1
|
Cecchi M, Adachi M, Basile A, Buhl DL, Chadchankar H, Christensen S, Christian E, Doherty J, Fadem KC, Farley B, Forman MS, Honda S, Johannesen J, Kinon BJ, Klamer D, Marino MJ, Missling C, O'Donnell P, Piser T, Puryear CB, Quirk MC, Rotte M, Sanchez C, Smith DG, Uslaner JM, Javitt DC, Keefe RSE, Mathalon D, Potter WZ, Walling DP, Ereshefsky L. Validation of a suite of ERP and QEEG biomarkers in a pre-competitive, industry-led study in subjects with schizophrenia and healthy volunteers. Schizophr Res 2023; 254:178-189. [PMID: 36921403 DOI: 10.1016/j.schres.2023.02.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Revised: 11/23/2022] [Accepted: 02/10/2023] [Indexed: 03/18/2023]
Abstract
OBJECTIVE Complexity and lack of standardization have mostly limited the use of event-related potentials (ERPs) and quantitative EEG (QEEG) biomarkers in drug development to small early phase trials. We present results from a clinical study on healthy volunteers (HV) and patients with schizophrenia (SZ) that assessed test-retest, group differences, variance, and correlation with functional assessments for ERP and QEEG measures collected at clinical and commercial trial sites with standardized instrumentation and methods, and analyzed through an automated data analysis pipeline. METHODS 81 HV and 80 SZ were tested at one of four study sites. Subjects were administered two ERP/EEG testing sessions on separate visits. Sessions included a mismatch negativity paradigm, a 40 Hz auditory steady-state response paradigm, an eyes-closed resting state EEG, and an active auditory oddball paradigm. SZ subjects were also tested on the Brief Assessment of Cognition (BAC), Positive and Negative Syndrome Scale (PANSS), and Virtual Reality Functional Capacity Assessment Tool (VRFCAT). RESULTS Standardized ERP/EEG instrumentation and methods ensured few test failures. The automated data analysis pipeline allowed for near real-time analysis with no human intervention. Test-retest reliability was fair-to-excellent for most of the outcome measures. SZ subjects showed significant deficits in ERP and QEEG measures consistent with published academic literature. A subset of ERP and QEEG measures correlated with functional assessments administered to the SZ subjects. CONCLUSIONS With standardized instrumentation and methods, complex ERP/EEG testing sessions can be reliably performed at clinical and commercial trial sites to produce high-quality data in near real-time.
Collapse
Affiliation(s)
| | | | - A Basile
- Merck & Co., Inc., Kenilworth, NJ, USA
| | | | | | | | | | | | | | | | | | | | | | | | - D Klamer
- Anavex Life Sciences Corp., NY, USA
| | | | | | | | - T Piser
- Onsero Therapeutics, MA, USA
| | | | | | | | | | | | | | | | | | - D Mathalon
- University of California, San Francisco, CA, USA
| | - W Z Potter
- Independent Consultant, Philadelphia, PA, USA
| | | | - L Ereshefsky
- CenExel Research, USA; University of Texas Health Science Center at San Antonio, TX, USA
| |
Collapse
|
2
|
N-methyl-d-aspartate receptor antagonism modulates P300 event-related potentials and associated activity in salience and central executive networks. Pharmacol Biochem Behav 2021; 211:173287. [PMID: 34653398 DOI: 10.1016/j.pbb.2021.173287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 10/05/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022]
Abstract
Impairments in auditory information processing in schizophrenia as indexed electrophysiologically by P300 deficits during novelty (P3a) and target (P3b) processing are linked to N -methyl- D -aspartate receptor (NMDAR) dysfunction. This study in 14 healthy volunteers examined the effects of a subanesthetic dose of the NMDAR antagonist ketamine on P300 and their relationship to psychomimetic symptoms and cortical source activity (with eLORETA). Ketamine reduced early (e- P3a) and late (l-P3a) novelty P300 at sensor (scalp)-level and at source-level in the salience network. Increases in dissociation symptoms were negatively correlated with ketamine-induced P3b changes, at sensor-level and source-level, in both salience and central executive networks. These P3a alterations during novelty processing, and the symptom-related P3b changes during target processing support a model of NMDAR hypofunction underlying disrupted auditory attention in schizophrenia.
Collapse
|
3
|
Foss-Feig JH, Guillory SB, Roach BJ, Velthorst E, Hamilton H, Bachman P, Belger A, Carrion R, Duncan E, Johannesen J, Light GA, Niznikiewicz M, Addington JM, Cadenhead KS, Cannon TD, Cornblatt B, McGlashan T, Perkins D, Seidman LJ, Stone WS, Tsuang M, Walker EF, Woods S, Bearden CE, Mathalon DH. Abnormally Large Baseline P300 Amplitude Is Associated With Conversion to Psychosis in Clinical High Risk Individuals With a History of Autism: A Pilot Study. Front Psychiatry 2021; 12:591127. [PMID: 33633603 PMCID: PMC7901571 DOI: 10.3389/fpsyt.2021.591127] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 01/05/2021] [Indexed: 11/13/2022] Open
Abstract
Psychosis rates in autism spectrum disorder (ASD) are 5-35% higher than in the general population. The overlap in sensory and attentional processing abnormalities highlights the possibility of related neurobiological substrates. Previous research has shown that several electroencephalography (EEG)-derived event-related potential (ERP) components that are abnormal in schizophrenia, including P300, are also abnormal in individuals at Clinical High Risk (CHR) for psychosis and predict conversion to psychosis. Yet, it is unclear whether P300 is similarly sensitive to psychosis risk in help-seeking CHR individuals with ASD history. In this exploratory study, we leveraged data from the North American Prodrome Longitudinal Study (NAPLS2) to probe for the first time EEG markers of longitudinal psychosis profiles in ASD. Specifically, we investigated the P300 ERP component and its sensitivity to psychosis conversion across CHR groups with (ASD+) and without (ASD-) comorbid ASD. Baseline EEG data were analyzed from 304 CHR patients (14 ASD+; 290 ASD-) from the NAPLS2 cohort who were followed longitudinally over two years. We examined P300 amplitude to infrequent Target (10%; P3b) and Novel distractor (10%; P3a) stimuli from visual and auditory oddball tasks. Whereas P300 amplitude attenuation is typically characteristic of CHR and predictive of conversion to psychosis in non-ASD sample, in our sample, history of ASD moderated this relationship such that, in CHR/ASD+ individuals, enhanced - rather than attenuated - visual P300 (regardless of stimulus type) was associated with psychosis conversion. This pattern was also seen for auditory P3b amplitude to Target stimuli. Though drawn from a small sample of CHR individuals with ASD, these preliminary results point to a paradoxical effect, wherein those with both CHR and ASD history who go on to develop psychosis have a unique pattern of enhanced neural response during attention orienting to both visual and target stimuli. Such a pattern stands out from the usual finding of P300 amplitude reductions predicting psychosis in non-ASD CHR populations and warrants follow up in larger scale, targeted, longitudinal studies of those with ASD at clinical high risk for psychosis.
Collapse
Affiliation(s)
- Jennifer H Foss-Feig
- Department of Psychiatry and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Sylvia B Guillory
- Department of Psychiatry and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Brian J Roach
- San Francisco VA Health Care System, San Francisco, CA, United States
| | - Eva Velthorst
- Department of Psychiatry and Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Holly Hamilton
- San Francisco VA Health Care System, San Francisco, CA, United States.,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| | - Peter Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, PA, United States
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Ricardo Carrion
- Department of Psychiatry, Zucker Hillside Hospital, New York, NY, United States
| | - Erica Duncan
- Departments of Psychology and Psychiatry, Atlanta VA Health Care System and Emory University, Decatur, GA, United States
| | - Jason Johannesen
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States
| | - Gregory A Light
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | | | - Jean M Addington
- Department of Psychiatry, University of Calgary, Calgary, AB, Canada
| | - Kristin S Cadenhead
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Tyrone D Cannon
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States
| | - Barbara Cornblatt
- Department of Psychiatry, Zucker Hillside Hospital, New York, NY, United States
| | - Thomas McGlashan
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States
| | - Diana Perkins
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, United States
| | - Larry J Seidman
- Department of Psychiatry, Harvard University, Cambridge, MA, United States
| | - William S Stone
- Department of Psychiatry, Harvard University, Cambridge, MA, United States
| | - Ming Tsuang
- Department of Psychiatry, University of California, San Diego, San Diego, CA, United States
| | - Elaine F Walker
- Departments of Psychology and Psychiatry, Atlanta VA Health Care System and Emory University, Decatur, GA, United States
| | - Scott Woods
- Departments of Psychology and Psychiatry, Yale University, New Haven, CT, United States
| | - Carrie E Bearden
- Departments of Psychiatry and Biobehavioral Sciences and Psychology, University of California, Los Angeles, Los Angeles, CA, United States
| | - Daniel H Mathalon
- San Francisco VA Health Care System, San Francisco, CA, United States.,Department of Psychiatry, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
4
|
Hamilton HK, Roach BJ, Bachman PM, Belger A, Carrion RE, Duncan E, Johannesen JK, Light GA, Niznikiewicz MA, Addington J, Bearden CE, Cadenhead KS, Cornblatt BA, McGlashan TH, Perkins DO, Seidman LJ, Tsuang MT, Walker EF, Woods SW, Cannon TD, Mathalon DH. Association Between P300 Responses to Auditory Oddball Stimuli and Clinical Outcomes in the Psychosis Risk Syndrome. JAMA Psychiatry 2019; 76:1187-1197. [PMID: 31389974 PMCID: PMC6686970 DOI: 10.1001/jamapsychiatry.2019.2135] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
IMPORTANCE In most patients, a prodromal period precedes the onset of schizophrenia. Although clinical criteria for identifying the psychosis risk syndrome (PRS) show promising predictive validity, assessment of neurophysiologic abnormalities in at-risk individuals may improve clinical prediction and clarify the pathogenesis of schizophrenia. OBJECTIVE To determine whether P300 event-related potential amplitude, which is deficient in schizophrenia, is reduced in the PRS and associated with clinical outcomes. DESIGN, SETTING, AND PARTICIPANTS Auditory P300 data were collected as part of the multisite, case-control North American Prodrome Longitudinal Study (NAPLS-2) at 8 university-based outpatient programs. Participants included 552 individuals meeting PRS criteria and 236 healthy controls with P300 data. Auditory P300 data of participants at risk who converted to psychosis (n = 73) were compared with those of nonconverters who were followed up for 24 months and continued to be symptomatic (n = 135) or remitted from the PRS (n = 90). Data were collected from May 27, 2009, to September 17, 2014, and were analyzed from December 3, 2015, to May 1, 2019. MAIN OUTCOMES AND MEASURES Baseline electroencephalography was recorded during an auditory oddball task. Two P300 subcomponents were measured: P3b, elicited by infrequent target stimuli, and P3a, elicited by infrequent nontarget novel stimuli. RESULTS This study included 788 participants. The PRS group (n = 552) included 236 females (42.8%) (mean [SD] age, 19.21 [4.38] years), and the healthy control group (n = 236) included 111 females (47.0%) (mean [SD] age, 20.44 [4.73] years). Target P3b and novelty P3a amplitudes were reduced in at-risk individuals vs healthy controls (d = 0.37). Target P3b, but not novelty P3a, was significantly reduced in psychosis converters vs nonconverters (d = 0.26), and smaller target P3b amplitude was associated with a shorter time to psychosis onset in at-risk individuals (hazard ratio, 1.45; 95% CI, 1.04-2.00; P = .03). Participants with the PRS who remitted had baseline target P3b amplitudes that were similar to those of healthy controls and greater than those of converters (d = 0.51) and at-risk individuals who remained symptomatic (d = 0.41). CONCLUSIONS AND RELEVANCE In this study, deficits in P300 amplitude appeared to precede psychosis onset. Target P3b amplitudes, in particular, may be sensitive to clinical outcomes in the PRS, including both conversion to psychosis and clinical remission. Auditory target P3b amplitude shows promise as a putative prognostic biomarker of clinical outcome in the PRS.
Collapse
Affiliation(s)
- Holly K. Hamilton
- Department of Psychiatry, University of California, San Francisco,San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Brian J. Roach
- San Francisco Veterans Affairs Health Care System, San Francisco, California
| | - Peter M. Bachman
- Department of Psychiatry, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Aysenil Belger
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | - Ricardo E. Carrion
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York
| | - Erica Duncan
- Atlanta Veterans Affairs Medical Center, Decatur, Georgia,Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Jason K. Johannesen
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut,Veterans Affairs Connecticut Health Care System, West Haven, Connecticut
| | - Gregory A. Light
- Department of Psychiatry, University of California, San Diego, La Jolla,Veterans Affairs San Diego Healthcare System, La Jolla, California
| | - Margaret A. Niznikiewicz
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Boston, Massachusetts,Veterans Affairs Boston Healthcare System, Brockton, Massachusetts
| | - Jean Addington
- Hotchkiss Brain Institute Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Carrie E. Bearden
- Semel Institute for Neuroscience and Human Behavior, University of California, Los Angeles,Department of Psychology, University of California, Los Angeles
| | | | - Barbara A. Cornblatt
- Division of Psychiatry Research, The Zucker Hillside Hospital, North Shore-Long Island Jewish Health System, Glen Oaks, New York,Center for Psychiatric Neuroscience, Feinstein Institute for Medical Research, North Shore-Long Island Jewish Health System, Manhasset, New York,Department of Psychiatry, Hofstra Northwell School of Medicine, Hempstead, New York,Department of Molecular Medicine, Hofstra North Shore-Long Island Jewish School of Medicine, Hempstead, New York
| | - Thomas H. McGlashan
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Diana O. Perkins
- Department of Psychiatry, University of North Carolina at Chapel Hill
| | - Larry J. Seidman
- Department of Psychiatry, Harvard Medical School at Beth Israel Deaconess Medical Center, Massachusetts General Hospital, Boston, Massachusetts
| | - Ming T. Tsuang
- Department of Psychiatry, University of California, San Diego, La Jolla
| | - Elaine F. Walker
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia,Department of Psychology, Emory University, Atlanta, Georgia
| | - Scott W. Woods
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut
| | - Tyrone D. Cannon
- Department of Psychiatry, School of Medicine, Yale University, New Haven, Connecticut,Department of Psychology, School of Medicine, Yale University, New Haven, Connecticut
| | - Daniel H. Mathalon
- Department of Psychiatry, University of California, San Francisco,San Francisco Veterans Affairs Health Care System, San Francisco, California
| |
Collapse
|
5
|
Hamilton HK, Woods SW, Roach BJ, Llerena K, McGlashan TH, Srihari VH, Ford JM, Mathalon DH. Auditory and Visual Oddball Stimulus Processing Deficits in Schizophrenia and the Psychosis Risk Syndrome: Forecasting Psychosis Risk With P300. Schizophr Bull 2019; 45:1068-1080. [PMID: 30753731 PMCID: PMC6737543 DOI: 10.1093/schbul/sby167] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
Identification of neurophysiological abnormalities associated with schizophrenia that predate and predict psychosis onset may improve clinical prediction in the psychosis risk syndrome (PRS) and help elucidate the pathogenesis of schizophrenia. Amplitude reduction of the P300 event-related potential component reflects attention-mediated processing deficits and is among the most replicated biological findings in schizophrenia, making it a candidate biomarker of psychosis risk. The relative extent to which deficits in P300 amplitudes elicited by auditory and visual oddball stimuli precede psychosis onset during the PRS and predict transition to psychosis, however, remains unclear. Forty-three individuals meeting PRS criteria, 19 schizophrenia patients, and 43 healthy control (HC) participants completed baseline electroencephalography recording during separate auditory and visual oddball tasks. Two subcomponents of P300 were measured: P3b, elicited by infrequent target stimuli, and P3a, elicited by infrequent nontarget novel stimuli. Auditory and visual target P3b and novel P3a amplitudes were reduced in PRS and schizophrenia participants relative to HC participants. In addition, baseline auditory and visual target P3b, but not novel P3a, amplitudes were reduced in 15 PRS participants who later converted to psychosis, relative to 18 PRS non-converters who were followed for at least 22 months. Furthermore, target P3b amplitudes predicted time to psychosis onset among PRS participants. These results suggest that P300 amplitude deficits across auditory and visual modalities emerge early in the schizophrenia illness course and precede onset of full psychosis. Moreover, target P3b may represent an important neurophysiological vulnerability marker of the imminence of risk for psychosis.
Collapse
Affiliation(s)
- Holly K Hamilton
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Scott W Woods
- Department of Psychiatry, Yale University, New Haven, CT
| | - Brian J Roach
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Northern California Institute for Research and Education, San Francisco, CA
| | - Katiah Llerena
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | | | | | - Judith M Ford
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| | - Daniel H Mathalon
- Mental Health Service, San Francisco Veterans Affairs Health Care System, San Francisco, CA
- Department of Psychiatry, University of California San Francisco, San Francisco, CA
| |
Collapse
|
6
|
Shahab S, Stefanik L, Foussias G, Lai MC, Anderson KK, Voineskos AN. Sex and Diffusion Tensor Imaging of White Matter in Schizophrenia: A Systematic Review Plus Meta-analysis of the Corpus Callosum. Schizophr Bull 2018; 44:203-221. [PMID: 28449132 PMCID: PMC5767963 DOI: 10.1093/schbul/sbx049] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Sex is considered an understudied variable in health research. Schizophrenia is a brain disorder with known sex differences in epidemiology and clinical presentation. We systematically reviewed the literature for sex-based differences of diffusion properties of white matter tracts in schizophrenia. We then conducted a meta-analysis examining sex-based differences in the genu and splenium of the corpus callosum in schizophrenia. Medline and Embase were searched to identify relevant papers. Studies fulfilling the following criteria were included: (1) included individuals with a diagnosis of schizophrenia, (2) included a control group of healthy individuals, (3) included both sexes in the patient and the control groups, (4) used diffusion tensor imaging, and (5) involved analyzing metrics of white matter microstructural integrity. Fractional anisotropy (FA) was used as the measure of interest in the meta-analysis. Of 730 studies reviewed, 75 met the inclusion criteria. Most showed no effect of sex, however, those that did found either that females have lower FA than males, or that the effect of disease in females is larger than that in males. The findings of the meta-analysis in the corpus callosum supported this result. There is a recognized need for studies on schizophrenia with a sufficient sample of female patients. Lack of power undermines the ability to detect sex-based differences. Understanding the sex-specific impact of illness on neural circuits may help inform development of new treatments, and improvement of existing interventions.
Collapse
Affiliation(s)
- Saba Shahab
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada
| | - Laura Stefanik
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada
| | - George Foussias
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada
| | - Meng-Chuan Lai
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,Autism Research Centre, Department of Psychiatry, University of Cambridge, Cambridge, UK,Department of Psychiatry, National Taiwan University Hospital and College of Medicine, Taipei, Taiwan
| | - Kelly K Anderson
- Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Department of Epidemiology & Biostatistics and Psychiatry, Schulich School of Medicine and Dentistry, The University of Western Ontario, London, ON, Canada
| | - Aristotle N Voineskos
- Institute of Medical Science, Faculty of Medicine, University of Toronto, Toronto, ON, Canada,Centre for Addiction and Mental Health and Slaight Family Centre for Youth in Transition, Toronto, ON, Canada,Campbell Family Mental Health Research Institute, Centre for Addiction and Mental Health, Toronto, ON, Canada,Department of Psychiatry, University of Toronto, Toronto, ON, Canada,To whom correspondence should be addressed; 250 College Street, Toronto, ON M5T 1R8, Canada; tel: 416-535-8501 ext. 33977, fax: 416-260-4162, e-mail:
| |
Collapse
|
7
|
Tréhout M, Leroux E, Delcroix N, Dollfus S. Relationships between corpus callosum and language lateralization in patients with schizophrenia and bipolar disorders. Bipolar Disord 2017; 19:496-504. [PMID: 28834020 DOI: 10.1111/bdi.12526] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/01/2017] [Indexed: 02/02/2023]
Abstract
OBJECTIVES The question of whether there is a continuum or a dichotomy among patients with schizophrenia (SZ) and bipolar disorders (BD) has not been clearly resolved and remains a challenge. Thus, the identification of specific biomarkers of these disorders might be helpful. The present study investigated the volume of the corpus callosum (CC) and functional lateralization for language as potential biomarkers and their relationships in SZ and BD. METHODS The study included 20 patients with SZ, 20 patients with BD and 40 healthy controls (HC). A functional lateralization index (FLI) was computed for each participant within the language comprehension network. For each participant, the volume of the total CC and those of three subregions were extracted. These variables and their anatomo-functional relationships were investigated. RESULTS In comparison to HC, SZ patients presented a decreased leftward lateralization for language, whereas this was not found in BD patients. However, as compared to SZ patients and HC, BD patients showed a reduction in CC volume associated with a lower leftward lateralization for language. CONCLUSIONS Our study revealed that SZ patients displayed a reduction of the leftward functional lateralization for language; however, no reduction of CC volume was observed, whereas BD patients presented a decreased volume of the CC associated with a lower leftward asymmetry for language. The results of our study detected distinct anomalies in both SZ and BD that may be considered as specific biomarkers of these disorders related to neurodevelopmental models.
Collapse
Affiliation(s)
- Maxime Tréhout
- Service de Psychiatrie, CHU de Caen, Caen, France.,Normandie Univ, UNICAEN, UFR de médecine (Medical School), Caen, France.,Normandie Univ, UNICAEN, ISTS, Caen, France
| | | | | | - Sonia Dollfus
- Service de Psychiatrie, CHU de Caen, Caen, France.,Normandie Univ, UNICAEN, UFR de médecine (Medical School), Caen, France.,Normandie Univ, UNICAEN, ISTS, Caen, France
| |
Collapse
|
8
|
Guerra López S, Martín Reyes M, Pedroso Rodríguez MDLÁ, Reyes Berazain A, Mendoza Quiñones R, Bravo Collazo TM, Días de Villarvilla T, Machado Cano MJ, Bobés León MA. [Evoked potentials N200/P300 disorders and clinical phenotype in Cuban families with paranoid schizophrenia: a family-based association study]. Medwave 2015; 15:e6112. [PMID: 25919584 DOI: 10.5867/medwave.2015.03.6112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2014] [Accepted: 03/17/2015] [Indexed: 11/27/2022] Open
Abstract
INTRODUCTION N200 and P300 event-related evoked potentials provide sensitive measurements of sensory and cognitive function and have been used to study information processing in patients with schizophrenia and their unaffected first-degree relatives. Reduced amplitude and increased latency of N200 and P300 potentials have been consistently reported in schizophrenia. Thus, event-related evoked potentials abnormalities are promising possible biological markers for genetic vulnerability to schizophrenia. OBJECTIVE To assess the association of changes in latency, amplitude and topographic distribution of potentials N200 and P300 of patients with paranoid schizophrenia and their healthy first-degree relatives, in families with schizophrenia multiplex. METHODOLOGY We measured latency and amplitude of the N200 and P300 component of evoked potentials using an auditory odd-ball paradigm in 25 schizophrenic patients (probands) from 60 families multiply affected with paranoid schizophrenia, 23 of their non-schizophrenic first-degree relatives and 25 unrelated healthy controls, through a study of family association. RESULTS Schizophrenic patients and their relatives showed significant latency prolongation and amplitude reduction of the N200 and P300 waves compared to controls. Left-temporal as compared to right-temporal N200 and P300 were significantly smaller in schizophrenic patients and their non-schizophrenic first-degree relatives than in controls. Our results suggest that event-related evoked potentials abnormalities may serve as markers of genetic vulnerability in schizophrenia. CONCLUSIONS Confirming results of other researchers, this present study suggests that latency prolongation and amplitude reduction of the N200 and P300 waves and an altered topography at temporal sites may be a trait marker of paranoid schizophrenia.
Collapse
Affiliation(s)
- Seidel Guerra López
- Universidad Nacional del Este, Alto Paraná, Paraguay. Universidad de Integración Latinoamericana, Foz de Iguazú, Paraná, Brasil. Adress: Km. 16 Acaray, Avda. Mcal. López entre Mcal. Estigarribia y Padre Moleón, Minga Guazú Paraguay.
| | - Migdyrai Martín Reyes
- Clínica de Rehabilitación de Salud Mental, Servicio Navarro de Salud, Pamplona, Navarra, España
| | | | | | - Raúl Mendoza Quiñones
- Departamento de Neurociencias de Cuba, Centro de Neurociencias de Cuba, La Habana, Cuba
| | | | | | | | | |
Collapse
|
9
|
Featherstone RE, McMullen MF, Ward KR, Bang J, Xiao J, Siegel SJ. EEG biomarkers of target engagement, therapeutic effect, and disease process. Ann N Y Acad Sci 2015; 1344:12-26. [DOI: 10.1111/nyas.12745] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Affiliation(s)
- Robert E. Featherstone
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Mary F. McMullen
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Katelyn R. Ward
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jakyung Bang
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Jane Xiao
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| | - Steven J. Siegel
- Translational Neuroscience Program; Department of Psychiatry; University of Pennsylvania; Philadelphia Pennsylvania
| |
Collapse
|
10
|
del Re EC, Spencer KM, Oribe N, Mesholam-Gately RI, Goldstein J, Shenton ME, Petryshen T, Seidman LJ, McCarley RW, Niznikiewicz MA. Clinical high risk and first episode schizophrenia: auditory event-related potentials. Psychiatry Res 2015; 231:126-33. [PMID: 25557063 PMCID: PMC4314407 DOI: 10.1016/j.pscychresns.2014.11.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2014] [Revised: 11/07/2014] [Accepted: 11/19/2014] [Indexed: 01/15/2023]
Abstract
The clinical high risk (CHR) period is a phase denoting a risk for overt psychosis during which subacute symptoms often appear, and cognitive functions may deteriorate. To compare biological indices during this phase with those during first episode schizophrenia, we cross-sectionally examined sex- and age-matched clinical high risk (CHR, n=21), first episode schizophrenia patients (FESZ, n=20) and matched healthy controls (HC, n=25) on oddball and novelty paradigms and assessed the N100, P200, P3a and P3b as indices of perceptual, attentional and working memory processes. To our knowledge, this is the only such comparison using all of these event-related potentials (ERPs) in two paradigms. We hypothesized that the ERPs would differentiate between the three groups and allow prediction of a diagnostic group. The majority of ERPs were significantly affected in CHR and FESZ compared with controls, with similar effect sizes. Nonetheless, in logistic regression, only the P3a and N100 distinguished CHR and FESZ from healthy controls, suggesting that ERPs not associated with an overt task might be more sensitive to prediction of group membership.
Collapse
Affiliation(s)
- Elisabetta C del Re
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Department of Radiology, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA.
| | - Kevin M Spencer
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Naoya Oribe
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Department of Neuropsychiatry, Graduate School of Medical Sciences, Kyushu University, Fukuoka, Japan
| | - Raquelle I Mesholam-Gately
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA
| | - Jill Goldstein
- Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA; Brigham and Women׳s Hospital, Connors Center for Women׳s Health and Gender Biology, Boston, MA, USA; Departments of Psychiatry and Medicine, Harvard Medical School, Boston, MA, USA
| | - Martha E Shenton
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Psychiatry Neuroimaging Laboratory, Department of Psychiatry and Department of Radiology, Brigham and Women׳s Hospital, Harvard Medical School, Boston, MA, USA
| | - Tracey Petryshen
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA; Psychiatric and Neurodevelopmental Genetics Unit, Center for Human Genetic Research and Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Larry J Seidman
- Harvard Medical School, Massachusetts Mental Health Center Division of Public Psychiatry, Department of Psychiatry, Beth Israel Deaconess Medical Center, Boston, MA, USA; Harvard Medical School, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
| | - Robert W McCarley
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Margaret A Niznikiewicz
- VA Boston Healthcare System, Brockton, MA, USA; Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
11
|
Albrecht MA, Martin-Iverson MT, Price G, Lee J, Iyyalol R. Dexamphetamine-induced reduction of P3a and P3b in healthy participants. J Psychopharmacol 2011; 25:1623-31. [PMID: 20699352 DOI: 10.1177/0269881110376686] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The reduced P3 is one of the most robust deficits involved in schizophrenia. Previous research with catecholaminergic agonists or releasers such as amphetamines have used doses too small to adequately demonstrate an effect on P3. In this study, we gave 0.45 mg/kg dexamphetamine to healthy volunteers (final n = 18) using both auditory and visual three-stimulus P3 procedures. Dexamphetamine significantly reduced P3 amplitudes to auditory target, rare non-target and standard stimulus amplitudes. The reduction in auditory P3 induced by dexamphetamine was proportional across stimulus types to placebo P3 values. There were no effects of dexamphetamine on visual P3. We demonstrate a reduced auditory P3 similar to that seen in schizophrenia and other psychotic illnesses. This possibly reflects a common pathology which is hypothesized within the P3 literature to be related to attention and working memory. Differences between auditory and visual P3 modulation may be related to regional variations in catecholamine or specifically dopamine receptor densities. One specific auditory P3 generator is the superior temporal cortex, an area with dopamine D(2) receptor enriched bands. This is contrasted with visual specific generators, such as the inferior temporal cortex and superior parietal cortex, which do not have these enriched bands.
Collapse
Affiliation(s)
- Matthew A Albrecht
- School of Medicine and Pharmacology, University of Western Australia, Perth, Australia.
| | | | | | | | | |
Collapse
|
12
|
Fusar-Poli P, Crossley N, Woolley J, Carletti F, Perez-Iglesias R, Broome M, Johns L, Tabraham P, Bramon E, McGuire P. White matter alterations related to P300 abnormalities in individuals at high risk for psychosis: an MRI-EEG study. J Psychiatry Neurosci 2011; 36:239-48. [PMID: 21299920 PMCID: PMC3120892 DOI: 10.1503/jpn.100083] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Psychosis onset is characterized by white matter and electrophysiologic abnormalities. The relation between these factors in the development of illness is almost unknown. We studied the relation between white matter volumes and P300 in prodromal psychosis. METHODS We assessed white matter volume (detected using magnetic resonance imaging) and electrophysiologic response during an oddball task (P300) in healthy controls and individuals at high clinical risk for psychosis (with an "at-risk mental state" [ARMS]). RESULTS We included 41 controls and 39 patients with an ARMS in our study. A psychotic disorder developed in 26% of the ARMS group within the follow-up period of 2 years. The P300 amplitude was significantly lower in the ARMS group than in the control group. The ARMS group showed reduced volume of white matter underlying the left superior temporal gyrus and the left superior frontal gyrus and increased volume of white matter underlying the right insula and the right angular gyrus compared with controls. Relative to individuals who did not later become psychotic, the subgroup in whom psychosis subsequently developed had a smaller volume of white matter underlying the left precuneus and the right middle temporal gyrus and increased volume in the white matter underlying the right middle frontal gyrus. We observed a significant interaction in the right middle frontal gyrus: white matter volume was negatively associated with P300 amplitude in the ARMS group and positively associated with P300 amplitude in the control group. LIMITATIONS The voxel-based morphometry method alone cannot determine whether abnormal white matter volumes are due to an altered number of axonal connections or decreased myelination. CONCLUSION P300 abnormalities precede the onset of psychosis and are directly related to white matter alterations, representing a correlate of an increased vulnerability to disease.
Collapse
Affiliation(s)
- Paolo Fusar-Poli
- Psychosis Clinical Academic Group, Institute of Psychiatry, King's Health Partners, King's College London, London, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Preuss UW, Zetzsche T, Pogarell O, Mulert C, Frodl T, Müller D, Schmidt G, Born C, Reiser M, Möller HJ, Hegerl U, Meisenzahl EM. Anterior cingulum volumetry, auditory P300 in schizophrenia with negative symptoms. Psychiatry Res 2010; 183:133-9. [PMID: 20630714 DOI: 10.1016/j.pscychresns.2010.05.008] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2009] [Revised: 04/19/2010] [Accepted: 05/16/2010] [Indexed: 10/19/2022]
Abstract
The anterior cingulate cortex (ACC) is located at the rostum of the corpus callosum and involved in both cognitive and emotional brain processes. It has been suggested to be involved in P300 event-related potential generation. A large sample of schizophrenia inpatients and controls was examined in order to assess the potential relationship between ACC volumes and P300 characteristics in patients with more pronounced negative symptoms. In 50 male schizophrenia patients and 50 matched controls, auditory P300 and structural magnetic resonance imaging volume measurements of the ACC were obtained. Patients' negative symptoms were assessed using the PANSS (Positive and Negative Syndrome Scale). Volumetry of ACC subregions revealed a volume reduction in patients with schizophrenia compared with controls in right hemispheric rostral ACC subregions that were most pronounced in more negative schizophrenia patients. There was a positive correlation between PZ P300 amplitude and total ACC volume in the right hemisphere in schizophrenia patients with less negative symptoms. The results support the assumption that structural changes of the ACC are more pronounced in subgroups of schizophrenia patients with more negative psychopathology. In addition, while right hemisphere ACC volumes significantly differ between schizophrenia subgroups, combining measures of event-related potential (ERP) and ACC volumetry does not add additional information.
Collapse
Affiliation(s)
- Ulrich W Preuss
- Department of Psychiatry and Psychotherapy, Ludwig-Maximilians University, Nussbaumstrasse 7, D-80336 Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Gilmore CS, Clementz BA, Berg P. Hemispheric differences in auditory oddball responses during monaural versus binaural stimulation. Int J Psychophysiol 2009; 73:326-33. [PMID: 19463866 PMCID: PMC2756307 DOI: 10.1016/j.ijpsycho.2009.05.005] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Revised: 03/24/2009] [Accepted: 05/09/2009] [Indexed: 11/17/2022]
Abstract
Hemispheric lateralization of early event-related potentials (ERPs; e.g. N1) is largely based on anatomy of the afferent pathway; lateralization of later auditory ERPs (P2/N2, P250, P3b) is less clear. Using 257-channel EEG, the present study examined hemispheric laterality of auditory ERPs by comparing binaural and monaural versions of an auditory oddball task. N1 showed a contralateral bias over auditory cortex in both hemispheres as a function of ear of stimulation, although right hemisphere sources were activated regardless of which ear received input. Beginning around N1 and continuing through the time of P3b, right hemisphere temporal-parietal and frontal areas were more activated than their left hemisphere counterparts for stimulus evaluation/comparison and target detection. P250 and P3b component amplitudes, topographies, and source estimations were significantly influenced by ear of stimulation, with right hemisphere activity being stronger. This was particularly true for anterior temporal and inferior frontal sources which were more strongly associated with the later, more cognitive components (P250, P3b). Results are consistent with theories of a right hemisphere network that is prominently involved in sustained attention, stimulus evaluation, target detection, and working memory/context updating.
Collapse
Affiliation(s)
- Casey S Gilmore
- Department of Psychology, University of Minnesota, Elliott Hall, 75 East River Road, Minneapolis, MN 55455, USA.
| | | | | |
Collapse
|
15
|
Cortiñas M, Corral MJ, Garrido G, Garolera M, Pajares M, Escera C. Reduced novelty-P3 associated with increased behavioral distractibility in schizophrenia. Biol Psychol 2008; 78:253-60. [DOI: 10.1016/j.biopsycho.2008.03.011] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2007] [Revised: 02/14/2008] [Accepted: 03/14/2008] [Indexed: 10/22/2022]
|
16
|
Sivagnanasundaram S, Crossett B, Dedova I, Cordwell S, Matsumoto I. Abnormal pathways in the genu of the corpus callosum in schizophrenia pathogenesis: a proteome study. Proteomics Clin Appl 2007; 1:1291-305. [DOI: 10.1002/prca.200700230] [Citation(s) in RCA: 73] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2007] [Indexed: 12/20/2022]
|
17
|
Devrim-Uçok M, Keskin-Ergen HY, Uçok A. Novelty P3 and P3b in first-episode schizophrenia and chronic schizophrenia. Prog Neuropsychopharmacol Biol Psychiatry 2006; 30:1426-34. [PMID: 16828218 DOI: 10.1016/j.pnpbp.2006.05.019] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2006] [Revised: 05/28/2006] [Accepted: 05/29/2006] [Indexed: 10/24/2022]
Abstract
The objective of this study was to evaluate P3b and novelty P3 responses in patients with first-episode schizophrenia (FES) and chronic schizophrenia (CS). P3b is consistently reported to be reduced in CS. However, novelty P3 results in CS are controversial. Novelty P3 is not studied, and there are only a few P3b studies in patients with FES. Subject groups comprised 31 patients with FES and 36 younger control subjects, and 26 patients with CS and 35 older control subjects. Automatically elicited auditory novelty P3 and effortfully elicited auditory P3b potentials were assessed. P3b amplitudes were reduced in both patients with FES and CS relative to their controls. CS and FES patients did not differ in P3b amplitude. Novelty P3 amplitude was reduced in patients with CS. Novelty P3 amplitude in patients with FES did not differ from their controls. P3b amplitude reduction may be a trait marker of schizophrenia and may not progress over the course of illness, although this can only be definitively determined by longitudinal studies. Novelty P3 amplitude reduction present in patients with CS, is not found at the onset of illness. Novelty P3 seems unaffected early in the disease process.
Collapse
Affiliation(s)
- Müge Devrim-Uçok
- Department of Physiology, University of Istanbul, Istanbul Medical Faculty, 34093 Capa-Istanbul, Turkey.
| | | | | |
Collapse
|
18
|
Ivanovic DM, Leiva BP, Castro CG, Olivares MG, Jansana JMM, Castro VG, Almagià AAF, Toro TD, Urrutia MSC, Miller PT, Bosch EO, Larraín CG, Pérez HT. Brain development parameters and intelligence in Chilean high school graduates. INTELLIGENCE 2004. [DOI: 10.1016/j.intell.2004.07.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
19
|
Ivanovic DM, Leiva BP, Pérez HT, Olivares MG, Díaz NS, Urrutia MSC, Almagià AF, Toro TD, Miller PT, Bosch EO, Larraín CG. Head size and intelligence, learning, nutritional status and brain development. Neuropsychologia 2004; 42:1118-31. [PMID: 15093150 DOI: 10.1016/j.neuropsychologia.2003.11.022] [Citation(s) in RCA: 97] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2003] [Accepted: 11/17/2003] [Indexed: 10/26/2022]
Abstract
This multifactorial study investigates the interrelationships between head circumference (HC) and intellectual quotient (IQ), learning, nutritional status and brain development in Chilean school-age children graduating from high school, of both sexes and with high and low IQ and socio-economic strata (SES). The sample consisted of 96 right-handed healthy students (mean age 18.0 +/- 0.9 years) born at term. HC was measured both in the children and their parents and was expressed as Z-score (Z-HC). In children, IQ was determined by means of the Wechsler Intelligence Scale for Adults-Revised (WAIS-R), scholastic achievement (SA) through the standard Spanish language and mathematics tests and the academic aptitude test (AAT) score, nutritional status was assessed through anthropometric indicators, brain development was determined by magnetic resonance imaging (MRI) and SES applying the Graffar modified method. Results showed that microcephalic children (Z-HC < or = 2 S.D.) had significantly lower values mainly for brain volume (BV), parental Z-HC, IQ, SA, AAT, birth length (BL) and a significantly higher incidence of undernutrition in the first year of life compared with their macrocephalic peers (Z-HC > 2S.D.). Multiple regression analysis revealed that BV, parental Z-HC and BL were the independent variables with the greatest explanatory power for child's Z-HC variance (r(2) = 0.727). These findings confirm the hypothesis formulated in this study: (1) independently of age, sex and SES, brain parameters, parental HC and prenatal nutritional indicators are the most important independent variables that determine HC and (2) microcephalic children present multiple disorders not only related to BV but also to IQ, SA and nutritional background.
Collapse
Affiliation(s)
- Daniza M Ivanovic
- Public Nutrition Area, Institute of Nutrition and Food Technology, University of Chile, Avda. Macul 5540, P.O. Box 138-11, Santiago, Chile.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Abstract
The Zeitgeist favors an interpretation of schizophrenia as a condition of abnormal connectivity of cortical neurons, particularly in the prefrontal and temporal cortex. The available evidence points to reduced connectivity, a possible consequence of excessive synaptic pruning in development. A decreased thalamic input to the cerebral cortex appears likely, and developmental studies predict that this decrease should entail a secondary loss of both long- and short-range cortico-cortical connections, including connections between the hemispheres. Indeed, morphological, electrophysiological and neuropsychological studies over the last two decades suggest that the callosal connections are altered in schizophrenics. However, the alterations are subtle and sometimes inconsistent across studies, and need to be investigated further with new methodologies.
Collapse
Affiliation(s)
- G M Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | | | | |
Collapse
|
21
|
Kasai K, Iwanami A, Yamasue H, Kuroki N, Nakagome K, Fukuda M. Neuroanatomy and neurophysiology in schizophrenia. Neurosci Res 2002; 43:93-110. [PMID: 12067745 DOI: 10.1016/s0168-0102(02)00023-8] [Citation(s) in RCA: 59] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
Schizophrenia is a major mental disorder, characterized by their set of symptoms, including hallucinatory-delusional symptoms, thought disorder, emotional flattening, and social withdrawal. Since 1980s, advances in neuroimaging and neurophysiological techniques have provided tremendous merits for investigations into schizophrenia as a brain disorder. In this article, we first overviewed neuroanatomical studies using structural magnetic resonance imaging (s-MRI), MR spectroscopy (MRS), and postmortem brains, followed by neurophysiological studies using event-related potentials (ERPs) and magnetoencephalography (MEG), in patients with schizophrenia. Evidences from these studies suggest that schizophrenia is a chronic brain disorder, structurally and functionally affecting various cortical and subcortical regions involved in cognitive, emotional, and motivational aspects of human behavior. Second, we reviewed recent investigations into neurobiological basis for schizophrenic symptoms (auditory hallucinations and thought disorder) using these indices as well as hemodynamic assessments such as positron emission tomography (PET) and functional MRI (f-MRI). Finally, we addressed the issue of the heterogeneity of schizophrenia from the neurobiological perspective, in relation to the neuroanatomical and neurophysiological measures.
Collapse
Affiliation(s)
- Kiyoto Kasai
- Department of Neuropsychiatry, Graduate School of Medicine, University of Tokyo, Tokyo, Japan.
| | | | | | | | | | | |
Collapse
|