1
|
Patterson JS, Rana BK, Gu H, Sears DD. Sitting Interruption Modalities during Prolonged Sitting Acutely Improve Postprandial Metabolome in a Crossover Pilot Trial among Postmenopausal Women. Metabolites 2024; 14:478. [PMID: 39330485 PMCID: PMC11433994 DOI: 10.3390/metabo14090478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 08/20/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Older adults sit during most hours of the day; more than 30% are considered physically inactive. The accumulation of prolonged sitting time is an exercise-independent risk factor for aging-related conditions such as cardiometabolic disease and cancer. Archival plasma samples from a randomized controlled, four-condition crossover study conducted in 10 postmenopausal women with overweight or obesity were analyzed. During 5-hour conditions completed on separate days, the trial tested three interruption modalities: two-minute stands each 20 min (STS), hourly ten-minute standing breaks (Stand), hourly two-minute walks (Walk), and a controlled sit. Fasting baseline and 5-hour end point (2 h postprandial) samples were used for targeted metabolomic profiling. Condition-associated metabolome changes were compared using paired t-tests. STS eliminated the postprandial elevation of amino acid metabolites that was observed in the control. A norvaline derivative shown to have anti-hypertensive and -hyperglycemic effects was significantly increased during Stand and STS. Post-hoc testing identified 19 significantly different metabolites across the interventions. Tight metabolite clustering by condition was driven by amino acid, vasoactive, and sugar metabolites, as demonstrated by partial least squares-discriminant analyses. This exploratory study suggests that brief, low-intensity modalities of interrupting prolonged sitting can acutely elucidate beneficial cardiometabolic changes in postmenopausal women with cardiometabolic risk.
Collapse
Affiliation(s)
- Jeffrey S. Patterson
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Brinda K. Rana
- Department of Psychiatry, UC San Diego, La Jolla, CA 92093, USA
| | - Haiwei Gu
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
| | - Dorothy D. Sears
- College of Health Solutions, Arizona State University, 850 N. 5th Street, Phoenix, AZ 85004, USA; (J.S.P.)
- Department of Family Medicine, UC San Diego, La Jolla, CA 92093, USA
- Department of Medicine, UC San Diego, La Jolla, CA 92093, USA
- UCSD Moores Cancer Center, 3855 Health Sciences Dr, La Jolla, CA 92093, USA
| |
Collapse
|
2
|
Saadati S, Cameron J, Menon K, Hodge A, Lu ZX, de Courten M, Feehan J, de Courten B. Carnosine Did Not Affect Vascular and Metabolic Outcomes in Patients with Prediabetes and Type 2 Diabetes: A 14-Week Randomized Controlled Trial. Nutrients 2023; 15:4835. [PMID: 38004228 PMCID: PMC10674211 DOI: 10.3390/nu15224835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/17/2023] [Accepted: 11/17/2023] [Indexed: 11/26/2023] Open
Abstract
Atherosclerotic cardiovascular disease (ASCVD) is the leading cause of morbidity and mortality in patients with prediabetes and type 2 diabetes mellitus (T2DM). Carnosine has been suggested as a potential approach to reduce ASCVD risk factors. However, there is a paucity of human data. Hence, we performed a 14-week double-blind randomized placebo-controlled trial to determine whether carnosine compared with placebo improves vascular and metabolic outcomes in individuals with prediabetes and T2DM. In total, 49 patients with prediabetes and T2DM with good glycemic control were randomly assigned either to receive 2 g/day carnosine or matching placebo. We evaluated endothelial dysfunction, arterial stiffness, lipid parameters, blood pressure, heart rate, hepatic and renal outcomes before and after the intervention. Carnosine supplementation had no effect on heart rate, peripheral and central blood pressure, endothelial function (logarithm of reactive hyperemia (LnRHI)), arterial stiffness (carotid femoral pulse wave velocity (CF PWV)), lipid parameters, liver fibroscan indicators, liver transient elastography, liver function tests, and renal outcomes compared to placebo. In conclusion, carnosine supplementation did not improve cardiovascular and cardiometabolic risk factors in adults with prediabetes and T2DM with good glycemic control. Therefore, it is improbable that carnosine supplementation would be a viable approach to mitigating the ASCVD risk in these populations. The trial was registered at clinicaltrials.gov (NCT02917928).
Collapse
Affiliation(s)
- Saeede Saadati
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
| | - James Cameron
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
- Monash Cardiovascular Research Centre, Monash Heart, Monash Health, Clayton, VIC 3168, Australia
| | - Kirthi Menon
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
| | - Alexander Hodge
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| | - Zhong X. Lu
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
- Monash Health Pathology, Clayton, VIC 3168, Australia
| | - Maximilian de Courten
- Mitchell Institute for Health and Education Policy, Victoria University, Melbourne, VIC 3011, Australia;
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences, Faculty of Medicine, Nursing and Health Sciences, Monash University, Clayton, VIC 3168, Australia; (S.S.); (K.M.); (A.H.); (Z.X.L.)
- School of Health and Biomedical Sciences, RMIT University, Bundoora, VIC 3083, Australia
| |
Collapse
|
3
|
Ali-Sisto T, Tolmunen T, Kraav SL, Mäntyselkä P, Valkonen-Korhonen M, Honkalampi K, Ruusunen A, Velagapudi V, Lehto SM. Serum levels of carnosine may be associated with the duration of MDD episodes. J Affect Disord 2023; 320:647-655. [PMID: 36208690 DOI: 10.1016/j.jad.2022.09.092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 09/09/2022] [Accepted: 09/20/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND Major depressive disorder (MDD) is a recurrent disorder that incurs a high societal burden. However, the etiology of MDD remains unclear. The functioning of several systems associated with the etiopathogenesis of MDD, such as inflammatory and stress systems, is partially modulated by the dipeptide carnosine. METHODS The study comprised 99 MDD patients and 253 non-depressed controls aged 20-71 years. Fasting serum samples were analyzed using ultra-performance liquid chromatography coupled to mass spectrometry to determine the serum levels of carnosine and its constituent, histidine. We compared these metabolites in three different settings: 1) MDD patients vs. non-depressed controls and 2) remitted vs. non-remitted MDD patients, as well as 3) changes in the metabolite levels during the follow-up period within a) the remitted group and b) the non-remitted group. In addition, we assessed the possible effect of medications on the measured metabolites. RESULTS We observed higher serum levels of carnosine in the MDD group compared to the control group at baseline (OR = 1.895, 95%CI = 1.223-2.937, p = 0.004). Elevated serum levels of carnosine were also associated with a longer duration of the depressive episode (Z = 0.406, p = 0.001). However, the use of any antipsychotic medication (n = 36) was associated with lowered carnosine levels (p = 0.010 for use vs. non-use). At the follow-up, remitted and non-remitted participants displayed no significant differences in their carnosine levels (Z = -0.14, p = 0.891) or histidine (Z = -1.39 p = 0.164). CONCLUSIONS An increase in circulating carnosine may characterize depressive episodes and may represent a protective homeostatic reaction against MDD-related oxidative stress and inflammation.
Collapse
Affiliation(s)
- Toni Ali-Sisto
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland.
| | - Tommi Tolmunen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Finland
| | - Siiri-Liisi Kraav
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; Department of Social Sciences, University of Eastern Finland, Kuopio, Finland
| | - Pekka Mäntyselkä
- Primary Health Care Unit, University of Eastern Finland and Kuopio University Hospital, P.O. Box 1627, 70211 Kuopio, Finland
| | - Minna Valkonen-Korhonen
- Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; Department of Psychiatry, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Finland
| | - Kirsi Honkalampi
- Department of Education and Psychology, University of Eastern Finland, P.O. Box 111, 80101 Joensuu, Finland
| | - Anu Ruusunen
- Department of Psychiatry, Kuopio University Hospital, KYS, P.O. Box 100, 70029, Finland; Institute of Public Health and Clinical Nutrition, University of Eastern Finland, P.O. Box 1627, 70211 Kuopio, Finland; Deakin University, iMPACT Institute, School of Medicine, P.O. Box 281, Geelong 3220, Australia
| | - Vidya Velagapudi
- Metabolomics Unit, Institute for Molecular Medicine Finland FIMM, University of Helsinki, P.O. Box 20, 00014, Finland
| | - Soili M Lehto
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway; R&D department, Division of Mental Health Services, Akershus University Hospital, Lørenskog, Norway; Department of Psychiatry, University of Helsinki, Helsinki, Finland
| |
Collapse
|
4
|
Feehan J, Hariharan R, Buckenham T, Handley C, Bhatnagar A, Baba SP, de Courten B. Carnosine as a potential therapeutic for the management of peripheral vascular disease. Nutr Metab Cardiovasc Dis 2022; 32:2289-2296. [PMID: 35973888 DOI: 10.1016/j.numecd.2022.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 06/05/2022] [Accepted: 07/08/2022] [Indexed: 10/17/2022]
Abstract
AIMS To evaluate the potential role of carnosine in the management of peripheral vascular disease. DATA SYNTHESIS Peripheral vascular disease is growing in its burden and impact; however it is currently under researched, and there are a lack of strong, non-invasive therapeutic options for the clinicians. Carnosine is a dipeptide stored particularly in muscle and brain tissue, which exhibits a wide range of physiological activities, which may be beneficial as an adjunct treatment for peripheral vascular disease. Carnosine's strong anti-inflammatory, antioxidant and antiglycating actions may aid in the prevention of plaque formation, through protective actions on the vascular endothelium, and the inhibition of foam cells. Carnosine may also improve angiogenesis, exercise performance and vasodilatory response, while protecting from ischemic tissue injury. CONCLUSIONS Carnosine may have a role as an adjunct treatment for peripheral vascular disease alongside typical exercise and surgical interventions, and may be used in high risk individuals to aid in the prevention of atherogenesis. CLINICAL RECOMMENDATION This review identifies a beneficial role for carnosine supplementation in the management of patients with peripheral vascular disease, in conjunction with exercise and revascularization. Carnosine as a supplement is safe, and associated with a host of beneficial effects in peripheral vascular disease and its key risk factors.
Collapse
Affiliation(s)
- Jack Feehan
- Institute for Health and Sport, Victoria University, Footscray, VIC, Australia
| | - Rohit Hariharan
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia
| | - Timothy Buckenham
- Christchurch Clinical School of Medicine University of Otago and Christchurch Hospital, Christchurch, New Zealand
| | - Charles Handley
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia
| | - Aruni Bhatnagar
- Diabetes and Obesity Center, Christina Lee Brown Environment Institute, University of Louisville, Louisville, KY, USA
| | - Shahid Pervez Baba
- Diabetes and Obesity Center, Christina Lee Brown Environment Institute, University of Louisville, Louisville, KY, USA
| | - Barbora de Courten
- Department of Medicine, School of Clinical Sciences at Monash Health, Monash University, Clayton VIC, Australia; School of Health and Biomedical Sciences, RMIT, Bundoora.
| |
Collapse
|
5
|
Creighton JV, de Souza Gonçalves L, Artioli GG, Tan D, Elliott-Sale KJ, Turner MD, Doig CL, Sale C. Physiological Roles of Carnosine in Myocardial Function and Health. Adv Nutr 2022; 13:1914-1929. [PMID: 35689661 PMCID: PMC9526863 DOI: 10.1093/advances/nmac059] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/25/2022] [Accepted: 06/08/2022] [Indexed: 01/28/2023] Open
Abstract
Carnosine is a pleiotropic histidine-containing dipeptide synthesized from β-alanine and l-histidine, with the intact dipeptide and constituent amino acids being available from the diet. The therapeutic application of carnosine in myocardial tissue is promising, with carnosine playing a potentially beneficial role in both healthy and diseased myocardial models. This narrative review discusses the role of carnosine in myocardial function and health, including an overview of the metabolic pathway of carnosine in the myocardial tissue, the roles carnosine may play in the myocardium, and a critical analysis of the literature, focusing on the effect of exogenous carnosine and its precursors on myocardial function. By so doing, we aim to identify current gaps in the literature, thereby identifying considerations for future research.
Collapse
Affiliation(s)
- Jade V Creighton
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom
| | | | - Guilherme G Artioli
- Department of Life Sciences, Manchester Metropolitan University, Manchester, United Kingdom
| | - Di Tan
- Natural Alternatives International, Inc., Carlsbad, CA, USA
| | - Kirsty J Elliott-Sale
- Musculoskeletal Physiology Research Group, Sport, Health, and Performance Enhancement (SHAPE) Research Centre, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom,Department of Sport and Exercise Sciences, Institute of Sport, Manchester Metropolitan University, Manchester, United Kingdom
| | - Mark D Turner
- Centre for Diabetes, Chronic Diseases, and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom
| | - Craig L Doig
- Centre for Diabetes, Chronic Diseases, and Ageing, School of Science and Technology, Nottingham Trent University, Clifton, Nottingham, United Kingdom
| | | |
Collapse
|
6
|
Unveiling the Hidden Therapeutic Potential of Carnosine, a Molecule with a Multimodal Mechanism of Action: A Position Paper. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27103303. [PMID: 35630780 PMCID: PMC9143376 DOI: 10.3390/molecules27103303] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 05/19/2022] [Indexed: 01/20/2023]
Abstract
Carnosine (β-alanyl-L-histidine) is a naturally occurring endogenous dipeptide and an over-the-counter food supplement with a well-demonstrated multimodal mechanism of action that includes the detoxification of reactive oxygen and nitrogen species, the down-regulation of the production of pro-inflammatory mediators, the inhibition of aberrant protein formation, and the modulation of cells in the peripheral (macrophages) and brain (microglia) immune systems. Since its discovery more than 100 years ago, a plethora of in vivo preclinical studies have been carried out; however, there is still substantial heterogeneity regarding the route of administration, the dosage, the duration of the treatment, and the animal model selected, underlining the urgent need for "coordinated/aligned" preclinical studies laying the foundations for well-defined future clinical trials. The main aim of the present position paper is to critically and concisely consider these key points and open a discussion on the possible "alignment" for future studies, with the goal of validating the full therapeutic potential of this intriguing molecule.
Collapse
|
7
|
Bu W, Dai WW, Liu HM, Bu HM, Ju XY, Li RP, Yuan B. Structural characterization of a polysaccharide from Dioscorea opposita and assessment of its hepatoprotective activity. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
|
8
|
de Jager S, Blancquaert L, Van der Stede T, Lievens E, De Baere S, Croubels S, Gilardoni E, Regazzoni LG, Aldini G, Bourgois JG, Derave W. The ergogenic effect of acute carnosine and anserine supplementation: dosing, timing, and underlying mechanism. J Int Soc Sports Nutr 2022; 19:70-91. [PMID: 35599917 PMCID: PMC9116398 DOI: 10.1080/15502783.2022.2053300] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Background Recent studies suggest that acute-combined carnosine and anserine supplementation has the potential to improve the performance of certain cycling protocols. Yet, data on optimal dose, timing of ingestion, effective exercise range, and mode of action are lacking. Three studies were conducted to establish dosing and timing guidelines concerning carnosine and anserine intake and to unravel the mechanism underlying the ergogenic effects. Methods First, a dose response study A was conducted in which 11 men randomly received placebo, 10, 20, or 30 mg.kg−1 of both carnosine and anserine. They performed 3x maximal voluntary isometric contractions (MVC), followed by a 5 x 6 s repeated cycling sprint ability test (RSA), once before the supplement and 30 and 60 minutes after. In a second study, 15 men performed 3x MVCs with femoral nerve electrical stimulation, followed by an RSA test, once before 30 mg.kg−1 carnosine and anserine and 60 minutes after. Finally, in study C, eight men performed a high intensity cycling training after randomly ingesting 30 mg.kg−1 of carnosine and anserine, a placebo or antihistamines (reduce post-exercise blood flow) to investigate effects on muscle perfusion. Results Study A showed a 3% peak power (p = 0.0005; 95% CI = 0.07 to 0.27; ES = 0.91) and 4.5% peak torque (p = 0.0006; 95% CI = 0.12 to 0.50; ES = 0.87) improvement on RSA and MVC, with 30 mg.kg−1 carnosine + anserine ingestion 60 minutes before the performance yielding the best results. Study B found no performance improvement on group level; however, a negative correlation (r = −0.54; p = 0.0053; 95% CI = −0.77 to −0.19) was found between carnosinase enzyme activity (responsible for carnosine and anserine breakdown) and performance improvement. No effect of the supplement on neuromuscular function nor on muscle perfusion was found. Conclusions These studies reveal that acute ingestion of 30 mg.kg−1 of both carnosine and anserine, 60 minutes before a high intensity exercise, can potentially improve performance, such as short cycling sprints or maximal muscle contractions. Subjects with lower carnosinase activity, and thus a slower breakdown of circulating dipeptides, appear to benefit more from this ergogenic effect. Finally, neither the involvement of a direct effect on neuromuscular function, nor an indirect effect on recovery through increased muscle perfusion could be confirmed as potential mechanism of action. The ergogenic mechanism therefore remains elusive.
Collapse
Affiliation(s)
- Sarah de Jager
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Laura Blancquaert
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | | | - Eline Lievens
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Siegrid De Baere
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Siska Croubels
- Department of Pharmacology, Toxicology and Biochemistry, Ghent University, Merelbeke, Belgium
| | - Ettore Gilardoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Luca G. Regazzoni
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, University of Milan, Milan, Italy
| | - Jan G. Bourgois
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Jukić I, Kolobarić N, Stupin A, Matić A, Kozina N, Mihaljević Z, Mihalj M, Šušnjara P, Stupin M, Ćurić ŽB, Selthofer-Relatić K, Kibel A, Lukinac A, Kolar L, Kralik G, Kralik Z, Széchenyi A, Jozanović M, Galović O, Medvidović-Kosanović M, Drenjančević I. Carnosine, Small but Mighty-Prospect of Use as Functional Ingredient for Functional Food Formulation. Antioxidants (Basel) 2021; 10:1037. [PMID: 34203479 PMCID: PMC8300828 DOI: 10.3390/antiox10071037] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 11/17/2022] Open
Abstract
Carnosine is a dipeptide synthesized in the body from β-alanine and L-histidine. It is found in high concentrations in the brain, muscle, and gastrointestinal tissues of humans and is present in all vertebrates. Carnosine has a number of beneficial antioxidant properties. For example, carnosine scavenges reactive oxygen species (ROS) as well as alpha-beta unsaturated aldehydes created by peroxidation of fatty acid cell membranes during oxidative stress. Carnosine can oppose glycation, and it can chelate divalent metal ions. Carnosine alleviates diabetic nephropathy by protecting podocyte and mesangial cells, and can slow down aging. Its component, the amino acid beta-alanine, is particularly interesting as a dietary supplement for athletes because it increases muscle carnosine, and improves effectiveness of exercise and stimulation and contraction in muscles. Carnosine is widely used among athletes in the form of supplements, but rarely in the population of cardiovascular or diabetic patients. Much less is known, if any, about its potential use in enriched food. In the present review, we aimed to provide recent knowledge on carnosine properties and distribution, its metabolism (synthesis and degradation), and analytical methods for carnosine determination, since one of the difficulties is the measurement of carnosine concentration in human samples. Furthermore, the potential mechanisms of carnosine's biological effects in musculature, metabolism and on immunomodulation are discussed. Finally, this review provides a section on carnosine supplementation in the form of functional food and potential health benefits and up to the present, neglected clinical use of carnosine.
Collapse
Affiliation(s)
- Ivana Jukić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Nikolina Kolobarić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Ana Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Pathophysiology, Physiology and Immunology, Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 10E, HR-31000 Osijek, Croatia
| | - Anita Matić
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Nataša Kozina
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Zrinka Mihaljević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Martina Mihalj
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Dermatology and Venereology, University Hospital Osijek, HR-31000 Osijek, Croatia
| | - Petar Šušnjara
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| | - Marko Stupin
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Željka Breškić Ćurić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Internal Medicine, General Hospital Vinkovci, Zvonarska 57, HR-32100 Vinkovci, Croatia
| | - Kristina Selthofer-Relatić
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
- Department for Internal Medicine, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Aleksandar Kibel
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department for Cardiovascular Disease, University Hospital Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Anamarija Lukinac
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Rheumatology, Clinical Immunology and Allergology, Clinical Hospital Center Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia
| | - Luka Kolar
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Internal Medicine, Vukovar General Hospital, HR-32000 Vukovar, Croatia
| | - Gordana Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Nutricin j.d.o.o. Darda, HR-31326 Darda, Croatia
| | - Zlata Kralik
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Animal Production and Biotechnology, Faculty of Agrobiotechnical Sciences, Josip Juraj Strossmayer University of Osijek, Vladimira Preloga 1, HR-31000 Osijek, Croatia
| | - Aleksandar Széchenyi
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Marija Jozanović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Olivera Galović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Martina Medvidović-Kosanović
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia
| | - Ines Drenjančević
- Department of Physiology and Immunology, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, J. Huttlera 4, HR-31000 Osijek, Croatia; (I.J.); (N.K.); (A.S.); (A.M.); (N.K.); (Z.M.); (M.M.); (P.Š.); (M.S.); (A.K.)
- Scientific Center of Excellence for Personalized Health Care, Josip Juraj Strossmayer University of Osijek, Trg Svetog Trojstva 3, HR-31000 Osijek, Croatia; (Ž.B.Ć.); (K.S.-R.); (A.L.); (L.K.); (G.K.); (Z.K.); (A.S.); (M.J.); (O.G.); (M.M.-K.)
| |
Collapse
|
10
|
Sun X, Zhao B, Qu H, Chen S, Hao X, Chen S, Qin Z, Chen G, Fan Y. Sera and lungs metabonomics reveals key metabolites of resveratrol protecting against PAH in rats. Biomed Pharmacother 2021; 133:110910. [PMID: 33378990 DOI: 10.1016/j.biopha.2020.110910] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 10/12/2020] [Accepted: 10/18/2020] [Indexed: 01/13/2023] Open
Abstract
Pulmonary arterial hypertension (PAH) is a type of high morbidity and mortality disease. Currently, the intrinsic metabolic alteration and potential mechanism of PAH are still not fully uncovered. Previously, we have found that polyphenol resveratrol (Rev) reversed the remodeling of the pulmonary vasculature and decreased the number of mitochondria in pulmonary arterial smooth muscle cells (PASMCs) (Lei Yu et al. (2017)). However, potential effects of Rev on the changed metabolic molecules derived from lung tissue and serum have no fully elucidated. Thus, we conducted a systematic elaboration through the metabonomics method. Various of metabolites in different pathways including amino acid metabolism, tricarboxylic acid cycle (TCA), acetylcholine metabolism, fatty acid metabolism and biosynthesis in male Wistar rats' sera and lung tissues were explored in three groups (normal group, PAH group, PAH and Rev treatment group). We found that leucine and isoleucine degradation, valine, leucine and isoleucine biosynthesis, tryptophan metabolism and aminoacyl-tRNA biosynthesis were involved in the development of PAH. Hydroxyphenyllactic, isopalmitic acid and cytosine might be significant key metabolites. Further work in this area may inform personalized treatment approaches in clinical practice of PAH through elucidating pathophysiology mechanisms of experimental verification.
Collapse
Affiliation(s)
- Xiangju Sun
- Department of Pharmacy, Fourth Affiliated Hospital, Harbin Medical University, Harbin, 150001, China
| | - Baoshan Zhao
- College of Basic Medical Sciences, Harbin Medical University, Daqing, 163319, China
| | - Huichong Qu
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Shuo Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Xuewei Hao
- Inspection Institute, Harbin Medical University, Daqing, Heilongjiang Province, 163319, China
| | - Siyue Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Zhuwen Qin
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China
| | - Guoyou Chen
- College of Pharmacy, Harbin Medical University, Daqing, 163319, China.
| | - Yuhua Fan
- College of Basic Medical Sciences, Harbin Medical University, Daqing, 163319, China.
| |
Collapse
|
11
|
Wu G. Important roles of dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline in human nutrition and health. Amino Acids 2020; 52:329-360. [PMID: 32072297 PMCID: PMC7088015 DOI: 10.1007/s00726-020-02823-6] [Citation(s) in RCA: 228] [Impact Index Per Article: 57.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2019] [Accepted: 01/29/2020] [Indexed: 12/24/2022]
Abstract
Taurine (a sulfur-containing β-amino acid), creatine (a metabolite of arginine, glycine and methionine), carnosine (a dipeptide; β-alanyl-L-histidine), and 4-hydroxyproline (an imino acid; also often referred to as an amino acid) were discovered in cattle, and the discovery of anserine (a methylated product of carnosine; β-alanyl-1-methyl-L-histidine) also originated with cattle. These five nutrients are highly abundant in beef, and have important physiological roles in anti-oxidative and anti-inflammatory reactions, as well as neurological, muscular, retinal, immunological and cardiovascular function. Of particular note, taurine, carnosine, anserine, and creatine are absent from plants, and hydroxyproline is negligible in many plant-source foods. Consumption of 30 g dry beef can fully meet daily physiological needs of the healthy 70-kg adult human for taurine and carnosine, and can also provide large amounts of creatine, anserine and 4-hydroxyproline to improve human nutrition and health, including metabolic, retinal, immunological, muscular, cartilage, neurological, and cardiovascular health. The present review provides the public with the much-needed knowledge of nutritionally and physiologically significant amino acids, dipeptides and creatine in animal-source foods (including beef). Dietary taurine, creatine, carnosine, anserine and 4-hydroxyproline are beneficial for preventing and treating obesity, cardiovascular dysfunction, and ageing-related disorders, as well as inhibiting tumorigenesis, improving skin and bone health, ameliorating neurological abnormalities, and promoting well being in infants, children and adults. Furthermore, these nutrients may promote the immunological defense of humans against infections by bacteria, fungi, parasites, and viruses (including coronavirus) through enhancing the metabolism and functions of monocytes, macrophages, and other cells of the immune system. Red meat (including beef) is a functional food for optimizing human growth, development and health.
Collapse
Affiliation(s)
- Guoyao Wu
- Department of Animal Science and Faculty of Nutrition, Texas A&M University, College Station, TX, 77843-2471, USA.
| |
Collapse
|
12
|
Sung WC, Chiu ET, Sun A, Hsiao HI. Incorporation of chia seed flour into gluten‐free rice layer cake: Effects on nutritional quality and physicochemical properties. J Food Sci 2020; 85:545-555. [DOI: 10.1111/1750-3841.14841] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 08/20/2019] [Accepted: 09/16/2019] [Indexed: 11/30/2022]
Affiliation(s)
- Wen Chieh Sung
- Dept. of Food Science National Taiwan Ocean Univ. Keelung Taiwan R.O.C
- Center of Excellence for the Oceans National Taiwan Ocean Univ. Keelung Taiwan R.O.C
| | - En Ting Chiu
- Dept. of Food Science National Taiwan Ocean Univ. Keelung Taiwan R.O.C
| | - Amber Sun
- Dept. of Food Science Univ. of California, Davis One Shields Avenue Davis CA 95616 U.S.A
| | - Hsin I Hsiao
- Dept. of Food Science National Taiwan Ocean Univ. Keelung Taiwan R.O.C
| |
Collapse
|
13
|
[Effects of acute supplementation with beta-alanine on a limited time test at maximum aerobic speed on endurance athletes]. NUTR HOSP 2020; 36:698-705. [PMID: 31144977 DOI: 10.20960/nh.02310] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
Introduction Introduction: the beta-alanine (BA) is one of the ergogenic aid most used by athletes, but the majority of the studies center the research on chronic supplementation. Objectives: to determine the acute effect of BA supplementation on a limited time test (LTT) at maximum aerobic speed (MAS) on endurance athletes. Material and method: eleven endurance athletes (VO2max 61.6 ± 9.5 mLO2•kg-1•min-1) were part of the study. The study consisted of a double-blind, cross-over intra-subject design, and the BA supplementation was 30 mg•kg-1 or placebo (PL) 60 minutes before completing a LTT. The variables were: time and distance in LTT, and post-effort lactate concentrations ([La]) in minutes 1, 3, 5, 7, and 9. The Student's t test was used for the analysis and the size of the effect (SE) was measured through Cohen's d test. Results: the time on LTT showed significant differences between BA and PL (p = 0.047; SE = 0.48). No significant differences were seen between both groups (p = 0.071; SE = 0.48), and [La] showed significant differences between both groups in minutes 3, 5 and 7, respectively (p < 0.05). Conclusion: acute supplementation with BA showed a significant increase in the execution time in LTT in the intensities connected to MAS. Hence, acute supplementation with BA is an ergogenic aid that could be considered by resistance athletes in order to increase the athletic performance.
Collapse
|
14
|
Effects of dietary sports supplements on metabolite accumulation, vasodilation and cellular swelling in relation to muscle hypertrophy: A focus on “secondary” physiological determinants. Nutrition 2019; 60:241-251. [DOI: 10.1016/j.nut.2018.10.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Revised: 09/29/2018] [Accepted: 10/07/2018] [Indexed: 01/10/2023]
|
15
|
Pivotal role of carnosine in the modulation of brain cells activity: Multimodal mechanism of action and therapeutic potential in neurodegenerative disorders. Prog Neurobiol 2018; 175:35-53. [PMID: 30593839 DOI: 10.1016/j.pneurobio.2018.12.004] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 12/13/2018] [Accepted: 12/23/2018] [Indexed: 12/24/2022]
Abstract
Carnosine (β-alanyl-l-histidine), a dipeptide, is an endogenous antioxidant widely distributed in excitable tissues like muscles and the brain. Although discovered more than a hundred years ago and having been extensively studied in the periphery, the role of carnosine in the brain remains mysterious. Carnosinemia, a rare metabolic disorder with increased levels of carnosine in urine and low levels or absence of carnosinase in the blood, is associated with severe neurological symptoms in humans. This review deals with the role of carnosine in the brain in both physiological and pathological conditions, with a focus on preclinical evidence suggesting a high therapeutic potential of carnosine in neurodegenerative disorders. We review carnosine and carnosinemia's discoveries and the extensive research on the role and benefits of carnosine in the periphery. We then turn to carnosine's biochemistry and distribution in the brain. Using an array of recent observations as a foundation, we draw a parallel with the role of carnosine in muscles and speculate on the role of carnosine in promoting the metabolic support of neurons by glial cells. Finally, carnosine has been shown to exert a multimodal activity including inhibition of protein cross-linking and aggregation of amyloid-β and related proteins, free radical generation, nitric oxide detoxification, and an anti-inflammatory activity. It could thus play an important role in the prevention and treatment of neurodegenerative diseases such as Alzheimer's disease. We discuss the potential of carnosine in this context and speculate on new preclinical research directions.
Collapse
|
16
|
Bermúdez ML, Skelton MR, Genter MB. Intranasal carnosine attenuates transcriptomic alterations and improves mitochondrial function in the Thy1-aSyn mouse model of Parkinson's disease. Mol Genet Metab 2018; 125:305-313. [PMID: 30146452 DOI: 10.1016/j.ymgme.2018.08.002] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Accepted: 08/07/2018] [Indexed: 12/17/2022]
Abstract
Mitochondrial dysfunction plays a central role in the pathogenesis of neurodegenerative diseases such as Parkinson's disease (PD). This study was designed to determine whether the dipeptide carnosine, which has been shown to protect against oxidative stress and mitochondrial dysfunction, would provide a beneficial effect on mitochondrial function in the Thy1-aSyn mouse model of PD. Thy1-aSyn mice, which overexpress wild-type human alpha-synuclein (aSyn), exhibit progressive non-motor and motor deficits as early as 2 months of age. Two-month old Thy1-aSyn mice and wild-type littermates were randomly assigned to treatment groups with intranasal (IN) and drinking water carnosine, with controls receiving 10 μl of sterile waster intranasally or carnosine-free drinking water, respectively. After two months of treatment, mice were euthanized, and the midbrain was dissected for the evaluation of the gene expression and mitochondrial function. Transcriptional deficiencies associated with the aSyn overexpression in Thy1-aSyn mice were related to ribosomal and mitochondrial function. These deficiencies were attenuated by IN carnosine administration, which increased the expression of mitochondrial genes and enhanced mitochondrial function. These results suggest a potential neuroprotective role for IN-carnosine in PD patients.
Collapse
Affiliation(s)
- Mei-Ling Bermúdez
- Department of Environmental Health, University of Cincinnati, ML 670056, Cincinnati, OH 45267-0056, United States of America.
| | - Matthew R Skelton
- Department of Pediatrics, UC COM, Division of Neurology, Cincinnati Children's Research Foundation, 3333 Burnet Avenue, MLC 7044, Cincinnati, OH 45229-3039, United States of America
| | - Mary Beth Genter
- Department of Environmental Health, University of Cincinnati, ML 670056, Cincinnati, OH 45267-0056, United States of America.
| |
Collapse
|
17
|
Elbarbary NS, Ismail EAR, El-Naggar AR, Hamouda MH, El-Hamamsy M. The effect of 12 weeks carnosine supplementation on renal functional integrity and oxidative stress in pediatric patients with diabetic nephropathy: a randomized placebo-controlled trial. Pediatr Diabetes 2018; 19:470-477. [PMID: 28744992 DOI: 10.1111/pedi.12564] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Revised: 06/16/2017] [Accepted: 06/27/2017] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND AND OBJECTIVES Oxidative stress is a significant contributor to the pathogenesis of diabetic nephropathy. Carnosine is a natural radical oxygen species scavenger. We investigated the effect of carnosine as an adjuvant therapy on urinary albumin excretion (UAE), the tubular damage marker alpha 1-microglobulin (A1M), and oxidative stress in pediatric patients with type 1 diabetes and nephropathy. METHODS This randomized placebo-controlled trial included 90 patients with diabetic nephropathy, despite oral angiotensin-converting enzyme inhibitors (ACE-Is), who were randomly assigned to receive either 12 weeks of carnosine 1 g/day (n = 45), or matching placebo (n = 45). Both groups were followed-up with assessment of hemoglobin A1c (HbA1c), UAE, A1M, total antioxidant capacity (TAC) and malondialdhyde (MDA). RESULTS Baseline clinical and laboratory parameters were consistent between carnosine and placebo groups (P > .05). After 12 weeks, carnosine treatment resulted in significant decrease of HbA1c (8.2 ± 2.1% vs 7.4 ± 1.3%), UAE (91.7 vs 38.5 mg/g creatinine), A1M (16.5 ± 6.8 mg/L vs 9.3 ± 6.6 mg/L), MDA levels (25.5 ± 8.1 vs 18.2 ± 7.7 nmol/mL) while TAC levels were increased compared with baseline levels (P < .001) and compared with placebo (P < .001). No adverse reactions due to carnosine supplementation were reported. Baseline TAC was inversely correlated to HbA1c (r = -0.58, P = .04) and A1M (r = -0.682, P = .015) among carnosine group. CONCLUSIONS Oral supplementation with L-Carnosine for 12 weeks resulted in a significant improvement of oxidative stress, glycemic control and renal function. Thus, carnosine could be a safe and effective strategy for treatment of pediatric patients with diabetic nephropathy.
Collapse
Affiliation(s)
| | | | - Abdel Rahman El-Naggar
- Department of Clinical Pharmacy, Faculty of Pharmacy, Modern technology and Information University, Cairo, Egypt
| | - Mahitab Hany Hamouda
- Department of Clinical Pharmacy, Faculty of Pharmacy, Modern technology and Information University, Cairo, Egypt
| | - Manal El-Hamamsy
- Department of Clinical Pharmacy, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| |
Collapse
|
18
|
Wang Z, Cui Y, Liu P, Zhao Y, Wang L, Liu Y, Xie J. Small Peptides Isolated from Enzymatic Hydrolyzate of Fermented Soybean Meal Promote Endothelium-Independent Vasorelaxation and ACE Inhibition. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:10844-10850. [PMID: 29172521 DOI: 10.1021/acs.jafc.7b05026] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Fermentation of soybean is a process in which soy proteins are broken down into small peptides to exert various physiological functions beyond their nutritional value and to improve food source bioactive components responsible for health benefits. Enzymatic hydrolysis could speed up the degradation of proteins during fermentation of soybean, thus resulting in higher peptide production. In the present study, fermented soy meal (fermented with Bacillus subtilis from Douchi) was hydrolyzed by thermolysin, and the water extraction was then separated into four fractions using ultrafiltration membranes. Their vasorelaxation activities were screened, and the most potent fraction was further isolated and purified to obtain four peptides. Briefly, three peptides exerted a dose-dependent vasorelaxation (0.01-4.10 μM) in the phenylephrine preconstricted thoracic aorta ring of Sprague-Dawley rat (relaxation actions were all endothelium-independent), while one peptide induced vasoconstriction. Furthermore, an independent causal relationship between vasorelaxation and angiotensin converting enzyme (ACE) inhibition activities was found.
Collapse
Affiliation(s)
- Zhengquan Wang
- Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation (Shanghai), Ministry of Agriculture , Shanghai 201306, China
| | - Yunyun Cui
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Pengyang Liu
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Yong Zhao
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Liping Wang
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Yuan Liu
- College of Food Science and Technology, Shanghai Ocean University , Shanghai 201306, China
| | - Jing Xie
- Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation , Shanghai 201306, China
| |
Collapse
|
19
|
de Courten B, Jakubova M, de Courten MP, Kukurova IJ, Vallova S, Krumpolec P, Valkovic L, Kurdiova T, Garzon D, Barbaresi S, Teede HJ, Derave W, Krssak M, Aldini G, Ukropec J, Ukropcova B. Effects of carnosine supplementation on glucose metabolism: Pilot clinical trial. Obesity (Silver Spring) 2016; 24:1027-34. [PMID: 27040154 DOI: 10.1002/oby.21434] [Citation(s) in RCA: 104] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2015] [Revised: 09/17/2015] [Accepted: 11/24/2015] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Carnosine is a naturally present dipeptide in humans and an over-the counter food additive. Evidence from animal studies supports the role for carnosine in the prevention and treatment of diabetes and cardiovascular disease, yet there is limited human data. This study investigated whether carnosine supplementation in individuals with overweight or obesity improves diabetes and cardiovascular risk factors. METHODS In a double-blind randomized pilot trial in nondiabetic individuals with overweight and obesity (age 43 ± 8 years; body mass index 31 ± 4 kg/m(2) ), 15 individuals were randomly assigned to 2 g carnosine daily and 15 individuals to placebo for 12 weeks. Insulin sensitivity and secretion, glucose tolerance (oral glucose tolerance test), blood pressure, plasma lipid profile, skeletal muscle ((1) H-MRS), and urinary carnosine levels were measured. RESULTS Carnosine concentrations increased in urine after supplementation (P < 0.05). An increase in fasting insulin and insulin resistance was hampered in individuals receiving carnosine compared to placebo, and this remained significant after adjustment for age, sex, and change in body weight (P = 0.02, P = 0.04, respectively). Two-hour glucose and insulin were both lower after carnosine supplementation compared to placebo in individuals with impaired glucose tolerance (P < 0.05). CONCLUSIONS These pilot intervention data suggest that carnosine supplementation may be an effective strategy for prevention of type 2 diabetes.
Collapse
Affiliation(s)
- Barbora de Courten
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, Victoria, Australia
| | - Michaela Jakubova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Maximilian Pj de Courten
- Centre for Chronic Disease, College of Health and Biomedicine, Victoria University, Melbourne, Australia
| | - Ivica Just Kukurova
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Silvia Vallova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| | - Patrik Krumpolec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Ladislav Valkovic
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
| | - Timea Kurdiova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Davide Garzon
- Department of Pharmaceutical Sciences, Universitàdegli Studi Di Milano, Milan, Italy
| | - Silvia Barbaresi
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Helena J Teede
- Monash Centre for Health, Research and Implementation, School of Public Health and Preventive Medicine, Melbourne, Australia
- Diabetes and Vascular Medicine Unit, Monash Health, Clayton, Victoria, Australia
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Ghent, Belgium
| | - Martin Krssak
- High Field MR Centre, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Christian Doppler Laboratory for Clinical Molecular MR Imaging, Vienna, Austria
- Division of Endocrinology and Metabolism, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Universitàdegli Studi Di Milano, Milan, Italy
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
20
|
Chakrabarti S, Wu J. Bioactive peptides on endothelial function. FOOD SCIENCE AND HUMAN WELLNESS 2016. [DOI: 10.1016/j.fshw.2015.11.004] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
21
|
de Courten B, Kurdiova T, de Courten MPJ, Belan V, Everaert I, Vician M, Teede H, Gasperikova D, Aldini G, Derave W, Ukropec J, Ukropcova B. Muscle Carnosine Is Associated with Cardiometabolic Risk Factors in Humans. PLoS One 2015; 10:e0138707. [PMID: 26439389 PMCID: PMC4595442 DOI: 10.1371/journal.pone.0138707] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 09/02/2015] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND Carnosine is a naturally present dipeptide abundant in skeletal muscle and an over-the counter food additive. Animal data suggest a role of carnosine supplementation in the prevention and treatment of obesity, insulin resistance, type 2 diabetes and cardiovascular disease but only limited human data exists. METHODS AND RESULTS Samples of vastus lateralis muscle were obtained by needle biopsy. We measured muscle carnosine levels (high-performance liquid chromatography), % body fat (bioimpedance), abdominal subcutaneous and visceral adiposity (magnetic resonance imaging), insulin sensitivity (euglycaemic hyperinsulinemic clamp), resting energy expenditure (REE, indirect calorimetry), free-living ambulatory physical activity (accelerometers) and lipid profile in 36 sedentary non-vegetarian middle aged men (45±7 years) with varying degrees of adiposity and glucose tolerance. Muscle carnosine content was positively related to % body fat (r = 0.35, p = 0.04) and subcutaneous (r = 0.38, p = 0.02) but not visceral fat (r = 0.17, p = 0.33). Muscle carnosine content was inversely associated with insulin sensitivity (r = -0.44, p = 0.008), REE (r = -0.58, p<0.001) and HDL-cholesterol levels (r = -0.34, p = 0.048). Insulin sensitivity and physical activity were the best predictors of muscle carnosine content after adjustment for adiposity. CONCLUSION Our data shows that higher carnosine content in human skeletal muscle is positively associated with insulin resistance and fasting metabolic preference for glucose. Moreover, it is negatively associated with HDL-cholesterol and basal energy expenditure. Intervention studies targeting insulin resistance, metabolic and cardiovascular disease risk factors are necessary to evaluate its putative role in the prevention and management of type 2 diabetes and cardiovascular disease.
Collapse
Affiliation(s)
- Barbora de Courten
- Monash Centre for Health, Research and Implementation, School of Public health and Preventive Medicine, Melbourne, Australia
| | - Timea Kurdiova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | | | - Vitazoslav Belan
- Department of Radiology, University Hospital Bratislava, Comenius University, Bratislava, Slovakia
| | - Inge Everaert
- Department of Movement and Sport Sciences, Ghent University, Belgium
| | - Marek Vician
- Surgery Department, Slovak Medical University, Bratislava, Slovakia
| | - Helena Teede
- Monash Centre for Health, Research and Implementation, School of Public health and Preventive Medicine, Melbourne, Australia
| | - Daniela Gasperikova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Giancarlo Aldini
- Department of Pharmaceutical Sciences, Università degli Studi di Milano, Milano, Italy
| | - Wim Derave
- Department of Movement and Sport Sciences, Ghent University, Belgium
| | - Jozef Ukropec
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Barbara Ukropcova
- Institute of Experimental Endocrinology, Slovak Academy of Sciences, Bratislava, Slovakia
- Faculty of Medicine, Comenius University, Bratislava, Slovakia
| |
Collapse
|
22
|
Nakano D, Ogura K, Miyakoshi M, Ishii F, Kawanishi H, Kurumazuka D, Kwak CJ, Ikemura K, Takaoka M, Moriguchi S, Iino T, Kusumoto A, Asami S, Shibata H, Kiso Y, Matsumura Y. Antihypertensive Effect of Angiotensin I-Converting Enzyme Inhibitory Peptides from a Sesame Protein Hydrolysate in Spontaneously Hypertensive Rats. Biosci Biotechnol Biochem 2014; 70:1118-26. [PMID: 16717411 DOI: 10.1271/bbb.70.1118] [Citation(s) in RCA: 93] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Sesame peptide powder (SPP) exhibited angiotensin I-converting enzyme (ACE) inhibitory activity, and significantly and temporarily decreased the systolic blood pressure (SBP) in spontaneously hypertensive rats (SHRs) by a single administration (1 and 10 mg/kg). Six peptide ACE inhibitors were isolated and identified from SPP. The representative peptides, Leu-Val-Tyr, Leu-Gln-Pro and Leu-Lys-Tyr, could competitively inhibit ACE activity at respective Ki values of 0.92 microM, 0.50 microM, and 0.48 microM. A reconstituted sesame peptide mixture of Leu-Ser-Ala, Leu-Gln-Pro, Leu-Lys-Tyr, Ile-Val-Tyr, Val-Ile-Tyr, Leu-Val-Tyr, and Met-Leu-Pro-Ala-Tyr according to their content ratio in SPP showed a strong antihypertensive effect on SHR at doses of 3.63 and 36.3 microg/kg, which accounted for more than 70% of the corresponding dosage for the SPP-induced hypotensive effect. Repeated oral administration of SPP also lowered both SBP and the aortic ACE activity in SHR. These results demonstrate that SPP would be a beneficial ingredient for preventing and providing therapy against hypertension and its related diseases.
Collapse
Affiliation(s)
- Daisuke Nakano
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Lombardi C, Carubelli V, Lazzarini V, Vizzardi E, Bordonali T, Ciccarese C, Castrini AI, Dei Cas A, Nodari S, Metra M. Effects of oral administration of orodispersible levo-carnosine on quality of life and exercise performance in patients with chronic heart failure. Nutrition 2014; 31:72-8. [PMID: 25287762 DOI: 10.1016/j.nut.2014.04.021] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2013] [Revised: 03/01/2014] [Accepted: 04/24/2014] [Indexed: 10/25/2022]
Abstract
OBJECTIVE Chronic heart failure (CHF) is characterized by several micronutrient deficits. Amino acid supplementation may have a positive effect on nutritional and metabolic status in patients with CHF. Levo-carnosine (β-alanyl-L-histidine) is expressed at a high concentration in myocardium and muscle. Preliminary studies with L-carnosine in healthy individuals have suggested a potential role in improving exercise performance. To our knowledge, no study has been conducted in patients with heart failure. The aim of this study was to test the oral supplementation of L-carnosine and its effects on quality of life and exercise performance in patients with stable CHF. METHODS Fifty patients with stable CHF and severe left-ventricular systolic dysfunction on optimal medical therapy were randomized 1:1 to receive oral orodispersible L-carnosine (500 mg OD) or standard treatment. Left-ventricular ejection fraction (LVEF) was measured by echocardiography. Cardiopulmonary stress test, 6-minute walking test (6 MWT) and quality-of-life (visual analog scale score and the EuroQOL five dimensions questionnaire [EQ-5D]) were performed at baseline and after 6 mo. RESULTS Patients receiving orodispersible L-carnosine had an improvement in 6 MWT distance (P = 0.014) and in quality-of-life (VAS score) (P = 0.039) between baseline and follow-up. Compared with controls, diet supplementation with orodispersible L-carnosine was associated with an improvement in peakVO2 (P < 0.0001), VO2 at anaerobic threshold, peak exercise workload, 6 MWT and quality-of-life assessed by the EQ-5D test and the VAS score. CONCLUSION This study suggests that L-carnosine, added to conventional therapy, has beneficial effects on exercise performance and quality of life in stable CHF. More data are necessary to evaluate its effects on left-ventricular ejection fraction and prognosis in CHF.
Collapse
Affiliation(s)
- Carlo Lombardi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy.
| | - Valentina Carubelli
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy
| | - Valentina Lazzarini
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy
| | - Enrico Vizzardi
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy
| | - Tania Bordonali
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy
| | - Camilla Ciccarese
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy
| | - Anna Isotta Castrini
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy
| | - Alessandra Dei Cas
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy
| | - Savina Nodari
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy
| | - Marco Metra
- Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health University and Civil Hospital of Brescia, Brescia, Italy
| |
Collapse
|
24
|
Abstract
Carnosine (β-alanyl-l-histidine) was discovered in 1900 as an abundant non-protein nitrogen-containing compound of meat. The dipeptide is not only found in skeletal muscle, but also in other excitable tissues. Most animals, except humans, also possess a methylated variant of carnosine, either anserine or ophidine/balenine, collectively called the histidine-containing dipeptides. This review aims to decipher the physiological roles of carnosine, based on its biochemical properties. The latter include pH-buffering, metal-ion chelation, and antioxidant capacity as well as the capacity to protect against formation of advanced glycation and lipoxidation end-products. For these reasons, the therapeutic potential of carnosine supplementation has been tested in numerous diseases in which ischemic or oxidative stress are involved. For several pathologies, such as diabetes and its complications, ocular disease, aging, and neurological disorders, promising preclinical and clinical results have been obtained. Also the pathophysiological relevance of serum carnosinase, the enzyme actively degrading carnosine into l-histidine and β-alanine, is discussed. The carnosine system has evolved as a pluripotent solution to a number of homeostatic challenges. l-Histidine, and more specifically its imidazole moiety, appears to be the prime bioactive component, whereas β-alanine is mainly regulating the synthesis of the dipeptide. This paper summarizes a century of scientific exploration on the (patho)physiological role of carnosine and related compounds. However, far more experiments in the fields of physiology and related disciplines (biology, pharmacology, genetics, molecular biology, etc.) are required to gain a full understanding of the function and applications of this intriguing molecule.
Collapse
|
25
|
Ducker KJ, Dawson B, Wallman KE. Effect of Beta Alanine and Sodium Bicarbonate Supplementation on Repeated-Sprint Performance. J Strength Cond Res 2013; 27:3450-60. [DOI: 10.1519/jsc.0b013e31828fd310] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
26
|
Huang WY, Davidge ST, Wu J. Bioactive natural constituents from food sources-potential use in hypertension prevention and treatment. Crit Rev Food Sci Nutr 2013; 53:615-30. [PMID: 23627503 DOI: 10.1080/10408398.2010.550071] [Citation(s) in RCA: 90] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Prevention and management of hypertension are the major public health challenges worldwide. Uncontrolled high blood pressure may lead to a shortened life expectancy and a higher morbidity due to a high risk of cardiovascular complications such as coronary heart disease (which leads to heart attack) and stroke, congestive heart failure, heart rhythm irregularities, and kidney failure etc. In recent years, it has been recognized that many dietary constituents may contribute to human cardiovascular health. There has been an increased focus on identifying these natural components of foods, describing their physiological activities and mechanisms of actions. Grain, vegetables, fruits, milk, cheese, meat, chicken, egg, fish, soybean, tea, wine, mushrooms, and lactic acid bacteria are various food sources with potential antihypertensive effects. Their main bioactive constituents include angiotensin I-converting enzyme (ACE) inhibitory peptides, vitamins C and E, flavonoids, flavanols, cathecins, anthocyanins, phenolic acids, polyphenols, tannins, resveratrol, polysaccharides, fiber, saponin, sterols, as well as K, Ca, and P. They may reduce blood pressure by different mechanisms, such as ACE inhibition effect, antioxidant, vasodilatory, opiate-like, Ca(2+) channel blocking, and chymase inhibitory activities. These functional foods may provide new therapeutic applications for hypertension prevention and treatment, and contribute to a healthy cardiovascular population. The present review summarizes the antihypertensive food sources and their bioactive constituents, as well as physiological mechanisms of dietary products, especially focusing on ACE inhibitory activity.
Collapse
Affiliation(s)
- Wu-Yang Huang
- Department of Functional Food and Bioactive compounds, Institute of Agro-food Science and Technology, Jiangsu Academy of Agricultural Sciences, PR China
| | | | | |
Collapse
|
27
|
Zhang R, Wang D, Wu W. Conformations of Carnosine in Aqueous Solutions by All‐Atom Molecular Dynamics Simulations and 2D‐NOSEY Spectrum. CHINESE J CHEM PHYS 2013. [DOI: 10.1063/1674-0068/26/01/67-72] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Caruso J, Charles J, Unruh K, Giebel R, Learmonth L, Potter W. Ergogenic effects of β-alanine and carnosine: proposed future research to quantify their efficacy. Nutrients 2012; 4:585-601. [PMID: 22852051 PMCID: PMC3407982 DOI: 10.3390/nu4070585] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 06/11/2012] [Accepted: 06/18/2012] [Indexed: 11/30/2022] Open
Abstract
β-alanine is an amino acid that, when combined with histidine, forms the dipeptide carnosine within skeletal muscle. Carnosine and β-alanine each have multiple purposes within the human body; this review focuses on their roles as ergogenic aids to exercise performance and suggests how to best quantify the former’s merits as a buffer. Carnosine normally makes a small contribution to a cell’s total buffer capacity; yet β-alanine supplementation raises intracellular carnosine concentrations that in turn improve a muscle’s ability to buffer protons. Numerous studies assessed the impact of oral β-alanine intake on muscle carnosine levels and exercise performance. β-alanine may best act as an ergogenic aid when metabolic acidosis is the primary factor for compromised exercise performance. Blood lactate kinetics, whereby the concentration of the metabolite is measured as it enters and leaves the vasculature over time, affords the best opportunity to assess the merits of β-alanine supplementation’s ergogenic effect. Optimal β-alanine dosages have not been determined for persons of different ages, genders and nutritional/health conditions. Doses as high as 6.4 g day−1, for ten weeks have been administered to healthy subjects. Paraesthesia is to date the only side effect from oral β-alanine ingestion. The severity and duration of paraesthesia episodes are dose-dependent. It may be unwise for persons with a history of paraesthesia to ingest β-alanine. As for any supplement, caution should be exercised with β-alanine supplementation.
Collapse
Affiliation(s)
- John Caruso
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
- Author to whom correspondence should be addressed; ; Tel.: +1-918-631-2924; Fax: +1-918-631-2068
| | - Jessica Charles
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Kayla Unruh
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Rachel Giebel
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - Lexis Learmonth
- Exercise & Sports Science Program, The University of Tulsa, Tulsa, OK 74104, USA; (J.C.); (K.U.); (R.G.); (L.L.)
| | - William Potter
- Department of Chemistry & Biochemistry, The University of Tulsa, Tulsa, OK 74104, USA;
| |
Collapse
|
29
|
Abstract
The special flavor and health effects of chicken essence are being widely accepted by people. Scientific researches are revealing its truth as a tonic food in traditional health preservation. Chicken essence has been found to possess many bioactivities including relief of stress and fatigue, amelioration of anxiety, promotion of metabolisms and post-partum lactation, improvement on hyperglycemia and hypertension, enhancement of immune, and so on. These activities of chicken essence are suggested to be related with its active components, including proteins, dipeptides (such as carnosine and anserine), polypeptides, minerals, trace elements, and multiple amino acids, and so on. Underlying mechanisms responsible for the bioactivities of chicken essence are mainly related with anti-stress, anti-oxidant, and neural regulation effects. However, the mechanisms are complicated and may be mediated via the combined actions of many active components, more than the action of 1 or 2 components alone.
Collapse
Affiliation(s)
- Y F Li
- Institute of Traditional Chinese Medicine and Natural Products, Jinan University, Guangzhou, China
| | | | | | | |
Collapse
|
30
|
Samaranayaka AG, Li-Chan EC. Food-derived peptidic antioxidants: A review of their production, assessment, and potential applications. J Funct Foods 2011. [DOI: 10.1016/j.jff.2011.05.006] [Citation(s) in RCA: 364] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
|
31
|
Wang Z, Watanabe S, Kobayashi Y, Tanaka M, Matsui T. Trp-His, a vasorelaxant di-peptide, can inhibit extracellular Ca2+ entry to rat vascular smooth muscle cells through blockade of dihydropyridine-like L-type Ca2+ channels. Peptides 2010; 31:2060-6. [PMID: 20688122 DOI: 10.1016/j.peptides.2010.07.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 07/26/2010] [Accepted: 07/26/2010] [Indexed: 10/19/2022]
Abstract
Our previous findings regarding the biological activities of small peptides revealed that a di-peptide, Trp-His (WH), could play a role in the prevention of vascular lesions, including cell proliferation and atherosclerosis. Its vasoprotective effects could be associated with suppression of the vasocontraction signaling cascade, but the underlying mechanism(s) remains obscure. In this study, we attempted to elucidate the vasoprotective mechanism of WH, in opposing the proliferation of rat vascular smooth muscle cells (VSMCs). In VSMCs from 8 week-old male Wistar rat thoracic aortae, WH evoked a significant dose-dependent anti-proliferation effect, without cytotoxicity. In mitogen-stimulated cell experiments, 300 μM WH inhibited cytosolic Ca(2+) elevation in VSMCs induced by 10 μM angiotensin II (Ang II). Furthermore, WH suppressed extracellular Ca(2+) entry into CaCl(2)-stimulated VSMCs. The biological capacity of WH as an intracellular Ca(2+) ([Ca(2+)](i)) suppressor was also proven when 50 μM Bay K8644 was used to enhance Ca(2+) entry via a voltage-dependent l-type Ca(2+) channel (VDCC) and 300 μM WH elicited a 23% reduction in [Ca(2+)](i). The absence of a reduction of the [Ca(2+)](i) by the mixture of tryptophan and histidine revealed the importance of the peptide backbone in the [Ca(2+)](i) reduction effect. Furthermore, the WH-induced [Ca(2+)](i) reduction was abolished by verapamil, but not by nifedipine, indicating that WH likely binds to an extracellular site of the VDCC at a site similar to that of the dihydropyridine type-Ca(2+) channel blockers.
Collapse
MESH Headings
- 3-Pyridinecarboxylic acid, 1,4-dihydro-2,6-dimethyl-5-nitro-4-(2-(trifluoromethyl)phenyl)-, Methyl ester/pharmacology
- Angiotensin II/pharmacology
- Animals
- Calcium Channel Blockers/pharmacology
- Calcium Channels, L-Type/drug effects
- Cell Proliferation/drug effects
- Dipeptides/antagonists & inhibitors
- Dipeptides/pharmacology
- Male
- Muscle, Smooth, Vascular/drug effects
- Muscle, Smooth, Vascular/metabolism
- Nifedipine/pharmacology
- Nimodipine/pharmacology
- Rats
- Rats, Wistar
- Verapamil/pharmacology
Collapse
Affiliation(s)
- Zhengquan Wang
- Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School of Kyushu University, 6-10-1 Hakozaki, Higashi-ku, Fukuoka 812-8581, Japan
| | | | | | | | | |
Collapse
|
32
|
Baguet A, Bourgois J, Vanhee L, Achten E, Derave W. Important role of muscle carnosine in rowing performance. J Appl Physiol (1985) 2010; 109:1096-101. [DOI: 10.1152/japplphysiol.00141.2010] [Citation(s) in RCA: 98] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The role of the presence of carnosine (β-alanyl-l-histidine) in millimolar concentrations in human skeletal muscle is poorly understood. Chronic oral β-alanine supplementation is shown to elevate muscle carnosine content and improve anaerobic exercise performance during some laboratory tests, mainly in the untrained. It remains to be determined whether carnosine loading can improve single competition-like events in elite athletes. The aims of the present study were to investigate if performance is related to the muscle carnosine content and if β-alanine supplementation improves performance in highly trained rowers. Eighteen Belgian elite rowers were supplemented for 7 wk with either placebo or β-alanine (5 g/day). Before and following supplementation, muscle carnosine content in soleus and gastrocnemius medialis was measured by proton magnetic resonance spectroscopy (1H-MRS) and the performance was evaluated in a 2,000-m ergometer test. At baseline, there was a strong positive correlation between 100-, 500-, 2,000-, and 6,000-m speed and muscle carnosine content. After β-alanine supplementation, the carnosine content increased by 45.3% in soleus and 28.2% in gastrocnemius. Following supplementation, the β-alanine group was 4.3 s faster than the placebo group, whereas before supplementation they were 0.3 s slower ( P = 0.07). Muscle carnosine elevation was positively correlated to 2,000-m performance enhancement ( P = 0.042 and r = 0.498). It can be concluded that the positive correlation between baseline muscle carnosine levels and rowing performance and the positive correlation between changes in muscle carnosine and performance improvement suggest that muscle carnosine is a new determinant of rowing performance.
Collapse
Affiliation(s)
- Audrey Baguet
- Department of Movement and Sports Sciences, Ghent University; and
| | - Jan Bourgois
- Department of Movement and Sports Sciences, Ghent University; and
| | - Lander Vanhee
- Department of Movement and Sports Sciences, Ghent University; and
| | - Eric Achten
- Department of Radiology, Ghent Institute for Functional and Metabolic Imaging, Ghent University, Ghent, Belgium
| | - Wim Derave
- Department of Movement and Sports Sciences, Ghent University; and
| |
Collapse
|
33
|
Derave W, Everaert I, Beeckman S, Baguet A. Muscle carnosine metabolism and beta-alanine supplementation in relation to exercise and training. Sports Med 2010; 40:247-63. [PMID: 20199122 DOI: 10.2165/11530310-000000000-00000] [Citation(s) in RCA: 137] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Carnosine is a dipeptide with a high concentration in mammalian skeletal muscle. It is synthesized by carnosine synthase from the amino acids L-histidine and beta-alanine, of which the latter is the rate-limiting precursor, and degraded by carnosinase. Recent studies have shown that the chronic oral ingestion of beta-alanine can substantially elevate (up to 80%) the carnosine content of human skeletal muscle. Interestingly, muscle carnosine loading leads to improved performance in high-intensity exercise in both untrained and trained individuals. Although carnosine is not involved in the classic adenosine triphosphate-generating metabolic pathways, this suggests an important role of the dipeptide in the homeostasis of contracting muscle cells, especially during high rates of anaerobic energy delivery. Carnosine may attenuate acidosis by acting as a pH buffer, but improved contractile performance may also be obtained by improved excitation-contraction coupling and defence against reactive oxygen species. High carnosine concentrations are found in individuals with a high proportion of fast-twitch fibres, because these fibres are enriched with the dipeptide. Muscle carnosine content is lower in women, declines with age and is probably lower in vegetarians, whose diets are deprived of beta-alanine. Sprint-trained athletes display markedly high muscular carnosine, but the acute effect of several weeks of training on muscle carnosine is limited. High carnosine levels in elite sprinters are therefore either an important genetically determined talent selection criterion or a result of slow adaptation to years of training. beta-Alanine is rapidly developing as a popular ergogenic nutritional supplement for athletes worldwide, and the currently available scientific literature suggests that its use is evidence based. However, many aspects of the supplement, such as the potential side effects and the mechanism of action, require additional and thorough investigation by the sports science community.
Collapse
Affiliation(s)
- Wim Derave
- Department of Movement and Sports Sciences, Ghent University, Ghent, Belgium.
| | | | | | | |
Collapse
|
34
|
Takahashi S, Nakashima Y, Toda KI. Carnosine facilitates nitric oxide production in endothelial f-2 cells. Biol Pharm Bull 2010; 32:1836-9. [PMID: 19881293 DOI: 10.1248/bpb.32.1836] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the effect of carnosine (beta-alanyl-histidine) on nitric oxide (NO) production and endothelial NO synthase (eNOS) activation in endothelial F-2 cells. Carnosine enhanced NO production in a dose-dependent manner, and the stimulatory effect of carnosine was observed at concentrations exceeding 5 mM. The carnosine-stimulated NO production was inhibited by N(G)-nitro-L-arginine methyl ester, but not by N(G)-nitro-D-arginine methyl ester. In contrast, beta-alanine, histidine (carnosine components) and anserine (N-methyl carnosine) failed to increase NO production. Carnosine had no effect on NO production for the initial 5 min, but thereafter resulted in a gradual increase in NO production up to 15 min. Carnosine did not induce phosphorylation of eNOS at Ser1177. The carnosine-induced increase in NO production was observed even when extracellular Ca2+ was depleted by ethylene glycol bis(2-aminoethyl ether)-N,N,N'-N'-tetraacetic acid however, the effect was abolished upon depletion of intracellular Ca2+ by BAPTA. After F-2 cells were incubated with carnosine for 4 min, intracellular Ca2+ concentration gradually increased. The carnosine-induced increase in intracellular Ca2+ concentration occurred even in the absence of extracellular Ca2+. These results indicate that carnosine facilitates NO production in endothelial F-2 cells. It is also suggested that eNOS is activated by Ca2+, which might be released from intracellular Ca2+ stores in response to carnosine.
Collapse
Affiliation(s)
- Satoru Takahashi
- First Department of Biochemistry, School of Pharmaceutical Sciences, Kyushu University of Health and Welfare, Yoshino, Nobeoka, Miyazaki 882-0072, Japan.
| | | | | |
Collapse
|
35
|
Baguet A, Reyngoudt H, Pottier A, Everaert I, Callens S, Achten E, Derave W. Carnosine loading and washout in human skeletal muscles. J Appl Physiol (1985) 2009; 106:837-42. [DOI: 10.1152/japplphysiol.91357.2008] [Citation(s) in RCA: 120] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Carnosine (β-alanyl-l-histidine) is present in high concentrations in human skeletal muscles. The oral ingestion of β-alanine, the rate-limiting precursor in carnosine synthesis, has been shown to elevate the muscle carnosine content both in trained and untrained humans. Little human data exist about the dynamics of the muscle carnosine content, its metabolic regulation, and its dependence on muscle fiber type. The present study aimed to investigate in three skeletal muscle types the supplementation-induced amplitude of carnosine synthesis and its subsequent elimination on cessation of supplementation (washout). Fifteen untrained males participated in a placebo-controlled double-blind study. They were supplemented for 5–6 wk with either 4.8 g/day β-alanine or placebo. Muscle carnosine was quantified in soleus, tibialis anterior, and medial head of the gastrocnemius by proton magnetic resonance spectroscopy (MRS), before and after supplementation and 3 and 9 wk into washout. The β-alanine supplementation significantly increased the carnosine content in soleus by 39%, in tibialis by 27%, and in gastrocnemius by 23% and declined postsupplementation at a rate of 2–4%/wk. Average muscle carnosine remained increased compared with baseline at 3 wk of washout (only one-third of the supplementation-induced increase had disappeared) and returned to baseline values within 9 wk at group level. Following subdivision into high responders (+55%) and low responders (+15%), washout period was 15 and 6 wk, respectively. In the placebo group, carnosine remained relatively constant with variation coefficients of 9–15% over a 3-mo period. It can be concluded that carnosine is a stable compound in human skeletal muscle, confirming the absence of carnosinase in myocytes. The present study shows that washout periods for crossover designs in supplementation studies for muscle metabolites may sometimes require months rather than weeks.
Collapse
|
36
|
Hipkiss AR. Carnosine and its possible roles in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:87-154. [PMID: 19595386 DOI: 10.1016/s1043-4526(09)57003-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dipeptide carnosine has been observed to exert antiaging activity at cellular and whole animal levels. This review discusses the possible mechanisms by which carnosine may exert antiaging action and considers whether the dipeptide could be beneficial to humans. Carnosine's possible biological activities include scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS), chelator of zinc and copper ions, and antiglycating and anticross-linking activities. Carnosine's ability to react with deleterious aldehydes such as malondialdehyde, methylglyoxal, hydroxynonenal, and acetaldehyde may also contribute to its protective functions. Physiologically carnosine may help to suppress some secondary complications of diabetes, and the deleterious consequences of ischemic-reperfusion injury, most likely due to antioxidation and carbonyl-scavenging functions. Other, and much more speculative, possible functions of carnosine considered include transglutaminase inhibition, stimulation of proteolysis mediated via effects on proteasome activity or induction of protease and stress-protein gene expression, upregulation of corticosteroid synthesis, stimulation of protein repair, and effects on ADP-ribose metabolism associated with sirtuin and poly-ADP-ribose polymerase (PARP) activities. Evidence for carnosine's possible protective action against secondary diabetic complications, neurodegeneration, cancer, and other age-related pathologies is briefly discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinicial and Experimental Medicine, College of Medical and Dental Sciences, The Univeristy of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
37
|
Haug A, R⊘dbotten R, Mydland LT, Christophersen OA. Increased broiler muscle carnosine and anserine following histidine supplementation of commercial broiler feed concentrate. ACTA AGR SCAND A-AN 2008. [DOI: 10.1080/09064700802213545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
38
|
Endothelium-independent vasodilation effect of di- and tri-peptides in thoracic aorta of Sprague–Dawley rats. Life Sci 2008; 82:869-75. [DOI: 10.1016/j.lfs.2008.02.001] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2007] [Revised: 01/26/2008] [Accepted: 02/02/2008] [Indexed: 01/28/2023]
|
39
|
Balion CM, Benson C, Raina PS, Papaioannou A, Patterson C, Ismaila AS. Brain type carnosinase in dementia: a pilot study. BMC Neurol 2007; 7:38. [PMID: 17983474 PMCID: PMC2200655 DOI: 10.1186/1471-2377-7-38] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2006] [Accepted: 11/05/2007] [Indexed: 11/13/2022] Open
Abstract
Background The pathological processes underlying dementia are poorly understood and so are the markers which identify them. Carnosinase is a dipeptidase found almost exclusively in brain and serum. Carnosinase and its substrate carnosine have been linked to neuropathophysiological processes. Methods Carnosinase activity was measured by a flourometric method in 37 patients attending a Geriatric Outpatient Clinic. There were 17 patients without dementia, 13 had Alzheimer's disease (AD) and 7 had mixed dementia (MD). Results The range of serum carnosinase activity for patients without dementia was 14.5 – 78.5 μmol/ml/h. There was no difference in carnosinase activity between patients without dementia (40.3 ± 15.2 μmol/ml/h) and patients with AD (44.4 ± 12.4 μmol/ml/h) or MD (26.6 ± 15 μmol/ml/h). However, levels in the MD group were significantly lower than the AD group (p = 0.01). This difference remained significant after adjusting for gender, MMSE score, exercise, but not age, one at a time and all combined. The effect of other medical conditions did not remove the significance between the AD and MD groups. The MD group, but not the AD group, demonstrated a significant trend with carnosinase activity decreasing with duration of disease (from first recorded date of diagnosis to date of blood collection) (r = -0.76, p = 0.049). There was no association with carnosinase activity and MMSE score in the AD or MD group. Both AD and MD patients on any dementia medication (donepezil, galantamine, memantine) had higher carnosinase activity compared to those not taking a dementia medication. Carnosinase activity was higher in patients who regularly exercised (n = 20) compared to those who did not exercise regularly (n = 17)(p = 0.006). Conclusion This exploratory study has shown altered activities of the enzyme carnosinase in patients with dementia.
Collapse
Affiliation(s)
- Cynthia M Balion
- Department of Laboratory Medicine, Hamilton Health Sciences, Hamilton, Ontario, Canada.
| | | | | | | | | | | |
Collapse
|
40
|
Qian ZJ, Je JY, Kim SK. Antihypertensive effect of angiotensin i converting enzyme-inhibitory peptide from hydrolysates of Bigeye tuna dark muscle, Thunnus obesus. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2007; 55:8398-403. [PMID: 17894458 DOI: 10.1021/jf0710635] [Citation(s) in RCA: 132] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Angiotensin I converting enzyme (ACE) inhibitory peptide was isolated from tuna dark muscle hydrolysate prepared by alcalase, neutrase, pepsin, papain, alpha-chymotrypsin, and trypsin, respectively. Among hydrolysates, the pepsin-derived hydrolysate exhibited the highest ACE I inhibitory activity versus those of other enzyme hydrolysates. The structure of the peptide was identified to be Trp-Pro-Glu-Ala-Ala-Glu-Leu-Met-Met-Glu-Val-Asp-Pro (molecular weight 1581 Da) by time of flight mass spectrometry/mass spectrometry analysis, and the IC 50 value of the peptide was 21.6 microM. The Lineweaver-Burk plots revealed that the peptide acts as a noncompetitive inhibitor, and the inhibitor constant ( K i) was calculated as 26.6 microM using the secondary plots. The peptide had an antihypertensive effect according to the time-course measurement after oral administration to spontaneously hypertensive rats. Maximal reduction was detected 3 h after oral administration at a dose of 10 mg/kg of body weight. These results suggest that the peptide derived from tuna dark muscle would be a beneficial ingredient for functional food or pharmaceuticals against hypertension and its related diseases.
Collapse
Affiliation(s)
- Zhong-Ji Qian
- Department of Chemistry, Pukyong National University, Busan 608-737, Korea
| | | | | |
Collapse
|
41
|
Van Kuilenburg ABP, Stroomer AEM, Van Lenthe H, Abeling NGGM, Van Gennip AH. New insights in dihydropyrimidine dehydrogenase deficiency: a pivotal role for beta-aminoisobutyric acid? Biochem J 2004; 379:119-24. [PMID: 14705962 PMCID: PMC1224056 DOI: 10.1042/bj20031463] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2003] [Revised: 12/23/2003] [Accepted: 01/05/2004] [Indexed: 11/17/2022]
Abstract
DPD (dihydropyrimidine dehydrogenase) constitutes the first step of the pyrimidine degradation pathway, in which the pyrimidine bases uracil and thymine are catabolized to beta-alanine and the R-enantiomer of beta-AIB (beta-aminoisobutyric acid) respectively. The S-enantiomer of beta-AIB is predominantly derived from the catabolism of valine. It has been suggested that an altered homoeostasis of beta-alanine underlies some of the clinical abnormalities encountered in patients with a DPD deficiency. In the present study, we demonstrated that only a slightly decreased concentration of beta-alanine was present in the urine and plasma, whereas normal levels of beta-alanine were present in the cerebrospinal fluid of patients with a DPD deficiency. Therefore the metabolism of beta-alanine-containing peptides, such as carnosine, may be an important factor involved in the homoeostasis of beta-alanine in patients with DPD deficiency. The mean concentration of beta-AIB was approx. 2-3-fold lower in cerebrospinal fluid and urine of patients with a DPD deficiency, when compared with controls. In contrast, strongly decreased levels (10-fold) of beta-AIB were present in the plasma of DPD patients. Our results demonstrate that, under pathological conditions, the catabolism of valine can result in the production of significant amounts of beta-AIB. Furthermore, the observation that the R-enantiomer of beta-AIB is abundantly present in the urine of DPD patients suggests that significant cross-over exists between the thymine and valine catabolic pathways.
Collapse
MESH Headings
- Aminoisobutyric Acids/blood
- Aminoisobutyric Acids/cerebrospinal fluid
- Aminoisobutyric Acids/chemistry
- Aminoisobutyric Acids/metabolism
- Aminoisobutyric Acids/urine
- Brain Diseases, Metabolic, Inborn/enzymology
- Brain Diseases, Metabolic, Inborn/genetics
- Brain Diseases, Metabolic, Inborn/metabolism
- Dihydropyrimidine Dehydrogenase Deficiency
- Dihydrouracil Dehydrogenase (NADP)/genetics
- Fluorouracil/pharmacokinetics
- Homeostasis
- Humans
- Inactivation, Metabolic/genetics
- Neurotransmitter Agents/metabolism
- Purine-Pyrimidine Metabolism, Inborn Errors/enzymology
- Purine-Pyrimidine Metabolism, Inborn Errors/genetics
- Purine-Pyrimidine Metabolism, Inborn Errors/metabolism
- Stereoisomerism
- Thymine/metabolism
- Uracil/metabolism
- Valine/metabolism
- beta-Alanine/blood
- beta-Alanine/cerebrospinal fluid
- beta-Alanine/metabolism
- beta-Alanine/urine
Collapse
Affiliation(s)
- André B P Van Kuilenburg
- Emma Children's Hospital and Department of Clinical Chemistry, Academic Medical Center, University of Amsterdam, The Netherlands.
| | | | | | | | | |
Collapse
|
42
|
Tomonaga S, Tachibana T, Takagi T, Saito ES, Zhang R, Denbow DM, Furuse M. Effect of central administration of carnosine and its constituents on behaviors in chicks. Brain Res Bull 2004; 63:75-82. [PMID: 15121241 DOI: 10.1016/j.brainresbull.2004.01.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2003] [Accepted: 01/06/2004] [Indexed: 11/20/2022]
Abstract
Even though their contents in the brain are high, the function of brain carnosine and its constituents has not been clarified. Both carnosine and anserine inhibited food intake in a dose dependent fashion when injected intracerebroventricularly. The constituents of carnosine, beta-alanine (beta-Ala) and l-histidine (His), also inhibited food intake, but their effects were weaker than carnosine itself. Co-administration with beta-Ala and His inhibited food intake similar to carnosine, but also altered other behaviors. Injection of carnosine induced hyperactivity and increased plasma corticosterone level, whereas beta-Ala plus His induced hypoactivity manifested as sleep-like behavior. This later effect seemed to be derived from beta-Ala, not His. These results suggest that central carnosine may act in the brain of chicks to regulate brain function and/or behavior in a manner different from its constituents.
Collapse
Affiliation(s)
- Shozo Tomonaga
- Laboratory of Advanced Animal and Marine Bioresources, Graduate School of Bioresource and Bioenvironmental Science, Kyushu University, Fukuoka 812-8581, Japan
| | | | | | | | | | | | | |
Collapse
|
43
|
Aristoy MC, Soler C, Toldrá F. A simple, fast and reliable methodology for the analysis of histidine dipeptides as markers of the presence of animal origin proteins in feeds for ruminants. Food Chem 2004. [DOI: 10.1016/j.foodchem.2003.07.030] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
44
|
Matsumura Y, Kita S, Ono H, Kiso Y, Tanaka T. Preventive effect of a chicken extract on the development of hypertension in stroke-prone spontaneously hypertensive rats. Biosci Biotechnol Biochem 2002; 66:1108-10. [PMID: 12092823 DOI: 10.1271/bbb.66.1108] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The antihypertensive effect of Brand's Essence of Chicken (BEC), a popular chicken extract used as a traditional health food, was examined with stroke-prone spontaneously hypertensive rats (SHRSPs). The animals were maintained from 6 to 25 weeks of age on drinking water with or without BEC. The BEC-fed group showed a significant reduction in the development of hypertension when compared with the control animals. The levels of blood urea nitrogen and plasma creatinine in the BEC-fed group were significantly lower than those in the control group, suggesting that the renal glomerular function had been improved by the daily administration of BEC. It thus seems likely that BEC would be useful as a prophylactic treatment against the development of hypertension and renal injury.
Collapse
Affiliation(s)
- Yasuo Matsumura
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan.
| | | | | | | | | |
Collapse
|
45
|
Matsumura Y, Okui T, Ono H, Kiso Y, Tanaka T. Antihypertensive effects of chicken extract against deoxycorticosterone acetate-salt-induced hypertension in rats. Biol Pharm Bull 2001; 24:1181-4. [PMID: 11642328 DOI: 10.1248/bpb.24.1181] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We investigated the antihypertensive effect of Brand's Essence of Chicken (BEC), a popular chicken extract used as a traditional remedy, using deoxycorticosterone acetate (DOCA)-salt hypertensive rats. Animals were unilaterally nephrectomized, and then separated into a sham-operated group (sham group) and a DOCA-salt-treated group. The latter was further separated into a normal diet group and a BEC (freeze-dried powder, 0.1 w/w%)-containing diet group. Systolic blood pressure of the normal diet group progressively increased in comparison with that of the sham group. The DOCA-salt-induced hypertension was markedly suppressed by feeding a BEC-containing diet. Systolic blood pressure after 5 weeks was 128+/-2 mmHg in sham group, 181+/-4 mmHg in the DOCA-salt-treated normal diet group and 139+/-5 mmHg in the DOCA-salt-treated BEC diet group, respectively. The treatment with DOCA and salt for 5 weeks significantly increased the weights of heart and left ventricle, but these increases were significantly suppressed in the BEC group. When the degree of vascular hypertrophy of the aorta was histochemically evaluated, DOCA-salt-induced increases in wall thickness and wall area of the vessels were significantly decreased by the BEC-feeding. Histopathological renal damage of fibrinoid-like necrosis in glomeruli, thickening of small arteries and tubular dilatation were observed in the DOCA-salt-treated normal diet group, but this damage was efficiently reduced by the BEC-feeding. In addition, BEC-feeding decreased urinary excretion of protein, which was elevated by the treatment with DOCA and salt. Thus, BEC seems to be useful as a prophylactic treatment in the development of hypertension and related tissue injuries.
Collapse
Affiliation(s)
- Y Matsumura
- Department of Pharmacology, Osaka University of Pharmaceutical Sciences, Takatsuki, Japan.
| | | | | | | | | |
Collapse
|