/2009] [Accepted: 02/26/2009] [Indexed: 10/21/2022]
|
16
|
Doreian BW, Fulop TG, Meklemburg RL, Smith CB. Cortical F-actin, the exocytic mode, and neuropeptide release in mouse chromaffin cells is regulated by myristoylated alanine-rich C-kinase substrate and myosin II. Mol Biol Cell 2009; 20:3142-54. [PMID: 19420137 DOI: 10.1091/mbc.e09-03-0197] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Adrenal medullary chromaffin cells are innervated by the sympathetic splanchnic nerve and translate graded sympathetic firing into a differential hormonal exocytosis. Basal sympathetic firing elicits a transient kiss-and-run mode of exocytosis and modest catecholamine release, whereas elevated firing under the sympathetic stress response results in full granule collapse to release catecholamine and peptide transmitters into the circulation. Previous studies have shown that rearrangement of the cell actin cortex regulates the mode of exocytosis. An intact cortex favors kiss-and-run exocytosis, whereas disrupting the cortex favors the full granule collapse mode. Here, we investigate the specific roles of two actin-associated proteins, myosin II and myristoylated alanine-rich C-kinase substrate (MARCKS) in this process. Our data demonstrate that MARCKS phosphorylation under elevated cell firing is required for cortical actin disruption but is not sufficient to elicit peptide transmitter exocytosis. Our data also demonstrate that myosin II is phospho-activated under high stimulation conditions. Inhibiting myosin II activity prevented disruption of the actin cortex, full granule collapse, and peptide transmitter release. These results suggest that phosphorylation of both MARCKS and myosin II lead to disruption of the actin cortex. However, myosin II, but not MARCKS, is required for the activity-dependent exocytosis of the peptide transmitters.
Collapse
Affiliation(s)
- Bryan W Doreian
- Department of Physiology and Biophysics, Case Western Reserve University, Cleveland, OH 44106-4970, USA
| | | | | | | |
Collapse
|
17
|
Hammar E, Tomas A, Bosco D, Halban PA. Role of the Rho-ROCK (Rho-associated kinase) signaling pathway in the regulation of pancreatic beta-cell function. Endocrinology 2009; 150:2072-9. [PMID: 19106222 DOI: 10.1210/en.2008-1135] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Extracellular matrix has a beneficial impact on beta-cell spreading and function, but the underlying signaling pathways have yet to be fully elucidated. In other cell types, Rho, a well-characterized member of the family of Rho GTPases, and its effector Rho-associated kinase (ROCK), play an important role as downstream mediators of outside in signaling from extracellular matrix. Therefore, a possible role of the Rho-ROCK pathway in beta-cell spreading, actin cytoskeleton dynamics, and function was investigated. Rho was inhibited using a new cell-permeable version of C3 transferase, whereas the activity of ROCK was repressed using the specific ROCK inhibitors H-1152 and Y-27632. Inhibition of Rho and of ROCK increased spreading and improved both short-term and prolonged glucose-stimulated insulin secretion but had no impact on basal secretion. Inhibition of this pathway led to a depolymerization of the actin cytoskeleton. Furthermore, the impact of the inhibition of ROCK on stimulated insulin secretion was acute and reversible, suggesting that rapid signaling such as phosphorylation is involved. Finally, quantification of the activity of RhoA indicated that the extracellular matrix represses RhoA activity. Overall these results show for the first time that the Rho-ROCK signaling pathway contributes to the stabilization of the actin cytoskeleton and inhibits glucose-stimulated insulin secretion in primary pancreatic beta-cells. Furthermore, they indicate that inhibition of this pathway might be one of the mechanisms by which the extracellular matrix exerts its beneficial effects on pancreatic beta-cell function.
Collapse
Affiliation(s)
- Eva Hammar
- Department of Genetic Medicine and Development, University of Geneva, University Medical Center, Rue Michel Servet 1, 1211 Geneva 4, Switzerland
| | | | | | | |
Collapse
|
18
|
Moore SW, Correia JP, Lai Wing Sun K, Pool M, Fournier AE, Kennedy TE. Rho inhibition recruits DCC to the neuronal plasma membrane and enhances axon chemoattraction to netrin 1. Development 2008; 135:2855-64. [PMID: 18653556 DOI: 10.1242/dev.024133] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Molecular cues, such as netrin 1, guide axons by influencing growth cone motility. Rho GTPases are a family of intracellular proteins that regulate the cytoskeleton, substrate adhesion and vesicle trafficking. Activation of the RhoA subfamily of Rho GTPases is essential for chemorepellent axon guidance; however, their role during axonal chemoattraction is unclear. Here, we show that netrin 1, through its receptor DCC, inhibits RhoA in embryonic spinal commissural neurons. To determine whether netrin 1-mediated chemoattraction requires Rho function, we inhibited Rho signaling and assayed axon outgrowth and turning towards netrin 1. Additionally, we examined two important mechanisms that influence the guidance of axons to netrin 1: substrate adhesion and transport of the netrin receptor DCC to the plasma membrane. We found that inhibiting Rho signaling increased plasma membrane DCC and adhesion to substrate-bound netrin 1, and also enhanced netrin 1-mediated axon outgrowth and chemoattractive axon turning. Conversely, overexpression of RhoA or constitutively active RhoA inhibited axonal responses to netrin 1. These findings provide evidence that Rho signaling reduces axonal chemoattraction to netrin 1 by limiting the amount of plasma membrane DCC at the growth cone, and suggest that netrin 1-mediated inhibition of RhoA activates a positive-feedback mechanism that facilitates chemoattraction to netrin 1. Notably, these findings also have relevance for CNS regeneration research. Inhibiting RhoA promotes axon regeneration by disrupting inhibitory responses to myelin and the glial scar. By contrast, we demonstrate that axon chemoattraction to netrin 1 is not only maintained but enhanced, suggesting that this might facilitate directing regenerating axons to appropriate targets.
Collapse
Affiliation(s)
- Simon W Moore
- Centre for Neuronal Survival, Montreal Neurological Institute, Program in NeuroEngineering, Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada
| | | | | | | | | | | |
Collapse
|
19
|
Díaz-Flores L, Gutiérrez R, Varela H, Valladares F, Alvarez-Argüelles H, Borges R. Histogenesis and morphofunctional characteristics of chromaffin cells. Acta Physiol (Oxf) 2008; 192:145-63. [PMID: 18021326 DOI: 10.1111/j.1748-1716.2007.01811.x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
This article reviews the current status of research about the histogenesis and morphofunctional characteristics of chromaffin cells in the adrenal medulla. First, this study reports the selective migration, transcription and activation factors, and the morphological events of the chromaffin cell precursors during adrenal medulla development. Subsequently, the morphofunctional characteristics of adrenergic and non-adrenergic cells are considered, with particular reference to the characteristics of chromaffin granules and their biological steps, including their formation, traffic (storage, targeting and docking), exocytosis in the strict sense and recapture. Moreover, the relationship of chromaffin cells with other tissue components of the adrenal medulla is also revised, comprising the ganglion cells, sustentacular cells, nerves and connective-vascular tissue.
Collapse
Affiliation(s)
- L Díaz-Flores
- Department of Pathology and Histology, School of Medicine, La Laguna University, Canary Islands, Spain.
| | | | | | | | | | | |
Collapse
|
20
|
Guerrero-Cázares H, Alatorre-Carranza MDP, Delgado-Rizo V, Duenas-Jimenez JM, Mendoza-Magana ML, Morales-Villagran A, Ramirez-Herrera MA, Guerrero-Hernández A, Segovia J, Duenas-Jimenez SH. Dopamine release modifies intracellular calcium levels in tyrosine hydroxylase-transfected C6 cells. Brain Res Bull 2007; 74:113-8. [PMID: 17683796 DOI: 10.1016/j.brainresbull.2007.05.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2007] [Revised: 05/09/2007] [Accepted: 05/16/2007] [Indexed: 11/18/2022]
Abstract
Glioma cell line C6, transfected with tyrosine hydroxylase (TH) cDNA under the control of the glial fibrillary acid protein promoter (C6-THA cells), elicited a reduction in the apomorphine-induced turning behavior when they are implanted in Parkinson's disease models. Nevertheless, dopamine (Da) release has not been explicitly demonstrated nor has a possible mechanism of release been implicated. In this study, the in vitro Da release by C6 and C6-THA cells after chemical stimulation with KCl or glutamate was quantified using HPLC. Modifications in intracellular calcium levels in response to KCl stimulation and participation of Da receptor-mediated feedback in calcium regulation were also studied using FLUO 3 as a calcium concentration indicator. C6-THA cells release dopamine in basal conditions, and increase its release after KCl or glutamic acid stimulation. In a fraction of C6 and C6-THA cells, a transient intracellular calcium increase was observed after KCl stimulation, but C6-THA cells demonstrated a faster rate of calcium removal. C6 cells express mRNA from all five subtypes of Da receptors as demonstrated by real time PCR. D1 receptors were most abundant in C6 cells and its expression was further increased in C6-THA cells. Blocking D1-like receptors in C6-THA cells with the specific antagonist drug SCH-23390 induced a decrease in intracellular calcium removal rate, resembling non-manipulated C6 cells' calcium clearance. Da release by C6-THA cells could be related to calcium dependent mechanisms. Furthermore, production of Da by C6-THA cells seems to upregulate the expression of D1 receptors' mRNA.
Collapse
Affiliation(s)
- Hugo Guerrero-Cázares
- Departamento de Neurociencias, CUCS, Universidad de Guadalajara, Guadalajara, México 44348, México
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Gladycheva SE, Lam AD, Liu J, D'Andrea-Merrins M, Yizhar O, Lentz SI, Ashery U, Ernst SA, Stuenkel EL. Receptor-mediated regulation of tomosyn-syntaxin 1A interactions in bovine adrenal chromaffin cells. J Biol Chem 2007; 282:22887-99. [PMID: 17545156 DOI: 10.1074/jbc.m701787200] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Tomosyn, a soluble R-SNARE protein identified as a binding partner of the Q-SNARE syntaxin 1A, is thought to be critical in setting the level of fusion-competent SNARE complexes for neurosecretion. To date, there has been no direct evaluation of the dynamics in which tomosyn transits through tomosyn-SNARE complexes or of the extent to which tomosyn-SNARE complexes are regulated by secretory demand. Here, we employed biochemical and optical approaches to characterize the dynamic properties of tomosyn-syntaxin 1A complexes in live adrenal chromaffin cells. We demonstrate that secretagogue stimulation results in the rapid translocation of tomosyn from the cytosol to plasma membrane regions and that this translocation is associated with an increase in the tomosyn-syntaxin 1A interaction, including increased cycling of tomosyn into tomosyn-SNARE complexes. The secretagogue-induced interaction was strongly reduced by pharmacological inhibition of the Rho-associated coiled-coil forming kinase, a result consistent with findings demonstrating secretagogue-induced activation of RhoA. Stimulation of chromaffin cells with lysophosphatidic acid, a nonsecretory stimulus that strongly activates RhoA, resulted in effects on tomosyn similar to that of application of the secretagogue. In PC-12 cells overexpressing tomosyn, secretagogue stimulation in the presence of lysophosphatidic acid resulted in reduced evoked secretory responses, an effect that was eliminated upon inhibition of Rho-associated coiled-coil forming kinase. Moreover, this effect required an intact interaction between tomosyn and syntaxin 1A. Thus, modulation of the tomosyn-syntaxin 1A interaction in response to secretagogue activation is an important mechanism allowing for dynamic regulation of the secretory response.
Collapse
Affiliation(s)
- Svetlana E Gladycheva
- Department of Molecular and Integrative Physiology, University of Michigan, Ann Arbor, Michigan 48109, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Abstract
Exocytosis of neurotransmitter containing vesicles supports neuronal communication. The importance of molecular interactions involving specific lipids has become progressively more evident and the lipid composition of both the synaptic vesicle and the pre-synaptic plasma membrane at the active zone has significant functional consequences for neurotransmitter release. Several classes of lipids have been implicated in exocytosis including polyunsaturated fatty acids and phosphoinositides. This minireview will focus on recent developments regarding the role of phosphoinositides in neurosecretion.
Collapse
Affiliation(s)
- Shona L Osborne
- Molecular Dynamics of Synaptic Function Laboratory, School of Biomedical Sciences, University of Queensland, St Lucia, Queensland, Australia
| | | | | |
Collapse
|
23
|
Germain D, Maysinger D, Glavinovic MI. Vesicular roundness and compound release in PC-12 cells. J Neurosci Methods 2006; 153:27-42. [PMID: 16290198 DOI: 10.1016/j.jneumeth.2005.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2005] [Revised: 09/22/2005] [Accepted: 10/03/2005] [Indexed: 11/18/2022]
Abstract
The principal goals of this study were to establish a quantitative morphological analysis of spatial and regional properties of dense core vesicles, and to use this analysis to assess whether homotypic fusion is prominent in chronically treated PC-12 cells at elevated release levels. Simple computerized image processing of electron-micrographs provided the binary images of vesicular dense cores, whilst the artificial intelligence methods were needed to determine the vesicular membranes. As in the past, the presence of large, highly irregular vesicles, provided the morphological evidence of fused vesicles, but the irregularity of vesicular shape was assessed quantitatively-from its roundness. Free space of each vesicle was determined from the distance to its nearest-neighbor, or from the size of its Voronoi polygon. Within a Voronoi polygon, each point is closer to that vesicle than to any other vesicle. Large vesicles were not less round and did not have larger free space, as expected if they result from fusion of several smaller vesicles. In conclusion, we present a novel and rigorous morphological analysis of spatial and regional properties of dense core vesicles. The results demonstrate that the homotypic fusion is not prominent in PC-12 cells, before or following a chronic treatment that enhances release.
Collapse
Affiliation(s)
- D Germain
- Department of Computer Engineering, McGill University, Montreal, Canada
| | | | | |
Collapse
|
24
|
Choi W, Karim ZA, Whiteheart SW. Arf6 plays an early role in platelet activation by collagen and convulxin. Blood 2005; 107:3145-52. [PMID: 16352809 PMCID: PMC1895749 DOI: 10.1182/blood-2005-09-3563] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
Small GTPases play critical roles in hemostasis, though the roster of such molecules in platelets is not complete. In this study, we report the presence of Ras-related GTPases of the ADP-ribosylation factor (Arf) family. Platelets contain Arf1 or 3 and Arf6, with the latter being predominantly membrane associated. Using effector domain pull-down assays, we show, counter to other GTPases, that Arf6-GTP is present in resting platelets and decreases rapidly upon activation with collagen or convulxin. This decrease does not completely rely on secondary agonists (ADP and thromboxane A2) or require integrin signaling. The decrease in free Arf6-GTP temporally precedes activation of Rho family GTPases (RhoA, Cdc42, and Rac1). Using a membrane-permeant, myristoylated peptide, which mimics the N-terminus of Arf6, we show that the Arf6-GTP decrease is essential for collagen- and convulxin-induced aggregation, platelet adherence, and spreading on collagen-coated glass. Treatment with this peptide also affects the activation of Rho family GTPases, but has little effect on RalA and Rap1 or on agonist-induced calcium mobilization. These data show that Arf6 is a key element in activation through GPVI, and is required for activation of the Rho family GTPases and the subsequent cytoskeletal rearrangements needed for full platelet function.
Collapse
Affiliation(s)
- Wangsun Choi
- Department of Molecular and Cellular Biochemistry, University of Kentucky College of Medicine, Lexington, KY 40536-0509, USA
| | | | | |
Collapse
|
25
|
Zeniou-Meyer M, Borg JP, Vitale N. Le complexe GIT-PIX : Une plate-forme de régulation des GTPases ARF et Rac/Cdc42. Med Sci (Paris) 2005; 21:849-53. [PMID: 16197902 DOI: 10.1051/medsci/20052110849] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
We recently described that the tumor suppressor factor Scribble anchors the PIX exchange factor for Rac/Cdc42 and the ARF-GAP GIT proteins at the plasma membrane. Because it has been postulated that the GIT-PIX proteins dimerize and tightly self-assemble to form a high molecular weight complex, this nexus may be capable of linking together important signalling molecules to control cytosqueleton polymerization and membrane dynamics. To date, most studies that have tempted to unravel the function of these proteins have found their implication in a great variety of cellular functions (receptor recycling, endo-exocytosis, cell migration, synapse formation...) but have mostly neglected to consider the multimeric organization of this hub. There is no doubt that our comprehension of physiopathological disorders such as cancers will be improved when the nature of the complex pathways integrated by the GIT-PIX nodule will be understood.
Collapse
Affiliation(s)
- Maria Zeniou-Meyer
- CNRS UPR-2356, Neurotransmission et sécrétion neuroendocrine, Centre de neurochimie, Strasbourg, France
| | | | | |
Collapse
|
26
|
Fukuda T, Takekoshi K, Nanmoku T, Ishii K, Isobe K, Kawakami Y. Inhibition of the RhoA/Rho kinase system attenuates catecholamine biosynthesis in PC 12 rat pheochromocytoma cells. Biochim Biophys Acta Gen Subj 2005; 1726:28-33. [PMID: 16219424 DOI: 10.1016/j.bbagen.2005.08.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2004] [Revised: 07/14/2005] [Accepted: 08/12/2005] [Indexed: 11/30/2022]
Abstract
The small GTPase, RhoA, and its downstream effecter Rho-kinase (ROK) are reported to be involved in various cellular functions, such as myosin light chain phosphorylation during smooth muscle contraction and exocytosis. Indeed, growing evidence suggests that the RhoA/Rho-kinase pathway plays an important role in regulating exocytosis in these cells. However, it is not known whether the RhoA/Rho-kinase pathway has an effect on catecholamine synthesis. Using the rat pheochromocytoma cell line, PC12, we examined the effects of either Rho-kinase inhibitor (Y27632) or RhoA inhibitor (C3 toxin) on nicotine-induced catecholamine biosynthesis. We show that nicotine (10 microM) induces a significant, though transient, increase in RhoA activation in these cells. Treatment with either Y27632 (1 microM) or C3 toxin (10 microg/ml) significantly inhibited the nicotine-induced increase of tyrosine hydroxylase (TH) mRNA and the corresponding enzyme activity. TH catalyzes the rate-limiting step in the biosynthesis of catecholamine. Y27632 significantly inhibited nicotine-induced phosphorylation of TH at Ser40 as well as Ser19, which are known to be phosphorylated by Ca(2+)/calmodulin kinase II. Furthermore, Y27632 (10 microM) as well as C3 toxin (10 microg/ml) significantly inhibited the nicotine-induced increase of TH at the protein level. Thus, we propose that activation of RhoA, and its downstream effecter Rho-kinase, is a prerequisite for catecholamine biosynthesis in PC12 cells. At the concentrations used in our experiments, Y27632 does not affect cAMP/PKA activity or PKC activity, indicating that the inhibitory effect of Y27632 can be attributed to the inhibition of Rho-kinase activity as observed in chromaffin cells. In contrast, neither Y27632 (10 microM) nor C3 toxin (10 microg/ml) significantly altered catecholamine secretion in PC12 cells. In conclusion, we have demonstrated that inhibition of the Rho/Rho-kinase pathway in chromaffin cells lowers TH activity, probably through CaMKII inhibition. By contrast, neither Y27632 nor C3 toxin affect the secretion of catecholamine.
Collapse
Affiliation(s)
- Toshiyuki Fukuda
- Department of Clinical Pathology, Institute of Clinical Medicine, University of Tsukuba, 1-1-1 Tennoudai, Tsukuba, Ibaraki 305-8575, Japan
| | | | | | | | | | | |
Collapse
|
27
|
Chae KS, Dryer SE. The p38 mitogen-activated protein kinase pathway negatively regulates Ca2+-activated K+ channel trafficking in developing parasympathetic neurons. J Neurochem 2005; 94:367-79. [PMID: 15998288 DOI: 10.1111/j.1471-4159.2005.03201.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
The trafficking of large-conductance Ca2+-activated K+ channels (K(Ca)) in chick ciliary ganglion neurons is regulated by growth factors. Here we show that a canonical p38 cascade inhibits K(Ca) trafficking in ciliary ganglion neurons. Two different p38 inhibitors (SB202190 or SB203580) or over-expression of dominant-negative forms of several components of the p38 cascade increased K(Ca) in ciliary neurons. Inhibition of protein synthesis or Golgi processing had no effect on this phenomenon, suggesting that p38 is acting at a distal step of the trafficking pathway. Depolymerization of filamentous actin (F-actin) increased functional expression of K(Ca), whereas stabilization of F-actin inhibited the effect of SB202190 on K(Ca) trafficking. SB202190 also caused an immunochemically detectable increase in K(Ca) on the plasma membrane. Inhibition of p38 decreased the extent of cortical F-actin in ciliary neurons. Macroscopic K(Ca) is suppressed by transforming growth factor (TGF) beta3. Application of TGFbeta3 increased the phosphorylation of p38 in ciliary neurons and increased cortical F-actin. Thus, the p38 signaling cascade endogenously suppresses development of functional K(Ca), in part by stabilizing an F-actin barrier that prevents plasma membrane insertion of functional channel complexes. This cascade also appears to mediate inhibitory effects of TGFbeta3 on the expression of K(Ca).
Collapse
Affiliation(s)
- Kwon-Seok Chae
- Department of Biology and Biochemistry, University of Houston, Houston, TX 77204-5513, USA
| | | |
Collapse
|
28
|
Aspenström P. Integration of signalling pathways regulated by small GTPases and calcium. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2005; 1742:51-8. [PMID: 15590055 DOI: 10.1016/j.bbamcr.2004.09.029] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2004] [Revised: 09/21/2004] [Accepted: 09/24/2004] [Indexed: 10/26/2022]
Abstract
The Ras superfamily of small GTPases constitutes a large group of structurally and functionally related proteins. They function as signalling switches in numerous signalling cascades in the cell. During the recent years, an increased awareness of a communication between signalling systems employing Ras-like GTPases and signalling systems employing calcium has emerged. For instance, the intensity of the activation of Ras-like GTPases is regulated by calcium-dependent mechanisms, acting on proteins that facilitate the activation or inactivation of the small GTPases. Other Ras-like GTPases have a direct influence on calcium signalling by regulating the activity of certain calcium channels. In addition, several small GTPases collaborate with calcium signalling in regulating cellular processes, such as cell adhesion, cell migration and exocytosis.
Collapse
Affiliation(s)
- Pontus Aspenström
- Biomedical Center, Ludwig Institute for Cancer Research, Box 595, S-751 24 Uppsala, Sweden.
| |
Collapse
|
29
|
Xin X, Ferraro F, Bäck N, Eipper BA, Mains RE. Cdk5 and Trio modulate endocrine cell exocytosis. J Cell Sci 2004; 117:4739-48. [PMID: 15331630 DOI: 10.1242/jcs.01333] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Hormone secretion by pituitary cells is decreased by roscovitine, an inhibitor of cyclin-dependent kinase 5 (Cdk5). Roscovitine treatment reorganizes cortical actin and ultrastructural analysis demonstrates that roscovitine limits the ability of secretory granules to approach the plasma membrane or one another. Trio, a multifunctional RhoGEF expressed in pituitary cells, interacts with peptidylglycine α-amidating monooxygenase, a secretory granule membrane protein known to affect the actin cytoskeleton. Roscovitine inhibits the ability of Trio to activate Rac, and peptides corresponding to the Cdk5 consensus sites in Trio are phosphorylated by Cdk5. Together, these data suggest that control of the cortical actin cytoskeleton, long known to modulate hormone exocytosis and subsequent endocytosis, involves Cdk5-mediated activation of Trio.
Collapse
Affiliation(s)
- Xiaonan Xin
- Department of Neuroscience, University of Connecticut Health Center, 263 Farmington Avenue, Farmington, CT 06030, USA
| | | | | | | | | |
Collapse
|
30
|
Audebert S, Navarro C, Nourry C, Chasserot-Golaz S, Lécine P, Bellaiche Y, Dupont JL, Premont RT, Sempéré C, Strub JM, Van Dorsselaer A, Vitale N, Borg JP. Mammalian Scribble forms a tight complex with the betaPIX exchange factor. Curr Biol 2004; 14:987-95. [PMID: 15182672 DOI: 10.1016/j.cub.2004.05.051] [Citation(s) in RCA: 165] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2003] [Revised: 04/01/2004] [Accepted: 04/02/2004] [Indexed: 10/26/2022]
Abstract
Drosophila Scribble is implicated in the development of normal synapse structure and epithelial tissues, but it remains unclear how it plays a role and which process it controls. The mammalian homolog of Scribble, hScrib, has a primary structure and subcellular localization similar to that of its fly homolog, but its function remains unknown. Here we have used tandem mass spectrometry to identify major components of the hScrib network. We show that it includes betaPIX (also called Cool-1), a guanine nucleotide exchange factor (GEF), and its partner GIT1 (also called p95-APP1), a GTPase activating protein (GAP). betaPIX directly binds to the hScrib PDZ domains, and the hScrib/betaPIX complex is efficiently recovered in epithelial and neuronal cells and tissues. In cerebellar granule cell cultures, hScrib and betaPIX are both partially localized at neuronal presynaptic compartments. Furthermore, we show that hScrib is required to anchor betaPIX at the cell cortex and that dominant-negative betaPIX or hScrib proteins can each inhibit Ca2+-dependent exocytosis in neuroendocrine PC12 cells, demonstrating a functional relationship between these proteins. These data reveal the existence of a tight hScrib/betaPIX interaction and suggest that this complex potentially plays a role in neuronal transmission.
Collapse
Affiliation(s)
- Stéphane Audebert
- Molecular Pharmacology, Institut de Recherches sur le Cancer de Marseille, Unite mixte de recherche 599 Inserm-Institut Paoli-Calmettes, 27 Boulevard Leï Roure, 13009 Marseille, France
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|